mjt-命题》教案(1)(沪教版高一上)
沪教版高一数学命题的形式及等价关系教学计划范文:上册
沪教版高一数学命题的形式及等价关系教学计划范
文:上册
如果要想做出高效、实效,务必先从自身的工作计划开始。
有了计划,才不致于使自己思想迷茫。
下文为您准备了沪教版高一数学命题的形式及等价关系教学计划范文。
教学目标:
1.知道命题的四种形式及其相互关系,理解否命题、逆否命题;
2.在探究命题的四种形式及其相互关系的过程中,领会分类、判断、推理的思想方法;
3.在进一步认识基本的逻辑关系及其运用活动中,体会逻辑语言在数学表达和论证中的重要作用,树立分析问题条理清楚、理由充分、符合逻辑的数学意识.
教学重点:理解否命题、逆否命题.
教学难点:正确写出命题的否命题和逆否命题;运用逻辑语言表述和论证真命题.
教学过程:。
2019-2020新沪教版高一数学第一学期教学案03—命题和充要条件-教师版
命题和充要条件知识梳理一、命题的概念1、一般地,我们把可以判断真假的语句叫做命题。
2、命题通常用陈述句表示,正确的命题叫做真命题,错误的命题叫做假命题。
3、一般地,如果命题 :成立可以推出命题1也成立,那么就说由可以推出-,记作心'。
相反的,如果『成立不能推出•成立,那么就说由,不可以推出,记作〉二■- o4、如果W眇,并且-=-,那么就说与,’等价,记作「二■- o二、四种命题形式1、一个数学命题用条件,结论,表示就是“如果:-,那么•”把结论与条件交换,就得到一个新命题“如果0,那么我们把这个命题叫做原命题的逆命题。
2、如果一个命题的条件与结论分别是另一个命题的条件与结论的否定,我们把这两个命题叫做互否命题。
如果其中一个叫做原命题,那么另外一个叫做原命题的否命题。
3、命题「、:的否定分别记作厂、匚。
4、如果把原命题“如果「,那么结论的否定作条件,把条件的否定作结论,那么就可以得到一个新命题,我们将它叫做原命题的逆否命题。
5、四种命题形式及其相互关系:6、常见结论的否定形式:(拓展内容)原结论否定形式原结论否定形式是不是至少有一个没有都是不都是至多有一个至少有一个大于小于或等于至少有n个至多有n-1个小于大于或等于至多有n个至少有n+1个对所有的x成立存在x不成立p或q非p且非q对任何的x不成立存在x成立p且q非p或非q、充要条件1充分条件与必要条件:一般地,用a、0分别表示两个命题,如果欣成立,可以推出0也成立,即。
二>0,那么欣叫做0的充分条件。
•'叫做的必要条件。
2、充要条件:如果既有{,又有Jr二,即有:-:,那么J既是■"的充分条件又是 "的必要条件,这时我们就说例题解析1、有关命题的概念【例1】判断下列语句是否是命题:10 2 2⑴张三是四川人;⑵10是个很大的数;⑶x・2x=0 :⑷x 6 0 :⑸112 ;【难度】★ 【答案】⑴是命题;⑵不是命题;⑶不是命题;⑷不是命题;⑸是命题.【例2】判断下列语句是不是命题,若是,判断出其真假,若不是,说明理由(1) 矩形难道不是平行四边形吗?(2) 垂直于同一条直线的两条直线必平行吗?_ 2(3) 求证:X,R,方程x x ^0无实根.(4) x 5(5) 人类在2020年登上火星.【难度】★【答案】(1)是命题,且是真命题(2) 不是命题,这是疑问句,没有对垂直于同一条直线的两直线是否平行作出判断(3) 不是命题,是祈使句(4) 是开语句,不是命题.(5) 是命题.但目前无法判断真假.【例3】下面有四个命题:①若-a不属于N,则a属于N ;②若a N , b N,则a b的最小值为2 ;③x2• 1 = 2xB. 1个【难度】★★1【解析】①假命题,如a ;②假命题,集合N中最小的数是0 ,女口a=0 , b)=1 ;③假命题, {1,1}与集合元素的【答案】A互异性矛盾.【例4】下列判断中正确的是().A. “ 12是偶数且是18的约数”是真命题B•“方程x2x ^0没有实数根”是假命题C. “存在实数x,使得x 2 <3且x216 ”是真命题D. “三角形的三个内角的和大于或等于120 ”是假命题【难度】★★【答案】C【例5】对于直角坐标平面内的任意两点“为,yj、B(X2 , y2),定义它们之间的一种距离”AB = X1 - X2I计% - y2〔.给出下列三个命题:①若点C在线段AB上,则||AC|片CB| =|A B|;2 2 2②在MBC 中,若N C=90°,则|AC||+|CB|=|AB||;③在ABC 中,|AC|〉|CB|』|AB .其中真命题的个数为()A . 1个B . 2个C. 3个D. 4个【难度】★★★【答案】A【解析】记A, B , C三点的坐标分别为(X A,『A) , (X B, y s), (x c , y c),则AC| 亠|CB 二X A—X c| 计X -X B + 丫人一y C -1 y c 一『B > X A _X B| T y A _y B = AB ,当X c , y c都分别在X A , X B与和,氐之间时,上面的不等式取到等号,故①正确,③不一定;对于②,取C(0,0),A(0,1), B(1,0),则②中等式左边=1+1=2,右边=(1+1)2=4,故②假.【巩固训练】1、判断命题真假:如果a C2,那么a £2 ( ) 【难度】★【答案】真2、若x:二'2,5 1和X :X|X 1或x 4}都是假命题,则X的范围是 _____________【难度】★★【解x := 2,5 1和x • :x | x :::1或X- 4都是【答案】1,23、已知A,B是两个集合,下列四个命题:①A不包含于B 对任意x •代有x「一B②A不包含于B二A・B二•一③A不包含于B :二A不包含B④A不包含于B := 存在x =A, x ■ B其中真命题的序号是________【难度】★★【答案】③④【解析】①反例: A =「1,2,3 ?,B =「2,3,4}4、下面有四个命题:①集合N中最小的数是1;②若-a不属于N,则a属于N ;③若N,b・N,则a - b的最小值为2 ;④x2 ^2x 的解可表示为1,1.其中真命题的个数为()A. 0个B. 1个C. 2个D. 3个【难度】★★【答案】A【解析】① 假命题,集合N中最小的数是0 ;入1②假命题,如a二一;2③假命题,如a =0,b =1 ;④假命题,〈代与集合元素的互异性矛盾•二、命题的四种形式及其关系【例6】命题若x=y,则|x冃y|”,写出它的逆命题、否命题、逆否命题,并判断它们的真假【难度】★★【答案】逆命题:若|x|=|y|,则x=y (假,如x=1 , y=-1 )否命题:若x = y,则| x产| y | (假,如x =1 , y = T )逆否命题:若|x|-|y|,则x=y (真,T x = y = |x|Wy|)【例7】有4个命题:(1)没有男生爱踢足球;(2)所有男生都不爱踢足球;(3)至少有一个男生不爱踢足球;(4)所有女生都爱踢足球;其中是命题“所有男生都爱踢足球”的否定是_______ 【难度】★★【答案】(3)【例8】写出命题若a,b都是偶数,则a - b是偶数”的逆命题,否命题,逆否命题,并判断它们的真假【难度】★★【答案】逆命题:若a b是偶数,则a,b都是偶数,它是假命题;否命题:若a,b不都是偶数,则a b不是偶数,它是假命题;逆否命题:若a b不是偶数,则a,b不都是偶数,它是真命题•【例9】写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假.⑴负数的平方是正数”;⑵ 若a和b都是偶数,则a b是偶数”;⑶当c 0时,若a b,则ac bc ”;⑷ 若x y =5,则x =3且y =2 ”;【难度】★★【答案】⑴逆命题:若一个数的平方是正数,则它是负数. (假)否命题:若一个数不是负数,则它的平方不是正数. (假)逆否命题:若一个数的平方不是正数,则它不是负数. (真)⑵逆命题:若a b是偶数,则a和b都是偶数.(假)否命题:若a和b不全是偶数,则a b不是偶数.(假)逆否命题为:若a b不是偶数,则a和b不都是偶数.(真)a . b,结论是ac . bc.⑶分析:当c 0时”是大前提,写其他命题时应该保留,原命题的条件是逆命题:当c 0时,若ac .be,则a b .(真)否命题:当c 0时,若a < b,则ac< be.(真)逆否命题:当c . 0时,若ac < bc,则a < b .(真)⑷逆命题:若x=3且y=2,则x・y=5 .(真)否命题:若x讨=5,则x = 3或y = 2 .(真)逆否命题:若x=3或y ",则x • y =5 . (假)2 2【例10】已知命题p :方程x mx ^0有两个不相等的实负根,命题q :方程4x ,(m-2)x,1 = 0无实根; 若p与q中有且仅有一个为真命题,求实数m的取值范围.【难度】★★★m2-4 0【答案】由命题p可以得到:••• m 2>0由命题q可以得到:厶=(m —2)2 -16 0• -2 m :::6 因为p,q有且仅有一个为真当p为真,q为假时,m 2= m_6 、m 兰一2,or m 色6丄m 一2当p为假,q为真时,=-2”:m空21-2 5 £6所以,m的取值范围为{m|m _6或-2 :::m乞2} •【巩固训练】1、有下列四个命题:①“若x・y=0,则X,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q < 1,则x2 2x ^0有实根”的逆否命题;④“等边三角形的三个内角相等”逆命题;其中真命题的个数为()A. 1B. 2C. 3D. 4【难度】★★【答案】C【解析】①的逆命题为若x,y互为相反数,则x+y=O”为真命题;②的否命题为不全等的三角形,面积一定不等”为假命题;③为真命题,T q w 1时,一元二次方程的判别式厶=4-4q > 0 ,故有实根,原命题为真,从而它的逆否命题为真命题;④为真命题,“逆命题为三个内角都相等的三角形是等边三角形”2、原命题:个.设a ,b ,c R,若a b,则ac2bc2”以及它的逆命题、否命题、逆否命题中,真命题共有()A.0B. 1 C. 2 D. 4【难度】★★【答案】C【解析】逆命题和否命题是真命题.3、命题:若x2 <1,则一1 ::x ::1 ”的逆否命题是(A .若 x 2 > 1,则 x > 1 或 x < -1B .若-1 ::: x :::1,则 x 2 ::: 111C.若 x 1 或 x ::: _1,则 x 21 D .若 x > 1 或 x < -1,则 x2 > 1【难度】★★ 【答案】D4、有下列四个命题: ① 命题 若xy =1,则x , y 互为倒数”勺逆命题;② 命题 面积相等的三角形全等 ③ 命题 若m < 1,则x 2 -2x ,m =0有实根”的逆否命题;④命题 若A“ B = B ,贝U A B ”的逆否命题. 其中是真命题的是 _________________________ (填上你认为正确的命题的序号). 【难度】★★ 【答案】①②③【解析】①、②显然正确;③当m < 1时,有厶=4—4m > 0 ,「•方程有实数根,即原命题为真, •••它的逆否命题也为真; ④AP|B 二B 则B 1A ,二原命题为假,因而其逆否命题也为假.5. 原命题的否命题是“三条边相等的三角形是等边三角形” ,原命题的逆命题是 _______________三、有关等价命题【例12】与命题“ kl , •,-不全是负数”等价的命题是()A 、X ,、:2中至少有一个是正数B 、闊,F , £全不是负数c 、%, ¥, E 中只有一个是负数 D 网,/, £中至少有一个是非负数【难度】★ 【答案】D”的否命题;【例13】与“一元二次方程沙■-芒•::一-心十有一正根、一负根”等价的命题是( D )A> ->0 B 三 V 0 C、-> 0D> - < 0a3a【难度】★★【答案】D否命题,【例14】命题:已知a, b为实数,若x2・ax,b_O有非空解集,则a2-4b_ 0。
沪教版(上海)数学高一上册-1.4 等价命题 教案
原命题:αβ⇒ 逆否命题:βα⇒否命题:αβ⇒ 逆命题:βα⇒ 互逆 互逆 互否 互否 互为逆否命题 1.4 命题的形式及等价关系1.4.3等价命题教学目标:1.理解等价命题,会用原命题与逆否命题的等价性原理解决问题;2.在解决问题的过程中,感悟“正难则反”的策略,即当证明某个问题有困难时,尝试证明它的逆否命题来代替证明原命题;3.在运用逻辑语言进行数学表达交流活动中,领会分类、判断、推理的思想方法的重要作用, 树立分析问题条理清楚、理由充分、符合逻辑的数学意识.教学重点:理解等价命题,初步会用“正难则反”策略解决问题.教学难点:正确写出命题的逆否命题;运用逻辑语言表述和论证真命题.教学过程:1.情景引入在命题四种形式的学习中,我们已经知道原命题与逆否命题、逆命题与否命题都具有同为真命题或同为假命题的特性。
那么这几个命题之间具有的是怎样的逻辑关系呢?这就是所要学的“等价命题”。
2.概念形成:等价命题:如果A B 、是两个命题,,A B B A ⇒⇒,那么A B 、叫做等价命题. 四种命题形式的关系如下图所示:如果两个互为逆否命题,那么这两个命题是等价命题。
如何证明?由图可知,原命题与逆否命题是互为逆否命题,否命题与逆命题也是互为逆否命题,因此,原命题与逆否命题是等价命题,同真同假,否命题与逆命题也是等价命题,也同真同假。
应用:利用两个等价命题同真或同假的原理,当我们证明某个命题有困难时,我们尝试证明它的逆否命题成立,从而代替证明原命题,这就是所谓的“正难则反”策略.思考:当两个命题等价时,是不是这两个命题一定是互为逆否命题。
用逆否命题代替原命题的证法与反证法有什么联系。
反证法:从命题结论的反面出发,假设结论的反面正确,然后用公理、定理、公式进行推理,得出与已知或与定理矛盾的结论,则假论不成立,原命题成立反证法证明命题的一般步骤:(1)假设命题反面成立(2)从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾(3)得出假设不成立,即所求证命题成立归缪的依据:(1)与原命题的条件矛盾;(2)导出与假设相矛盾的命题;(3)导出一个假命题反证法的适用范围:(1)结论本身是以否定形式出现的命题(2)结论是以“至多”“至少”等形式出现的命题(3)唯一性与存在性问题(4)结论的反面比原结论更具体、更容易研究3.概念应用例1、已知命题A成立可推出命题B不成立,则下列说法一定正确的是:( )A)如果A成立,可以推出B成立B)如果A不成立,可以推出B不成立C)如果B不成立,可以推出A成立D)如果B成立,可以推出A不成立例2:已知BD、CE分别是 ABC的∠B、∠C的角平分线,BD≠CE,求证:AB≠AC.例3:若5x y +≤,则2x ≤或3y ≤4.课堂小结:(让学生用自己的语言归纳小结,并通过补充和订正提高参与度)(1)等价命题;(2)正确写出一个命题的等价命题的要领:就是写出该命题的逆否命题;(3) 理解互为逆否命题的两个命题是等价命题,初步会用正难则反策略解决问题.。
沪教版高一上册数学命题的形式及等价关系教案一级第一学期(1)
1.4 (1)命题的形式及等价关系一、教学内容分析命题的有关概念在初中平面几何中已学过,本章在此基础上对命题作较深入的研究,特别强调要确定命题真假都必须证明。
举反例既可以确定一个命题是假命题,同时它又是一个重要的数学思想。
推出关系是数学证明中最重要的逻辑关系。
教材用比较通俗的说法给出了推出关系的意义及符号。
教材介绍了四种命题的构成及等价命题的概念,这给我们今后证明一个命题为真(假)命题可转化该命题的等价命题(通常是逆否命题)为真(假)命题提供了理论依据。
本小节首先从初中数学的命题知识入手,给出推出关系,等价关系的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。
二、教学目标设计理解四种命题之间的相互关系,能由原命题写出其他三种形式;知道推出关系的概念,理解一个命题的真假与其他三个命题真假间的关系;掌握等价关系的概念,初步掌握反证法。
三、教学重点及难点理解四种命题的关系;体会反证法的理论依据。
四、教学用具准备多媒体六、教学过程设计一、复习回顾在初中,我们已学过命题,真命题,假命题。
命题:表示判断的语句。
真命题:正确的命题。
假命题:错误的命题。
命题“全等三角形的面积相等”的条件与结论各是什么?本节将进一步研究命题与其有关的命题的概念。
[说明]通过学生回顾以前的知识,唤起他们原有认知结构中的知识结点,从而为下面的要学习的一些下位概念的同化和顺应提供最近发展区。
二、讲授新课1.命题例1:下列语句哪些不是命题,哪些是命题?如果是命题,那么它们是真命题还是假命题?为什么?(课本例题)1.个位数是5的自然数能被5整除;2.凡直角三角形都相似;3.上课请不要讲话;4.互为补角的两个角不相等;5.你是高一学生吗?解:1.真命题它可以写成10k+5的形式(k是非负整数),而10k+5=5(2k+1),所以10k+5能被5整除。
2.假命题取三个角分别是900、450、450的直角三角形,它与三个角分别是900、600、300的直角三角形不相似。
沪教版高一数学命题的形式及等价关系教学计划:上册
沪教版高一数学命题的形式及等价关系教学计划:上册如果要想做出高效、实效,务必先从自身的工作计划开始。
有了计划,才不致于使自己思想迷茫。
下文为您准备了沪教版高一数学命题的形式及等价关系教学计划。
教学目标:1.知道命题的四种形式及其相互关系,理解否命题、逆否命题;2.在探究命题的四种形式及其相互关系的过程中,领会分类、判断、推理的思想方法;3.在进一步认识基本的逻辑关系及其运用活动中,体会逻辑语言在数学表达和论证中的重要作用,树立分析问题条理清楚、理由充分、符合逻辑的数学意识.教学重点:理解否命题、逆否命题.教学难点:正确写出命题的否命题和逆否命题;运用逻辑语言表述和论证真命题.教学过程:就是“如果?,那么?”.如果我们把这个命题的结论和条件互换,就得到一个新命题:“如果?,那么?”,这个命题与前一个命题有怎样的关系呢?这就是我们将要学习的“命题的四种形式”(引入新课)??2.概念形成:(教学提示:这一环节可采用教师引领下的学生阅读教材或学生阅读教师呈现的PPT素材,教师引导学生自己互写命题的形式建构概念,激发学生积极思考、参与教学的热情)(1)逆命题:把命题:“如果?,那么?”的结论与条件互换,得到的新命题:“如果?,那么?”.我们把这个新命题叫做原命题的逆命题.事实上,这两个命题互为逆命题.如命题(A)“如果两个三角形全等,那么这两个三角形的面积相等”的逆命题是命题(B)“如果两个三角形面积相等,那么这两个三角形全等”.(2)否命题:若一个命题的条件和结论分别是另一个命题的条件的否定与结论的否定,则把这两个命题叫做互否命题.如果其中一个是原命题,则另一个就叫做原命题的否命题.我们通常把?、?的否定分别记为、“如,那么命题“如果?,那么?”的否命题就是:果?,那么”如命题(A)的否命题是“如果两个三角形不全等,那么这两个三角形的面积不相等”.(3)逆否命题:我们把原命题“如果?,那么?”的结论否定作条件,把条件否定作结论,就数学思考:命题的否定形式:把原命题“如果?,那么?”的条件不变,结论否定,得到一个新命题:“如果?,那么?”.这个新命题叫做原命题的否定形式.请你说一说否命题与命题的否定形式的区别在哪里?3.概念应用(教学提示:采用师生共同完成,或让学生独立完成,再选代表交流,提问是否有不同答案,进一步明晰概念,达成正确理解概念的目的)【属性】高一(上),集合与命题,四种命题形式,解答题,中,分析问题解决问题【题目】写出下列命题的逆命题、否命题、逆否命题,并判断其真假:原命题:若x?1,则x?0.【解答】逆命题:若x?0,则x?1.这是假命题.否命题:若x?1,则x?0.这是假命题.逆否命题:若x?0,则x?1.这是真命题.解题反思:熟悉和准确理解一些常见的词或符号的否定形式:“‘?’的否定形式是‘?’”、“‘ ?’的否定形式是‘?’”、“‘ ?’的否定形式是‘?’”、“‘或’的否定形式是‘且’”、“‘且’的否定形式是‘或’”,是正确写出一个命题的否命题或逆否命题的前提条件. 变式练习:写出命题“如果a?1且b?2,那么a?b?2或ab?1”的否命题.【属性】高一(上),集合与命题,四种命题形式,解答题,中,分析问题解决问题【题目】写出命题“偶数加偶数是偶数”的否命题和逆否命题【解答】我们先把原命题改写为:如果是两个偶数相加,那么他们的和是偶数.否命题:如果不是两个偶数相加,那么他们的和不是偶数. 逆否命题:如果两个整数相加不是偶数,那么他们不是两个偶数之和.解题反思:若一个命题不是“如果?,那么?”的形式,则我们应先把他改写成“如果?,那么?”的形式,再写他的其他三种命题形式就容易了.数学交流活动:对于四种命题形式,你能画图分析他们之间哪些是互为逆命题、互为否命题、互为逆否命题呢?看谁画的图表直观明了.4.课堂反馈(学生独立完成,教师巡视,提供指导和发现闪光点,获取第一手反馈材料,强化概念的理解和重视概念的应用)(1)教材练习P181.4(2):1,2.(2)练习册习题1.4 A组P5 4;P6 6.5.课堂小结:(让学生用自己的语言归纳小结,并通过补充和订正提高参与度)(1)原命题、逆命题、否命题、逆否命题;(2)理解四种命题的相互关系,并熟悉一些常见词或符号的否定形式是正确写出一个命题的否命题或逆否命题的保证; (3)知道否命题与命题的否定形式的区别;会写出一个已知命题的逆命题、否命题、逆否命题,并初步判断其真假.6.作业布置:(基础型)必做题:(1) 教材练习P181.4(2):3; (2) 练习册P5 1.4A 5.(拓展型)选做题:(3)写出命题:“如果x?1且y?1,那么x?y?2或xy?1”的否命题和逆否命题.【情景资源】情景1(新课导入)在初中,我们已经知道命题由条件和结论构成.通过进一步学习和探究,我们发现有些命题的条件与结论与另一个命题的条件与结论之间存在某种关系,譬如,命题:“在?ABC中,若AB?AC,则?C??B”与命题:“在?ABC中,若AB?AC,则?C??B”,两个命题的条件与结论互为否定关系.那么命题之间存在哪些关系呢?这就是我们今天学习的“四种命题形式”(引入新课)??情景2(过渡衔接)学好数学,准确理解概念,弄清概念之间的异同关系是关键,你能说一说否命题与命题的否定形式的区别吗?相同点是什么?不同点有哪些?情景3(过渡衔接)我们已经学习了四种命题形式,你能对他们之间的相互关系“互为逆命题、互为否命题、互为逆否命题”用一个图表的形式加以描述吗???【题目资源】【属性】高一(上),集合与命题,命题的四种形式,填空题,中,分析问题解决问题【题目】命题“有一个角是60的等腰三角形是正三角形”的逆命题是. 【解答】逆命题:如果一个三角形是正三角形,那么它是有一个角为60的等腰三角形.【属性】高一(上),集合与命题,命题的四种形式,填空题,中,分析问题解决问题【题目】命题“奇数加奇数是偶数”的逆命题是.【解答】逆命题:如果两个整数之和为偶数,那么这两个整数都是奇数.【属性】高一(上),集合与命题,命题的四种形式,填空题,易,分析问题解决问题【题目】命题“若x?4,则x?2”的否命题是2【解答】否命题:若x?4,则x?2.【属性】高一(上),集合与命题,命题的四种形式,填空题,中,分析问题解决问题【题目】命题“如果一元二次方程ax2?bx?c?0(a?0,a、b、c?R)满足ac?0,那么这个方程有实数根”的逆命题是,并判断逆命题的真假. 【解答】逆命题:如果一元二次方程ax2?bx?c?0(a?0,a、b、c?R)有实数根,那么满足2ac?0.逆命题是假命题,反例:方程x2?3x?2?0有实数根,ac?2不满足ac?0.【属性】高一(上),集合与命题,命题的四种形式,填空题,易,分析问题解决问题【题目】命题“如果x?3,那么x?3”的否命题是.【解答】否命题:如果x?3,那么x?3.【属性】高一(上),集合与命题,命题的四种形式,填空题,易,分析问题解决问题【题目】2命题“如果x?3,那么x?9”的逆否命题是命题【解答】逆否命题:如果x?9,那么x?3.这个命题是假命题. 【属性】高一(上),集合与命题,命题的四种形式,填空题,较难,分析问题解决问题【题目】命题“如果x?3且y?4,那么x?y?6或xy?6”的否命题是. 【解答】否命题:如果x?3或y?4,那么x?y?6且xy?6.语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。
沪教版高一上册数学高一上册教案命题的形式及等价关系
1.4 (2)命题的形式及等价关系一、教学内容分析教材介绍了四种命题的构成及等价命题的概念,这给我们今后证明一个命题为真(假)命题可转化该命题的等价命题(通常是逆否命题)为真(假)命题提供了理论依据。
本小节由命题条件的改变、结论的改变,构成四种命题形式:原命题、逆命题、否命题、逆否命题。
接着,通过具体的例题练习讲述四种命题的关系,最后,给出等价命题的定义,提供了一种证明的方法,并通过具体的例题给出反证法。
二、教学目标设计(1)理解四种命题的概念;(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;(3)理解一个命题的真假与其他三个命题真假间的关系;(4)初步掌握反证法的概念,进一步领会分类、判断、推理的思想方法。
三、教学重点及难点理解四种命题的关系;体会反证法的理论依据。
四、教学用具准备多媒体教室五、教学流程设计六、教学过程设计一.复习提问:(1)什么是命题?什么是真命题 ?什么是假命题?(2)语句“内接于圆的四边形对角互补”是否是命题?(3)命题 “内接于圆的四边形对角互补”的条件与结论各是什么?二.讲授新课:关于四种命题1、概念引入在命题“内接于圆的四边形对角互补”中,条件是“内接于圆的四边形”,结论是“四边形的对角互补”。
如果我们把以上命题作以下变化:(1)如果把命题中的结论“四边形的对角互补”作为条件,把命题中的条件“内接于圆的四边形” 作为结论,则得到了新命题“对角互补的四边形内接于圆”。
我们把原来命题中的结论作为条件,原来命题中的条件作为结论所组成的新命题叫做原来命题的逆命题。
并且它们互为逆命题。
(2)如果将命题的条件和结论都换成它们的否定形式,即条件是“四边形不内接于圆”,结论是“四边形对角不互补”,那么就可得到一个新命题:“不内接于圆四边形对角不互补”。
像这种将命题的条件与结论同时否定而得到的新命题叫做原来命题的否命题。
并且新命题与原来的命题互为否命题。
(3)如果将命题的条件和结论互换并取原来的否定形式,即条件是“四边形对角不互补”,结论是“四边形不内接于圆”,那么就可得到一个新命题:“对角不互补的四边形不内接于圆”。
沪教版高一上册数学命题的形式及等价关系教案一级第一学期
命题教材:四种命题的关系目的:要求学生理解四种命题的关系,并能利用这个关系判断命题的真假。
过程:一、复习:四种命题提问:说出命题“若两个三角形全等,则这两个三角形相似”的逆命题、否命题、逆否命题。
(解答略)二、1.接复习提问:原命题与逆否命题互逆否,否命题与逆命题互逆否,逆命题与逆否命题互逆。
小结:得表:2.如果原命题为真,则逆命题、否命题、逆否命题真假如何? 例:原命题:“若 a = 0 则 ab = 0”是真命题 逆命题:“若 ab = 0 则 a = 0”是假命题否命题:“若 a ≠ 0 则 ab ≠ 0”是假命题 逆否命题:“若 ab ≠ 0 则 a ≠ 0”是真命题小结:原命题为真,逆命题不一定为真,否命题也不一定为真,逆否命题为真。
3.又例:若四边形 ABCD 为平行四边形,则对角线互相平分。
它的逆命题、否命题、逆否命题均为真。
三、例题: P32 例二 (略)又例:命题“若 x = y 则 x 2 = y 2”写出它的逆命题、否命题、逆否命题,并判断它的真假。
解:逆命题:若x2 = y2则x = y (假,如x = 1, y = -1)否命题:若x≠ y 则x2≠ y2(假,如x = 1, y = -1)逆否命题:若x2 ≠ y2则x ≠ y (真)又例:写出命题:“若x + y = 5则x = 3且y = 2”的逆命题否命题逆否命题,并判断它们的真假。
解:逆命题:若x = 3 且y = 2 则x + y = 5 (真)否命题:若x+ y ≠ 5 则x ≠ 3且y≠2 (真)逆否命题:若x≠ 3 或y≠2 则x + y ≠5 (假)四、作业。
沪教版名校导学案高一数学第一章 集合与命题
第一章集合与命题Sets and Propositions我们知道,事物既有个性,也有共性.我们研究一个具体问题时,常把讨论对象限制在一定的整体范围内,便于讨论其共同性质;而对整体来说,每个对象又有着其各自的特点.这就是集合与其元素之间的基本关系.集合概念及其基本理论,称为集合论,是近、现代数学的基本语言和重要基础.一方面,许多重要的数学分支都建立在集合理论的基础上;另一方面,集合论及其思想,在越来越广泛的领域中得到应用.数学中的命题比比皆是,而连接相关命题之间的链条就是逻辑推理.逻辑是研究思维形式及其规律的一门基础学科.学习数学,需要全面地理解概念,正确地进行表述、推理和判断,这就离不开对逻辑知识的掌握和运用.更广泛地说,在日常生活、学习、工作中,基本的逻辑知识也是认识问题、研究问题不可缺少的工具,是人们文化素质的组成部分.在高中数学里,集合的初步知识与命题等相关知识,与其他内容有着密切联系,它是学习、掌握和使用数学语言的基础,基于上述原因,我们把“集合与命题”安排在高中数学的起始章.一、集合(Sets)1.1集合及其表示法(Sets and Their Expressions)在现实生活和数学中,我们经常要把一些确定的对象作为一个整体来考察研究.例如:(1)某校高一(1)班的全体学生;(2)中国运动员在历届夏、冬季奥运会上取得的所有金牌;(3)1~100之间的所有质数;(4)不等式2x-3>0的解的全体;(5)所有的平行四边形;(6)平面上到两个定点的距离相等的点的全体.我们把能够确切指定的不同对象组成的整体叫做集合(set),简称集.集合中的各个对象叫做这个集合的元素(element).对于一个给定的集合,集合中的元素是确定的,也是各不相同的,而且各元素地位相等,与顺序无关.我们把含有有限个元素的集合称为有限集(finite set),含有无限个元素的集合称为无限集(infinite set).为了研究的需要,我们把不含任何元素的集合叫做空集(empty set),记作∅.例如,方程x2+1=0的实数解组成的集合就是空集.集合通常用大写的英文字母表示,如A、B、C、……,元素通常用小写的英文字母表示,如a、b、c、…….如果a是集合A的元素,就记作a∈A,读作“a属于(belong to)A”;如果a不是集合A的元素,就记作a∉A,读作“a不属于(not belong to)A”.数的集合简称数集,常用的数集我们一般用特定的字母表示:全体自然数组成的集合,即自然数集(natural numbers set),记作N;不包括零的自然数组成的集合,即正整数集,记作N*;全体整数组成的集合,即整数集(set of integer),记作Z;全体有理数组成的集合,即有理数集(rational numbers set),记作Q;全体实数组成的集合,即实数集(set of real numbers ),记作R .我们还把正整数集、负整数集、正有理数集、负有理数集、正实数集、负实数集分别表示为Z +、Z -、Q +、Q -、R +、R -.集合的表示方法通常有两种,即列举法和描述法:把集合中的元素一一列举出来,写在大括号内表示集合的方法称为列举法.如:{1,3,5,7,9},{x 2,3x -2,x +7y 3,x 2-4y 2}.在大括号内,先写出此集合中元素的一般形式,再划一条竖线,在竖线后面写上集合中的元素的公共属性,即A ={x | x 满足性质P },这种表示集合的方法称为描述法.如:不等式2x -3>0的解集可表示为{x | x -3>2},函数y =x +1图像上的点组成的集合可表示为{(x , y ) | y =x +1}.例1. 用适当的方法表示下列集合:(1)30的所有正因数组成的集合A ;(2)被5除余3的自然数全体组成的集合B ;(3) 二次函数y =x 2+2x -3图像上的所有点组成的集合C .解:(1)用列举法表示:A ={1,2,3,5,6,10,15,30};(2)用描述法表示:B ={x | x=5n +3, n ∈N};(3)用描述法表示:C ={(x , y ) | y =x 2+2x -3}.例2. A 是由一切能表示成两个整数的平方之差的全体整数组成的集合,试证明:(1)任意奇数都是A 的元素;(2)偶数4k -2(k ∈Z)不属于A .证明:设A ={x | x =a 2-b 2,a 、b ∈Z},(1) 设任意奇数x=2k+1,k ∈Z ,则x =k 2+2k+1-k 2=(k +1)2-k 2∈A ;(2) 反证:假设任意偶数x=4k -2,k ∈Z 属于A ,则设x =a 2-b 2,a 、b ∈Z ,于是有2(2k -1)=(a +b )(a -b ),…①在上述①式中,等号右边的a +b 与a -b 同奇同偶,则x 或为奇数,或为4的整数倍;而等号左边是2与一个奇数的积,则x 不能被4整除,由此产生矛盾.所以,原假设不成立,即“偶数4k -2(k ∈Z)不属于A ”得证.例3. 若集合{}2210,R A x ax x x =--=∈中至多有一个元素,求实数a 的取值范围. 解:当0a =时,方程只有一个根12-,则0a =符合题意; 当0a ≠时,则关于x 的方程2210ax x --=是一元二次方程,由于集合A 中至多有一个元素,则一元二次方程2210ax x --=有两个相等的实数根或没有实数根,所以∆=440a +≤,解得1a ≤-.综上所得,实数a 的取值范围是{}01a a a =≤-或. 课堂活动·大家谈1、 集合中的元素有什么特性?集合的表示法中是如何体现这些性质的?2、 用列举法和描述法表示集合有什么区别?各有什么优势与不足?3、 通过实例分别选择自然语言、集合语言(列举法或描述法)表述不同的具体问题,感受集合语言的意义和作用,体验用集合思想去观察和思考问题的乐趣.课堂活动·自己想1、 区分∅,{∅},{0},0等符号的含义;2、集合{1,2}与集合{(1,2)}有什么区别?3、能否将“身材高大的人”组成一个集合?课外活动·自己学集合论简介集合论是德国著名数学家康托尔(George Cantor,1845-1918)于19世纪末创立的.十七世纪数学中出现了一门新的分支——微积分.在之后的一至二百年中,这一崭新学科获得了飞速发展并结出了丰硕的成果.其推进速度之快使人来不及检查和巩固它的理论基础.十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念,他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.集合论提出伊始,曾遭到许多数学家的激烈反对,康托尔本人一度成为这一激烈论争的牺牲品.在猛烈的攻击下与过度的用脑思考中,他得了精神分裂症,几次陷于精神崩溃.然而集合论前后经历二十余年,最终获得了世界公认.到二十世纪初集合论已得到数学家们的赞同.数学家们为一切数学成果都可建立在集合论基础上的前景而陶醉了.他们乐观地认为从算术公理系统出发,借助集合论的概念,便可以建造起整个数学的大厦.在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了.今天,我们可以说绝对的严格已经达到了.”然而这种自得的情绪并没能持续多久.不久,集合论是有漏洞的消息迅速传遍了数学界,这就是1902年罗素得出的罗素悖论.罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R.现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不应属于自身,即R不属于R;另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R.这样,不论何种情况都存在着矛盾.这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地.绝对严密的数学陷入了自相矛盾之中,这就是数学史上的第三次数学危机.危机产生后,众多数学家投入到解决危机的工作中去.1908年,策梅罗提出公理化集合论,后经改进形成无矛盾的集合论公理系统,简称ZF公理系统.原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现,这就是集合论发展的第二个阶段:公理化集合论.与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论,公理化集合论是对朴素集合论的严格处理,它保留了朴素集合论的有价值的成果并消除了其可能存在的悖论,因而较圆满地解决了第三次数学危机.公理化集合论的建立,标志着著名数学家希耳伯特所表述的一种激情的胜利,他大声疾呼:没有人能把我们从康托尔为我们创造的乐园中赶出去.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等,而这一切都是与康托尔的开拓性工作分不开的.当现在回头去看康托尔的贡献时,我们仍然可以引用当时一些著名数学家对他的集合论的评价作为我们的总结.德国伟大的数学家希尔伯特(David Hilbert,1862-1943)称康托尔的集合论是“数学精神最令人惊羡的花朵,人类理智活动最漂亮的成果”.英国数学家和哲学家罗素(Bertrand Russell,1872-1970)把康托尔的工作描述为“可能是这个时代所能夸耀的最伟大的工作”.前苏联著名的数学家科尔莫戈洛夫(Andrey Nikolaevich Kolmogorov,1903-1987)说,“康托尔的不朽功绩,在于他敢向无穷大冒险迈进.”还有如:它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献之一等等.课外活动·自己找借助图书馆或电脑网络系统查阅有关集合论创始人康托尔的生平简介等资料,了解其创立集合论的艰辛历程,进一步体验和学习数学家追求真理的不懈精神.习题练习·自己练1. 用描述法表示下列集合:(1){1,4,7,10,13}; (2){-2,-4,-6,-8,-10};(3) { 1,5,25,125,625 }; (4) { 0,±21,±52,±103,±174,……}. 2. 用列举法表示下列集合:(1){x | x 是15的正约数}; (2){(x ,y ) | x ∈{1,2},y ∈{1,2}}; (3)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧=+-=+22),(22y x y x y x ; (4) {(x ,y ) | y =x 2-1,|x |≤2,x ∈Z}. 3. 关于x 的方程ax +b =0,当a ,b 满足条件_______时,解集是有限集;当a ,b 满足条件_________时,解集是无限集.4. 已知集合{2a ,a 2-2a }为数集,求a 的取值范围.5. 把可以表示成两个整数的平方之和的全体整数记作集合M ,试证明集合M 的任意两个元素的乘积仍属于M .6. 已知全集M ={},求集合M . 7. 已知集合(){}0121|2=+--=x x m x A 中至多含有一个元素,求实数m 的取值范围. 8. 设A ={x | x 2+(b +2)x +b +1=0,b ∈R},求A 中所有元素之和.9. 设A={x | x=m 2 –n 2,m 、n ∈ Z},问8、9、10与集合A 有什么关系?并证明你的结论.10. 设集合S ={a 0,a 1,a 2,a 3},在S 上定义运算为:a i ⊕a j = a k ,其中k 为i+j 被4除的余数,i 、j=0,1,2,3,则求满足关系式(x ⊕x )⊕a 2= a 0的x ( x ∈S )的个数.11. 设集合A ={-3,-1,2,7},集合B ={x | f (x ) >0},在下列条件下,是否存在函数f (x ),使得集合A 中恰有一个元素不是B 的元素?(1) f (x )为一次函数;(2) f (x )为二次函数.12. 已知实数集A 满足:若x ∈A ,则A xx ∈-+11. (1) 求证:当2∈A 时,A 中还有3个元素;(2) 试找寻一个实数a ,使得a ∈A ,并由此求出相应的集合A ;(3) 由上述研究过程,你能得出什么结论?1.2集合之间的关系 (Relations of Sets )考察下列集合:A={1,2},B={1,2,3,4},C={ x ︱x 2-3x+2=0},D={ x ︱x 是四边形},E={ x ︱x 是多边形}.容易发现,集合A 中的任何一个元素都是集合B 的元素,集合D 中的任何一个元素都是集合E 的元素,而集合B 中的元素3和4不是集合A 的元素,集合C 中的元素与集合A 的元素完全相同.一般地,对于两个集合A 与B ,如果集合A 中任何一个元素都是集合B 的元素,我们就说集合A 是集合B 的子集(subset ),记作B A ⊆或A B ⊇,读作“A 包含于(be contained in )B ”或“B 包含(contain)A ”.我们规定,空集包含于任何一个集合,即空集是任何集合的子集.对于两个集合A 与B ,如果有B A ⊆,且A B ⊇,我们集合A 与集合B 相等,记作A=B ,读作“集合A 等于集合B ”.如对于集合A={x ︱x=2k+1,k ∈Z }与B={x ︱x=2k -1,k ∈Z },则有A=B .对于两个集合A 与B ,如果B A ⊆,并且B 中至少有一个元素不属于A ,那么称集合A 是集合B 的真子集(proper subset ),记作A B 或B A 读作“A 真包含于B ”或“B 真包含A ”.用平面区域来表示集合之间关系的方法叫做集合的图示法,如右图所示,表示B A ⊆(A B )所用的图叫做文氏图(Venn diagram ).例1. 写出集合{a ,b ,c }的所有子集和真子集.解:集合的所有子集为∅,{a },{b },{c },{a ,b },{b ,c },{a ,c },{a ,b ,c },除了{a ,b ,c },其余七个子集均为集合{a ,b ,c }的真子集.例2. 设集合A ={a ,a 2,ab },B={1,a ,b },A=B ,求实数a ,b 的值.解:由于A=B ,则(1)若a 2=b ,ab=1,则a 3=1,即a=b=1,与集合中元素的互异性矛盾;(2)若a 2=1,ab=b ,则由集合中元素的互异性可得a=-1,b=0.例3. 已知{}Z n Z m n m x x S ∈∈+==,,3614,{}Z k k x x T ∈==,2,求证S=T .解:(1)任意x ∈S ,则存在m ,n ∈Z ,使得x=14m+36n=2(7m+18n ),令7m+18n=k ,由于m ,n ∈Z ,所以k=7m+18n ∈Z ,则x=2k ,k ∈Z ,即x ∈T ,因此S ⊆T ;(2)反之,任意x ∈T ,则存在k ∈Z ,使得x=2k ,要使得x=2k=14m+36n ,m ,n ∈Z ,则k=7m+18n=7×(-5k )+18×(2k ),可见当m=-5k ,n=2k (k ∈Z)时,x=14m+36n ,m ,n ∈Z ,即x ∈S ,因此T ⊆S . 所以,综合(1)和(2)知,S=T 得证. 课堂活动·大家谈1、 讨论符号“∈”与“⊆”的意义、区别及作用;2、 集合之间的关系与实数中的大小关系、相等关系有相似之处吗?类比实数中有关不等式的性质,研究集合的有关包含和真包含关系的性质.3、 考察数集N ,Z ,Q ,R 之间的包含关系,了解和感受数域的扩张过程.课堂活动·自己想1、 如果B A ⊆,那么集合A 与B 的关系有几种可能?2、 如何理解空集是任何集合的子集?进一步体会∅与{∅}、{0}之间的关系.3、 判断下列写法是否正确?为什么?①∅A ;②A A .课外活动·自己做试探究含n 个元素的有限集合的子集的个数.课外活动·自己学悖论悖论(paradox)来自希腊语“para+dokein”,意思是“多想一想”.这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比.悖论是自相矛盾的命题.即如果承认这个命题成立,就可推出它的否定命题成立;反之,如果承认这个命题的否定命题成立,又可推出这个命题成立 如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的.古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力.解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念.悖论有三种主要形式:1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬).2.一种论断看起来 好像肯定是对的,但实际上却错了(似是而非的理论).3.一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾.事实上,悖论古已有之.一般认为,最早的悖论是古希腊的“说谎者悖论”,见于《新约全书·提多书》,属于语义学悖论.另一类悖论涉及数学中的集合论,被称为“数学悖论”或“集合论悖论”.在康托尔创立集合论不久,他自己就发现了问题,这就是1899年的“康托尔悖论”,亦称“最大基数悖论”.与此同时,还发现了其他集合论悖论,其中最著名的当属“罗素悖论”.1902年,英国数学家罗素提出了这样一个理论:以M 表示是其自身成员的集合的集合,N 表示不是其自身成员的集合的集合.然后问N 是否为它自身的成员?如果N 是它自身的成员,则N 属于M 而不属于N ,也就是说N 不是它自身的成员;另一方面,如果N 不是它自身的成员,则N 属于N 而不属于M ,也就是说N 是它自身的成员.无论出现哪一种情况都将导出矛盾的结论.1919年罗素给出了上述悖论的通俗形式,即“理发师悖论”:一天,萨维尔村理发师挂出一块招牌:“村里所有不自己理发的男人都由我给他们理发,我也只给这些人理发.”于是有人问他:“您的头发由谁理呢?”理发师顿时哑口无言.因为,如果他给自己理发,那么他就属于自己给自己理发的那类人.但是,招牌上说明他不给这类人理发,因此他不能自己理.如果由另外一个人给他理发,他就是不给自己理发的人,而招牌上明明说他要给所有不自己理发的男人理发,因此,他应该自己理.由此可见,不管怎样的推论,理发师所说的话总是自相矛盾的.课外活动·自己找借助图书馆或电脑网络系统查阅资料,了解集合论的有关著名悖论和英国哲学家、数学家罗素.习题练习·自己练1. 设集合{}{}31,,32,M x x m m Z N y y n n Z ==+∈==+∈,若,,x M y N ∈∈则x y 与集合M 、N 的关系是( )A .x y M ∈B .x y M ∉C .x y N ∈D .x y N ∉2. 设集合,,,22k M x x k Z N t t n t n n Z ππππ⎧⎫⎧⎫==∈===+∈⎨⎬⎨⎬⎩⎭⎩⎭或,则集合M 、N 的有怎样的关系?为什么?3. 已知{}{}A C B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆.4. 已知集合⎭⎬⎫⎩⎨⎧=1,,m n m M ,{}0,,2n m m N +=,若M=N ,求m 2008+n 2009. 5. 已知集合A={0,1},B={x | x ∈A ,x ∈N ﹡} ,C={x | x ⊆ A } 则A 、B 、C 之间有怎样的关系?6. 已知集合A=},,53|{Z b a b a x x ∈+=,B=},,107|{Z n m n m y y ∈+=,判断A 与B 的关系并说明理由.7. 已知集合A={}Z b a b a x x ∈+=,,812|,B={}Z d c d c x x ∈+=,,1620|,求证A=B .8. 已知集合A={x |-2k+6< x <k 2-3},B={x |-k < x < k },若AB ,求实数k 的取值范围. 9. 设含有10个元素的集合的全部子集数为S ,其中有3个元素组成的子集数为T ,则求ST的值.10. 已知集合A={ m | m=n 2+1,n ∈N *},B={y |y=x 2-2x +2,x ∈N *},研究A 与B 的关系,并给予证明.11. 已知A={ x | 22≤≤-x },①若集合B={ x | a x ≤ },满足A ⊆B ,求a 范围;②若集合C={x | 152+≤≤-a x a },满足A ⊆C ,求a 的取值范围;③若把②中条件“A ⊆C ”改为“C ⊆A ”,求a 的取值范围.12. 设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j ≠,{123}i j k ∈、,,,,),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),求k 的最大值.1.3集合之间的运算 (Operation of Sets )1. 交集考察集合A={ x | x 是我校在校女生},B={ x | x 我校高一学生}与C={ x | x 是我校高一女生}之间的关系,易知集合C 是由所有既属于集合A 又属于集合B 的元素组成的.一般地,由集合A 和集合B 的所有公共元素组成的集合,叫做A 与B 的交集(intersection).记作A ∩B ,读作“A 交B ”,即A ∩B={x |x ∈A 且x ∈B 用文氏图可以直观地表示A ∩B 的一般情况.由交集运算的定义,容易得到以下一些基本性质:(1)A ∩B= B ∩A ; (2)A ∩A=A ; (3)A ∩∅=∅;(4)A ∩B ⊆A ,A ∩B ⊆B ;(5)若A ∩B=A ,则有A ⊆B ;反之若A ⊆B ,则A ∩B=A .例1. 设集合A={(x ,y )|3x -y=7},集合B={(x ,y )|2x+y=3},求A ∩B .解:A ∩B =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧=+=-32,73),(y x y x y x =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧-==1,2),(y x y x ={(2,-1)}.2. 并集一般地,由所有属于集合A 或者属于集合B 的元素组成的集合,叫做A 与B 的并集(union).记作A ∪B ,读作“A 并B ”,即A ∪B={x |x ∈A 或x ∈B }.用文氏图可以直观地表示A ∪B 的一般情况.由并集运算的定义,容易得到以下一些基本性质:(1)A ∪B= B ∪A ; (2)A ∪A=A ; (3)A ∪∅= A ;(4)A ⊆A ∪B ,B ⊆A ∪B ;(5)若A ∪B=B ,则有A ⊆B ;反之若A ⊆B ,则A ∪B=B .例2.设A={x |-1<x <2},B={x |1<x <3},求A ∩B ,A ∪B .解:A ∩B={x |1<x <2},A ∪B={x |-1<x <3}.例3.已知关于x 的方程3x 2+px -7=0的解集为A ,方程3x 2-7x +q =0的解集为B , 若A ∩B =⎭⎬⎫⎩⎨⎧-31,求A ∪B . 解: ∵A ∩B =⎭⎬⎫⎩⎨⎧-31,∴-31∈A 且-31∈B . ∴3(-31)2+p (-31)-7=0且3(-31)2-7(-31)+q =0, ∴p =-20,q =-38. 由3x 2-20x -7=0得A ={-31,7},由3x 2-7x -38=0得B ={-31,38}. ∴A ∪B ={-31,38,7}.3. 补集在给定的问题中,若研究的所有集合都是某一给定集合的子集,那么称这个给定的集合为全集(universe).若A 是全集U 的子集,由U 中不属于A 的元素组成的集合,叫做集合A 在全集U 中的补集(complementary set),记作A C U ,读作“A 补”,即{}A x U x x A C U ∉∈=,. 用文氏图可以直观地表示A C U 的一般情况.由并集运算的定义,容易得到以下一些基本性质:(1)=A C A U ∅; (2)U A C A U = ; (3)A A C C U U =)(.例4. 已知全集I={-4,-3,-2,-1,0,1,2,3,4},A={-3,a 2,a +1}, B={a -3,2a -1,a 2+1},其中a ∈R ,若A ∩B ={-3},求C I (A ∪B ).解:由a -3=-3或2a -1=-3,可求得A={-3,0,1},B={-4,-3,2},则A ∪B={-4,-3,0,1,2},C I (A ∪B )={-2,-1,3,4}.例5. 设U ={x | x <10,x ∈N *},A ∩B={3},(C u A )∩B={4,6,8},A ∩(C u B )={1,5}, 求C u(A ∪B ),A ,B .解: A ∪B 中的元素可分为三类:一类属于A 不属于B ;一类属于B 不属于A ;一类既属于A 又属于B .由(C u A )∩B ={4,6,8},即4,6,8属于B 不属于A ;由(C u B )∩A ={1,5},即1,5属于A 不属于B ;由A ∩B ={3},即3既属于A 又属于B ;又U ={x | x <10,x ∈N *}={1,2,3,4,5,6,7,8,9}, 若2属于A 不属于B ,则与(C u B )∩A ={1,5}矛盾,若2属于B 不属于A ,则与(C u A )∩B ={4,6,8}矛盾,而2∉ A ∩B ,∴2既不属于A 也不属于B ,同理7,9既不属于A 也不属于B .综上,C u (A ∪B )={2,7,9},A={1,3,5},B={3,4,6,8}.课堂活动·大家谈1. 关于集合的交、并、补的三种运算的性质是如何证明的?2. 设全集U={a ,b ,c ,d ,e },A={a ,c ,d },B={b ,d ,e },通过计算A C U ,B C U ,)(B A C U ,)(B A C U ,B C A C U U 和B C A C U U ,在发现这些集合之间的关系后给予证明,并将结论推广到一般情形.课堂活动·自己想1. 思考性质“=A C A U ∅”的意义及作用,并进一步深刻理解引入空集概念的意义和作用.2. 思考集合A ,B ,A ∩B 和A ∪B 中元素的个数有何关系?课外活动·自己学容斥原理及其应用在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理.对于有限集合P ,我们用n (P )表示P 中的元素个数.容斥原理(1)如果被计数的事物有A 、B 两类,那么,A 类或B 类元素个数= A 类元素个数+B 类元素个数-既是A 类又是B 类的元素个数.即 )()()()(B A n B n A n B A n ⋂-+=⋃. 容斥原理(2)如果被计数的事物有A 、B 、C 三类,那么,A 类或B 类或C 类元素个数= A 类元素个数+ B 类元素个数+C 类元素个数-既是A 类又是B 类的元素个数-既是A 类又是C 类的元素个数-既是B 类又是C 类的元素个数+既是A 类又是B 类而且是C 类的元素个数.即 )()()()()()()()(C B A n A C n C B n B A n C n B n A n C B A n +---++=.例6 对某学校的100名学生进行调查,了解他们喜欢看球赛、看电影和听音乐的情况.其中58人喜欢看球赛,38人喜欢看电影,52人喜欢听音乐,既喜欢看球赛又喜欢看电影的有18人,既喜欢听音乐又喜欢看电影的有16人,三种都喜欢的有12人,问有多少人只喜欢听音乐?解:设A ={x | x 为喜欢看球赛的人},B ={x | x 为喜欢看电影的人},C ={x | x 为喜欢听音乐的人},则A ∩B ={x | x 为既喜欢看球赛的人又喜欢看电影的人},B ∩C ={x | x 为既喜欢听音乐又喜欢看电影的人},A ∩B ∩C ={x | x 为三种都喜欢的人},A ∪B ∪C ={x | x 为看球赛和电影、听音乐至少喜欢一种}.则)(A n =58,)(B n =38,)(C n =52,)(B A n =18,)(C B n =16,)(C B A n =12,)(C B A n =100,由)()()()()()()()(C B A n A C n C B n B A n C n B n A n C B A n +---++=得)()()()()()()()(C B A n C B n B A n C B A n C n B n A n A C n +---++= =148-(100+18+16-12)=26,所以,只喜欢听音乐的人共有n (C )-n (B ∩C )-n (C ∩A )+n (A ∩B ∩C )=52-16-26+12=22. 课外活动·自己找借助图书馆或电脑网络系统查阅英国数学家德·摩根的简介及德·摩根定理.习题练习·自己练1. 分别用集合符号表示下图的阴影部分:(1) (2)(3) (4)2. 设A={x | x >-2}, B={x |x <3}, 求A ∩B , A ∪B .3. 已知A={2,-1,x 2-x +1},B={2y ,-4,x +4},C={-1,7}, 且A ∩B=C ,求A ∪B .4. 若A 、B 、C 为三个集合,C B B A =,则一定有( )(A)C A ⊆ (B)A C ⊆ (C)C A ≠ (D)=A ∅5. 已知集合A={x ︱x ≤ 2},B ={x ︱x > a },在下列条件下分别求实数a 的取值范围:(1) A ∩B =∅;(2) A ∪B =R ;(3) 1∈A ∩B .6. 设(){}N a a a A x x x f ∈≤≤=+-=,101|,36122,B A C =,{}A a a f b b B ∈==),(|,求:(1)集合C ;(2)C 的所有子集中的各个元素和的总和.7. 全集I={ x | x 为三角形},A={ x | x 为锐角三角形},B={ x | x 为钝角三角形},C={ x | x为直角三角形},D={ x | x 为斜角三角形},求()()D C C B A C I I .8. 设全集为U=Z ,{}Z k k x x M ∈==,2|,{}Z k k x x P ∈==,3|,求()P C M U .9. 已知全集I=}32,3,2{2-+a a ,若}2,{b A =,}5{=A C I ,求实数b a ,.10. 已知全集U={}20|≤X x x 是质数且,A ,B 是U 的子集,且同时满足(){}5,3=B C A U ,(){}197,=B A C U ,()(){}17 2,=B C A C U U ,求A 和B .11. 设全集(){}R y x y x U ∈=,|,,集合()⎭⎬⎫⎩⎨⎧∈=--=R x x y y x A ,123|,, ①若(){}R y x x y y x B ∈+=,,1|,=,B A U 求C;②若(){}R y x x y y x B ∈+≠=,,1|,,求()B A C U .12. 某公司有120人,其中乘轨道交通上班的84人,乘汽车上班的32人,两种都乘的18人,求:(1)只乘轨道交通上班的人数;(2)不乘轨道交通上班的人数;(3)乘坐交通工具的人数;(4)不乘交通工具而步行的人数;(5)只乘一种交通工具的人数.二、四种命题的形式(Four Forms of Propositions )1.4命题的形式及等价关系(The Forms of Propositions and Equivalent Relationship )1. 命题与推出关系在初中,我们已经知道,判断真假的语句叫做命题(proposition).命题通常用陈述句表述.正确的命题叫做真命题,错误的命题叫做假命题.一般地,命题是由题设(条件)和结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果…,那么…”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.有些命题,没有写成“如果…,那么…”的形式,题设和结论不明显.对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果…,那么…”的形式. 命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述.例1. 判断下列语句是否为命题?如果是命题,判断它们是真命题还是假命题?为什么?(1) 你是高一学生吗?(2) 过直线AB 外一点作该直线的平行线.(3) 个位数是5的自然数能被5整除.(4) 互为余角的两个角不相等.(5)竟然得到5>9的结果!(6)如果两个三角形的三个角分别对应相等,那么这两个三角形相似.解:(1)、(2)、(5)不是命题,(3)、(4)、(6)是命题,其中(4)是假命题.(1)语句“你是高一学生吗?”是疑问句,不是判断语句,所以它不是命题.(2)语句“过直线AB外一点作该直线的平行线.”是祈使句,不是判断语句,所以它也不是命题.(3)此命题为真命题.这是因为个位数是0的自然数总可以表示为10k(k∈N)的形式,而10k=5·2k,所以10k能被5整除.(4)取一个角为45°,另一个角也为45°,它们互为余角,但是它们是相等的.所以“互为余角的两个角不相等.”是假命题.(5)语句“竟然推出6>8的结果!”是感叹句,不是判断语句,所以它不是命题.(6)此命题为真命题.它是三角形相似的判定定理,在初中数学中已经给出证明.由例1的(4)可以看到,要确定一个命题是假命题,只要举出一个满足命题的条件,而不满足其结论的例子即可,这在数学中称为“举反例”.要确定一个命题是真命题,就必须作出证明,证明若满足命题的条件就一定能推出命题的结论.一般地,如果事件α成立可以推出事件β也成立,那么就说由α可以推出β,并用记号α⇒β表示,读作“α推出β”.换言之,α⇒β表示以α为条件,β为结论的命题是真命题.如果事件α成立,而事件β不能成立,那么就说事件α不能推出事件β成立,可记作αβ.换言之,α表示以α为条件,β为结论的命题是一个假命题.如果α⇒β,并且β⇒α,那么记作α⇔β,叫做α与β等价.显然,推出关系满足传递性:α⇒β,β⇒γ,那么α⇒γ.2.四种命题形式一个命题由条件和结论两部分组成,如果把原命题的条件和结论互换,所得的命题是原命题的逆命题( inverse proposition),显然它们互为逆命题.例如,命题(1)“对顶角相等”和命题(2)“相等的角是对顶角”互为逆命题.如果一个命题的条件和结论分别是另一个命题的条件的否定与结论的否定,则称这两个命题为互否命题,其中一个命题是另一个命题的否命题( negative proposition).像命题(3)“不是对顶角的角不相等”与命题(1)是互否命题.如果将一个命题的结论的否定作为条件,而将此命题的条件的否定作为结论所得到的命题叫做原命题的逆否命题( inverse negative proposition).如命题(4)“不相等的角不是对顶角”与命题(1)是互为逆否命题.若α为原命题条件,β为原命题结论,则其四种命题的形式及关系为:原命题:若α,则β;逆命题:若β,则α;否命题:若α,则β;逆否命题:若β,则α.例2. 写出命题:“若x + y = 5,则x = 3且y = 2”的逆命题、否命题和逆否命题,并判断它们的真假.解:原命题:若x + y = 5,则x = 3且y = 2.。
高一数学上册 命题的形式及等价关系(一)教学案 沪教版 教学案
上海华师大二附中2015届高一数学上册 命题的形式及等价关系(一)教学案 沪教版一、概念课 【教案样例】 教学目标:1.知道命题、真命题、假命题,理解命题的推出关系、等价关系,推出关系的传递性;2.在探究命题推出关系的过程中,体会举反例判断假命题的要领,初步会用推出关系的传递性证明一个命题是真命题的方法;3.在认识一些基本的逻辑关系及其运用活动中,体会逻辑语言在数学表达和论证中的作用, 确立真命题必须作出证明的数学意识.教学重点:理解命题的推出关系.教学难点:运用逻辑语言表述和判断假命题、论证真命题. 教学过程:2.概念形成:(教学提示:这一环节可采用教师引领下的学生阅读教材或学生阅读教师呈现的PPT 素材,教师引导学生举反例判断假命题用逻辑语言论证真命题,激发学生积极思考、参与教学的热情) (1)命题的构成:在数学中常见的命题由条件与结论两部分组成.如命题“如果2x >,那么24x >”,其中2x >是条件,24x >则是结论.2x y +=,但不满足命题结论11x y ≥≥且.(3)确定一个命题是真命题:必须作出证明.即证明若满足命题条件就一定能推出命题的结论.如命题“末两位数是12的正整数能被4整除”是一个真命题.理由:因为末两位数是12的正整数可以写成10012k +的形式(*k N ∈),而100124(253)k k +=+,所以10012k +能被4整除.即命题“末两位数是12的正整数能被4整除”是一个真命题.(4)推出关系:一般地说,如果命题α成立可以推出命题β成立,那么就说由α可以推出β,并用记号“βα⇒”,读作“α推出β”.也就是说,βα⇒表示以α为条件、β为结论的命题是真命题.如果α成立不能推出β成立,记为“βα⇒/”,读作“α推不出β”.换言之,βα⇒/表示以α为条件、β为结论的命题是假命题.(5)等价关系:如果αβ⇒,并且βα⇒,那么记作αβ⇔,叫做α与β等价.数学交流:(1) 阅读教材16P 第1行至第11行,说一说利用推出关系的传递性证明一个命题是真命题的基本方法.(教学提示:教师概括)(2)推出关系“⇒”是一种关系符号,具有传递性,试举出具有传递性的其他关系符号……3.概念应用(教学提示:采用师生共同完成,或让学生独立完成,再选代表交流,提问是否有不同答案,进一步明晰概念,达成正确理解概念的目的)【属性】高一(上),集合与命题,命题与推出关系,解答题,中,分析问题解决问题 【题目】下列语句哪些不是命题,哪些是命题?如果是命题,那么他们是真命题或是假命题?为什么? (1)个位数是5的自然数能被5整除;(2)凡直角三角形都相似; (3)上课请不要讲话; (4)互为补角的两个角不相等;(5)如果两个三角形的三条边对应相等,那么两个三角形全等; (6)你是高一学生吗?【解答】(略,解答祥见教材).解题反思:举反例是判断假命题的重要方法;我们必须通过论证来说明一个命题是真命题.【属性】高一(上),集合与命题,命题与推出关系,填空题,中,分析问题解决问题 【题目】判断下列各组中命题,αβ的推出关系:(1):αk 是能被4整除的自然数, :βk 是偶数;(2):α实数x 满足方程2870x x -+=,:β17x x ==或;(3):α实数x 满足方程||5x =,:β5x =;【解答】(1) :αk 是能被4整除的自然数,即42(2)()k m m m N ==∈,所以,k 是偶数.即αβ⇒.但β⇒α/.反例:因为6k =是偶数,而不能被4整除.(2) 实数x 满足方程2870x x -+=,可得17x x ==或,即⇒αβ.同样,如果17x x ==或,则有2870x x -+=,即⇒βα.因此,⇔αβ.(3) 若5x =,必有||5x =,即⇒βα.但5x =-满足||5x =,而不满足5x =,即α⇒β/.4.课堂反馈(学生独立完成,教师巡视,提供指导和发现闪光点,获取第一手反馈材料,强化概念的理解和重视概念的应用)(1)教材练习16P 1.4(1):1,2. (2)练习册 5P 习题1.4 A 组1,2.5.课堂小结:(让学生用自己的语言归纳小结,并通过补充和订正提高参与度) (1)命题、真命题、假命题;(2)命题的推出关系、等价关系,推出关系的传递性;(3)会用举反例方法判断假命题;确定一个命题是真命题则需要证明.6.作业布置: (基础型)必做题: (1) 练习册5P 1.4A 3; (2) 练习册6P 1.4B 1,2. (拓展型)选做题:(3)请举出一个或两个具有传递性的关系符号或运算.【情景资源】 情景1(新课导入)在初中,我们已经知道,可以判断真假的语句叫做命题.命题通常用陈述句表述.正确的命题叫真命题,错误的命题叫做假命题.今天,我们将进一步学习运用基本的逻辑关系判断命题的真假,或用初步的逻辑语言论证真命题,我们先学习的“命题与推出关系”(引入新课)……情景2(过渡衔接)我们说一个命题是假命题,只要列举一个反例即可(尽管有千百种理由说明是假命题,但只要一个反例即可,举两个则多余);那么如果我们说明一个命题是真命题,那我们又应该做什么呢?…… 情景3(过渡衔接)我们都知道符号“=、>、<”具有传递性,那么“⇒”也是一种符号,它也具有传递性吗?说一说你的想法…… 【题目资源】【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题 【题目】命题:有一个角是60的等腰三角形是正三角形.该命题是 命题.【解答】真命题.【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题 【题目】命题:奇数加奇数为偶数.该命题是 命题.【解答】真命题.【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题 【题目】命题:若21x =,则1x =.该命题是 命题.【解答】假命题.【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题 【题目】命题:如果一元二次方程20(0,)ax bx c a a b c R ++=≠∈、、满足0ac <,那么这个方程有实数根.该命题是 命题.【解答】真命题.【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题 【题目】命题:如果一元二次方程20(0,)ax bx c a a b c R ++=≠∈、、有实数根,那么0ac <.该命题是 命题.【解答】假命题.【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题 【题目】命题:已知*,,a b c N ∈,如果ab 是c 的倍数,那么,a b 中至少有一个是c 的倍数.该命题是 命题.【解答】假命题.【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题 【题目】命题:已知集合,A B ,如果A B A =,那么A B .该命题是 命题.【解答】假命题.【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题 【题目】命题:如果||2a <,那么2a <.该命题是 命题.【解答】假命题.【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题 【题目】命题:如果A B A =,那么A B B =.该命题是 命题.【解答】真命题.【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题 【题目】已知:αABC ∆是等边三角形;:βABC ∆是轴对称图形.命题,αβ的推出关系是 .【解答】αβ⇒,但βα⇒/.【属性】高一(上),集合与命题,命题与推出关系,填空题,中,分析问题解决问题 【题目】已知:α一次函数(0)y kx b k =+≠的图像经过第一、二、三象限;:β一次函数(0)y kx b k =+≠中0,0k b >>.命题,αβ的推出关系是 .【解答】αβ⇔.【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题 【题目】已知:α实数x 满足方程2x x =;:β1x =.命题,αβ的推出关系是 .【解答】βα⇒,但αβ⇒/.【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题 【题目】已知x y N ∈、,α:x y +是偶数,β:x 和y 都是偶数. 命题,αβ的推出关系是 .【解答】βα⇒,但αβ⇒/.【属性】高一(上),集合与命题,命题与推出关系,解答题,较难,分析问题解决问题 【题目】已知α:1a >,β:a >命题,αβ的推出关系是 .【解答】若1a >,则2a a >(两边同乘以a ),即a >因此,αβ⇒.若a >(有0a >)两边平方,得2a a >,两边同除以a ,得1a >.于是,有βα⇒.所以,,αβ的推出关系是αβ⇔.【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题【题目】已知m n Z ∈、,α:m n 、均为偶数,β:m n +是偶数. ,αβ的推出关系是 . 【解答】αβ⇒,但βα⇒/.【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题【题目】命题:α:||||x y =,β:x y = .,αβ的推出关系是 .【解答】βα⇒,但αβ⇒/.【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题 【题目】已知a b c R ∈、、且0a ≠,p :240b ac ->,q :关于x 的方程20ax bx c ++=有实数根. ,p q 的推出关系是 .【解答】p q ⇒,但q p ⇒/.【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题 【题目】已知全集U ,命题:α:A B ≠⊂,β:()U C A B U ⋃=.,αβ的推出关系是 .【解答】αβ⇒,但βα⇒/.【属性】高一(上),集合与命题,命题与推出关系,填空题,易,分析问题解决问题 【题目】已知p :0a ≠,q :0ab ≠. ,p q 的推出关系是 .【解答】q p ⇒,但p q ⇒/.【属性】高一(上),集合与命题,命题与推出关系,填空题,较难,数学探究与创新 【题目】对于直角坐标平面上任意两点1122(,)(,)A x y B x y 、,定义他们之间的一种新距离为:1212||||||AB x x y y =-+-.现给出下列三个命题(点A 、B 、C 均在坐标平面上)中,真命题的是 .(1)若点C 在线段AB 上,则||||||AC CB AB +=;(2)在ABC ∆中,若90C ∠=,则222||||||AC CB AB +=;(3) 在ABC ∆中,||||||AC CB AB +>【解答】(1)是真命题.(2)、(3)都是假命题.。
沪教版(上海)数学高一上册-1.4 命题的四种形式 教案
命题的四种形式【教学目标】或教育目标、活动目标1.知识与技能:1).要求学生理解四种命题的关系,并能利用这个关系判断命题的真假。
2).要求学生理解等价命题的关系,并能应用这个关系将较难问题转化为较简单问题。
3).理解反证法的基本原理;初步学会反证法的一般步骤;并用反证法证明一些命题;2.过程与方法1).通过四种命题形式,培养学生的判断力2).通过四种命题的关系,培养学生的逻辑思维能力3.情感、态度与价值观1).培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想教学重点:理解四种命题的关系教学难点:逆否命题的等价性及等价命题概念授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪设计思路:学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解).由此,这一大节首先讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法.然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识.这一大节的重点是充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.反证法在初中教科书中指出:从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法首次实践再次实践第2天,在学习基础基本相同的高一(2)班进行了再次实践。
在本次实践中,我做了以下的改进,主要有三点:1.一次实践中,例题学生板演解答后,教师进行修正,改为找学生来订正(不擦去错误部分,用红色粉笔下划出来,再用红色粉笔订正,最后教师点评,起到了对学生的启发和画龙点睛作用。
2.一次实践,提出下面两个问题1)三角形外角和为3600则三角形内角和为1800(?)2)若x≠3且x≠4,则(x-3)(x-4)≠0(?)之后,教师强调原命题与逆否命题等价与等价命题关系,改为让学生对比思考二者关系,然后由学生说明,给学生留有思考空间和主动性,效果明显好。
数学1.4命题的形式及等价关系教案2沪教版高中一级第一学期
1.4 (2)命题的形式及等价关系一、教学内容分析教材介绍了四种命题的构成及等价命题的概念,这给我们今后证明一个命题为真(假)命题可转化该命题的等价命题(通常是逆否命题)为真(假)命题提供了理论依据。
本小节由命题条件的改变、结论的改变,构成四种命题形式:原命题、逆命题、否命题、逆否命题。
接着,通过具体的例题练习讲述四种命题的关系,最后,给出等价命题的定义,提供了一种证明的方法,并通过具体的例题给出反证法。
二、教学目标设计(1)理解四种命题的概念;(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;(3)理解一个命题的真假与其他三个命题真假间的关系;(4)初步掌握反证法的概念,进一步领会分类、判断、推理的思想方法。
三、教学重点及难点理解四种命题的关系;体会反证法的理论依据。
四、教学用具准备多媒体教室五、教学流程设计六、教学过程设计一.复习提问:(1)什么是命题?什么是真命题 ?什么是假命题?(2)语句“内接于圆的四边形对角互补”是否是命题?(3)命题 “内接于圆的四边形对角互补”的条件与结论各是什么?二.讲授新课:关于四种命题1、概念引入在命题“内接于圆的四边形对角互补”中,条件是“内接于圆的四边形”,结论是“四边形的对角互补”。
如果我们把以上命题作以下变化:(1)如果把命题中的结论“四边形的对角互补”作为条件,把命题中的条件“内接于圆的四边形” 作为结论,则得到了新命题“对角互补的四边形内接于圆”。
我们把原来命题中的结论作为条件,原来命题中的条件作为结论所组成的新命题叫做原来命题的逆命题。
并且它们互为逆命题。
(2)如果将命题的条件和结论都换成它们的否定形式,即条件是“四边形不内接于圆”,结论是“四边形对角不互补”,那么就可得到一个新命题:“不内接于圆四边形对角不互补”。
像这种将命题的条件与结论同时否定而得到的新命题叫做原来命题的否命题。
并且新命题与原来的命题互为否命题。
(3)如果将命题的条件和结论互换并取原来的否定形式,即条件是“四边形对角不互补”,结论是“四边形不内接于圆”,那么就可得到一个新命题:“对角不互补的四边形不内接于圆”。
mjt-《命题》测试(1)(沪教版高一上)
命题课前准备1、“凡直角均相等“的否命题是( )(A )凡不是直角均不相等。
(B )凡相等的两角均为直角。
(C )不都是直角的角不相等。
(D )不相等的角不是直角。
2、已知P :|2x -3|>1;q :0612>-+x x ;则﹁p 是﹁q 的( )条件 (A ) 充分不必要条件(B ) 必要不充分条件(C ) 充分必要条件 (D ) 既非充分条件又非必要条件3、“0232>+-x x ”是“1<x 或4>x ”的( )(A ) 充分不必要条件 (B ) 必要不充分条件 (C ) 充要条件 (D ) 既不充分也不必要条件4、命题甲:x +y ≠3,命题乙:x ≠1且y ≠2.则甲是乙的 条件.5、有下列四个命题:① 命题“若1=xy ,则x ,y 互为倒数”的逆命题;② 命题“面积相等的三角形全等”的否命题;③ 命题“若m ≤1,则022=+-m x x 有实根”的逆否命题;④ 命题“若A ∩B =B ,则A ⊆B ”的逆否命题。
其中是真命题的是 (填上你认为正确的命题的序号).6、写出命题“若 xy= 0 则 x = 0或 y = 0”的逆命题、否命题、逆否命题课后作业一、选择:1、a b a 是>≥成立的b ( )A 充分而不必要条件B 必要而不充分条件C 充分必要条件D 即不充分也不必要条件2、给出如下的命题:①对角线互相垂直且相等的四边形是正方形;②00=1;③如果x +y 是整数,那么x ,y 都是整数;④10<3或10>3.其中真命题的个数是……( )(A )3 (B )2 (C )1 (D )0 .3、已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件.那么p 是q 成立的:( )条件(A )充分不必要 (B )必要不充分 (C )充要 (D )既不充分也不必要4、设集合}30|{≤<=x x M ,}20|{≤<=x x N ,那么“M a ∈”是“N a ∈”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件二、填空:5、写出“a,b 均不为零”的(1)充分非必要条件是 (2)必要非充分条件是:_ _(3)充要条件是 (4)非充分非必要条件是6、在以下空格内填入“充分非必要”,“必要非充分”,“充要”,“非充分非必要”(1)“a>0且b >0”是“a+b>0且ab >0”的 条件(2)“a>2且b >2”是“a+b>4且ab >4”的 条件(3) ⎩⎨⎧<<<<⎩⎨⎧<<<+<21102031y x xy y x 是的______________条件 7、1>yx 的一个充分不必要条件是 _______________ 8、指出下列各题中甲是乙的什么条件?(1)甲:a 、b 、c 成等比数列;乙:b 2=ac________________.(2)甲:3tan :,3≠≠a a 乙π______________________ (3)甲:直线l 1∥l 2,乙:直线l 1与l 2的斜率相等_______________________三、解答9、已知命题P :方程x 2+mx +1=0有两个不相等的负根;Q :方程4x 2+4(m -2)x +1=0无实根.若P 或Q 为真,P 且Q 为假,求m 的取值范围.10、试写出一元二次方程20(0)ax bx c a ++=≠,①有两个正根②两个小于2-的根③一个正根一个负根的一个充要条件。
上海教育版高中数学一年级上册全册教案
高一上学期数学讲义1.1集合及其表示法一、教学内容分析集合是一种数学语言,是对数学的进一步抽象,它将贯穿在整个高中数学内容中,甚至在今后的数学学习中,将集合的概念和理论渗透到数学的各类分支中,会有利于提高学生的数学素养。
本章是高中数学的第一个章节,学习集合的有关概念和表示方法,以及集合之间的关系和基本运算,初步掌握基本的集合语言,了解集合的基本思想方法和集合的发展历史,能用集合的思想去观察、思考、表述和解决一些简单的实际问题。
二、教学目标设计知道集合的意义,理解集合的元素及其与集合的关系符号;认识一些特殊集合的记号,会用“列举法”和“描述法”表示集合;体会数学抽象的意义. 三、教学重点及难点教学重点:集合的基本概念;教学难点:用“列举法”和“描述法”表示集合。
四、教学流程设计五、教学过程设计 一、数学史引入(1)“物以类聚,人以群分”(2)我校高一年级的全体学生;(3)这间教室里所有的课桌; (4)所有的正有理数; (5)……(1)集合的有关概念:集合的述性说明:把能够确切指定的一些对象看作一个整体,这个整体就叫做集合,简称集。
我们既要研究集合这个整体,也要研究这个整体中的个体。
我们称集合中的各个对象叫做这个集合的元素;集合的分类:有限集、无限集;集合中元素的特性:“确定性”;“互异性”;“无序性”; (2)集合的表示方法:集合的符号表示:集合常用大写英文字母A 、B 、C …表示,集合中的元素常用小写英文字母a 、b 、c …表示元素与集合的关系:属于∈与不属于∉(注意方向和辨析);列举法:将集合中的元素一一列出来(不考虑元素的顺序),且写在大括号内,这种表示集合的方法叫列举法描述法:在大括号内先写出这个集合的元素的一般形式,再划一条竖线,在竖线后面写上集合中元素所共同具有的特性,即:{}A x x p =满足的性质,这种表示集合的方法叫做描述法.(3)特殊集合的表示:常用的集合的特殊表示法:实数集R (正实数集+R )、有理数集Q (负有理数集-Q )、整数集Z (正整数集+Z )、自然数集N (包含零)、不包含零的自然数集*N ;空集∅(例:方程220x +=的实数解集为∅).[说明] 描述法这一表示集合的形式学生较难理解,可以通过一些例题来加深对描述法这种表示方法的理解。
沪教版(上海)数学高一上册-1.4 命题的形式及等价关系 课件
一、复习回顾
• 命题 • 真命题 • 假命题
二、讲授新课——命题
例1:下列语句哪些不是命题,哪些是命题?如果是 命题,那么它们是真命题还是假命题?为什么?
(1)个位数是5的自然数能被5整除; (2)凡直角三角形都相似; (3)上课请不要讲话; (4)互为补角的两个角不相等; (5)如果两个三角形的三条边对应相等,那么这两
满足ac<0,那么这ax个2 方 b程x 有 c实根0;a 0
(4)如果一元二次方程
()
有实数根,那么ac<0;
(5)如A果x>B0,那,且么Bx C0,;则A C
(6)若
。
四、课堂小结
• 真假命题的判断方法 • 命题的推出关系
五、作业
• 练习册:P5/(A)组
• 换言之,α⇒β表示以α为条件,β为结 论的命题是真命题。
二、讲授新课——推出关系
• 例2:设α表示“两个角是对顶角”,β表示 为“两个角相等”,问推出关系成立吗? 反过来行吗?
解:α⇒β关系成立,但反过来不行。 • α这件事成立,不能推出β这件事成立,可
记作α⇏β。 • 换言之,α⇏β表)你是高一学生吗?
二、讲授新课——命题
• 结论:
①命题必定由条件与结论两部分组成
②假命题的确定:
举反例(举出一个满足条件,不满足结 论的例子,一个即可)
③真命题的确定:作出证明
方法
直接证明 间接证明同反一证法法
二、讲授新课——推出关系
• 一般地,如果α这件事成立可以推出β这 件事也成立,那么就说由α可以推出β, 并用记号α⇒β表示,读作“α推出β”。
命题是一个假命题
2019-2020新沪教版高一数学第一学期教学案03—命题和充要条件—学生版
命题和充要条件知识梳理 一、命题的概念1、一般地,我们把可以判断真假的语句叫做命题。
2、命题通常用陈述句表示,正确的命题叫做真命题,错误的命题叫做假命题。
3、一般地,如果命题α成立可以推出命题β也成立,那么就说由可以推出,记作βα⇒。
相反的,如果成立不能推出成立,那么就说由不可以推出,记作αβ。
4、如果,并且αβ⇒,那么就说与等价,记作βα⇔。
二、四种命题形式1、一个数学命题用条件,结论表示就是“如果 α,那么”,把结论与条件交换,就得到一个新命题“如果 ,那么”,我们把这个命题叫做原命题的逆命题。
2、如果一个命题的条件与结论分别是另一个命题的条件与结论的否定,我们把这两个命题叫做互否命题。
如果其中一个叫做原命题,那么另外一个叫做原命题的否命题。
3、命题、的否定分别记作α、β。
4、如果把原命题“如果,那么”结论的否定作条件,把条件的否定作结论,那么就可以得到一个新命题,我们将它叫做原命题的逆否命题。
5、四种命题形式及其相互关系:6、常见结论的否定形式:(拓展内容)三、充要条件1、充分条件与必要条件:一般地,用α、β分别表示两个命题,如果成立,可以推出也成立,即,那么叫做的充分条件。
叫做的必要条件。
2、充要条件:如果既有,又有,即有βα⇔,那么既是的充分条件又是的必要条件,这时我们就说是的充要条件。
例题解析一、有关命题的概念【例1】判断下列语句是否是命题:⑴张三是四川人;⑵1010是个很大的数;⑶220x x +=;⑷260x +>;⑸112+>;【例2】判断下列语句是不是命题,若是,判断出其真假,若不是,说明理由. (1)矩形难道不是平行四边形吗?(2)垂直于同一条直线的两条直线必平行吗?(3)求证:R x ∈,方程012=++x x 无实根.(4)5>x(5)人类在2020年登上火星.【例3】下面有四个命题:①若a -不属于N ,则a 属于N ;②若a b ∈∈N N ,,则a b +的最小值为2;③212x x +=的解可表示为{}11,.其中真命题的个数为( )A .0个B .1个C .2个D .3个【例4】下列判断中正确的是 ( ).A. “12是偶数且是18的约数”是真命题B. “方程210x x ++=没有实数根”是假命题C. “存在实数x ,使得23x +≤且216x >”是真命题D. “三角形的三个内角的和大于或等于120︒”是假命题【例5】对于直角坐标平面内的任意两点11(),A x y 、22(),B x y ,定义它们之间的一种“距离”: 1212AB x x y y =-+-.给出下列三个命题:①若点C 在线段AB 上,则AC CB AB +=; ②在ABC ∆中,若90C ∠=︒,则222AC CB AB +=; ③在ABC ∆中,AC CB AB +>.其中真命题的个数为( )A .1个B .2个C .3个D .4个【巩固训练】1、判断命题真假:如果2a <,那么2a < ( )2、若[]2,5x ∈和{}|14x x x x ∈<>或都是假命题,则x 的范围是__________3、已知,A B 是两个集合,下列四个命题:①B ,A x A x B ⇔∈∉不包含于对任意有②B A A B ⇔⋂=∅不包含于③B A A ⇔不包含于不包含B ④B ,A x A x B ⇔∈∉不包含于存在,其中真命题的序号是4、下面有四个命题:①集合N 中最小的数是1;②若a -不属于N ,则a 属于N ;③若,,N b N a ∈∈则b a +的最小值为2;④x x 212=+的解可表示为{}1,1.其中真命题的个数为( )A .0个B .1个C .2个D .3个二、命题的四种形式及其关系【例6】命题“若x y =,则||||x y =”,写出它的逆命题、否命题、逆否命题,并判断它们的真假【例7】有4个命题:(1)没有男生爱踢足球;(2)所有男生都不爱踢足球;(3)至少有一个男生不爱踢足球;(4)所有女生都爱踢足球;其中是命题“所有男生都爱踢足球”的否定是_______【例8】写出命题“若b a ,都是偶数,则b a +是偶数”的逆命题,否命题,逆否命题,并判断它们的真假.【例9】写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假. ⑴“负数的平方是正数”;⑵“若a 和b 都是偶数,则a b +是偶数”; ⑶“当0c >时,若a b >,则ac bc >”; ⑷“若5x y +=,则3x =且2y =”;【例10】已知命题p :方程210x mx ++=有两个不相等的实负根,命题q :方程24(2)10x m x +-+=无实根;若p 与q 中有且仅有一个为真命题,求实数m 的取值范围.【巩固训练】1、有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤,则220x x q ++=有实根”的逆否命题; ④“等边三角形的三个内角相等”逆命题; 其中真命题的个数为( ) A .1 B .2 C .3 D .42、原命题:“设a b c ∈R ,,,若a b >,则22ac bc >”以及它的逆命题、否命题、逆否命题中,真命题共有( )个. A .0 B .1 C .2 D .43、命题:“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则1x ≥或1x -≤B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1x ≥或1x -≤,则21x ≥4、有下列四个命题:①命题“若1xy =,则x ,y 互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若1≤m ,则220x x m -+=有实根”的逆否命题;④命题“若A B B =,则A B ⊆”的逆否命题. 其中是真命题的是 (填上你认为正确的命题的序号).5.原命题的否命题是“三条边相等的三角形是等边三角形”,原命题的逆命题是三、有关等价命题【例12】与命题“,,不全是负数”等价的命题是( ) A 、,,中至少有一个是正数 B 、,,全不是负数C 、,,中只有一个是负数D 、,,中至少有一个是非负数 【例13】与“一元二次方程有一正根、一负根”等价的命题是( D )A 、B 、C 、D 、【例14】命题:已知a ,b 为实数,若20x ax b ++≤有非空解集,则240a b -≥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:___命题___
教学任务
教学流程说明
教学过程设计
命题
一、选择:
1、a b a 是>≥成立的b ( A )
A 充分而不必要条件
B 必要而不充分条件
C 充分必要条件
D 即不充分也不必要条件
2、给出如下的命题:①对角线互相垂直且相等的平面四边形是正方形;②00
=1;③如果x +y
是整数,那么x ,y 都是整数;④10<3或10>3.其中真命题的个数是……( D ) (A )3 (B )2 (C )1 (D )0 . 3、已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件.那么p 是q 成立的:( A )
(A )充分不必要条件 (B )必要不充分条件 (C )充要条件
(D )既不充分也不必要条件
4、一元二次方程2
210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是( C )
(A )0a < (B )0a > (C )1a <- (D )1a > 二、填空:
5、写出“a,b 均不为零”的
(1)充分非必要条件是 1,2a b == (2)必要非充分条件是:_ 0a ≠ _ (3)充要条件是 0ab ≠ (4)非充分非必要条件是 ab =0 6、在以下空格内填入“充分非必要条件”,“必要非充分条件”,“充要条件”,“非充分
非必要条件”
(1)“a>0且b >0”是“a+b>0且ab >0”的 充要条件 (2)“a>2且b >2”是“a+b>4且ab >4”的 充分非必要条件 (3)⎩
⎨⎧<<<<⎩⎨
⎧<<<+<211
02031y x xy y x 是的_______必要非充分________条件
7、1>y
x
的一个充分不必要条件是 ____x >y >0___________
8、指出下列各题中甲是乙的什么条件?
(1)甲:a 、b 、c 成等比数列;乙:b 2
=ac______充分非必要条件_________________.
(2)甲:3tan :,3
≠≠
a a 乙π
______必要非充分________
(3)甲:直线l 1∥l 2,乙:直线l 1与l 2的斜率相等______非必要非充分_____
三、解答
9、已知命题P :方程x 2
+mx +1=0有两个不相等的负根;Q :方程4x 2
+4(m -2)x +1=0无实根.
若P 或Q 为真,P 且Q 为假,求m 的取值范围. 答案:(][)1,23,+∞U
10、试写出一元二次方程2
0(0)ax bx c a ++=≠,①有两个正根②两个小于2-的根
③一个正根一个负根的一个充要条件。
答案:略
11、a 1、b 1、c 1、a 2、b 2、c 2均为非零实数,不等式a 1x 2
+b 1x +c 1>0和a 2x 2
+b 2x +c 2>0的解集分别为
集合M 和N ,试判断“2
1
2121c c b b a a ==”是“M=N ”的什么条件,并说明理由。
答案:非充分非必要
12、已知()()f x g x 、均为R 上的单调增函数。
命题1:()()f x g x +为R 上的单调增函数;命题2:()()f x g x ⋅为R 上的单调增函数 判断两个命题的正确性,并说明理由;不正确的话给出附加条件,使之成为真命题。
答案:真,假;()()f x g x >0,>0。