2020最新高考物理热学讲解与解析
2020 年高考物理热学计算专题及答案
2020 年高考物理热学计算专题及答案专题简介:1.物体吸收或放出热量的公式①计算物体吸收热量的公式为:Q 吸=cm (t -t 0)=cm ⊿t 。
②计算物体放出热量的公式为:Q 放=cm (t 0-t )=cm ⊿t 。
其中,Q 吸表示吸收热量,单位是J ;c 表示物体比热容,单位是J/(kg·℃);m 表示质量,单位是kg ;t 0表示物体初始温度,单位是℃;t 表示物体后来的温度,单位是℃。
⊿t =t -t 0表示物体升高了的温度。
⊿t =t 0-t ,表示物理降低了的温度。
2.燃料完全燃烧放出热量的公式①燃料完全燃烧释放出的热量公式为:Q 放=mq 。
②气体燃料完全燃烧释放出的热量公式也可为:Q 放=qV 。
推导过程如下: 说明:①中的公式对固体、液体、气体、均适用。
②只对气体适用。
两个公式的得出都是根据热值的定义式得到的。
其中,Q 放表示燃料完全燃烧放出的热量,单位是J ;q 表示燃料的热值,单位是J/kg ;m 表示质量,单位是kg 。
V 表示体积,单位是m3。
3.热效率公式(1)热机的效率:用来做有用功的那部分能量和燃料完全燃烧放出的能量之比。
热机的效率是热机性能的一个重要指标。
汽车发动机的效率、飞机发动机的效率、轮船发动机的效率均属于热机的效率,其公式为:η=放吸Q Q 。
(2)炉具的热效率:天然气燃烧放出的热量是炉具提供的总热量,Q 总=Q 放,水吸收的热量是有用的热量Q 有=Q 吸,则η=总有Q Q 。
(3)电热水器的效率:电热丝所产生热量为Q 总,总=Q 放,水需要吸收热量为Q 有,有=Q 吸,则η=总有Q Q 。
专题例题:【例题1】(2018•济宁)将盛有凉牛奶的瓶子放在热水中(如图所示),通过 方式改变牛奶的内能,图中乙是250g 牛奶与热水的温度随时间变化的图象,则牛奶在加热过程中吸收的热量为 J .[c 牛奶=4.2×103J/(kg•℃)]【答案】热传递;2.1×104。
2020年江苏版高考物理专题十二 热学
专题十二热学挖命题【考情探究】分析解读本专题为选考内容,概念规律繁多,但要求较低,全部是Ⅰ级要求,复习时应注意以下几点(1)加强对基本概念和基本规律的理解记忆。
(2)固体液体部分内容常结合实例考查晶体和非晶体的特点及表面张力产生的原因;会用表面张力解释一些生活现象。
(3)建立宏观量与微观量的关系。
分子动能与温度相对应,分子势能与体积相对应,物体内能与温度体积物质的量相对应。
物体内能的改变同做功和热传递相对应。
(4)加强类似高考的典型题的练习,提高分析问题和解决问题的能力。
命题趋势试题将坚持立足基本概念,贴近教材和教学实际,情境接近生活经历,关注社会问题,亲近自然,体现“从生活走向物理,从物理走向社会”的课程理念。
试题关注学科素养,引导学生学以致用,引导高中教学,注重培养学生应用知识解决实际问题的能力。
【真题典例】破考点【考点集训】考点一分子动理论、内能1.[2018江苏泰州调研,12A(1)]以下说法正确的是()A.布朗运动反映了悬浮小颗粒内部分子在不停地做无规则的热运动B.从平衡位置开始增大分子间距离,分子间的引力将增大、斥力将减小C.对大量事实的分析表明:热力学零度不可能达到D.热量自发地由内能多的物体传递给内能少的物体答案C2.[2018江苏扬州期中,12A(1)](多选)PM2.5是指空气中直径小于2.5微米的悬浮颗粒物,其悬浮在空中做无规则运动,很难自然沉降到地面。
下列说法中正确的是()A.气温越高,PM2.5运动越剧烈B.PM2.5在空气中的运动属于布朗运动C.PM2.5在空气中的运动就是分子的热运动D.倡导低碳生活有利于减小PM2.5在空气中的浓度答案ABD3.[2018江苏无锡摸底,12A(1)](多选)关于分子动理论的规律,下列说法正确的是()A.扩散现象说明物质分子在做永不停息的无规则运动B.两个分子间的距离为r0时,分子势能最小C.两个分子距离减小时,分子间引力和斥力都在增大D.如果两个系统分别与第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡,用来表征它们所具有的“共同热学性质”的物理量叫做内能答案ABC4.[2018江苏苏州调研,12A(3)]目前,环境污染已非常严重,瓶装纯净水已经占领柜台,再严重下去,瓶装纯净空气也会上市。
2020届高考物理热点题型归纳 热力学定律与能量守恒定律、气体实验定律的综合应用(解析版)
热力学定律与能量守恒定律、气体实验定律的综合应用【专题导航】目录热点题型一热力学第一定律与能量守恒定律 (1)热点题型二热力学第二定律的理解 (4)热点题型三封闭气体多过程的问题 (6)汽缸封闭气体问题 (6)活塞封闭气体问题 (7)热点四关联气体的状态变化问题 (9)活塞封闭气体的问题 (10)水银柱封闭气体的问题 (10)热点题型五变质量问题 (11)充气问题 (11)抽气问题 (12)灌气问题 (12)漏气问题 (13)热点题型六热力学第一定律与图象的综合应用 (14)热点题型七热力学第一定律与气体实验定律的综合应用 (15)【题型演练】 (17)【题型归纳】热点题型一热力学第一定律与能量守恒定律1.热力学第一定律不仅反映了做功和热传递这两种改变内能的过程是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系.此定律是标量式,应用时功、内能、热量的单位应统一为国际单位焦耳.2.三种特殊情况(1)若过程是绝热的,即Q=0,则W=ΔU,外界对物体做的功等于物体内能的增加量;(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加量;(3)若过程的初、末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量.3.改变内能的两种方式的比较4.温度、内能、热量、功的比较【例1】如图,用隔板将一绝热汽缸分成两部分,隔板左侧充有理想气体,隔板右侧与绝热活塞之间是真空.现将隔板抽开,气体会自发扩散至整个汽缸.待气体达到稳定后,缓慢推压活塞,将气体压回到原来的体积.假设整个系统不漏气.下列说法正确的是()A.气体自发扩散前后内能相同B.气体在被压缩的过程中内能增大C.在自发扩散过程中,气体对外界做功D.气体在被压缩的过程中,外界对气体做功E.气体在被压缩的过程中,气体分子的平均动能不变【答案】ABD【解析】气体向真空扩散过程中不对外做功,且又因为汽缸绝热,可知气体自发扩散前后内能相同,选项A正确,C错误;气体在被压缩的过程中活塞对气体做功,因汽缸绝热,则气体内能增大,选项B、D 正确;气体在被压缩的过程中,因气体内能增加,则温度升高,气体分子的平均动能增加,选项E错误.【变式1】.关于热力学定律,下列说法正确的是()A.气体吸热后温度一定升高B.对气体做功可以改变其内能C.理想气体等压膨胀过程一定放热D.热量不可能自发地从低温物体传到高温物体E.如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡【答案】BDE.【解析】根据热力学第一定律,气体吸热的同时若对外做功,则内能不一定增大,温度不一定升高,选项A 错误;对气体做功可以改变其内能,选项B正确;理想气体等压膨胀过程,对外做功,由理想气体状态方程可知,气体温度升高,内能增大,故气体一定吸热,选项C错误;根据热力学第二定律,热量不可能自发地从低温物体传到高温物体,选项D正确;根据热平衡定律,如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡,选项E正确.【变式2】关于内能的概念,下列说法中正确的是()A.若把氢气和氧气看作理想气体,则具有相同体积、相同质量和相同温度的氢气和氧气具有的内能不相等B.一定质量0 ℃水的分子势能比0 ℃冰的分子势能大C.物体吸收热量后,内能一定增加D.一定质量的100 ℃的水吸收热量后变成100 ℃的水蒸气,则吸收的热量大于增加的内能E.做功和热传递是不等价的【答案】ABD【解析】具有相同体积、相同质量和相同温度的氢气和氧气,分子平均动能相等,氢气分子数较多,内能较大,所以具有相同体积、相同质量和相同温度的氢气和氧气具有的内能不相等,选项A正确;一定质量0 ℃水和0 ℃冰的温度相同,分子平均动能相同,由于0 ℃的冰需要吸收热量才能融化为0 ℃的水,温度不变,分子平均动能不变,根据能量守恒定律,一定质量0 ℃水的分子势能比0 ℃冰的分子势能大,选项B正确;根据热力学第一定律,物体吸收热量后,若对外做功,则内能不一定增加,选项C错误;一定质量的100 ℃的水吸收热量后变成100 ℃的水蒸气,由于体积增大,对外做功,根据热力学第一定律,吸收的热量等于对外做功和增加的内能之和,所以吸收的热量大于增加的内能,选项D正确;在改变内能时,做功和热传递是等价的,选项E错误.热点题型二热力学第二定律的理解1.对热力学第二定律关键词的理解在热力学第二定律的表述中,“自发地”“不产生其他影响”的涵义.(1)“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.(2)“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等.2.热力学第二定律的实质自然界中进行的涉及热现象的宏观过程都具有方向性.如(1)高温物体热量Q能自发传给热量Q不能自发传给低温物体.(2)功能自发地完全转化为不能自发地且不能完全转化为热.(3)气体体积V 1能自发地膨胀到不能自发地收缩到气体体积V2(较大).(4)不同气体A和B能自发地混合成不能自发地分离成混合气体AB.3.两类永动机的比较分类第一类永动机第二类永动机设计要求不需要任何动力或燃料,却能不断地对外做功的机器从单一热源吸收热量,使之完全变成功,而不产生其他影响的机器不可能制成的原因违背能量守恒定律不违背能量守恒定律,但违背热力学第二定律【例2】下列关于热现象的描述不正确的是()A.根据热力学定律,热机的效率不可能达到100%B.做功和热传递都是通过能量转化的方式改变系统内能的C.温度是描述热运动的物理量,一个系统与另一个系统达到热平衡时两系统温度相同D.物体由大量分子组成,其单个分子的运动是无规则的,大量分子的运动也是无规则的E.空调机作为制冷机使用时,将热量从温度较低的室内送到温度较高的室外,所以制冷机的工作不遵守热力学第二定律【答案】BDE【解析】.根据热力学第二定律可知,热机不可能从单一热源吸收热量全部用来做功而不引起其他变化,因此,热机的效率不可能达到100%,选项A正确;做功是通过能量转化改变系统的内能,热传递是通过能量的转移改变系统的内能,选项B错误;温度是表示热运动的物理量,热传递过程中达到热平衡时,温度相同,选项C正确;单个分子的运动是无规则的,大量分子的运动表现出统计规律,选项D错误;由热力学第二定律知,热量不可能从低温物体传到高温物体而不产生其他影响,空调机作为制冷机使用时,消耗电能,将热量从温度较低的室内送到温度较高的室外,选项E错误.【变式1】关于热力学定律,下列说法正确的是()A.为了增加物体的内能,必须对物体做功或向它传递热量B.对某物体做功,必定会使该物体的内能增加C.可以从单一热源吸收热量,使之完全变为功D.不可能使热量从低温物体传向高温物体E.功转变为热的实际宏观过程是不可逆过程【答案】ACE【解析】内能的改变可以通过做功或热传递进行,故A对;对某物体做功,若物体向外放热,则物体的内能不一定增加,B错;在引起其他变化的情况下,从单一热源吸收热量可以将其全部变为功,C对;在引起其他变化的情况下,可以将热量从低温物体传向高温物体,D错;涉及热现象的宏观过程都具有方向性,故E对.【变式2】.下列说法正确的是()A.压缩气体总能使气体的温度升高B.能量耗散过程中能量是守恒的C.第一类永动机不可能制成,是因为违背了能量守恒定律D.第二类永动机不违背能量守恒定律,但违背了热力学第一定律E.能量耗散过程从能量转化的角度反映了自然界中的宏观过程具有方向性【答案】BCE【解析】内能的变化取决于做功和热传递两个方面,压缩气体并不一定能使气体温度升高,选项A错误;由能量守恒定律可知,选项B正确;第一类永动机是指不消耗能量却可以不断向外做功的机器,违背了能量守恒定律,选项C正确;第二类永动机不违背能量守恒定律,但违背了热力学第二定律,选项D错误;由热力学第二定律可知,选项E正确.热点题型三封闭气体多过程的问题多过程问题的处理技巧研究对象(一定质量的气体)发生了多种不同性质的变化,表现出“多过程”现象.对于“多过程”现象,则要确定每个有效的“子过程”及其性质,选用合适的实验定律,并充分应用各“子过程”间的有效关联.解答时,特别注意变化过程可能的“临界点”,找出临界点对应的状态参量,在“临界点”的前、后可以形成不同的“子过程”.汽缸封闭气体问题【例3】(2018·高考全国卷Ⅱ)如图,一竖直放置的汽缸上端开口,汽缸壁内有卡口a和b,a、b间距为h,a 距缸底的高度为H;活塞只能在a、b间移动,其下方密封有一定质量的理想气体.已知活塞质量为m,面积为S,厚度可忽略;活塞和汽缸壁均绝热,不计它们之间的摩擦.开始时活塞处于静止状态,上、下方气体压强均为p0,温度均为T0.现用电热丝缓慢加热汽缸中的气体,直至活塞刚好到达b处.求此时汽缸内气体的温度以及在此过程中气体对外所做的功.重力加速度大小为g.【答案】(1+hH)(1+mgp0S)T0(p0S+mg)h【解析】开始时活塞位于a处,加热后,汽缸中的气体先经历等容过程,直至活塞开始运动.设此时汽缸中气体的温度为T1,压强为p1,根据查理定律有p0 T0=p1 T1①根据力的平衡条件有p1S=p0S+mg②联立①②式可得T1=(1+mgp0S)T0③此后,汽缸中的气体经历等压过程,直至活塞刚好到达b处,设此时汽缸中气体的温度为T2;活塞位于a处和b 处时气体的体积分别为V 1和V 2.根据盖—吕萨克定律有 V 1T 1=V 2T 2④ 式中V 1=SH ⑤ V 2=S (H +h )⑥ 联立③④⑤⑥式解得 T 2=(1+h H )(1+mgp 0S)T 0⑦从开始加热到活塞到达b 处的过程中,汽缸中的气体对外做的功为 W =(p 0S +mg )h ⑧【变式】.(2019·河南南阳一中模拟)如图所示,两个壁厚可忽略的导热良好的圆柱形金属筒A 和B 套在一起, 底部到顶部的高度为20 cm ,两者横截面积相等,光滑接触且不漏气.将A 系于天花板上,用手托住B ,使 它们内部密封的气体强与外界大气压相同,均为1.1×105 Pa ,然后缓慢松手,让B 下沉,当B 下沉了2 cm 时,停止下沉并处于静止状态.求:(1)此时金属筒内气体的压强;(2)若当时的温度为24 ℃,欲使下沉后的套筒恢复到下沉前的位置,应将温度变为几摄氏度? 【答案】(1)1.0×105 Pa (2)-3 ℃【解析】(1)设金属筒横截面积为S cm 2,p 1=1.1×105 Pa ,V 1=20S cm 3,V 2=22S cm 3 根据玻意耳定律,p 1V 1= p 2V 2,p 2=p 1V 1V 2=1.1×105×20S22SPa =1.0×105 Pa(2)V 2=22S cm 3,T 2=297 K ,V 3=20S cm 3,根据盖—吕萨克定律得到,V 2T 2=V 3T 3,T 3=V 3T 2V 2 =20S ×29722S K =270K ,t =(270-273)℃=-3 ℃. 活塞封闭气体问题【例4】如图所示为一竖直放置的导热性能良好的玻璃管,玻璃管下端封闭,上端开口.现在管口下方某位 置放一密封性良好质量和厚度均可忽略不计的薄板,封闭一定质量的理想气体,此时封闭气体的温度为T 0,封闭气柱长度为l 0=10 cm.现在薄板上放置3个质量为m 的物体,系统平衡时,封闭气柱的长度变为l 1=5 cm , 现使封闭气体的温度缓慢升高60 ℃,系统再次平衡时封闭气柱的长度为l 2=6 cm ;然后取走2个质量为m 的物体,再次使封闭气体的温度缓慢升高40 ℃,系统第三次平衡时,封闭气柱的长度为l 3.(已知上述过程 中薄板没有离开玻璃管)求:(1)开始时封闭气体的温度t 应为多少?(2)系统第三次平衡时,封闭气柱的长度l 3为多少? 【答案】 (1)27 ℃ (2)10 cm【解析】 (1)气体初始状态:体积为V 0=l 0S ,压强为p 0,温度为T 0 将质量为3m 的物体放在薄板上,则体积V 1=l 1S ,温度T 1=T 0 压强为:p 1=p 0+3mg S气体经等温变化,得:p 0V 0=p 1V 1 则p 1=2p 0由以上各式解得p 0=3mgS当气体温度升高60 ℃时,温度为:T 2=T 0+60 K ,体积为:V 2=l 2S 由于该过程为等压变化,则:V 1T 1=V 2T 2代入数据解得:T 0=300 K 则t =(300-273) ℃=27 ℃(2)取走质量为2m 的物体,继续加热使气体的温度再升高40 ℃后,最终气柱的高度为l 3,体积V 3=l 3S ,压强p 3=p 0+mg S =43p 0,温度T 3=400 K则由理想气体状态方程有p 0V 0T 0=p 3V 3T 3代入数据解得:l 3=10 cm.【变式】(2019·宁夏五中联考)一足够高的内壁光滑的导热汽缸竖直地浸放在盛有冰水混合物的水槽中,用 不计质量的活塞封闭了一定质量的理想气体,活塞的面积为1.5×10-3 m 2,如图所示,开始时气体的体积为 3.0×10-3 m 3,现缓慢地在活塞上倒上一定质量的细沙,最后活塞静止时气体的体积恰好变为原来的三分之 一.设大气压强为1.0×105 Pa.重力加速度g 取10 m/s 2,求:(1)最后汽缸内气体的压强为多少?(2)最终倒在活塞上细沙的总质量为多少千克? 【答案】(1)3.0×105 Pa (2)30 kg【解析】(1)汽缸内气体的温度保持不变,根据玻意耳定律可知p 1V 1=p 2V 2 代入数据解得p 2=p 1V 1V 2=3.0×105 Pa ;(2)活塞受力分析如图所示根据力的平衡条件:p 2S =p 0S +mg ,代入数据解得:m =p 2-p 0Sg=30 kg. 热点四 关联气体的状态变化问题 多系统问题的处理技巧多个系统相互联系的一定质量气体问题,往往以压强建立起系统间的关系,各系统独立进行状态分析,要确定每个研究对象的变化性质,分别应用相应的实验定律,并充分应用各研究对象之间的压强、体积、温度等量的有效关联.若活塞可自由移动,一般要根据活塞平衡确定两部分气体的压强关系.活塞封闭气体的问题【例5】(2018·高考全国卷Ⅱ)如图,容积为V 的汽缸由导热材料制成,面积为S 的活塞将汽缸分成容积相等 的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K.开始时,K 关闭,汽缸 内上下两部分气体的压强均为p 0.现将K 打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为V8时,将K 关闭,活塞平衡时其下方气体的体积减小了V6.不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g .求流入汽缸内液体的质量.【答案】15p 0S26g【解析】设活塞再次平衡后,活塞上方气体的体积为V 1,压强为p 1;下方气体的体积为V 2,压强为p 2.在活塞下移的过程中,活塞上、下方气体的温度均保持不变,由玻意耳定律得 p 0V2=p 1V 1① p 0V2=p 2V 2② 由已知条件得 V 1=V 2+V 6-V 8=1324V ③V 2=V 2-V 6=V 3④设活塞上方液体的质量为m ,由力的平衡条件得 p 2S =p 1S +mg ⑤联立以上各式得m =15p 0S26g ⑥水银柱封闭气体的问题【例6】(2018·高考全国卷Ⅱ )在两端封闭、粗细均匀的U 形细玻璃管内有一段水银柱,水银柱的两端各封 闭有一段空气.当U 形管两端竖直朝上时,左、右两边空气柱的长度分别为l 1=18.0 cm 和l 2=12.0 cm ,左 边气体的压强为12.0 cmHg.现将U 形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一边.求U形管平放时两边空气柱的长度.在整个过程中,气体温度不变.【答案】22.5 cm7.5 cm【解析】设U形管两端竖直朝上时,左、右两边气体的压强分别为p1和p2.U形管水平放置时,两边气体压强相等,设为p.此时原左、右两边气柱长度分别变为l1′和l2′.由力的平衡条件有p1=p2+ρg(l1-l2)①式中ρ为水银密度,g为重力加速度大小.由玻意耳定律有p1l1=pl1′②p2l2=pl2′③两边气柱长度的变化量大小相等l1′-l1=l2-l2′④由①②③④式和题给条件得l1′=22.5 cm⑤l2′=7.5 cm⑥热点题型五变质量问题分析气体变质量问题时,可以通过巧妙地选择合适的研究对象,使变质量问题转化为气体质量一定的问题,然后利用理想气体状态方程求解.充气问题设想将充进容器内的气体用一个无形的弹性口袋收集起来,那么,当我们取容器和口袋内的全部气体为研究对象时,这些气体的状态不管怎样变化,其质量总是不变的,这样我们就将变质量的问题转化成质量一定的问题了.【例7】一个篮球的容积是2.5 L ,用打气筒给篮球打气时,每次把105 Pa 的空气打进去125 cm 3. 如果在打气前篮球内的空气压强也是105 Pa ,那么打30次以后篮球内的空气压强是多少?(设打气过程中气体温度不变)【答案】 2.5×105 Pa【解析】 设V 2为篮球的容积,V 1为30次所充空气的体积及篮球的容积之和,则V 1=V 2+n ΔV =2.5 L +30×0.125 L =6.25 L由于整个过程中空气质量不变,温度不变,可用玻意耳定律求解,即有p 1V 1=p 2V 2解得p 2=p 1V 1V 2=105×6.252.5Pa =2.5×105 Pa. 抽气问题在用抽气筒对容器抽气的过程中,对每一次抽气而言,气体质量发生变化,解决该类变质量问题的方法与充气问题类似:假设把每次抽出的气体包含在气体变化的始末状态中,即用等效法把变质量问题转化为恒定质量的问题.【例8】用容积为ΔV 的活塞式抽气机对容积为V 0的容器中的气体抽气,如图所示.设容器中原来的气体压强为p 0,抽气过程中气体温度不变.求抽气机的活塞抽气n 次后,容器中剩余气体的压强p n 为多少?【答案】 (V 0V 0+ΔV )n p 0【解析】 当活塞下压时,阀门a 关闭,b 打开,抽气机汽缸中ΔV 体积的气体排出,容器中气体压强降为p 1.活塞第二次上提(即抽第二次气),容器中气体压强降为p 2,根据玻意耳定律,对于第一次抽气,有p 0V 0=p 1(V 0+ΔV ),解得p 1=V 0V 0+ΔV p 0,对于第二次抽气,有p 1V 0=p 2(V 0+ΔV ),解得p 2=(V 0V 0+ΔV )2p 0,以此类推,第n 次抽气后容器中气体压强降为p n =(V 0V 0+ΔV )n p 0. 灌气问题 将一个大容器里的气体分装到多个小容器中的问题也是一种典型的变质量问题,分析这类问题时,可以把大容器中的气体和多个小容器中的气体作为一个整体来进行研究,即可将变质量问题转化为质量一定的问题.【例9】某容积为20 L的氧气瓶装有30 atm的氧气,现把氧气分装到容积为5 L的小钢瓶中,使每个小钢瓶中氧气的压强为5 atm,若每个小钢瓶中原有氧气压强为1 atm,问能分装多少瓶?(设分装过程中无漏气,且温度不变)【答案】25【解析】设最多能分装n个小钢瓶,并选取氧气瓶中的氧气和n个小钢瓶中的氧气整体为研究对象.因为分装过程中温度不变,故遵循玻意耳定律.分装前整体的状态:p1=30 atm,V1=20 L;p2=1 atm,V2=5n L.分装后整体的状态:p1′=5 atm,V1=20 L;p2′=5 atm,V2=5n L根据玻意耳定律,有p1V1+p2V2=p1′V1+p2′V2代入数据解得n=25(瓶).漏气问题容器漏气过程中容器内的气体的质量不断发生变化,属于变质量问题,不能直接用理想气体状态方程求解.如果选容器内原有气体为研究对象,便可使问题变成质量一定的气体状态变化问题,这时可用理想气体状态方程求解.【例10】某个容器的容积是10 L,所装气体的压强是2.0×106 Pa.如果温度保持不变,把容器的开关打开以后,容器里剩下的气体是原来的百分之几?(设大气压是1.0×105 Pa)【答案】5%【解析】以原来气体为研究对象,设原来的气体体积为V1,膨胀后气体的体积为V2.如图所示.初状态:p1=2.0×106 Pa,V1=10 L末状态:p2=1.0×105 Pa,V2=?由玻意耳定律得p 1V 1=p 2V 2,解得V 2=p 1V 1p 2=200 L V 1V 2=10200×100%=5%,即容器里剩下的气体是原来的5%. 热点题型六 热力学第一定律与图象的综合应用判断理想气体内能变化的两种方法(1)一定质量的理想气体,内能的变化完全由温度变化决定,温度升高,内能增大.(2)若吸、放热和做功情况已知,可由热力学第一定律ΔU =W +Q 来确定.【例11】(2018·高考全国卷Ⅱ)如图,一定质量的理想气体从状态a 开始,经历过程①、②、③、④到达状态e .对此气体,下列说法正确的是 ( )A .过程①中气体的压强逐渐减小B .过程②中气体对外界做正功C .过程④中气体从外界吸收了热量D .状态c 、d 的内能相等E .状态d 的压强比状态b 的压强小【答案】 BDE【解析】 过程①为等容变化,根据查理定律有p a T a =p b T b,因为温度逐渐增加,则气体的压强逐渐增加,故选项A 错误;过程②气体体积增加,则气体对外界做正功,故选项B 正确;过程④中为体积不变,则气体对外界不做功,外界对气体也不做功,即W =0,理想气体的温度降低,则内能减少,即ΔU <0,根据热力学第一定律ΔU =W +Q 可知Q <0,则气体向外界放出了热量,故选项C 错误;状态c 、d 的温度相等,则分子平均动能相等,理想气体没有分子势能,则内能相等,故选项D 正确;连接Ob 、Od ,根据pV T =C 得T V=p C,Ob 斜率大于Od 斜率,则状态d 的压强比状态b 的压强小,故选项E 正确. 【变式】(2018·高考全国卷Ⅱ)如图,一定量的理想气体从状态a 变化到状态b ,其过程如p V 图中从a 到b 的直线所示.在此过程中 ( )A.气体温度一直降低B.气体内能一直增加C.气体一直对外做功D.气体一直从外界吸热E.气体吸收的热量一直全部用于对外做功【答案】BCD【解析】在pV图中理想气体的等温线是双曲线的一支,而且离坐标轴越远温度越高,故从a到b温度升高,A错;一定质量的理想气体的内能由温度决定,温度越高,内能越大,B对;气体体积膨胀,对外做功,C对;根据热力学第一定律ΔU=Q+W,得Q=ΔU-W,由于ΔU>0、W<0,故Q>0,气体吸热,D对;由Q=ΔU-W可知,气体吸收的热量一部分用来对外做功,一部分用来增加气体的内能,E错.热点题型七热力学第一定律与气体实验定律的综合应用解决热力学定律与气体实验定律综合问题的思路【例12】(2019·河北保定模拟)一定质量的理想气体,其内能跟温度成正比.在初始状态A时,体积为V0,压强为p0,温度为T0,已知此时其内能为U0.该理想气体从状态A经由一系列变化,最终还回到原来状态A,其变化过程的p T图线如图所示,其中CA延长线过坐标原点,BA在同一竖直线上.求:(1)状态B的体积;(2)状态C的体积;(3)从状态B 经由状态C ,最终回到状态A 的过程中,气体与外界交换的热量是多少?【答案】 (1)V 03(2)V 0 (3)气体吸收热量2p 0V 0 【解析】 (1)由题图可知,从状态A 到状态B 为等温变化过程,状态B 时气体压强为p 1=3p 0,设体积为V 1,由玻意耳定律得p 0V 0=p 1V 1,解得V 1=V 03. (2)由题图可知,从状态B 到状态C 为等压变化过程,状态C 时气体温度为T 2=3T 0,设体积为V 2,由盖-吕萨克定律得V 1T 0=V 2T 2,解得V 2=V 0. (3)由状态B 经状态C 回到状态A ,外界对气体做的总功为W ,从状态B 到状态C ,设外界对气体做功为W BC ,W BC =p 2(V 1-V 2),联立解得W BC =-2p 0V 0;从状态C 回到状态A ,由图线知为等容过程,外界对气体不做功,所以W =W BC =-2p 0V 0;从状态B 经状态C 回到状态A ,内能增加量为U =0,气体从外界吸收的热量为Q ,内能增加量为U ,由热力学第一定律得U =Q +W ,解得Q =2p 0V 0,即气体从外界吸收热量2p 0V 0.【变式】我国“蛟龙”号深海探测船载人下潜超过七千米,再创载人深潜新纪录.在某次深潜实验中,“蛟龙” 号探测到990 m 深处的海水温度为280 K .某同学利用该数据来研究气体状态随海水深度的变化.如图所示, 导热良好的汽缸内封闭一定质量的气体,不计活塞的质量和摩擦,汽缸所处海平面的温度T 0=300 K ,压强 p 0=1 atm ,封闭气体的体积V 0=3 m 3,如果将该汽缸下潜至990 m 深处,此过程中封闭气体可视为理想气 体.(1)下潜过程中封闭气体______(填“吸热”或“放热”),传递的热量______(填“大于”或“小于”)外界对气体所做的功.(2)求990 m 深处封闭气体的体积(1 atm 相当于10 m 深的海水产生的压强).【答案】(1)放热 大于 (2)2.8×10-2 m 3【解析】(1)下潜过程中温度降低,则ΔU <0,气体体积减小,则W >0,由ΔU =Q +W 知,Q <0,放热,且|Q |>W .(2)当汽缸下潜至990 m 时,设封闭气体的压强为p ,温度为T ,体积为V ,由题意可知p =100 atm 根据理想气体状态方程得p 0V 0T 0=pV T。
2023年高考物理热点复习:热力学定律与能量守恒定律(附答案解析)
2023年高考物理热点复习:热力学定律与能量守恒定律
【2023高考课标解读】
1.知道改变内能的两种方式,理解热力学第一定律.
2.知道与热现象有关的宏观物理过程的方向性,了解热力学第二定律.
3.掌握能量守恒定律及其应用.
【2023高考热点解读】
一、热力学第一定律
1.改变物体内能的两种方式
(1)做功;(2)热传递。
2.热力学第一定律
(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。
(2)表达式:ΔU=Q+W。
3.ΔU=W+Q中正、负号法则
物理量W QΔU
+外界对物体做功物体吸收热量内能增加
-物体对外界做功物体放出热量内能减少
二、热力学第二定律的理解
1.热力学第二定律的两种表述
(1)克劳修斯表述:热量不能自发地从低温物体传到高温物体。
(2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响。
或表述为“第二类永动机是不可能制成的”。
2.用熵的概念表示热力学第二定律
在任何自然过程中,一个孤立系统的总熵不会减小(选填“增大”或“减小”)。
3.热力学第二定律的微观意义
一切自发过程总是沿着分子热运动的无序性增大的方向进行。
三、能量守恒定律和两类永动机
1.能量守恒定律
能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。
第1页(共16页)。
2020年高考物理实验专项复习:《其他热学实验》(解析版)
《其他热学实验》一、实验题1.某小组同学利用如图(a)所示的装置研究一定质量气体的压强与温度的关系.他们在与压强传感器相连的试管中封闭了一定质量的气体,将温度传感器的热敏元件伸入到试管内部,通过数据采集器和计算机测得试管内气体的压强和温度.实验中,把试管浸在烧杯的冷水中,通过在烧杯中逐次加入热水来改变试管内气体的温度.温度传感器压强传感器试管热敏元件(a)(1)该组同学在先后三次实验中获得了三组实验数据,通过计算机绘出的p−t图象分别如图(b)中的a、b、c所示,其中三条线不重合的原因是______;(2)如果图中p1为已知量,则图线a的函数表达式为______;(3)如果某次实验中,加入热水后没有充分搅拌,就立即记录压强和温度的数值,则测量的气体温度和该时刻气体实际温度相比将______(填“偏高”“偏低”“一致”)2.在“研究一定质量理想气体在温度不变时,压强和体积的关系”实验中.某同学按如下步骤进行实验:①将注射器活塞移动到体积适中的V0位置,接上软管和压强传感器,通过DIS系统记录下此时的体积V0与压强p0.②用手握住注射器前端,开始缓慢推拉活塞改变气体体积.③读出注射器刻度表示的体积V,通过DIS系统记录下此时的V与压强p.④重复②③两步,记录5组数据.作p−1图.V(1)在上述步骤中,该同学对器材操作的错误是:______.因为该操作通常会影响气体的______(填写状态参量).(2)若软管内容积不可忽略,按该同学的操作,最后拟合出的p−1直线应是图a中的______.(填V写编号)(3)由相关数学知识可知,在软管内气体体积△V不可忽略时,p−1图象为双曲线,试用玻意耳V定律分析,该双曲线的渐近线(图b中的虚线)方程是p=______.(用V0、p0、△V表示)3.如图为一个测温装置,图中C为测温泡,装入水银的U形管B管开口向上,A管通过细玻璃管与测温泡C相通,U形管的下端通过软管相连.测温时,调节B管的高度,使A管中的液面保持在a处,此时根据U形管A、B两管水银面的高度差就能知道测温泡所处环境的温度.假设该测温装置在制定刻度时的大气压为76cmHg,该温度计的0℃和30℃刻度线间的距离正好是30cm.(1)当测温泡中气体温度升高时,为使A管中的液面保持在a处,则B管应向______(填“上”或“下”)移动;(2)该测温装置的刻度应刻在______管(填“A”或“B”);(3)由于天气的原因会导致大气压发生变化,当实际温度为16℃时,该温度计的读数为17℃,则此时大气压为______cmHg.4.如图甲所示是一种研究气球的体积和压强的变化规律的装置.将气球、压强传感器和大型注射器用T型管连通.初始时认为气球内无空气,注射器内气体体积V0,压强p0.T型管与传感器内少量气体体积可忽略不计.缓慢推动注射器,保持温度不变,装置密封良好.(1)该装置可用于验证______定律.(填写气体实验定律名称)V0,压强传感器读数(2)将注射器内气体部分推入气球,读出此时注射器内剩余气体的体积为23为p1,则此时气球体积为______.(3)继续推动活塞,多次记录注射器内剩余气体的体积及对应的压强,计算出对应的气球体积,得到如图乙所示的“气球体积和压强”关系图.根据该图象估算:若初始时注射器内仅有体积为0.5V0、压强为p0的气体.当气体全部压入气球后,气球内气体的压强将变为______p0.(保留3位小数)5.采用验证玻马定律实验的主要器材针管及其附件,来测定大气压强的值,实验步骤如下:(1)将针管水平固定,拔下橡皮帽,向右将活塞从针管中抽出。
2020年新高考山东卷物理试题解析
220 2
2
V
220V ,根据理想变压
器电压规律 U1 U2
n1 n2
可知副线圈电压有效值为U2
n2 n1
U1
3 220V 22
30V ,灯泡正常工作时电压为
24V
,则通过灯泡的电流即副线圈部分的干路电流为
IL
UL RL
24 A 15
1.6A ,根据串联分压规律可
知, R1 和 R2 、 R 构成的并联电路部分的分压为 U U2 UL 30V 24V 6V ,则通过 R1 的电流为
n
v cc
故选 A.
4。一列简谐横波在均匀介质中沿 x 轴负方向传播,已知 x 5 处质点的振动方程为 y Acos(2π t) ,则
4
T
t 3 T 时刻的波形图正确的是( ) 4
A。
B.
C。
D.
t 3T
5 +1
【解
yA
析
cos
】2T选t
DA。cos根 2T据
题3 T 4
意 可Ac知os
I1
U R1
6 10
A
0.6A
,通过
R2
、
R
的电流为
I2
IL
I1
1.6A
0.6A
1A ,
R2
、
R
串联的总电阻
,解得滑动变阻器的阻值为
R
U I2
R2
6 1
Ω
5Ω
1Ω ,A 正确,B、C、D 均错误.故选
A。
6.一定质量的理想气体从状态 a 开始,经 a→b、b→c、c→a 三个过程后回到初始状态 a,其 p-V 图像如图
D。 气体在 c→a 过程中内能的减少量大于 b→c 过程中内能的增加量
高考物理难点剖析热力学与统计物理篇
高考物理难点剖析热力学与统计物理篇高考物理难点剖析——热力学与统计物理篇热力学与统计物理是高考物理考试中的难点之一。
本文将对热力学与统计物理的相关知识点进行剖析,并提供解题思路和方法,帮助考生更好地应对高考物理考试。
一、热力学基本概念热力学是研究热、功、能量转化和宏观物质性质变化规律的学科。
高考物理中,热力学重点考察以下几个方面的知识:1. 热平衡与温度:热平衡是指两个物体之间不再有热量的净交换,达到了温度的均衡状态。
温度是物体内部微观粒子的平均动能的度量。
2. 热容与比热容:热容是物体吸收或放出单位温度变化的热量,比热容是单位质量物质的热容。
3. 理想气体定律:理想气体状态方程P V = n R T ,其中P为气体压强,V为气体体积,n为气体的物质量,R为气体常数,T为气体的绝对温度。
二、热力学应用题解析1. 热机效率计算:热机效率是指热机从热源吸收的热量转化为有用功的比例。
根据热力学第一定律,热机效率计算公式为η = 1 - Qc/Qh,其中Qc为冷热源吸收的热量,Qh为热源释放的热量。
2. 热传导问题:热传导是热能在物体内部通过分子碰撞而传递的过程。
高考中,常常涉及到棒的温度分布、导热系数的计算等问题。
应用热传导公式Q = λA△T/ △x,其中Q为传热量,λ为导热系数,A为热传导面积,△T为温度差,△x为传热距离。
三、统计物理基本概念统计物理是基于微观粒子的统计规律,研究宏观系统的物理性质的学科。
高考物理中,统计物理重点考察以下几个方面的知识:1. 分子平均动能:分子平均动能与温度成正比,根据分子平均动能公式E = 3/2 kT,其中E为分子的平均动能,k为玻尔兹曼常数,T为温度。
2. 理想气体性质:理想气体在低密度和高温度下符合理想气体状态方程。
根据理想气体状态方程P V = n R T,可以计算气体的物态参数。
3. 热力学基本过程:高考中,常常涉及到等压、等体积、绝热等热力学基本过程。
2020学年普通高等学校招生全国统一考试(新课标Ⅲ卷)物理及答案解析
2020年普通高等学校招生全国统一考试(新课标Ⅲ卷)物理一、选择题:本题共8个小题,每题6分,共48分。
在每个小题给出的四个选项中,第1-4题只有一项符合题目要求,第5-8题有多项符合题目要求。
全部选对的得6分,选对不全的得3分,有选错的得0分。
1.(6分)1934年,约里奥﹣居里夫妇用α粒子轰击铝核2713Al ,产生了第一个人工放射性核素X :α+2713Al→n +X 。
X 的原子序数和质量数分别为( )A.15和28B.15和30C.16和30D.17和31解析:设X 的质量数为m ,电荷数为n ,根据核反应中质量数守恒和电荷数守恒可知: 4+27=1+m ; 2+13=0+n解得:m=30;n=15;故其原子序数为15,质量数为30;故B 正确,ACD 错误。
答案:B2.(6分)为了探测引力波,“天琴计划”预计发射地球卫星P ,其轨道半径约为地球半径的16倍;另一地球卫星Q 的轨道半径约为地球半径的4倍。
P 与Q 的周期之比约为( ) A.2:1 B.4:1 C.8:1 D.16:1解析:根据题意可得P 与Q 的轨道半径之比为: r P :r Q =4:1根据开普勒第三定律有:32r T =k得:32PP r T =32Q Q r T可得周期之比为:T P :T Q =8:1故C 正确,ABD 错误。
答案:C3.(6分)一电阻接到方波交流电源上,在一个周期内产生的热量为Q 方;若该电阻接到正弦交流电源上,在一个周期内产生的热量为Q 正。
该电阻上电压的峰值均为u 0,周期均为T ,如图所示。
则Q 方:Q 正等于( )A.1:2B. 2:1C.1:2D.2:1解析:由图可知,方形交流电源的有效值为U 0,故其一周期产生的热量为:Q 方=20U R T ;正弦式交流电的有效值为:U=02故其一周期产生的热量为:Q 正=2U R T=202U T R ;故有:Q 方:Q 正=2:1; 故D 正确,ABC 错误。
2020年高考物理真题考点逐个击破-专题7.3 热力学定律与能量守恒定律
2020年高考物理真题考点逐个击破-专题7.3 热力学定律与能量守恒定律【专题诠释】一、热力学第一定律1.改变物体内能的两种方式:(1)做功;(2)热传递.2.热力学第一定律(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和.(2)表达式:ΔU=Q+W.(3)正、负号法则:物理量W QΔU 意义符号+外界对物体做功物体吸收热量内能增加-物体对外界做功物体放出热量内能减少二、能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者是从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.条件性能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的.3.第一类永动机是不可能制成的,它违背了能量守恒定律.三、热力学第二定律1.热力学第二定律的两种表述(1)克劳修斯表述:热量不能自发地从低温物体传到高温物体.(2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.或表述为“第二类永动机是不可能制成的”.2.用熵的概念表示热力学第二定律:在任何自然过程中,一个孤立系统的总熵不会减小.3.热力学第二定律的微观意义一切自发过程总是沿着分子热运动的无序性增大的方向进行.4.第二类永动机不可能制成的原因是违背了热力学第二定律.【高考领航】【2019·新课标全国Ⅰ卷】某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好,空气可视为理想气体。
初始时容器中空气的温度与外界相同,压强大于外界。
现使活塞缓慢移动,直至容器中的空气压强与外界相同。
此时,容器中空气的温度__________(填“高于”“低于”或“等于”)外界温度,容器中空气的密度__________(填“大于”“小于”或“等于”)外界空气的密度。
【答案】低于 大于【解析】由题意可知,容器与活塞绝热性能良好,容器内气体与外界不发生热交换,故0Q ∆=,但活塞移动的过程中,容器内气体压强减小,则容器内气体正在膨胀,体积增大,气体对外界做功,即0W <,根据热力学第一定律可知:0U Q W ∆=∆+<,故容器内气体内能减小,温度降低,低于外界温度。
2020版物理新增分大一轮新高考(京津鲁琼)讲义:第十三章热学第3讲含解析
第3讲热力学定律与能量守恒定律一、热力学第一定律1.改变物体内能的两种方式(1)做功;(2)热传递.2.热力学第一定律(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做功的和.(2)表达式:ΔU=Q+W.(3)ΔU=Q+W中正、负号法则:物理量意义W Q ΔU符号+外界对物体做功物体吸收热量内能增加-物体对外界做功物体放出热量内能减少自测1一定质量的理想气体在某一过程中,外界对气体做功7.0×104 J,气体内能减少 1.3×105 J,则此过程()A.气体从外界吸收热量 2.0×105 JB.气体向外界放出热量 2.0×105 JC.气体从外界吸收热量 6.0×104 JD.气体向外界放出热量 6.0×104 J答案 B二、热力学第二定律1.热力学第二定律的两种表述(1)克劳修斯表述:热量不能自发地从低温物体传到高温物体.(2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.2.热力学第二定律的微观意义一切自发过程总是沿着分子热运动的无序性增大的方向进行.3.第二类永动机不可能制成的原因是违背了热力学第二定律.自测2(多选)下列现象中能够发生的是()A.一杯热茶在打开杯盖后,茶会自动变得更热B.蒸汽机把蒸汽的内能全部转化成机械能C.桶中混浊的泥水在静置一段时间后,泥沙下沉,上面的水变清,泥、水自动分离D.电冰箱通电后把箱内低温物体的热量传到箱外高温物体答案CD三、能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者是从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.条件性能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的.3.第一类永动机是不可能制成的,它违背了能量守恒定律.自测3木箱静止于水平地面上,现在用一个80 N的水平推力推动木箱前进10 m,木箱受到地面的摩擦力为60 N,则转化为木箱与地面系统的内能U和转化为木箱的动能E k分别是(空气阻力不计)()A.U=200 J,E k=600 JB.U=600 J,E k=200 JC.U=600 J,E k=800 JD.U=800 J,E k=200 J答案 B解析U=F f x=60×10 J=600 JE k=Fx-U=80×10 J-600 J=200 J命题点一热力学第一定律的理解和应用1.热力学第一定律的理解(1)内能的变化都要用热力学第一定律进行综合分析.(2)做功情况看气体的体积:体积增大,气体对外做功,W为负;体积缩小,外界对气体做功,W为正.(3)与外界绝热,则不发生热传递,此时Q=0.(4)如果研究对象是理想气体,因理想气体忽略分子势能,所以当它的内能变化时,主要体现在分子动能的变化上,从宏观上看就是温度发生了变化.2.三种特殊情况(1)若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加;(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加;(3)若过程的初、末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量.例1(多选)(2017·全国卷Ⅱ·33(1)改编)如图1,用隔板将一绝热汽缸分成两部分,隔板左侧充有理想气体,隔板右侧与绝热活塞之间是真空.现将隔板抽开,气体会自发扩散至整个汽缸.待气体达到稳定后,缓慢推压活塞,将气体压回到原来的体积.假设整个系统不漏气.下列说法正确的是()图1A.气体自发扩散前后内能相同B.气体在被压缩的过程中内能增大C.在自发扩散过程中,气体对外界做功D.气体在被压缩的过程中,外界对气体做功答案ABD解析因为汽缸、活塞都是绝热的,隔板右侧是真空,所以理想气体在自发扩散的过程中,既不吸热也不放热,也不对外界做功.根据热力学第一定律可知,气体自发扩散前后,内能不变,选项A正确,C错误;气体在被压缩的过程中,外界对气体做功,且没有热交换,根据热力学第一定律,气体内能增大,选项B、D正确.变式1(多选)(2016·全国卷Ⅲ·33(1)改编)关于气体的内能,下列说法正确的是()A.质量和温度都相同的气体,内能一定相同B.气体被压缩时,内能可能不变C.一定量的某种理想气体的内能只与温度有关D.一定量的某种理想气体在等压膨胀过程中,内能一定增加答案BCD解析质量和温度都相同的气体,虽然分子平均动能相同,但是不同的气体,其摩尔质量不同,即分子个数不同,所以分子总动能不一定相同,A错误;若气体被压缩的同时对外传热,根据热力学第一定律可知,内能可能不变,B正确;根据pVT=C可知,等压膨胀,温度增大,内能一定增大,D正确;理想气体的分子势能为零,所以一定量的某种理想气体的内能只与分子平均动能有关,而分子平均动能和温度有关,C正确.命题点二热力学第一定律与图象的综合应用1.四种图象的比较类别特点(其中C为常量)举例p-V pV=CT,即pV之积越大的等温线温度越高,线离原点越远p-1Vp=CT1V,斜率k=CT,即斜率越大,温度越高p-T p=CVT,斜率k=CV,即斜率越大,体积越小V-T V=CpT,斜率k=Cp,即斜率越大,压强越小2.分析技巧利用垂直于坐标轴的线作辅助线去分析不同温度的两条等温线、不同体积的两条等容线、不同压强的两条等压线的关系.例如:(1)在图2甲中,V1对应虚线为等容线,A、B分别是虚线与T2、T1两线的交点,可以认为从B 状态通过等容升压到A状态,温度必然升高,所以T2>T1.(2)如图乙所示,A、B两点的温度相等,从B状态到A状态压强增大,体积一定减小,所以V2<V1.图2例2(多选)(2018·全国卷Ⅰ·33(1)改编)如图3,一定质量的理想气体从状态a开始,经历过程①、②、③、④到达状态 e.对此气体,下列说法正确的是()图3A.过程①中气体的压强逐渐减小B.过程②中气体对外界做正功C.过程④中气体从外界吸收了热量D.状态c、d的内能相等答案BD解析过程①中,气体由a到b,体积V不变、温度T升高,则压强增大,A项错误;过程②中,气体由b到c,体积V变大,对外界做正功,B项正确;过程④中,气体由d到e,温度T降低,内能ΔU减小,体积V不变,气体不做功,根据热力学第一定律ΔU=Q+W得Q<0,即气体放出热量,C 项错误;状态c、d温度相同,所以内能相等,D项正确.变式2(多选)(2017·全国卷Ⅲ·33(1)改编)如图4,一定质量的理想气体从状态a出发,经过等容过程ab到达状态b,再经过等温过程bc到达状态c,最后经等压过程ca回到状态 a.下列说法正确的是()图4A.在过程ab中气体的内能增加B.在过程ca中外界对气体做功C.在过程ab中气体对外界做功D.在过程bc中气体从外界吸收热量答案ABD解析在过程ab中,体积不变,气体对外界不做功,压强增大,温度升高,内能增加,故选项A正确,C错误;在过程ca中,气体的体积缩小,外界对气体做功,压强不变,温度降低,内能变小,气体向外界放出热量,故选项B正确;在过程bc中,温度不变,内能不变,体积增大,气体对外界做功,由热力学第一定律可知,气体要从外界吸收热量,故选项D正确.变式3(多选)(2016·全国卷Ⅱ·33(1)改编)一定量的理想气体从状态a开始,经历等温或等压过程ab、bc、cd、da回到原状态,其p-T图象如图5所示,其中对角线ac的延长线过原点O.下列判断正确的是()图5A.气体在a、c两状态的体积相等B.气体在状态a时的内能大于它在状态c时的内能C.在过程cd中气体向外界放出的热量大于外界对气体做的功D.在过程da中气体从外界吸收的热量小于气体对外界做的功答案AB解析由理想气体状态方程pVT =C得,p=CVT,由题图可知,V a=V c,选项A正确;理想气体的内能只由温度决定,而T a>T c,故气体在状态a时的内能大于在状态c时的内能,选项B正确;由热力学第一定律ΔU=Q+W知,cd过程温度不变,内能不变,则Q=-W,选项C错误;da过程温度升高,即内能增大,则吸收的热量大于对外界做的功,选项D错误.命题点三热力学第一定律与气体实验定律的结合基本思路例3(2013·山东卷·36(2))我国“蛟龙”号深海探测船载人下潜超过七千米,再创载人深潜新纪录.在某次深潜实验中,“蛟龙”号探测到990 m深处的海水温度为280 K.某同学利用该数据来研究气体状态随海水深度的变化.如图6所示,导热良好的汽缸内封闭一定质量的气体,不计活塞的质量和摩擦,汽缸所处海平面的温度T0=300 K,压强p0=1 atm,封闭气体的体积V0=3 m3.如果将该汽缸下潜至990 m深处,此过程中封闭气体可视为理想气体.图6(1)求990 m深处封闭气体的体积(1 atm相当于10 m深的海水产生的压强).(2)下潜过程中封闭气体________(填“吸热”或“放热”),传递的热量________(填“大于”或“小于”)外界对气体所做的功.答案(1)2.8×10-2 m3(2)放热大于解析(1)当汽缸下潜至990 m深处时,设封闭气体的压强为p,温度为T,体积为V,由题意可知p =100 atm①根据理想气体状态方程得p0V0T0=pVT②代入数据得V=2.8×10-2 m3③(2)下潜过程中气体体积减小,外界对气体做正功,由于气体质量一定,温度降低,内能减小,由热力学第一定律知,气体向外放热,且传递的热量大于外界对气体做的功.变式4如图7所示,用销钉固定的导热活塞把水平放置的导热汽缸分隔成容积相同的两部分,分别封闭着A、B两部分理想气体:A部分气体压强为p A0=2.5×105 Pa,B部分气体压强为p B0=1.5×105 Pa.现拔去销钉,待活塞重新稳定后.(外界温度保持不变,活塞与汽缸间摩擦可忽略不计,整个过程无漏气发生)图7(1)求此时A部分体积与原来体积之比;(2)判断此过程中A部分气体是吸热还是放热,并简述理由.答案(1)5∶4(2)见解析解析(1)设A、B部分气体原来体积都为V,由玻意耳定律得p A0V=p A(V+ΔV) p B0V=p B(V-ΔV)又p A=p B由以上各式可解得ΔV=14 V,因此,此时A部分气体体积与原来体积之比为5∶4.(2)A部分气体由于温度不变,所以内能不变;体积膨胀,对外做功,由热力学第一定律可知,一定从外界吸收热量.命题点四热力学第二定律1.热力学第二定律的含义(1)“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.(2)“不产生其他影响”的含义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响,如吸热、放热、做功等.在产生其他影响的条件下内能可以全部转化为机械能,如气体的等温膨胀过程.2.热力学第二定律的实质热力学第二定律的每一种表述,都揭示了大量分子参与的宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性.3.热力学过程的方向性实例(1)高温物体热量Q能自发传给热量Q不能自发传给低温物体.(2)功能自发地完全转化为不能自发地转化为热.(3)气体体积V1能自发膨胀到不能自发收缩到气体体积V2(较大).(4)不同气体A和B能自发混合成不能自发分离成混合气体AB.4.两类永动机的比较第一类永动机第二类永动机设计要求不需要任何动力或燃料,却能不断地对外做功的机器从单一热源吸收热量,使之完全变成功,而不产生其他影响的机器不可能制成的原因违背能量守恒定律不违背能量守恒定律,违背热力学第二定律例4如图8所示为电冰箱的工作原理示意图.压缩机工作时,强迫制冷剂在冰箱内外的管道中不断循环.在蒸发器中制冷剂汽化吸收箱体内的热量,经过冷凝器时制冷剂液化,放出热量到箱体外.图8(1)(多选)下列说法正确的是________.A.热量可以自发地从冰箱内传到冰箱外B.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,是因为其消耗了电能C.电冰箱的工作原理不违反热力学第一定律D.电冰箱的工作原理违反热力学第一定律(2)电冰箱的制冷系统从冰箱内吸收的热量与释放到外界的热量相比,有怎样的关系?答案(1)BC(2)见解析解析(1)热力学第一定律是热现象中内能与其他形式能的转化规律,是能量守恒定律的具体表现,适用于所有的热学过程,故C项正确,D项错误;由热力学第二定律可知,热量不能自发地从低温物体传到高温物体,除非有外界的影响或帮助,电冰箱把热量从低温的内部传到高温的外部,需要压缩机的帮助并消耗电能,故B项正确,A项错误.(2)由热力学第一定律可知,电冰箱制冷系统从冰箱内吸收了热量,同时消耗了电能,释放到外界的热量比从冰箱内吸收的热量多.变式5(多选)(2016·全国卷Ⅰ·33(1)改编)关于热力学定律,下列说法正确的是()A.气体吸热后温度一定升高B.对气体做功可以改变其内能C.理想气体等压膨胀过程一定放热D.热量不可能自发地从低温物体传到高温物体答案BD解析气体内能的改变ΔU=Q+W,故对气体做功可改变气体的内能,B选项正确;气体吸热为Q,但不确定外界做功W的情况,故不能确定气体温度的变化,A选项错误;理想气体等压膨胀,W<0,由理想气体状态方程pVT=C,p不变,V增大,气体温度升高,内能增大,ΔU>0,由ΔU=Q+W,知Q>0,气体一定吸热,C选项错误;由热力学第二定律知,D选项正确.1.(多选)关于热力学定律,下列说法正确的是()A.不可能使热量从低温物体传向高温物体B.第二类永动机违反了热力学第二定律C.气体向真空膨胀的过程是不可逆过程D.功转变为热的实际宏观过程是可逆过程答案BC青海省格尔木市调研)根据学过的热学中的有关知识,判断下列说法中正确的是()2.(2018·A.机械能可以全部转化为内能,内能也可以全部用来做功转化成机械能B.凡与热现象有关的宏观过程都具有方向性,在热传递中,热量只能从高温物体传递给低温物体,而不能从低温物体传递给高温物体C.尽管科技不断进步,热机的效率仍不能达到100%,制冷机却可以使温度降到-293 ℃D.第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律,随着科技的进步和发展,第二类永动机可以制造出来答案 A解析机械能可以全部转化为内能,而内能在引起其他变化时也可以全部转化为机械能,A正确;凡与热现象有关的宏观过程都具有方向性,在热传递中,热量可以自发地从高温物体传递给低温物体,也能从低温物体传递给高温物体,但必须借助外界的帮助,B错误;尽管科技不断进步,热机的效率仍不能达到100%,制冷机也不能使温度降到-293 ℃,只能无限接近-273.15 ℃,C错误;第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律,而是违背了热力学第二定律,第二类永动机不可能制造出来,D错误.3.关于两类永动机和热力学的两个定律,下列说法正确的是()A.第二类永动机不可能制成是因为违反了热力学第一定律B.第一类永动机不可能制成是因为违反了热力学第二定律C.由热力学第一定律可知做功不一定改变内能,热传递也不一定改变内能,但同时做功和热传递一定会改变内能D.由热力学第二定律可知热量从低温物体传向高温物体是可能的,从单一热源吸收热量,完全变成功也是可能的答案 D解析第一类永动机违反能量守恒定律,第二类永动机违反热力学第二定律,A、B错;由热力学第一定律可知W≠0,Q≠0,但ΔU=W+Q可以等于0,C错;由热力学第二定律可知D中现象是可能的,但会引起其他变化,D对.4.(多选)(2018·福建省龙岩市一模)关于气体的内能和热力学定律,下列说法正确的是()A.对气体做功可以改变其内能B.气体被压缩时,内能可能不变C.一定量的理想气体在等温膨胀过程中,内能一定增加D.一定量的理想气体,温度越高,气体分子运动越剧烈,气体内能越大答案ABD5.(2013·山东卷·36(1))下列关于热现象的描述正确的是()A.根据热力学定律,热机的效率可以达到100%B.做功和热传递都是通过能量转化的方式改变系统内能的C.温度是描述热运动的物理量,一个系统与另一个系统达到热平衡时两系统温度相同D.物体由大量分子组成,其单个分子的运动是无规则的,大量分子的运动也是无规律的答案 C山西省吕梁市第一次模拟)一定量的理想气体从状态a开始,经历三个过程ab、bc、ca 6.(多选)(2018·回到原状态,其p-T图象如图1所示.下列判断正确的是()图1A.过程ab中气体一定吸热B.过程bc中气体既不吸热也不放热C.过程ca中外界对气体所做的功等于气体所放的热D.a、b和c三个状态中,状态a分子的平均动能最小答案AD解析过程ab中气体体积不变,则W=0,但温度升高,气体内能增大,即ΔU>0,由热力学第一定律ΔU=W+Q,气体一定吸热,故A正确;过程bc中温度不变,则内能不变,即ΔU=0,但体积增大,气体对外做功,W<0,由热力学第一定律ΔU=W+Q,Q>0,气体吸热,则B错误;过程ca中温度减小即ΔU<0,体积减小,外界对气体做功,W>0,由热力学第一定律ΔU=W+Q,气体放出的热量大于外界对气体做的功,故C错误;a、b和c三个状态中,状态a的温度最低,故分子的平均动能最小,则D正确.安徽省宿州市一质检)一定量的理想气体的压强p与热力学温度T的变化图象如图2所7.(多选)(2019·示.下列说法正确的是()图2A.A→B的过程中,气体从外界吸收的热量等于其内能的增加量B.B→C的过程中,气体体积增大,对外做功C.B→C的过程中,气体对外界放热,内能不变D.B→C的过程中,气体分子与容器壁每秒碰撞的次数增加答案ACD解析从A到B的过程,是等容升温过程,气体不对外做功,气体从外界吸收热量,使得气体内能增加,故A正确;从B到C的过程是等温压缩过程,气体压强增大,体积减小,外界对气体做功,气体放出热量,内能不变,因体积减小,分子数密度增大,故气体分子与容器壁每秒碰撞的次数增加,故B错误,C、D正确.8.(多选)一定质量的理想气体经历如图3所示的一系列过程,AB、BC、CD、DA这四段过程在p-T 图象中都是直线,其中CA的延长线通过坐标原点O,下列说法正确的是()图3A.A→B的过程中,气体对外界放热,内能不变B.B→C的过程中,单位体积内的气体分子数减少C.C→D的过程中,气体对外界做功,分子的平均动能减小D.D→A过程与B→C过程相比较,两过程中气体与外界交换的热量不同答案AB解析A→B的过程中,气体温度不变,则内能不变,压强变大,体积减小,则外界对气体做功,由ΔU=W+Q可知气体对外界放热,选项A正确;B→C的过程中,气体的压强不变,温度升高,体积变大,则单位体积内的气体分子数减少,选项B正确;C→D的过程中,温度不变,压强减小,体积变大,则气体对外界做功,分子的平均动能不变,选项C错误;D→A过程和B→C过程内能的变化量大小相等,D→A过程外界对气体做功W1=p AD(V D-V A),又V AT A=V DT D,则W1=p AD T D-T A V AT A,同理B→C过程,气体对外做功W2=p BC T C-T B V CT C,因T D-T A=T C-T B,V A=V C,p ADT A=p BCT C,则W1=W2,根据热力学第一定律,两过程中气体与外界交换的热量相同,选项D错误.9.(多选)(2018·山西省太原市三模)如图4所示,在斯特林循环的p-V图象中,一定质量的理想气体从状态a依次经过状态b、c和d后再回到状态a,整个过程由两个等温和两个等容过程组成.下列说法正确的是()图4A.从a到b,气体的温度一直升高B.从c到d,气体对外放热C.从d到a,单位体积中的气体分子数目增多D.从b到c气体吸收的热量与从d到a气体放出的热量相同答案ABC解析从a到b,体积不变,压强增大,温度一直升高,A正确;从c到d,体积不变,压强减小,温度降低,内能减小,气体对外放热,B正确;从d到a,温度不变,压强增大,体积减小,单位体积中的气体分子数目增多,C正确;从b到c气体吸收的热量等于气体对外做的功,从d到a气体放出的热量等于外界对气体做的功,两个过程体积变化相同,但压强不同,做的功不同,所以从b到c 气体吸收的热量与从d到a气体放出的热量不同,D错误.10.(2012·山东卷·36(2))如图5所示,一粗细均匀、导热良好、装有适量水银的U型管竖直放置,右端与大气相通,左端封闭气柱长l1=20 cm(可视为理想气体),两管中水银面等高.现将右端与一低压舱(未画出)接通,稳定后右管水银面高出左管水银面h=10 cm.(环境温度不变,大气压强p0=75 cmHg)图5(1)求稳定后低压舱内的压强(用“cmHg”作单位).(2)此过程中左管内的气体对外界________(填“做正功”“做负功”或“不做功”),气体将________(填“吸热”或“放热”).答案(1)50 cmHg(2)做正功吸热解析(1)设U型管横截面积为S,右端与大气相通时左管中封闭气体的压强为p1,右端与一低压舱接通后左管中封闭气体的压强为p2,气柱长度为l2,稳定后低压舱内的压强为p.左管中封闭气体发生等温变化,根据玻意耳定律得p1V1=p2V2①p1=p0②p2=p+p h③V1=l1S④V2=l2S⑤由几何关系得h=2(l2-l1)⑥联立①②③④⑤⑥式,代入数据得p=50 cmHg(2)左管内气体膨胀,气体对外界做正功,温度不变,ΔU=0,根据热力学第一定律,ΔU=Q+W且W<0,所以Q=-W>0,气体将吸热.11.(2018·辽宁省大连市第二次模拟)一定质量的理想气体,状态从A→B→C→D→A的变化过程可用如图6所示的p-V图线描述,其中D→A为等温线,气体在状态A时温度为T A=300 K,求:图6(1)气体在状态C时温度T C;(2)若气体在A→B过程中吸热 1 000 J,则在A→B过程中气体内能如何变化?变化了多少?答案(1)375 K(2)气体内能增加增加了400 J解析(1)D→A为等温线,则T D=T A=300 K,C到D过程由盖-吕萨克定律得:V CT C=V DT D所以T C=375 K(2)A到B过程压强不变,由:W=-pΔV=-2×105×3×10-3 J=-600 J由热力学第一定律,得:ΔU=Q+W=1 000 J-600 J=400 J则气体内能增加,增加了400 J.12.若一个空置房间地面面积为15 m2,高3 m,该房间内室温为27 ℃.(已知大气压p=1×105 Pa)(1)则该房间的空气在标准状况下占的体积V多大;(2)设想该房间的这些空气从27 ℃等压降温到0 ℃,由W=p0ΔV计算外界对这些空气做的功为多少;若同时这些空气放出热量5×105 J,求这些空气的内能变化了多少.答案(1)41 m3(2)4×105 J内能减少了1×105 J解析(1)该房间的体积V1=15×3 m3=45 m3,T1=27 K+273 K=300 K,标准状况下T=273 K,由V1T1=VT,解得V=41 m3.(2)外界对这些空气做功W=p0ΔV=p0(V1-V)=4×105 J,热量Q=-5×105 J,由ΔU=Q+W,故ΔU=4×105 J-5×105 J=-1×105 J,ΔU为负,表示内能减少了1×105 J.。
2020年考前回顾热学(解析版)
1.计算分子大小(可求固液;气体空间) 固体液体认为是球型,气体空间是立方体型 2.扩散与布朗运动 (气体能充满容器是扩散,点表示30s 是的位置,线不表示轨迹) 3.分子间作用力 4.一切达到热平衡状态的系统都具有相同的温度.(注意:不是热量也不是内能) 5.ΔT =Δt 6.温度是分子热运动的平均动能的标志 7.油膜实验中酒精溶液的作用是对油酸起到稀释作用,酒精稀释油酸是为了进一步减小油酸的面密度更能保证其形成单层分子油膜,为了减小系统误差. 8. 取r →∞处为零势能处,分子势能E p 与分子间距离r 的关系如图所示,当r =r 0时分子势能最小.9. m 0=M N A =ρV m N A . V 0=V m N A =M ρN A.(适用于液体和固体,对于气体,V 0指一个分子所占体积) 10. 实验:用油膜法估测分子的大小 (误差 痱子粉太厚)11. 晶体与非晶体 (常见金属是多;集成电路是单;蜂蜡 玻璃 沥青非;硫酸铜 石英、云母、明矾等;各向同性各向异性,液晶;晶体 结构规则)12. 液体的表面张力 (原因 表面引力 收缩 方向平行/相切;温度越高,有杂质张力小;浓度大张力大)13. 饱和气压(T 升高 饱和气压大 与体积无关)14. 相对湿度=水蒸气的实际压强同温度水的饱和汽压⎝⎛⎭⎫B =p p s ×100% ≤1 越大越潮湿 蒸发越慢 15. 气体分子运动特点“中间多,两头大”16. 气体压强(温度体积 分子动能 分子密集程度)17. 气体实验定律 (1)推论:Δp =p 1T 1ΔT . (2推论:ΔV =V 1T 1ΔT . 18. 热力学第一定律ΔU =Q +W (气体做功)19. 第一类永动机是不可能制成的,它违背了能量守恒定律.20. 热力学第二定律:热量不能自发地从低温物体传到高温物体;不可能从单一热源吸收热量,使之完全变成功,而不产生其他影响.或表述为“第二类永动机不可能制成”(机械能和内能转化的方向性);在任何自然过程中,一个孤立系统的总熵不会减小(热力学第二定律又叫做熵增加原理);一切自发过程总是沿着分子热运动的无序性增大的方向进行;第二类永动机不可能制成的原因是违背了热力学第二定律.21. 气体向真空膨胀是不可逆的。
2020 年高考物理热学计算专题及答案
2020 年高考物理热学计算专题及答案专题简介:1.物体吸收或放出热量的公式①计算物体吸收热量的公式为:Q 吸=cm (t -t 0)=cm ⊿t 。
②计算物体放出热量的公式为:Q 放=cm (t 0-t )=cm ⊿t 。
其中,Q 吸表示吸收热量,单位是J ;c 表示物体比热容,单位是J/(kg·℃);m 表示质量,单位是kg ;t 0表示物体初始温度,单位是℃;t 表示物体后来的温度,单位是℃。
⊿t =t -t 0表示物体升高了的温度。
⊿t =t 0-t ,表示物理降低了的温度。
2.燃料完全燃烧放出热量的公式①燃料完全燃烧释放出的热量公式为:Q 放=mq 。
②气体燃料完全燃烧释放出的热量公式也可为:Q 放=qV 。
推导过程如下: 说明:①中的公式对固体、液体、气体、均适用。
②只对气体适用。
两个公式的得出都是根据热值的定义式得到的。
其中,Q 放表示燃料完全燃烧放出的热量,单位是J ;q 表示燃料的热值,单位是J/kg ;m 表示质量,单位是kg 。
V 表示体积,单位是m3。
3.热效率公式(1)热机的效率:用来做有用功的那部分能量和燃料完全燃烧放出的能量之比。
热机的效率是热机性能的一个重要指标。
汽车发动机的效率、飞机发动机的效率、轮船发动机的效率均属于热机的效率,其公式为:η=放吸Q Q 。
(2)炉具的热效率:天然气燃烧放出的热量是炉具提供的总热量,Q 总=Q 放,水吸收的热量是有用的热量Q 有=Q 吸,则η=总有Q Q 。
(3)电热水器的效率:电热丝所产生热量为Q 总,总=Q 放,水需要吸收热量为Q 有,有=Q 吸,则η=总有Q Q 。
专题例题:【例题1】(2018•济宁)将盛有凉牛奶的瓶子放在热水中(如图所示),通过 方式改变牛奶的内能,图中乙是250g 牛奶与热水的温度随时间变化的图象,则牛奶在加热过程中吸收的热量为 J .[c 牛奶=4.2×103J/(kg•℃)]【答案】热传递;2.1×104。
2020高考物理专题13 热学(讲)(解析版)
专题十三 热学本专题主要解决的是分子动理论和热力学定律,并从宏观和微观角度理解固、液、气三态的性质。
新课程标准对本部分内容要求较低,《考试说明》明确提出“在选考中不出现难题”,高考命题的形式基本上都是小题的拼盘。
高考对本部分内容考查的重点和热点有以下几个方面:①分子大小的估算;②分子动理论内容的理解;③物态变化中的能量问题;④气体实验定律的理解和简单计算;⑤固、液、气三态的微观解释和理解;⑥热力学定律的理解和简单计算;⑦油膜法测分子直径等内容。
预测高考会涉及在以下方面:利用阿伏伽德罗常数进行微观量估算和涉及分子动理论内容的判断性问题,以选择填空题形式命题;气体压强为背景的微观解释问题,以简答形式命题;以理想气体为研究对象考查气体性质和热力学定律的问题,以计算题的形式命题。
知识点一、固体、液体、气体微观量的估算 1.固体、液体微观量的估算 (1)分子数、分子质量的计算 分子数N =nN A =m M 0N A =VV 0N A分子质量m ′=M 0N A ,其中M 0为摩尔质量,V 0为摩尔体积,N A 为阿伏加德罗常数.(2)分子体积(分子所占空间)的估算方法 每个分子的体积V ′=V 0N A =M 0ρN A,其中ρ为固体(或液体)的密度. (3)分子直径的估算方法如果把固体分子、液体分子看成球体,则分子直径d =36V ′π=36V 0πN A;如果把固体、液体分子看成立方体,则d =3V ′=3V 0N A.利用油酸在水面上形成的单层分子膜,可得油酸分子的直径d =VS,其中V 、S 分别为油酸的体积和油膜的面积.2.气体分子微观量的估算(1)物质的量n=V22.4,V为气体在标准状况下的体积,其单位为L.(2)分子间距的估算方法:倘若气体分子均匀分布,每个分子占据一定的空间,假设为立方体,分子位于每个立方体的中心,则每个小立方体的边长就是分子间距;假设气体分子占有的体积为球体,分子位于球体的球心,则分子间距等于每个球体的直径.特别提醒:(1)分子直径的数量级为10-10 m,因此求出的数据只在数量级上有意义.(2)阿伏加德罗常数N A=6.02×1023 mol-1,是联系微观世界和宏观世界的桥梁.知识点二、分子力做功及物体的内能1.分子力的特点分子间作用力(指引力和斥力的合力)随分子间距离变化而变化的规律是:(1)r<r0时表现为斥力;(2)r=r0时分子力为零;(3)r>r0时表现为引力;(4)r>10r0以后,分子力变得十分微弱,可以忽略不计,如图11-1.图11-12.分子力做功的特点及势能的变化分子力做正功时分子势能减小;分子力做负功时分子势能增大.(所有势能都有同样结论:重力做正功重力势能减小、电场力做正功电势能减小.)图11-2由上面的分子力曲线可以得出如果以分子间距离为无穷远时分子势能为零,则分子势能随分子间距离而变化的图象如图11-2.可见分子势能与物体的体积有关,体积变化,分子势能也变化.3.物体的内能及内能变化特别提醒:内能与机械能不同.前者由物体内分子运动和分子间作用决定,与物体的温度和体积有关,具体值难确定,但永不为零;后者由物体的速度、物体间相互作用、物体质量决定,可以为零;内能和机械能在一定条件下可以相互转化.知识点三、气体性质的比较知识点四、分子动理论 1.分子动理论的内容:(1)物体是由大量分子组成的:分子直径的数量级为10-10m .分子的大小可用油膜法估测:将油酸分子看成一个个紧挨在一起的单分子层,若用V 表示一滴油酸酒精溶液中纯油酸的体积,S 为一滴油酸酒精溶液中纯油酸的油膜面积,则分子直径(大小)d =V S.(2)分子永不停息地做无规则运动:布朗运动是悬浮在液体中的固体颗粒的运动,既不是固体分子的运动,也不是液体分子的运动;布朗运动现象说明液体分子在做无规则运动.(3)分子间同时存在着引力和斥力:二者均随分子间距的增大而减小,且分子斥力随分子间距变化得比较显著.分子力指引力和斥力的合力,当r =r 0(数量级是10-10m)时,分子力为零.2.气体压强的微观解释:气体压强是大量气体分子作用在单位面积器壁上的平均作用力.其微观决定因素是分子平均动能和分子密集程度,宏观决定因素是温度和体积.3.内能:物体内所有分子的动能与分子势能的总和.从微观上看,物体内能的大小由组成物体的分子数、分子平均动能和分子间距决定;从宏观上看,物体内能的大小由物质的量(摩尔数)、温度和体积决定.知识点五、热力学定律1.热力学第一定律:ΔU =Q +W2.热力学第二定律:反映了涉及内能的宏观过程的不可逆性.(1)克劳修斯表述(热传导的方向性):不可能使热量由低温物体传递到高温物体,而不引起其他变化. (2)开尔文表述(机械能和内能转化的方向性):不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化.(第二类永动机不可能制成)知识点六、气体实验定律与理想气体的状态方程1.气体实验定律:等温变化——玻意耳定律:p 1V 1=p 2V 2;等容变化——查理定律:p 1p 2=T 1T 2;等压变化——盖·吕萨克定律:V 1V 2=T 1T 2.只适用于一定质量的气体.2.理想气体状态方程:p 1V 1T 1=p 2V 2T 2或pVT=C (恒量).适用于一定质量的理想气体.高频考点一 分子动理论 内能例1. (2019·北京卷)下列说法正确的是( )A .温度标志着物体内大量分子热运动的剧烈程度B .内能是物体中所有分子热运动所具有的动能的总和C .气体压强仅与气体分子的平均动能有关D .气体膨胀对外做功且温度降低,分子的平均动能可能不变 【答案】A【解析】根据温度是分子平均动能的标志确定气体分子热运动的程度和分子平均动能变化,内能是分子平均动能和分子势总和,由气体压强宏观表现确定压强。
2020高考物理复习:热学 考点分析及解题方法总结
热学(选修3-3)高考命题规律考点一分子动理论内能固体、液体命题角度1分子动理论内能固体、液体高考真题体验·对方向1.〔2018全国Ⅱ·33(1)〕对于实际的气体,下列说法正确的是(填正确答案标号).A.气体的内能包括气体分子的重力势能B.气体的内能包括气体分子之间相互作用的势能C.气体的内能包括气体整体运动的动能D.气体的体积变化时,其内能可能不变E.气体的内能包括气体分子热运动的动能答案BDE解析气体的内能是指所有气体分子热运动的动能和相互作用的势能之和,不包括分子的重力势能和气体整体运动的动能,选项A、C错误,B、E正确;气体体积变化时,其分子势能可能增加、可能减小,而分子的动能可能增加、可能减小,其内能可能不变,选项D正确.2.〔2015全国Ⅰ·33(1)〕下列说法正确的是(填正确答案标号).A.将一块晶体敲碎后,得到的小颗粒是非晶体B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变答案BCD解析晶体敲碎后,得到的小颗粒仍为晶体,选项A错误;某些晶体在不同方向上有不同的光学性质,选项B正确;同种元素构成的固体,可形成不同的晶体,比如金刚石和石墨,选项C正确;在合适条件下,某些晶体和非晶体可相互转变,选项D正确;晶体在熔化过程中,温度不变,内能增加,选项E错误.3.〔2015全国Ⅱ·33(1)〕关于扩散现象,下列说法正确的是(填正确答案标号).A.温度越高,扩散进行得越快B.扩散现象是不同物质间的一种化学反应C.扩散现象是由物质分子无规则运动产生的D.扩散现象在气体、液体和固体中都能发生E.液体中的扩散现象是由于液体的对流形成的答案ACD解析扩散现象是固体、液体或气体分子永不停息做无规则运动所致,其剧烈程度与温度有关,扩散现象不是化学反应,A、C、D项正确而B、E项错误.1.分子势能、分子力与分子间距离的关系2.把握定量估算方法(1)微观量的估算应利用阿伏加德罗常数的桥梁作用,依据分子数N与摩尔数n之间的关系N=nN A,并结合密度公式进行分析计算.(2)注意建立正方体分子模型或球体分子模型.(3)对液体、固体物质可忽略分子之间的间隙;对气体物质,分子之间的距离远大于分子的大小,气体的摩尔体积与阿伏加德罗常数的比值不等于气体分子的体积,仅表示一个气体分子平均占据的空间大小.典题演练提能·刷高分1.(2019山东潍坊二模)关于固体、液体的性质,下列说法正确的是(填正确答案的标号).A.非晶体不可能转化为晶体B.单晶体有确定的熔点,多晶体没有确定的熔点C.彩色液晶显示器利用了液晶的光学各向异性的特点D.玻璃管的裂口放在火焰上烧熔,其尖端变钝,这是由于液体表面张力的作用E.唐诗《观荷叶露珠》中有“霏微晓露成珠颗”,诗中荷叶和露水表现为不浸润答案CDE解析有的非晶体在一定条件下可以转化为晶体,则A错误;单晶体和多晶体都有确定的熔点,选项B错误;彩色液晶显示器利用了液晶的光学各向异性的特点,选项C正确;玻璃管的裂口放在火焰上烧熔,其尖端变钝,这是由于液体表面张力的作用,选项D正确;唐诗《观荷叶露珠》中有“霏微晓露成珠颗”,诗中荷叶和露水表现为不浸润,选项E正确.2.(多选)(2019重庆模拟)关于固体和液体,下列说法正确的是(填正确答案的标号).A.晶体一定有确定的熔点B.晶体一定有确定的几何形状C.有些非晶体在一定条件下可以转化为晶体D.所有物质都具有液晶态E.在液体表面任意画一条线,线两侧的液体间的作用力是引力答案ACE解析晶体有确定的熔点,故A正确;单晶体有一定几何形状,多晶体没有确定的几何形状,故B错误;晶体和非晶体区别在于内部分子排列,有些通过外界干预可以相互转化,如把晶体硫加热熔化(温度超过300 ℃)再倒进冷水中,会变成柔软的非晶硫,再过一段时间又会转化为晶体硫,故C 正确;并不是所有物质都具有液晶态,故D错误;液体表面层分子距离大于液体内部分子距离,在液体表面任意画一条线,线两侧的液体间的作用力是引力,故E正确.故选ACE.3.下列说法正确的是(填正确答案标号).A.热量能够自发地从内能多的物体传递到内能少的物体B.同一时刻,教室内空气中氮气和氧气的分子平均动能是相同的C.当水中两个水分子间的分子力为零时,它们具有的分子势能一定最小D.液体表面层分子间距离小于液体内部分子间距离,所以液体表面存在表面张力E.在合适的条件下,某些晶体可以转化为非晶体,某些非晶体也可以转化为晶体答案BCE解析热量能够自发地从高温物体传递到低温物体,选项A错误;同一时刻,教室内空气中氮气和氧气因为温度相同,则分子平均动能是相同的,选项B正确;当水中两个水分子间的分子力为零时,它们具有的分子势能一定最小,选项C正确;液体表面层分子间距离大于液体内部分子间距离,所以液体表面存在表面张力,选项D错误;在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体,例如天然石英是晶体,熔融过的石英却是非晶体.把晶体硫加热熔化(温度超过300 ℃)再倒进冷水中,会变成柔软的非晶硫,再过一段时间又会转化为晶体硫,故E正确.故选BCE.4.下列说法正确的是(填正确答案标号).A.荷叶上面的小水珠呈球形的主要原因是有液体表面张力B.晶体凝固时放出热量,但分子平均动能不变C.气体如果失去容器的约束就会散开,这是因为气体分子之间存在斥力的缘故D.一定质量的理想气体分别经等容过程和等压过程,温度均由T1升高到T2,则等容过程比等压过程吸收的热量少E.一个绝热容器中盛有气体,假设把气体中分子速率很大的,如大于v m的分子全部取走,则气体的温度会下降,此后气体中不存在速率大于v m的分子答案ABD解析表面张力有使液体的表面积最小化的趋势,故荷叶上面的小水珠呈球形的主要原因是有液体表面张力,A正确;晶体凝固时温度不变,所以分子平均动能不变,B正确;气体如果失去容器的约束就会散开,这是因为分子在做无规则运动的原因,C错误;一定质量的理想气体分别经等容过程和等压过程,温度均由T1升高到T2,内能增量ΔU相同,根据热力学第一定律,等容过程Q=ΔU,等压过程吸收的热量Q=ΔU-W,而等压过程气体对外做功W<0,所以等容过程比等压过程吸收的热量少,D正确;取走v m的分子后,由于碰撞等原因,仍然会出现速率大于v m的分子,E错误.5.下列说法正确的是(填正确答案标号).A.零摄氏度的物体的内能为零B.气体如果失去了容器的约束会散开,这是因为气体分子热运动的结果C.温度相同的氧气和臭氧气体,分子平均动能相同D.理想气体,分子之间的引力、斥力依然同时存在,且分子力表现为斥力E.浸润现象是分子间作用力引起的答案BCE解析一切物体都有内能,故A错;气体如果失去了容器的约束会散开,这是因为气体分子热运动的结果,故B正确;温度是平均动能的标志,所以温度相同的氧气和臭氧气体,分子平均动能相同,故C正确;理想气体忽略分子间作用力,分子力为零,故D错误;浸润现象是分子间作用力引起的,与分子力有关,故E正确.6.关于热现象,下列说法正确的是(填正确答案标号).A.两个邻近的分子之间同时存在着引力和斥力,引力和斥力都随着分子间的距离的增大而减小B.液晶像液体一样具有流动性,其光学性质与某些晶体相似,具有各向同性C.处于失重状态的宇宙飞船中,由于消除了重力的影响,一大滴水银的表面将收缩为球面,水银滴成为球形D.液面上部的蒸汽达到饱和时,就没有液体分子从液面飞出,所以从宏观上来看液体不再蒸发E.热量可以自发地从高温物体向低温物体传递,但要从低温物体向高温物体传递,必须有第三者的介入答案ACE解析两个邻近的分子之间同时存在着引力和斥力,引力和斥力都随着分子间的距离的增大而减小,选项A正确;液晶像液体一样具有流动性,其光学性质与某些晶体相似,具有各向异性,选项B 错误;处于失重状态的宇宙飞船中,由于消除了重力的影响,一大滴水银的表面将收缩为球面,水银滴成为球形,选项C正确;液面上部的蒸汽达到饱和时,液体分子从液面飞出,同时有分子进入液体中,从宏观上看,液体不再蒸发,故D错误;热量可以自发地从高温物体向低温物体传递,但要从低温物体向高温物体传递,必须有第三者的介入,选项E正确.故选ACE.7.下列说法中正确的是(填正确答案标号).A.温度、压力、电磁作用可以改变液晶的光学性质B.大颗粒的盐磨成了细盐,就变成了非晶体C.空气的相对湿度定义为空气中所含水蒸气压强与同温度水的饱和蒸汽压的比值D.分子质量不同的两种气体,温度相同时其分子的平均动能相同E.理论上,第二类永动机并不违背能量守恒定律,所以随着人类科学技术的进步,第二类永动机是有可能研制成功的答案ACD解析温度、压力、电磁作用可以改变液晶的光学性质,选项A正确;大颗粒的盐磨成了细盐,不改变晶体的结构,故还是晶体,选项B错误;空气的绝对湿度是指大气中水蒸气的实际压强;空气的相对湿度定义为空气中所含水蒸气压强与同温度水的饱和蒸汽压的比值,选项C正确;温度是分子平均动能的标志,故分子质量不同的两种气体,温度相同时其分子的平均动能相同,选项D正确;第二类永动机并不违背能量守恒定律,但是违背热力学第二定律,所以随着人类科学技术的进步,第二类永动机也不可能研制成功,选项E错误.故选ACD.命题角度2用油膜法估测分子的大小高考真题体验·对方向〔2019全国Ⅲ·33(1)〕用油膜法估算分子大小的实验中,首先需将纯油酸稀释成一定浓度的油酸酒精溶液,稀释的目的是.实验中为了测量出一滴已知浓度的油酸酒精溶液中纯油酸的体积,可以.为得到油酸分子的直径,还需测量的物理量是.答案使油酸在浅盘的水面上容易形成一块单分子层油膜把油酸酒精溶液一滴一滴地滴入小量筒中,测出1 mL油酸酒精溶液的滴数,得到一滴溶液中纯油酸的体积单分子层油膜的面积解析稀释后,油酸在浅盘的水面上更容易形成一块单分子层油膜.把油酸酒精溶液一滴一滴地滴入小量筒中,测出1 mL油酸酒精溶液的滴数n,得到一滴油酸酒精溶液的体积,之后根据浓度求出一滴溶液中纯油酸的体积.根据公式d=可知,还需要测单分子层油膜的面积S.典题演练提能·刷高分1.(2019河北石家庄模拟)在“用油膜法估测分子大小”的实验中,已知油酸的摩尔质量M=0.3 kg·mol-1,密度ρ=0.9×103 kg·m-3,则油酸的分子直径约为m.将2 cm3的油酸溶于酒精,制成400 cm3的油酸酒精溶液,已知2 cm3溶液有100滴,则1滴油酸酒精溶液滴到水面上,随着酒精溶于水,油酸在水面上形成的最大面积约为m2.(取N A=6×1023 mol-1,结果保留一位有效数字)答案1×10-90.1解析油酸的摩尔体积V mol=,一个油酸分子的体积V=,已知V=π3,油酸的分子直径D=,代入数值解得D≈1×10-9 m,1滴油酸酒精溶液中含有的油酸体积V1=cm3=1×10-10 m3,最大面积S=,解得S=0.1 m2.2.(2019北京东城二模)已知铜的摩尔质量为M,铜的密度为ρ,阿伏加德罗常数为N A,下列说法正确的是()A.1个铜原子的质量为B.1个铜原子的质量为C.1个铜原子所占的体积为D.1个铜原子所占的体积为答案B解析一个铜原子的质量为,故A错,B正确;一个铜原子所占的体积为,故CD错.故选B.3.物体是由大量分子组成的,分子非常微小,在“用油膜法估测分子大小”的实验中,利用许多不溶性的长链脂肪酸在适当溶剂的帮助下能在水面上铺开,会形成厚度为一个分子的表面膜的特性,将微观量的测量转化为宏观量的测量.(1)实验中,如果油酸酒精溶液体积浓度为b,N滴油酸酒精溶液的总体积为V,如果1滴油酸酒精溶液在水面上形成的油膜面积为S,则估算油酸分子直径大小的表达式为d=.(2)实验中,把玻璃板盖在浅盘上描出油酸膜的轮廓,如图所示,图中正方形小方格的边长为1 cm,则油酸膜的面积是cm2.答案60解析一滴油酸酒精溶液中油酸的体积为,所以分子直径d=.根据大于半格的算1格,小于半格的舍去,总共60格,即60 cm2.考点二气体热力学定律命题角度1热力学定律高考真题体验·对方向1.〔2019全国Ⅰ·33(1)〕某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好.空气可视为理想气体.初始时容器中空气的温度与外界相同,压强大于外界压强.现使活塞缓慢移动,直至容器中的空气压强与外界压强相同.此时,容器中空气的温度(填“高于”“低于”或“等于”)外界温度,容器中空气的密度(填“大于”“小于”或“等于”)外界空气的密度.答案低于大于解析根据热力学第一定律可知,容器中的空气无热传递、做负功,内能必减少,容器中空气的温度降低,低于外界温度.压强取决于分子密集程度与温度,同样的压强,温度低的空气,分子密集程度大,密度大.2.〔2018全国Ⅰ·33(1)〕如图,一定质量的理想气体从状态a开始,经历过程①、②、③、④到达状态e,对此气体,下列说法正确的是(填正确答案标号).A.过程①中气体的压强逐渐减小B.过程②中气体对外界做正功C.过程④中气体从外界吸收了热量D.状态c、d的内能相等E.状态d的压强比状态b的压强小答案BDE解析过程①是等容变化,温度升高,压强增大,故A项错误;过程②中,体积增大,气体对外做功,故B项正确;过程④是等容变化,温度降低,放出热量,故C项错误;过程③是等温变化,温度不变,故状态c、d的内能相等,故D项正确;E项,由理想气体方程可知为定值,状态d相对于状态b,V和T均增大,故p应减小,故E项正确.3.〔2018全国Ⅲ·33(1)〕如图,一定量的理想气体从状态a变化到状态b,其过程如p-V图中从a到b的直线所示.在此过程中(填正确答案标号).A.气体温度一直降低B.气体内能一直增加C.气体一直对外做功D.气体一直从外界吸热E.气体吸收的热量一直全部用于对外做功答案BCD解析根据理想气体方程=C,气体的压强和体积都增加,所以气体温度升高,内能增加,A错、B对;气体的体积增大,气体对外做功,C对;根据热力学第一定律ΔU=W+Q,其中ΔU>0,W<0,所以Q>0,从外界吸收热量,D对;气体吸收的热量,一部分对外做功,另一部分增加了气体的内能,E错. 4.〔2017全国Ⅱ·33(1)〕如图,用隔板将一绝热汽缸分成两部分,隔板左侧充有理想气体,隔板右侧与绝热活塞之间是真空.现将隔板抽开,气体会自发扩散至整个汽缸.待气体达到稳定后,缓慢推压活塞,将气体压回到原来的体积.假设整个系统不漏气.下列说法正确的是(填正确答案标号).A.气体自发扩散前后内能相同B.气体在被压缩的过程中内能增大C.在自发扩散过程中,气体对外界做功D.气体在被压缩的过程中,外界对气体做功E.气体在被压缩的过程中,气体分子的平均动能不变答案ABD解析由于隔板右侧是真空,隔板抽开后,气体自发扩散至整个汽缸,并不做功也没有热量交换,所以自发扩散前后内能相同,故选项A正确,选项C错误;气体被压缩过程中,外界对气体做功,没有热量交换,根据ΔU=W+Q,气体的内能增大,故选项B、D正确;气体被压缩过程中,温度升高,分子平均动能增大,故选项E错误.5.〔2017全国Ⅲ·33(1)〕如图,一定质量的理想气体从状态a出发,经过等容过程ab到达状态b,再经过等温过程bc到达状态c,最后经等压过程ca回到状态a.下列说法正确的是(填正确答案标号).A.在过程ab中气体的内能增加B.在过程ca中外界对气体做功C.在过程ab中气体对外界做功D.在过程bc中气体从外界吸收热量E.在过程ca中气体从外界吸收热量答案ABD解析在过程ab中,气体体积不变,压强变大,根据=C知,气体温度升高,则内能增加,A正确;在过程ca中,气体体积减小,外界对气体做功,B正确;在过程ab中,气体体积不变,气体不对外做功,外界也不对气体做功,C错;在过程bc中,气体进行的是等温变化,ΔU=0,气体体积变大,对外做功,W<0,根据热力学第一定律ΔU=W+Q,故Q>0气体从外界吸收热量,D正确;根据=C知,在过程ca中,气体温度降低,则ΔU<0,而外界对气体做功,W>0,故一定有Q<0,气体放热,E错.1.应用热力学第一定律应注意的问题(1)热力学第一定律不仅反映了做功和热传递这两种方式改变内能的过程是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系.(2)对公式ΔU=Q+W(3)三种特殊情况①若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加量.②若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加量.③若过程的始末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q.外界对物体做的功等于物体放出的热量.特别提醒:对理想气体,ΔU仅由温度决定,W仅由体积决定,绝热情况下,Q=0.2.热力学第二定律的理解应用高温物体低温物体功热量气体体积V1气体体积V2(较大)不同气体A和B混合气体A、B典题演练提能·刷高分1.(2019山西二模)如图所示,一定质量的理想气体从状态a开始,经历ab、be、cd、de四个过程到达状态e,其中ba的延长线经过原点,bc连线与横轴平行,de连线与纵轴平行.下列说法正确的是.(填正确答案的标号)A.ab过程中气体从外界吸热B.bc过程中气体内能不变C.cd过程中气体从外界吸热D.de过程中外界对气体做功E.状态a的气体体积比状态d的气体体积小答案ACE解析由理想气体状态方程:=C,图线斜率代表体积的倒数,ab过程中图线斜率不变,故气体的体积不变,不做功,又温度升高,内能增大,由W+Q=ΔU,故A正确;bc过程为等压过程,热力学温度升高,气体体积增大,内能增大,故B错误;cd过程减小,则气体体积增大,气体对外做功,气体温度升高内能增大,由热力学第一定律W+Q=ΔU可知,Q为正值,即气体要从外界吸热,故C正确;de段为等温过程,压强降低,气体体积增大,对外做功,D错误;由于图线斜率代表体积的倒数,由图可知,Oa的斜率大于Od的斜率,则状态a的体积小于状态d的体积,故E正确.2.(多选)(2019江西南昌模拟)下列叙述和热力学定律相关,其中正确的是()A.第一类永动机不可能制成,是因为违背了能量守恒定律B.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,违背了热力学第二定律C.能量耗散是从能量转化的角度反映出自然界中的宏观过程具有方向性D.物体从单一热源吸收的热量可全部用于做功,且不产生其他影响答案AC解析第一类永动机不消耗能量却源源不断对外做功,违背了能量守恒定律,所以不可能制成,A 正确;电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,是压缩机做功的结果,不违背热力学第二定律,B错误;能量耗散说明宏观热现象的发生具有方向性,C正确;物体从单一热源吸收热量可以全部用于做功,但一定引起其他影响,D错误.3.如图所示,一定质量的理想气体从状态A变化到状态B,再由状态B变化到状态C,最后由状态C 变化到状态A.气体完成这个循环,内能的变化ΔU=,对外做功W=,气体从外界吸收的热量Q=.(用图中已知量表示)答案0p0V0p0V0解析气体完成一个循环过程,温度的变化量为零,则内能的变化ΔU=0;对外做功等于图中三角形ABC的面积,即W=p0V0;根据热力学第一定律可知,气体吸热Q=W=p0V0.4.(1)关于下列实验及现象的说法,正确的是(填正确答案标号).A.图甲说明薄板是非晶体B.图乙说明气体速率分布随温度变化且T1>T2C.图丙说明气体压强的大小既与分子动能有关也与分子的密集程度有关D.图丁说明水黾受到了浮力作用(2)氙气灯在亮度、耗能及寿命上都比传统灯有优越性,已知某轿车的氙气灯泡的容积为V,其内部氙气的密度为ρ,氙气摩尔质量为M,阿伏加德罗常数为N A.则灯泡中氙气分子的总个数为,灯泡点亮后其内部压强将(选填“增大”“减小”或“不变”).(3)如图为一定质量的理想气体的体积V随热力学温度T的变化关系图象.由状态A变化到状态B的过程中气体吸收热量Q1=220 J,气体在状态A的压强为p0=1.0×105 Pa.求:①气体在状态B时的温度T2;②气体由状态B变化到状态C的过程中,气体向外放出的热量Q2.答案(1)C(2)N A增大(3)①600 K②120 J解析(1)图甲说明薄板的导热性能是各向同性,则薄板是非晶体或多晶体.故A项错误;图乙说明气体速率分布随温度变化,T1时速率低的占的比例比T2时多,速率大的占的比例比T2时少,则T1<T2,故B项错误;图丙说明气体压强的大小既与分子动能有关也与分子的密集程度有关,故C 项正确;图丁说明水的表面存在表面张力,故D项错误.(2)氙气灯泡的容积为V,其内部氙气的密度为ρ,氙气摩尔质量为M,阿伏加德罗常数为N A.则灯泡中氙气分子的总个数N=N A;灯泡点亮后其内部气体温度升高,体积不变,压强增大.(3)①状态A变化到状态B的过程是等压过程,根据,解得T2=600 K.②A到B过程气体从外界吸热,对外界做功,内能增加,据热力学第一定律ΔU AB=Q1+W AB又W AB=-p0(V2-V1)=-100 JC状态与A状态内能相等,则ΔU AB=-ΔU BCB到C过程是等容过程W BC=0,据热力学第一定律:ΔU BC=Q BC+W BC解得Q BC=-120 J,即气体由状态B变化到状态C的过程中,气体向外放出热量120 J.5.如图是一定质量的理想气体的p-T图象,气体从a→b→c→a完成一次循环,关于气体的变化过程,下列说法正确的是(填正确答案标号).A.气体在a态的体积V a小于在c态的体积V cB.a→b过程气体的分子数密度变大C.b→c过程外界对气体做的功等于气体放出的热量D.c→a过程气体压强增大,从微观讲是由于气体分子与器壁碰撞的频繁程度增大引起的E.若a→b过程气体吸热300 J,c→a过程放热400 J,则c→a过程外界对气体做功100 J答案ADE解析c→a过程气体压强增大,温度降低,根据=C可知体积减小,故气体在a态的体积V a小于在c态的体积V c,故A正确;a→b过程是等容变化,气体的分子数密度不变,故B错误;b→c过程是等温变化,气体内能不变,ΔU=0,气体体积增大,气体对外界做功,W<0,由热力学第一定律得:Q=ΔU-W=-W>0,气体吸收热量,由以上分析可知,b→c过程气体对外界做的功等于气体吸收的热量,故C错误;c→a过程温度降低,气体分子的平均动能减小,气体压强增大,体积减小,气体的分子数密度增大,所以从微观讲压强增大是由于气体分子与器壁碰撞的频繁程度增大引起的,故D正确;由热力学第一定律可知,若a→b过程气体吸热300 J,c→a过程放热400 J,则c→a过程外界对气体做功100 J,故E正确.故选ADE.命题角度2气体实验定律和状态方程高考真题体验·对方向。
新高考物理热学知识点归纳
新高考物理热学知识点归纳新高考物理热学部分是高中物理教学中的一个重要分支,它涵盖了热力学和分子动理论的基本概念、原理和应用。
以下是对新高考物理热学知识点的归纳总结:热学的基本概念- 温度:表示物体冷热程度的物理量。
- 热量:物体之间由于温度差异而传递的能量。
- 热容:物质单位质量升高或降低1摄氏度所需的热量。
热力学第一定律- 热力学第一定律是能量守恒定律在热力学过程中的体现,表明能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式。
热力学第二定律- 热力学第二定律揭示了热能转换的方向性,即热量总是自发地从高温物体传递到低温物体,而不是相反。
热机和制冷机- 热机:将热能转换为机械能的装置。
- 制冷机:将热量从低温物体转移到高温物体的装置。
分子动理论- 分子动理论是研究物质微观结构和宏观性质之间关系的科学。
- 分子动理论的主要内容包括:分子的热运动、分子间的作用力以及分子的碰撞和扩散。
理想气体状态方程- 理想气体状态方程是描述理想气体状态的数学表达式,形式为\[ PV = nRT \],其中P是压强,V是体积,n是摩尔数,R是气体常数,T是温度。
相变和相变热- 相变:物质从一种状态(固态、液态或气态)转变为另一种状态的过程。
- 相变热:在相变过程中吸收或释放的热量。
热传递的三种方式- 导热:固体内部分子振动和碰撞引起的热量传递。
- 对流:流体中温度不同的各部分之间通过相对位移引起的热量传递。
- 辐射:物体因温度而发射的电磁波,可以在真空中传播。
热力学循环- 热力学循环是指一个系统经历一系列状态变化后又回到初始状态的过程,包括卡诺循环、斯特林循环等。
热力学第三定律- 热力学第三定律指出,当系统的温度趋近于绝对零度时,系统的熵趋近于一个常数。
结束语:通过上述对新高考物理热学知识点的归纳,可以看出热学不仅包含了丰富的理论知识,也与我们的日常生活和工业应用紧密相关。
掌握这些知识点,有助于学生更好地理解自然界的热现象,以及如何利用热力学原理解决实际问题。
2020年新高考I卷物理热学题及解答
2020年新高考I卷物理热学题及解答2020年新高考I卷物理试题中,热学部分占据了重要的一部分。
本文将为大家详细解析其中的热学题目及解答,帮助大家更好地理解和掌握热学知识。
【题目一】某理想气体的3mol在温度为300K下体积为40L,气体进行绝热膨胀过程后,体积变为100L。
求该气体的最终温度。
【解答一】根据理想气体的绝热膨胀定律,我们可以得到以下关系:P1V1^γ = P2V2^γ其中,P1和P2分别为初始状态和终态下的气体压强,V1和V2分别为初始状态和终态下的气体体积,γ为气体的绝热指数。
由题目中所给出的条件,我们可以得到:P1V1^γ = P2V2^γP1 * 40^γ = P2 * 100^γ同时,我们还知道理想气体的状态方程为:PV = nRT其中,P为气体压强,V为气体体积,n为气体的物质的量,R为气体常数,T为气体的绝对温度。
结合以上两个公式,我们可以得到:P1 * 40^γ = P2 * 100^γP1 * (nRT1 / P1)^γ = P2 * (nRT2 / P2)^γ化简后得到:(40 / P1)^(γ - 1) = (100 / P2)^(γ - 1)将P1V1 / T1 = P2V2 / T2 代入,得到:(40 / P1)^(γ - 1) = (100 / (P1 * 40 / 100))^(γ - 1)化简后得到:(40 / P1)^(γ - 1) = 2^(γ - 1)两边取对数,得到:(γ - 1) * ln(40 / P1) = (γ - 1) * ln2化简后得到:ln(40 / P1) = ln2进一步得到:40 / P1 = 2P1 = 20由此可知,初始状态下的气体压强P1为20Pa。
根据理想气体状态方程 PV = nRT,我们可以得到:P1V1 / T1 = P2V2 / T2将已知条件代入,得到:20 * 40 / 300 = P2 * 100 / T2化简后得到:T2 = 200K因此,该气体的最终温度为200K。
2020年全国统一高考物理试卷和答案解析(新课标Ⅱ)
2020年全国统一高考物理试卷(新课标Ⅱ)1.管道高频焊机可以对由钢板卷成的圆管的接缝实施焊接。
焊机的原理如图所示,圆管通过一个接有高频交流电源的线圈,线圈所产生的交变磁场使圆管中产生交变电流,电流产生的热量使接缝处的材料熔化将其焊接。
焊接过程中所利用的电磁学规律的发现者为()A.库仑B.霍尔C.洛伦兹D.法拉第2.若一均匀球形星体的密度为,引力常量为G,则在该星体表面附近沿圆轨道绕其运动的卫星的周期是()A. B. C. D.3.如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h,其左边缘a点比右边缘b点高。
若摩托车经过a点时的动能为,它会落到坑内c点,c与a的水平距离和高度差均为h;若经过a点时的动能为,该摩托车恰能越过坑到达b点。
等于()A.20B.18C.D.4.CT扫描是计算机X射线断层扫描技术的简称,CT扫描机可用于对多种病情的探测。
图是某种CT机主要部分的剖面图,其中X射线产生部分的示意图如图所示。
图中M、N之间有一电子束的加速电场,虚线框内有匀强偏转磁场;经调节后电子束从静止开始沿带箭头的实线所示的方向前进,打到靶上,产生X射线如图中带箭头的虚线所示;将电子束打到靶上的点记作P点。
则()A.M处的电势高于N处的电势B.增大M、N之间的加速电压可以使P点左移C.偏转磁场的方向垂直于纸面向外D.增大偏转磁场磁感应强度的大小可使P点左移5.氘核可通过系列聚变反应释放能量,其总效果可用反应式表示。
海水中富含氘,已知1kg海水中含有的氘核约为个,若全都发生聚变反应,其释放的能量与质量为M的标准煤燃绕时释放的热量相等;已如1kg标准煤燃烧释放的热量约为,,则M约为()A.40kgB.100kgC.400kgD.1000kg6.特高压输电可使输送中的电能损耗和电压损失大幅降低。
我国已成功掌握并实际应用了特高压输电技术。
假设从A处采用550kV的超高压向B处输电,输电线上损耗的电功率为,到达B处时电压下降了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修3-3 第一章热学
第1讲分子支理论热力学定律与能量守恒
图1-1-4
1.(2020·广东,13) (1)远古时代,取火是一件困难的事,火一般产生于雷击或磷的自燃.随着人类文明的进步,出现了“钻木取火”等方法.“钻木取火”
是通过________方式改变物体的内能,把________转变成内能.
(2)某同学做了一个小实验:先把空的烧瓶放入冰箱冷冻,一小时后取出烧瓶,
并迅速把一个气球紧密地套在瓶颈上,然后将烧瓶放进盛满热水的烧杯里,气球逐渐膨胀起来,如图1-1-4.这是因为烧瓶里的气体吸收了水的________,温度________,体积________.
解析:(1)热力学第一定律是对能量守恒定律的一种表述方式.热力学第一定律指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变.所以钻木取火是通过做功把机械能转化为内能.
(2)内能可以从一个物体传递给另一个物体(高温到低温),使物体的温度升高;
一定质量的气体,当压强保持不变时,它的体积V随温度T线性地变化.所以从冰箱里拿出的烧瓶中的空气(低温)吸收水(高温)的热量温度升高,体积增大.
答案:(1)做功机械能(2)热量升高增大
2.(1)物质是由大量分子组成的,分子直径的数量级一般是________ m.能说明分子都在永不停息地做无规则运动的实验事实有________(举一例即可).在两分子间的距离由r0(此时分子间的引力和斥力相互平衡,分子作用力为零)逐渐增大的过程中,分子力的变化情况是________(填“逐渐增大”“逐渐减小”“先增大后减小”“先减小后增大”).
(2)一定质量的理想气体,在保持温度不变的情况下,如果增大气体体积,气
体压强将如何变化?请你从分子动理论的观点加以解释.如果在此过程中气体对外界做了900 J的功,则此过程中气体是放出热量还是吸收热量?放出
或吸收多少热量?(简要说明理由)
答案:(1)10-10 布朗运动(或扩散现象) 先增大后减小
(2)气体压强减小 一定质量的气体,温度不变时,分子的平均动能一定,气体体积增大,分子的密集程度减小,所以气体压强减小.一定质量的理想气体,温度不变时,内能不变,根据热力学第一定律,当气体对外做功时气体一定吸收热量,吸收的热量等于气体对外做的功量,即900 J.
3.(1)据某报报道:天津一小男孩睡觉时,臀部将压在下面的打火机焐炸,丁烷
气体外泄,致使屁股局部速冻成伤.请你运用所学过的热学知识判断下列说法正确的是( )
A .焐炸是因为打火机内丁烷液体变热汽化,体积增加,压强增大而爆炸
B .焐炸的过程符合热力学第一定律
C .市报关于局部速冻成伤的报道不符合科学道理
D .爆炸后,丁烷外泄并迅速汽化吸热,由于吸热速度快而使屁股局部速冻成伤
(2)用长度可放大600倍的显微镜观察布朗运动.估计放大后的小碳粒体积为0.1×10-9 m 3,碳的密度是2.25×120 kg/m 3,摩尔质量是1.2×10-2 kg/mol ,阿伏加德罗常数为6.0×1023 mol -1,则该小碳粒含分子个数约为多少个?(取1位有效数字)
解析:(2)小碳粒体积V =0.1×10-9
6003 m 3=4.6×10-19 m 3 该小碳粒含分子个数为N =ρV M
N A ,代入数值解得:N =5×1190个. 答案:(1)ABD (2)5×1190个
4.(1)以下说法正确的是( )
A .分子的热运动是指物体内部分子的无规则运动
B .碎玻璃不能拼在一起,是由于分子间存在着斥力
C .物体做加速运动时速度越来越大,物体内分子的平均动能也越来越大
D .液晶既有液体的流动性,又具有光学各向异性
E .在轮胎爆裂这一短暂过程中,气体膨胀,温度下降
F.在完全失重的情况下,熔化的金属能够收缩成标准的球形
(2)
图1-1-5
如图1-1-5是用导热性能良好的材料制成的气体实验装置,封闭有一定质量的理想气体,若用力缓慢向下推动活塞,使活塞向下移一段距离,不计活塞与气缸内壁间的摩擦,环境温度保持不变,由此可以判断,被封闭气体的内能________(填“不变”或“改变”),体积减小,外界对气体做功,根据热力学第一定律可知,气体________热(填“吸”或“放”).
解析:(1)考查热学中的分子动理论、液晶的特性及气体的物态变化. 碎玻璃不能拼在一起是因为分子间的距离不能达到分子引力的范围;物体内分子的平均动能仅由温度决定,与物体运动的快慢无关;液晶既有液体的流动性,又具有光学各向异性;轮胎爆裂的一瞬间,气体膨胀对外做功,来不及热交换,因此气体的内能减少,温度降低.
(2)考查热力学第一定律.气缸导热性能良好,用力缓慢地向下推动活塞的过
程中,缸内气体充分地与外界热交换,温度不变,内能不变,外界对气体做功,气体放出热量.
答案:(1)ADEF (2)不变放
5.(1)下列说法中正确的是( )
A.悬浮微粒越大,在某一瞬间撞击它的液体分子数就越多,布朗运动越明显
B.在使两个分子间的距离由很远(r>10-9 m)减小到很难再靠近的过程中,分子间作用力先减小后增大,分子势能不断增大
C.温度升高,分子热运动的平均动能一定增大,但并非所有分子的速率都增大
D.一定质量的理想气体经等温压缩后,其压强一定增大
E.内能向机械能转化是有条件的,即环境中必须存在温度差,通过科技创新,我们能够研制出将内能全部转化为机械能而不产生其他影响的热机
(2)已知水的密度ρ=1.0×120 kg/m3、摩尔质量M=1.8×10-2 kg,阿伏加德罗常数N A=6.0×1023 mol-1.一滴露水的体积大约是6.0×10-5 cm3,它含有________个水分子.如果一只极小的虫子来喝水,每分钟喝进6.0×120个水分子,那么它每分钟喝进水的质量是________ kg(结果保留两位有效数字).
解析:(1)悬浮微粒越大,单位时间内撞击它的分子数越多,布朗运动越不明显,A错.分子从很远靠近时,分子间作用力先增大后减小再增大,B错.根据热力学第二定律我们无法研制出那样的热机,E错.
(2)水分子个数为N=ρV
M
·N A=
1.0×103×6.0×10-11
1.8×10-2
×6.0×1023个=
2.0×1198个,喝进水的质量为m=n
N A
·M=1.8×10-18 kg.
答案:(1)CD (2)2.0×1198 1.8×10-18
图1-1-6
6.如图1-1-6所示,p-V图中,一定质量的理想气体由状态A经过程Ⅰ变至状态B时,从外界吸收热量420 J,同时膨胀对外做功300 J.当气体从状态B经过程Ⅱ回到状态A时,外界压缩气体做功200 J,求此过程中气体吸收或放出的热量是多少?
解析:一定质量的理想气体由状态A经过程Ⅰ变至状态B时,从外界吸收的热量Q1大于气体膨胀对外做的功W1,气体内能增加,由热力学第一定律,气体内能增加量为ΔU=Q1+W1=420 J+(-300 J)=120 J
气体由状态B经过程Ⅱ回到状态A时,气体内能将减少120 J,而此过程中外界又压缩气体做了W2=200 J的功,因而气体必向外界放热,放出的热量为
Q2=ΔU-W2=(-120)J-200 J=-320 J.
答案:放热320 J。