一次函数的简单应用
一次函数在生活中的具体应用
一次函数在生活中的具体应用1. 引言1.1 一次函数的定义一次函数是指形式为y=ax+b的函数,其中a和b为常数,且a不等于0。
简单来说,一次函数就是一个斜率不为零的直线函数。
在数学中,一次函数是最简单的函数之一,但却有着广泛的应用。
在一次函数中,变量之间是线性关系,可以用来描述很多现实生活中的问题。
一次函数的斜率代表了变量之间的变化率,而常数项则代表了起始值。
通过一次函数,我们可以快速地了解变量之间的关系,并进行预测和分析。
一次函数还有很多重要性质,比如通过两点确定一条直线、平行直线具有相同的斜率等。
这些性质使一次函数成为解决实际问题的有效工具。
在接下来的内容中,我们将探讨一次函数在各个领域的具体应用,包括经济学、市场营销、工程、金融学和医学。
通过这些具体案例,我们可以更好地理解一次函数在生活中的重要性和广泛应用性。
1.2 一次函数在生活中的重要性在经济学中,一次函数常常被用来描述供需关系和价格变化的规律。
通过分析一次函数的图像和方程,经济学家可以更好地预测市场走势和制定合理的政策措施,从而促进经济的稳定发展。
在市场营销领域,一次函数可以帮助企业分析销售数据、制定定价策略和评估市场需求。
借助一次函数的模型,市场营销人员可以更加准确地了解消费者的行为和喜好,从而提高产品的市场竞争力。
在工程领域,一次函数常被用来描述物体的运动轨迹和能量转化过程。
工程师利用一次函数的性质来设计各种设备和结构,确保其在实际应用中具有良好的性能和稳定性。
在金融学领域,一次函数被广泛应用于风险分析、投资组合管理和资产定价等方面。
通过构建一次函数的模型,金融学家可以更好地评估资产的价值和波动性,从而降低投资风险并获取更高的收益。
在医学领域,一次函数可以用来描述人体各个器官的生理变化和疾病进程。
医生通过对一次函数的分析和建模,可以更好地诊断疾病、制定治疗方案和预测患者的康复情况。
一次函数在生活中的重要性不可忽视,它为各个领域提供了重要的数学工具和理论基础,促进了社会的进步和发展。
一次函数在生活中的具体应用
一次函数在生活中的具体应用1. 引言1.1 什么是一次函数一次函数是指数学中的一种特殊函数形式,通常表示为f(x) = ax + b的形式。
a和b是常数,且a不等于0。
一次函数也被称为一次多项式函数,因为它的最高次数为1。
在一次函数中,变量x的最高次数为1,这使得函数的图像呈现为一条直线。
一次函数的特点是其图像是一条直线,具有线性的特性。
这种简单的函数形式在数学建模和实际问题求解中具有重要意义。
一次函数可以描述很多实际生活中的问题,比如描述两个变量之间的线性关系,预测未来的变化趋势,进行经济预测和规划等。
在实际应用中,一次函数可以帮助我们分析经济学、物理学、工程学、社会科学和医学领域中的各种现象和问题。
通过一次函数的建模和分析,我们可以更好地理解和解决复杂的实际问题,为社会发展和个人发展提供有力的支持和指导。
了解一次函数的基本概念和应用是非常重要的。
1.2 为什么一次函数在生活中具有重要意义一次函数在生活中的重要意义在于其简单性和直观性。
一次函数是最基本的一种函数形式,具有线性关系的特点,易于理解和应用。
通过一次函数,我们可以轻松地描述许多实际问题的规律和模式,比如物体的运动轨迹、经济的增长趋势、工程中的力学关系等,为我们理解和解决问题提供了重要的工具和方法。
一次函数在生活中的重要意义还体现在其广泛应用的范围。
一次函数几乎涉及到生活的各个领域,包括经济学、物理学、工程学、社会科学、医学等,可以用来分析和描述各种不同的现象和问题。
掌握一次函数的知识和技能对我们了解世界、改善生活具有重要的意义。
一次函数在生活中的重要意义在于其简单性、直观性和广泛应用性。
通过学习和应用一次函数,我们可以更好地理解世界、解决问题,促进社会的发展和进步。
深入理解和掌握一次函数的知识对我们每个人来说都是非常重要的。
2. 正文2.1 一次函数在经济学中的应用一次函数在经济学中的应用非常广泛,经济学家们经常使用一次函数来描述和分析各种经济现象和关系。
一次函数实际应用题归纳
一次函数实际应用题归纳一次函数,听起来有点学术,但其实在生活中随处可见。
就像你和朋友约好一起去吃饭,路上那条长长的直线,车速一快,距离一缩,这就是一次函数的魅力呀!简单来说,一次函数就是一种线性关系。
说得直白点,就是“走得越快,离目的地越近”,这不就是咱们每天都在经历的事情吗?想象一下,你跟朋友去咖啡店,点了两杯拿铁,结果发现一杯要25块,另一杯也是25块。
那你们的总花费就是两杯乘以单价,哎呀,这不就是简单的数学嘛!我们常常说“钱没了就没了”,但这个公式却让我们轻松搞定了账单。
其实生活中的许多场景都能用一次函数来解释,比如说你每天上班的路程。
如果你骑自行车,骑得快一点,路上不堵车,那你很快就能到达公司,反之就得在车流中慢慢等。
再说说购物的事儿。
谁不喜欢逛街呢?你去超市买苹果,标价每斤10块,结果你一买就是三斤,嘿嘿,这个时候你就知道,三斤苹果的价格是30块。
这就是一次函数在你买买买的瞬间大显身手。
真是让人感慨万千,花钱的速度和回家的距离,都是成正比的嘛。
再聊聊你请朋友吃饭的故事。
大家一起聚餐,点了满桌的菜,最后结账的时候,常常是一人一半。
如果你们一共花了400块,那每个人就是200块。
简单吧?这就像是在学校学的数学题,虽然一开始可能会觉得复杂,但慢慢琢磨,就会觉得原来真没那么难。
就像“好事成双”,花钱的同时也收获了友情,这才是最重要的。
说到这里,我们不得不提一下交通。
你在高速公路上开车,车速越快,油耗越高。
一次函数在这里也同样适用。
你开了120公里的速度,油表一下子就掉得快,等到油箱见底,你就得停下来加油。
这种直线的关系,让你无时无刻不在感受到生活的规律。
朋友们总说,开车上路,别急,慢慢来,其实也是在告诉我们,有时候慢就是快,心态才最重要。
当然了,生活中还有许多有趣的例子。
比如说你做运动,越勤奋,越能瘦下来。
一次函数也告诉我们,努力和成果成正比。
每天跑步半小时,体重就能慢慢下降,这种感觉可比买到打折商品还要爽。
一次函数的性质及应用
一次函数的性质及应用一次函数,也称为线性函数,是数学中较为简单而重要的函数类型之一。
它的一般形式可以表示为 y = ax + b,其中 a 和 b 是常数,a 表示直线斜率,b 表示直线与 y 轴的截距。
一次函数在数学中有着广泛的应用,本文将介绍一次函数的性质及其在实际问题中的应用。
1. 一次函数的性质一次函数的性质主要包括直线斜率和截距的关系,直线的特殊情况以及函数图像的特点。
1.1 直线斜率和截距的关系在一次函数 y = ax + b 中,直线的斜率 a 决定了直线的倾斜程度,截距 b 决定了直线在 y 轴上的位置。
当 a > 0 时,直线向右上方倾斜;当 a < 0 时,直线向左上方倾斜;当 a = 0 时,直线平行于 x 轴。
截距 b 则表示直线与 y 轴的交点在 y 轴上的位置,当 b > 0 时,交点在 y 轴上方;当 b < 0 时,交点在 y 轴下方;当 b = 0 时,交点位于原点。
1.2 直线的特殊情况一次函数中存在两种特殊的情况,即水平和竖直线。
当直线平行于 x 轴时,斜率 a = 0,此时直线呈水平姿态。
水平直线的一般形式为 y = b,其中 b 为直线与 y 轴的交点在 y 轴上的位置。
当直线平行于 y 轴时,斜率不存在,此时直线呈竖直姿态。
竖直直线的一般形式为 x = c,其中 c 为直线与 x 轴的交点在 x 轴上的位置。
1.3 函数图像的特点一次函数的图像呈现直线的形式。
根据直线的性质,我们可以得出以下结论:a) 当a ≠ 0 时,直线是无限延伸的;b) 当 a = 0 时,直线是水平的,长度可能有限也可能无限;c) 当 b = 0 时,直线经过原点。
2. 一次函数的应用一次函数在实际问题中有着广泛的应用,其中包括数学、物理、经济等各个领域。
2.1 数学领域在数学中,一次函数常用于解决线性方程组的问题。
线性方程组可以通过一次函数的表示转化为直观易懂的图像,从而得出解的意义和解的性质。
一次函数在生活中的具体应用
一次函数在生活中的具体应用一次函数是一种简单且广泛应用于生活实践的数学函数。
它描述了两个变量之间的线性关系,其中一个变量(因变量)随着另一个变量(自变量)的变化而变化。
下面是一些一次函数在生活中的具体应用:1. 财务分析:在财务领域,一次函数被广泛应用于分析销售,收入和成本的关系。
例如,一个公司可以使用一次函数来预测其收入如何随着广告支出的增加而增加。
一次函数也可以用来计算产品的成本与其销量的关系等。
2. 物理学:一次函数也可以被用来描述许多物理量之间的关系。
例如,物体的速度随着时间的变化可以用一次函数来解释。
通过测量物体在一定时间内移动的距离,可以计算出其速度。
另外,一次函数还可以用来分析物体的加速度与时间或距离的关系。
3. 建筑工程:在建筑领域,一次函数可以被用来计算结构件的导线长度,尺寸以及重量之间的关系。
例如,钢梁的重量可以用一次函数来计算,该函数可以用支持的长度和横截面积作为变量。
4. 统计学:在统计学中,一次函数可以被用来分析两个数值变量之间的关系。
例如,一个调查可能会问参与者他们每周在社交媒体上花费的时间以及他们对自己幸福感的评分。
使用一次函数,研究人员可以分析时间和幸福感之间的线性关系。
5. 经济学:在经济学领域,一次函数可以被用来描述市场供给和需求之间的关系。
例如,在一个市场中,商品的价格可以用一次函数来描述,该函数可以使用销售量作为自变量,而价格作为因变量。
综上所述,一次函数是生活实践中非常广泛的一种数学工具,它可以被应用于财务、物理、建筑、统计和经济等领域。
掌握一次函数的应用场景可以使我们更好地理解和分析各种现象,为生活提供更高级的工具和技能。
一次函数在生活中的应用
一次函数在生活中的应用咱们聊聊啊,这数学里头的一次函数,听起来挺高深莫测的,其实啊,它就在咱们日常生活里头溜达呢,跟咱们老百姓的日子那是息息相关,紧密得跟亲兄弟似的。
你想啊,早上起床,得琢磨着吃点啥吧?比如说,你去楼下包子铺,那价格表上写着呢,肉包子两块五一个,素包子两块一个。
这不就是一次函数嘛!你买的包子数量是X,总价是Y,Y就是X乘以单价。
肉包子的话,Y=2.5X;素包子,Y=2X。
简单吧,一口一个,吃出学问来了。
吃完早饭,该上班了。
开车去?那油费也得算算。
油价一升多少钱,咱们心里得有个数。
车子油耗多少,也得心里有谱。
这一路上,油门一踩,那就是钱在烧啊。
不过别担心,这也是一次函数在作祟。
油耗是X,油费是Y,Y=油价乘以油耗X。
省油就是省钱,这个道理大家都懂。
到了公司,得干活了。
老板说了,这个月业绩得上去,不然奖金泡汤。
这业绩和奖金的关系,嘿,又是一次函数。
业绩是X,奖金是Y,Y=奖金系数乘以业绩X。
当然啦,这个系数老板说了算,咱们只能努力提升X值,争取多拿点Y。
下了班,回家路上经过超市,得买点菜。
蔬菜水果,价格都不一样。
你挑挑拣拣,放进购物车,心里还得盘算着这得花多少钱。
挑的东西越多,钱花得越多,这也是一次函数在默默工作。
购物车里的东西重量是X,总价是Y,Y=单价乘以重量X。
勤俭持家,就得这么精打细算。
晚上,一家人围坐在一起看电视。
孩子说:“爸爸,我想学钢琴。
”你一听,心里那个激动啊,得支持孩子啊!不过,学钢琴得花钱啊。
学费按课时算,这也是一次函数。
课时是X,学费是Y,Y=课时费乘以课时X。
为了孩子的未来,这钱花得值!你看啊,这一天到晚的,咱们的生活里到处都是一次函数。
它就像个隐形的朋友,默默地陪伴着我们,帮助我们更好地规划生活、管理财务。
所以啊,别觉得数学枯燥无味、高不可攀了。
其实啊,它就在我们身边,跟咱们的生活紧密相连、息息相关。
学好数学吧朋友们!让我们的生活因数学而更加精彩、更加有序!。
一次函数简单应用
一次函数简单应用在数学中,一次函数是指具有以下形式的函数:y = ax + b其中a和b是实数,x是自变量,y是因变量。
在一次函数中,x的最高整数次幂为1。
请注意,a不等于0。
一次函数在日常生活中有很多应用,例如计算机工程、物理学、商业和金融等。
本文将介绍一次函数的简单应用,包括函数图像、求根和变化率。
一、函数图像一次函数的函数图像是一条直线。
直线的斜率等于a,截距等于b。
斜率的正负决定了直线的方向。
例如,当a为正时,直线向上斜;当a为负时,直线向下斜。
当截距b为正时,直线与y轴正半轴相交;当截距b为负时,直线与y轴负半轴相交。
二、求根对于一次函数y = ax + b,求根意味着找到x的值,使得y等于0。
为了求根,我们可以使用以下公式:x = -b/a请注意,当a等于0时,一次函数将变成一个常数函数,因此它没有根。
三、变化率一次函数的变化率等于斜率a。
变化率是指函数输出值随着自变量变化而变化的速率。
当斜率为正时,函数值增加;当斜率为负时,函数值减少;当斜率为零时,函数值保持不变。
变化率还可以表示为函数图像上某一点的切线的斜率。
四、简单应用一次函数可以用来表示许多现实世界中的问题。
例如,在一个电子产品制造公司工作的小明根据历史销售数据和市场趋势,建立了以下一次函数模型:y = 500x + 1000其中y是销售额,x是月销售量(以千台为单位)。
小明可以使用这个模型来预测未来销售额。
例如,如果月销售量增加了2千台,销售额将增加:y = 500 * 2 + 1000 = 2000 + 1000 = 3000因此,下个月的销售额预计为3000元。
在物理学中,一次函数可以用来描述一个物体的运动状态。
例如,一个滑板运动员的速度可以表示为:v = 5t + 10其中v是速度(以米/秒为单位),t是时间(以秒为单位)。
这个函数模型告诉我们,在时间t=0时,运动员的速度为10米/秒;在每秒钟,运动员的速度增加5米/秒。
一次函数的应用
一次函数的应用一次函数,也叫线性函数,是指函数的表达式中只包含一次幂的变量。
它的一般形式是y = kx + b,其中k和b分别是函数的斜率和截距。
一次函数在实际生活中有很多应用。
下面,我将分别从经济学和物理学两个角度,介绍一次函数在这两个领域的具体应用。
一、经济学中的一次函数应用1. 成本函数:在经济学中,一次函数常被用来描述成本与产量之间的关系。
考虑世界上最简单的企业,它只生产一个产品。
假设该企业的固定成本是b,变动成本是每产生一个单位产品所需要的成本k。
那么,该企业的总成本TC可以表示为TC = kx + b的形式,其中x是产量。
这个一次函数可以帮助企业计算不同产量下的成本,并在经营决策中起到重要的作用。
2. 收入函数:类似于成本函数,一次函数也常被用来描述收入与销量之间的关系。
假设某产品的售价是p,销量是x,那么该产品的总收入TR可以表示为TR = px的一次函数形式。
这个函数可以帮助企业计算不同销量下的总收入,并在定价策略中发挥作用。
3. 市场需求曲线:在经济学中,市场的需求量通常受价格的影响。
一次函数可以用来描述价格与市场需求量之间的关系。
假设某种商品的市场需求量D是价格p的函数,那么可以表示为D = ap + b的形式,其中a和b是常数。
这个一次函数可以帮助企业预测市场对价格的反应,进而制定合理的价格策略。
二、物理学中的一次函数应用1. 位移和时间关系:在物理学中,一次函数可以用来描述物体的位移与时间的关系。
假设某物体在时刻t=0时的初始位移是b,它的速度是v。
那么,该物体在任意时刻t的位移可以表示为s = vt + b的形式。
这个一次函数可以帮助我们计算不同时间下物体的位移,并研究物体的运动规律。
2. 力和位移关系:另一个在物理学中常见的一次函数应用是描述力和物体位移之间的关系。
假设某物体受到的力是F,它的位移是s。
那么,受力物体所做的功可以表示为W = Fs的一次函数形式。
这个函数可以帮助我们计算力对物体所做的功,并研究力学系统的能量转化。
一次函数模型及应用
一次函数模型及应用一次函数模型是指含有一次幂的函数,可以用以下形式表示:y = kx + b,其中k和b为常数,x为自变量,y为因变量。
一次函数又称为线性函数,其与直线的关系密切。
一次函数模型广泛应用于实际生活中各个领域,下面将以几个具体的实际例子来说明一次函数模型的应用。
第一个例子是汽车的油耗问题。
假设某辆汽车在行驶时,每小时的平均油耗为k 升,初始油量为b升。
那么在x小时后,油量为y升的关系可以用一次函数模型来表示:y = -kx + b。
其中负号表示油量在不断减少。
这个模型可以帮助我们预测在车速不变的情况下,汽车在行驶x小时后的剩余油量。
通过测量汽车不同车速下的油耗数据,可以确定k的值,并通过初始油量来确定b的值。
在实际生活中,这个模型可以帮助我们合理安排加油时间,避免油量不足造成的困扰。
第二个例子是商品价格的变化。
假设某商品的价格在每个月都以恒定的速度上涨,每月涨价k元。
初始价格为b元。
那么在x个月后,商品价格为y元的关系可以用一次函数模型来表示:y = kx + b。
通过测量商品连续几个月的变价趋势,可以确定k的值,并通过初始价格来确定b的值。
这个模型可以用来预测未来几个月内商品价格的变化情况,帮助消费者做出购买决策。
第三个例子是人口增长问题。
假设某地区的人口在每年都以固定比例的速度增长,每年增长k人。
初始人口数量为b人。
那么在x年后,人口数量为y人的关系可以用一次函数模型来表示:y = kx + b。
通过观察人口连续几年的增长情况,我们可以确定k的值,并通过初始人口数量来确定b的值。
这个模型可以用来预测未来几年内人口的增长趋势,对于城市规划和社会发展具有重要意义。
以上三个例子只是一次函数模型在实际应用中的几个常见例子,实际上一次函数模型在各个领域都有广泛的应用。
在经济学中,一次函数模型被用来研究需求和供应的关系,分析市场价格的变化。
在物理学中,一次函数模型被用来描述物体的速度、加速度和位移之间的关系。
利用一次函数解决问题
利用一次函数解决问题一次函数(也称为线性函数)是数学中常见且重要的函数类型之一。
它的表达式为 y = ax + b,其中 a 和 b 是常数,且a ≠ 0。
一次函数的图像是一条直线,具有许多应用领域。
本文将介绍如何利用一次函数解决问题。
一、利用一次函数解决实际问题一次函数在实际问题中的应用非常广泛。
它可以描述物体的直线运动、收入与支出的关系、成本与产量的关系等。
下面举例说明:例1:小明每天骑自行车上学,他发现骑行的时间与距离之间存在一定的关系。
他测量了两天的数据,如下所示:时间(分钟):10 20 30 40距离(千米):1 2 3 4小明想要知道骑行 50 分钟可以骑多远,他可以利用一次函数解决这个问题。
解:我们可以先通过已知数据构建一个一次函数。
选择时间作为自变量 x,距离作为因变量 y。
现在我们来求解 a 和 b 的值。
已知点 A (10, 1) 和点 B (20, 2),可以利用两点间的斜率公式计算 a的值:a = (yB - yA) / (xB - xA) = (2 - 1) / (20 - 10) = 1 / 10 = 0.1接下来,我们可以代入其中一点的坐标和已知的 a 值,求解 b 的值:1 = 0.1 * 10 + bb = 1 - 1 = 0所以,一次函数为 y = 0.1x + 0。
现在可以利用求得的一次函数来解决问题。
当 x = 50 时,我们可以通过函数表达式求得对应的 y 值:y = 0.1 * 50 + 0 = 5因此,小明骑行 50 分钟可以骑行 5 千米。
二、利用一次函数解决图像问题一次函数的图像是一条直线,通过直线的性质,我们可以解决一些与图像相关的问题。
下面举例说明:例2:某公司生产零件,每天生产数量与花费的时间之间呈一次函数的关系。
已知当生产数量为 1000 时,需要 4 小时。
而当生产数量为2000 时,需要 8 小时。
现在需要求解该函数的表达式并计算生产 3000 个零件所需的时间。
一次函数知识点
一次函数知识点一次函数作为中学数学中的重要内容之一,具有广泛的应用场景。
它是代数学的基础,也是我们日常生活中遇到的最简单的函数之一。
在这篇文章中,我将介绍一次函数的定义、性质以及一些常见的应用。
一、定义和性质一次函数又称线性函数,它的定义非常简单:y = kx + b,其中 k 和b 是常数,k 表示斜率,b 表示截距。
一次函数是一条直线,可以通过两个点来确定一条直线,也可以通过一个点和斜率来确定。
1. 斜率斜率表示了直线的倾斜程度,可以看做是 y 值的变化率。
斜率的计算公式为:k = Δy / Δx,其中Δy 表示 y 坐标的增量,Δx 表示 x 坐标的增量。
当斜率为正数时,直线向右上方倾斜;当斜率为负数时,直线向右下方倾斜;当斜率为零时,直线为水平线。
2. 截距截距表示直线与 y 轴的交点的纵坐标值,也可以说是直线在 x 轴上的截点。
当 x = 0 时,y = b,即直线与 y 轴的交点的纵坐标值为 b。
3. 平行和垂直的直线两条直线平行的条件是它们的斜率相等;两条直线垂直的条件是它们的斜率的乘积为 -1。
这些性质对于解题和理解直线的关系有着重要的作用。
二、常见应用一次函数在现实生活中有着广泛的应用,例如经济学中的供求关系、物理学中的速度与时间的关系等等。
1. 货币兑换当我们去旅行或者购买跨境商品时,可能需要进行货币兑换。
一次函数可以描述不同货币之间的汇率关系,通过观察不同货币对之间的汇率,我们可以计算出需要兑换的金额。
2. 距离与时间的关系在物理学中,一次函数可以描述物体在匀速直线运动中的位置与时间的关系。
例如,当一辆汽车以恒定的速度行驶时,它的位置与时间的关系可以表示为 y = kx + b,其中 y 表示汽车所在的位置,x 表示时间,k 表示汽车的速度,b 表示初始位置。
3. 成本和收益在经济学中,一次函数可以描述成本和收益之间的关系。
例如,在一家工厂中,生产的产品数量和成本之间存在一定的关系。
一次函数的应用举例-
一次函数的应用举例一次函数是最简单,最基本的函数之一,它有着极为广泛的应用.现以近几年的一些中考题为例说明一次函数的应用.一、用于解决现实生活中的问题例1 “五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s (千米)与时间t (时)的关系可用图中的曲线来表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时? (2)求出返程途中,s (千米)与时间t (时)的函数关系式并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总量为35升,汽车每行驶1千米耗油 升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议(加油所用时间忽略不计).分析:(1)可直接从图象上看出来;(2)设函数关系式为=s b kt +,再用代点入式法求解即可; (3)是个开放性问题,答案不唯一,只要所提建议合理即可. 解:(1)由图象可看出,小明全家在旅游景点游玩了4小时.(2)设=s b kt +,代入点(14,180)和(15,120),得1418015120k d k d +=⎧⎨+=⎩解得60-=k ,1020=b ,故=s 102060+-t . 令=s 0,得17=t ,即小明全家到家是当天下午5时.(3)合理化建议:①9时30分前必须加一次油;②若8时30分前加满油箱,则当天在油用完前的适当时间必须第二次加油;③全程可多次加油,但加油总量不得少于25升.点评:这是一道贴近生活实际的函数图象的“审读—理解—应用”问题,将行程问题91与一次函数的图象有机结合起来,构思巧妙,设计新颖.由于本题的信息由图象结出,故应仔细审视图象并在此基础上建立数学模型,进而运用相关的数学基础知识和数学基本思想进行解决.二、用于解决“方案设计型”问题例2 东风商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.该商场为促销制定了两种优惠方法.甲:买一支毛笔赠送一本书法练习本;乙:按购买金额打九折付款.某校欲为校书法小组购买这种毛笔10支,书法练习本x (x ≥10)本.(1)写出每种优惠方法实际付款金额y 甲(元)、y 乙(元)与x (本)之间的函数关系式.(2)若商场允许可任选一种优惠方法购买,也可同时用两种优惠方法购买,请你就购买这种毛笔10支和书法练习本60本设计一种最省钱的购买方案.分析:读懂题意是解决本题的基础,在此基础上建立数学模型——一次函数模型是解决本题的关键.解:(1)由题意,得y 甲=2005+x ,y 乙=2255.4+x .(2)当x =60时,y甲=500,y 乙=495,故任选一种优惠方法购买时,乙方法省钱.当同时选用两种方法购买时,设用甲方法购买m 支毛笔,获赠m 本练习本;用乙方法购买(10-m )支毛笔,(60-m )本练习本,则付款金额4952%90)]60(5)10(25[25+-=⨯-+-+=m m m m y . 由题意知m ≤10,故当=10时,y 有最小值,y最小495475495102<=+⨯-=,故用甲方法购买10支毛笔,用乙方法购买50本练习本最省钱.点评:这是一道实际应用题,首先要进行数学抽象,把它转化为一次函数问题,然后利用一次函数的性质及自变量的取值范围来解决.一次函数b kx y +=本没有最大值或最小值,但当自变量x 的取值受某种条件制约(如本例中m 只能取不超过10的整数)时,一次函数就有最大值或最小值了.三、用于解决“决策型”问题例3 某果品公司急需将一批不易存放的水果从A 市运到B 市销售,现有三家运输公司可供选择,它们提供的信息见下表.解答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A 、B 两市的距离(精确到个位);(2)若A 、B 两市的距离为s 千米,且这批水果在包装与装卸及运输过程中的损耗为300元/小时,则要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?分析:(1)包装与装卸及运输费用与A 、B 的距离有关.设距离为x 千米,分别写出三家公司的费用,利用所给等量关系列方程可求出x .(2)由题意知总费用是距离s 的函数,故应分别求出选各公司所需总费用与s 的函数关系式,然后通过比较来判断应选哪家公司.解:(1)设A 、B 两市的距离为x 千米,则各公司包装与装卸及运输的费用分别为: 甲公司(6x +1500)元,乙公司(8x +1000)元,丙公司(10x +700)元, 由题意,得(8x +1000)+(10x +700)=2(6x +1500), 故x ≈217,即A 、B 两市的距离约为217千米. (2)设选择各公司所需总费用分别为y 甲、y 乙、y 丙, 由表格信息可知各公司包装与装卸及运输所需时间分别为: 甲公司(60s +4)小时,乙公司(50s+2)小时,丙公司(100s +3)小时, 故y 甲=6s +1500+(60s+4)×300=11s +2700,y 乙=8s +1000+(50s+2)×300=14s +1600, y 丙=10s +700+(100s+3)×300=13s +1600. 因s >0,故y 乙>y 丙恒成立,故只需比较y 甲与y 丙的大小. 因y 甲-y丙= -2s +1100=0时,s =550,故:①当s <550千米时,y 甲>y 丙,又y 乙>y 丙,故此时可选丙公司较好; ②当s =550千米时,y 甲=y 丙,又y 乙>y 丙,故此时可选甲公司或丙公司; ③当s >550千米时,y 乙>y 丙>y 甲,故此时选甲公司较好.点评:这又是一道利用一次函数解决实际问题的应用题.其中根据题意和表格信息建立一次函数模型是解题关键.从以上几题可看出,一次函数是解决实际问题的重要数学模型之一,善于读懂图象、表格并从图象的形状、位置、发展变化趋势等信息中获取相关的数据、性质、规律,再将其转化为数学问题加以解决是解决此类问题的关键.。
一次函数的应用
一次函数的应用一次函数是高中数学中最基本的函数之一,它的应用非常广泛。
简单来说,一次函数就是指一个形如 $y = kx +b$ 的函数,其中,$k$ 和 $b$ 是常数,$x$ 和 $y$ 分别是自变量和因变量。
在实际生活中,一次函数的应用非常广泛。
以下是一些例子:1. 电影票价计算电影院的票价通常都是一次函数的形式。
假设某个电影院的票价为 $y = 15x + 25$,其中 $x$ 表示购买的票数,$y$ 表示所需支付的费用。
根据这个函数,我们可以算出如果购买 $3$ 张票,需要支付的费用为 $y = 15\times 3 + 25 = 70$ 元。
2. 车行里程计算汽车的油耗通常也可以用一次函数来表示。
假设某辆车的油耗为 $y = 0.1x + 10$,其中 $x$ 表示行驶的里程数(千米),$y$ 表示所需的汽油(升数)。
如果这辆车行驶了$100$ 公里,需要消耗的汽油量就是 $y = 0.1\times 100 + 10 = 20$ 升。
3. 银行利率计算银行的利率计算也可以用一次函数来表示。
假设某个银行的存款利率为 $y = 0.03x + 0.01$,其中 $x$ 表示存款的金额(万元),$y$ 表示所能获得的利息(万元)。
如果存款$200$ 万元,那么能够获得的利息就是 $y = 0.03\times 200+ 0.01 = 6.01$ 万元。
除了以上的实际应用,一次函数还有很多其他的数学应用,如经济学、物理学、工程学等等。
例如,在经济学中,一次函数可以用来表示市场供给和需求的关系,帮助决策者做出更明智的决策。
在物理学中,一次函数可以用来表示运动的速度与时间的关系,帮助科学家研究物理现象。
在工程学中,一次函数可以用来表示信号的传输、电路的特性等等,帮助工程师设计和优化工程设备。
总的来说,一次函数是我们生活中不可或缺的数学工具,它的应用非常广泛,涵盖多个领域。
理解一次函数的原理和应用,有助于我们更好地理解世界和解决实际问题。
一次函数在生活中的具体应用
一次函数在生活中的具体应用【摘要】一次函数是数学中的基本概念,其在生活中有着广泛的应用。
在经济学中,一次函数被用来分析市场供求关系,帮助决策者制定价格策略。
在物理学中,一次函数可以描述物体的运动状态,如速度与时间的关系。
在工程学中,一次函数被用来设计桥梁和建筑物的结构,保证其稳定性。
在社会学中,一次函数可以分析人口增长和社会趋势,帮助政府调整政策。
在医学中,一次函数被用来研究药物的代谢过程,优化治疗方案。
结合以上应用领域,可以看出一次函数在生活中扮演着重要的角色,拥有广泛的应用价值。
通过深入理解和应用一次函数,我们可以更好地解决实际问题,提高生活质量和工作效率。
【关键词】一次函数,生活应用,经济学,物理学,工程学,社会学,医学,广泛应用1. 引言1.1 一次函数的定义一次函数,也称为线性函数,是数学中最简单的一种函数类型之一。
一次函数的一般形式可以表示为f(x) = ax + b,其中a和b为常数,且a不等于0。
在这个函数中,变量x的最高次数为1,因此称为一次函数。
一次函数的特点包括斜率和截距。
斜率a表示函数图像的倾斜程度,正斜率表示函数图像向上倾斜,负斜率表示函数图像向下倾斜,斜率的绝对值表示倾斜的程度。
截距b表示函数图像与y轴的交点,即当x 等于0时,函数值为b。
一次函数在生活中有着广泛的应用,可以用来描述各种实际情况和问题。
在经济学中,一次函数常常用来描述成本、收入、利润等与数量的关系。
在物理学中,一次函数可以用来描述速度、加速度等物理量随时间的变化。
在工程学中,一次函数可以用来建立模型、优化设计等。
在社会学中,一次函数可以用来分析人口增长、社会变化等。
在医学中,一次函数可以用来研究疾病传播、药物代谢等。
一次函数在生活中具有非常重要的作用,深刻影响着我们的生活和工作。
1.2 一次函数的特点一次函数是一种最简单的线性函数,其特点主要有以下几点:1. 一次函数的图像是一条直线。
这是因为一次函数的图像是以常数速率变化的,因此在坐标系中表现为一条倾斜的直线。
一次函数的简单应用(解析版)
5.5一次函数的简单应用一、数学建模的一般思路数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建模的过程中,为了既合乎实际问题又能求解,这就要求在诸多因素中抓住主要因素进行抽象化简,而这一过程恰是我们的分析、抽象、综合、表达能力的体现.函数建模最困难的环节是将实际情景通过数学转化为什么样的函数模型.二、正确认识实际问题的应用在实际生活问题中,如何应用函数知识解题,关键是建立函数模型,即列出符合题意的函数解析式,然后根据函数的性质综合方程(组)、不等式(组)及图象求解.要点:要注意结合实际,确定自变量的取值范围,这是应用中的难点,也是中考的热门考点. 三、选择最简方案问题分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用.一、单选题1.小苏现已存款180元.为赞助“希望工程”,她计划今后每月存款10元,则存款总金额y (元)与时间x (月)之间的关系式是( )A .10y x =B .180y x =C .18010y x =-D .18010y x =+ 【答案】D【提示】根据存款总数=已存款180元+x 个月的存款数,可以写出存款总金额y (元)与时间x (月)之间的函数关系式,从而可以解答本题. 【解答】解:由题意可得,18010y x =+. 故选:D .【点睛】本题考查函数关系式,解答本题的关键是明确题意,写出其中的函数关系式. 2.下列变量之间关系中,一个变量是另一个变量的正比例函数的是( ) A .正方形的面积S 随着边长x 的变化而变化 B .正方形的周长C 随着边长x 的变化而变化C .水箱有水10L ,以0.5L/min 的流量往外放水,水箱中的剩水量L V 随着放水时间min t 的变化而变化D .面积为20的三角形的一边a 随着这边上的高h 的变化而变化 【答案】B【提示】先依据题意列出函数关系式,然后依据函数关系式进行判断即可.【解答】解:A 、正方形的面积S 随着边长x 的变化而变化的关系式,关系式为S =x2,不是正比例函数,故错误;B 、正方形的周长C 随着边长x 的变化而变化,关系式为C =4x ,是正比例函数,故正确;C 、水箱有水10L ,以0.5L/min 的流量往外放水,水箱中的剩水量L V 随着放水时间min t 的变化而变化,关系式为V =10−0.5t ,不是正比例函数,故错误;D 、面积为20的三角形的一边a 随着这边上的高h 的变化而变化的关系式为a =40h,不是正比例函数,故错误. 故选:B .【点睛】本题主要考查的是正比例函数的定义,熟练掌握正比例函数的定义:形如y=kx (k≠0)的函数为正比例函数是解题的关键.3.小张加工某种机器零件,工作一段时间后,提高了工作效率.小张加工的零件总数m (单位:个)与工作时间t (单位:时)之间的函数关系如图所示,则小张提高工作效率前每小时加工零件( )个A .3B .4C .5D .6【答案】B【提示】此题只要能求出3时之后的一次函数解析式,从而求出当x=3时的纵坐标,除以3即可. 【解答】解:从图象可知3时之后的函数图象为一次函数且经过(5,24),(6,30) 设该时段的一次函数解析式为:y kx b =+,可列出方程组:524630k b k b +=⎧⎨+=⎩,求解得:66k b =⎧⎨=-⎩∴一次函数解析式为:66y x =-,当3x =时,12y =,1234∴÷=故选:B .【点睛】本题考查了一次函数的应用,熟练掌握求解一次函数解析式和掌握图象中的关键拐点含义是解题的关键.4.食用油沸点的温度远高于水的沸点温度(100℃).小明为了用刻度不超过100℃的温度计测量出某种食用油沸点的温度,在锅中倒人一些这种食用油,用煤气灶均匀加热,并每隔10s 测量一次锅中油温,测量得到的数据如下表: 时间/s t10 20 30 40油温/y ℃ 10 30 50 70 90而且,小明发现,烧了110s 时,油沸腾了.你估计这种油沸点的温度是( )A .200℃B .230℃C .260℃D .290℃【答案】B【提示】由表中数据发现油温与时间成一次函数关系,根据表中数据,求出一次函数解析式,然后把x=110代入即可.【解答】解:设油温与时间的函数关系是y=kx+b ,则103010b k b =⎧⎨=+⎩,解得210k b =⎧⎨=⎩ ∴y=2x+10,当x=110时,y=2×110+10=230. 故选:B .【点睛】本题主要考查的是一次函数的应用,关键是根据表中数据,求出一次函数解析式. 5.八(1)班同学参加社会实践活动,在王伯伯的指导下,要围一个如图所示的长方形菜园ABCD ,莱园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为12m ,设边BC 的长为x m ,边AB 的长为y m ()x y >.则y 与x 之间的函数表达式为( )A .212(012)y x x =-+<<B .()164122y x x =-+<<C .212(012)y x x =-<<D .16(412)2y x x =-<< 【答案】B【提示】根据菜园的三边的和为12m ,即可得出一个x 与y 的关系式. 【解答】解:根据题意得,菜园三边长度的和为12m ,212y x ∴+=,162y x ∴=-+,0y >,x y >, ∴1602162x x x ⎧-+>⎪⎪⎨⎪>-+⎪⎩,解得412x <<,16(412)2y x x ∴=-+<<,故选:B .【点睛】本题考查一次函数的应用,理解题目中的数量关系,即菜园三边的长度和为12m ,列出关于x ,y 的方程是解决问题的关键.6.某油箱容量为50L 的汽车,加满汽油后开了200km 时,油箱中的汽油大约消耗了14.如果加满汽油后汽车行驶的路程为km x ,油箱中的剩油量为L y ,则y 与x 之间的函数解析式和自变量取值范围分别是( )A .0.0625,0y x x =>B .500.0625,0y x x =->C .0.0625,0800y x x =≤≤D .500.0625,0800y x x =-≤≤ 【答案】D【提示】根据题意列出一次函数解析式,即可求得答案.【解答】解:因为油箱容量为50 L 的汽车,加满汽油后行驶了200 km 时,油箱中的汽油大约消耗了14,可得:14×50÷200=0.0625L/km ,50÷0.0625=800(km ), 所以y 与x 之间的函数解析式和自变量取值范围是:y =50−0.0625x ,0≤x≤800, 故选D .【点睛】本题主要考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.7.已知A 、B 两地相距600米,甲、乙两人同时从A 地出发前往B 地,所走路程y(米)与行驶时间x(分)之间的函数关系如图所示,则下列说法中:①甲每分钟走100米;②2分钟后,乙每分钟走50米;③甲比乙提前3分钟到达B 地;④当x=2或6时,甲乙两人相距100米.其中,正确的是( )A.①②③B.②③④C.①②④D.①②【答案】C【提示】根据函数图像中的信息,逐一解答即可判定.【解答】解:由图像可得:①甲图像是正比例函数,甲每分钟走600÷6=100(米),故①正确;②两分钟后,乙每分钟走5003005062-=-(米),故②正确;③甲到达B地所用的时间是6分钟,乙前2分钟走300米,2分钟之后速度为50米/分,2分钟之后所用的时间为600300650-=(分),所以甲比乙提前2分钟到达B地,故③不正确;④当x=2时,甲路程为100×2=200(米),乙路程为300米,则甲乙两人相距100米;当x=6时,甲路程为600米,乙路程为500米,则甲乙两人相距100米,故④正确;故正确的有①②④,故选:C.【点睛】本题考查了一次函数的图像,准确识图并根据函数图像的变化情况获取信息是解题的关键.8.“吉祥物趣事”,某天,墩墩和容融在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速行走3600米、当墩墩领先容融1000米时,墩墩停下来休息,当容融追上墩墩的瞬间,墩墩立即又以原来的速度继续走向终点,在整个行走过程中,墩墩和容融之间的距离y(米)与它们出发时间x(分钟)的关系如图所示,下列说法错误的是()A.容融的速度为40米/分钟B.墩墩休息了23分钟C.第85分钟时,墩墩到达终点D.领先者到达终点时,两者相距200米【答案】B【提示】根据题意和图象中的数据,可以计算出各个选项中的结果是否正确,然后即可判断哪个选项符合题意.【解答】解:由图象可得,容融的速度为:36009040÷=(米/分钟),故选项A正确,不符合题意;÷=(分钟),故选项B错误,符合题意;墩墩休息了:10004025墩墩的速度为:4010005060+÷=(米/分钟),5025(36006050)6085++-⨯÷=(分钟),即第85分钟时,墩墩到达终点,故选项C正确,符合题意;-⨯=(米),(9085)40200即领先者到达终点时,两者相距200米,故选项D正确,不符合题意;故选:B.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.9.牛奶配送员小吴从县城出发,骑配送车到米村配送牛奶,途中遇到在县城上学的外甥张聪从米村步行返校上学,小吴在米村配送牛奶后,在返回县城途中又遇到张聪,便用配送车载上张聪一起返回县城,结果小吴比预计时间晚到5分钟.二人与县城间的距离y(km)和小吴从县城出发后所用的时间x(min)之间的关系如图,假设两人之间的交流时间忽略不计,则下列说法正确的有()个.①小吴到达米村后配送牛奶所用时间为25min.②小吴从县城出发,最后回到县城用时100min.③两人第一次相遇时,小吴距离米村2km.④张聪从米村到县城步行速度为0.05km/min.A.1 B.2 C.3 D.4【答案】D【提示】从图中可以看出小吴和张聪并不是同时出发的,小吴还有在A村停留时间30分钟,小吴去A村和返回速度不一样,这些都可以从图中看出来.小吴到达米村后配送牛奶所用时间为停留时间即65与35的差可对①判断;小吴从县城出发到返回县城所用时间,从图中可以看出包括去时用的时间加在A 村待的时间加上返回遇张聪的时间加上原计划时间再加上晚到1分钟,即可对②进行判断;由图象可知,小吴35分钟后离县城7千米,所以两人第一次相遇即25分钟时小王距县城25×735=5千米,进一步可对③判断;求出两次相遇时的距离及间隔时间即可求出张聪从米村到县城步行速度,从而对④进行判断 【解答】①小吴到达米村后配送牛奶所用时间为60-35=25min ,故①正确; ②从图中可以看出小吴从离城7千米到2千米用时85分钟 小吴返回的速度=(7-2)÷(85-60)=0.2(千米/分钟), 小吴原计划返回用时7÷0.2=35分钟, 结果小吴比预计时间晚到5分钟.故小吴从县城出发,最后回到县城用时为35+25+25+10+5=100min .故②正确; ③由图象可知,小吴35分钟后离县城7千米,所以两人第一次相遇即25分钟时小吴距米村:7-25×735=7-5=2千米,故③正确;④两次相遇时张聪走的路程为5-2=3千米,用时为85-25=60分钟, 所以步行速度为:3÷60=0.05千米/分钟,故④正确. 正确的结论有4个, 故选:D .【点睛】此题考查了一次函数的应用,注意数形结合以及行程问题的解决方法.10.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示,则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,56t =或54或154或256.其中正确的结论有( )A .4个B .3个C .2个D .1个 【答案】A【提示】直接根据函数图像可判断①②;分别求出两条直线的解析式,令y y =甲乙可判断③;令50y y -=甲乙,结合先出发的时间内以及乙到达目的地的时间进行计算可得结论④.【解答】由图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时, ∴①②都正确;设甲车离开A 城的距离y 与t 的关系式为y kt =甲, 把()5,300代入可求得60k =,60y t ∴=甲,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把()1,0和()4,300代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩,100100y t ∴=-乙,令y y =甲乙可得:60100100t t =-, 解得 2.5t =,即甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车, ∴③正确;令50y y -=甲乙,可得6010010050t t -+=,即1004050t -=, 当1004050t -=时,可解得54t =, 当1004050t -=-时,可解得154t =, 又当56t =时,50y =甲,此时乙还没出发, 当256t =时,乙到达B 城,250y =甲; 综上可知当t 的值为56或54或154或256时,两车相距50千米,∴④正确;综上可知正确的有①②③④共4个, 故选:A .【点睛】本题考查了一次函数的实际应用,从函数图像上读取信息,读懂题意,理清甲乙两车的行驶情况,运用数形结合思想解题是关键.11.已知A ,B 两地相距3千米,小黄从A 地到B 地,平均速度为4千米/时.若用(x 时)表示行走的时间,(y 千米)表示余下的路程,则y 关于x 的函数解析式是______. 【答案】()3400.75y x x =-≤≤【提示】先求出小黄从A 地到B 地所需的时间,从而可得x 的取值范围,再利用余下的路程等于3减去已走的路程即可得.【解答】解:小黄从A 地到B 地所需的时间为340.75÷=(时), 则00.75x ≤≤, 由题意得:34y x =-,则y 关于x 的函数解析式是()3400.75y x x =-≤≤, 故答案为:()3400.75y x x =-≤≤.【点睛】本题考查了一次函数的应用,找准等量关系,并正确求出自变量的取值范围是解题关键. 12.公民的月收入超过5000元时,超过部分须依法缴纳个人所得税,当超过部分在3000 元以内(含3000元)时税率为3%.根据已知信息,公民每月所缴纳税款y (元)与月收入x (元)之间的函数关系式是__________,自变量的取值范围是__________. 【答案】 003150.y x =-+ 5000<x≤8000【提示】超过部分在3000元以内(含3000元)时税率为3%,所以必须从收入中减去5000后,再去考虑缴税多少,即可解答.【解答】解:根据题意可知y 与x 之间的函数关系式为:()50003003150%.y x x =-⨯=-+,(5000<x≤8000).故答案为:003150.y x =-+;5000<x≤8000.【点睛】本题主要考查的是一次函数的实际问题,理解题意,根据题意得出需要缴税的部分为()5000x -元,是解题的关键.13.在槐荫区“勾股数学”杯初中校际联赛中,小明的队伍在第一轮中获得积分50分,第二轮共10道题,每答对一道题得10分,则两轮总积分y (分)与第二轮答对题目数量x (道)之间的关系式为__________(010x ≤≤,x 为正整数). 【答案】5010y x =+【提示】根据“两轮总积分y (分)等于第一轮积分与第二轮积分的和”,用含有x 的代数式表示第二轮的积分即可. 【解答】解:由题意得,故答案为:5010y x =+;【点睛】本题考查函数关系式,理解“两轮总积分y (分)”的意义,掌握“积分=每题得分×答对的题目数”是正确解答的关键.14.某公司准备和A 、B 两家出租车公司中的一家签订合同.设A 、B 两出租车公司收费y (元)与行程x (每千米)的关系分别是l1,l2,若行驶大于2500km ,则选择 _____出租车公司较合算.【答案】A【提示】根据函数图象作出判断即可. 【解答】解:由图象可知:当1500x <时,12y y >;当1500x >时,12y y <; ∵行驶大于2500km ,即2500x >, ∴选择A 出租车公司较合算, 故答案为:A .【点睛】本题考查一次函数的实际应用,根据图象越高费用也越高判断出图象各部分的费用高低,再作出选择是解答本题的关键.15.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为____方. 月用水量不超过12方部分 超过12方不超过18方部分 超过18方部分收费标准(元/方) 2 2.53【答案】20【提示】根据题意可知:先判断出该用户用的水与18方的关系,再设用水x 方,水费为y 元,继而求得关系式为y=39+3(x-18);将y=45时,代入上式即可求得所用水的方数. 【解答】解:∵45>12×2+6×2.5=39, ∴用户5月份交水费45元可知5月用水超过了18方,设用水x 方,水费为y 元,则关系式为y=39+3(x-18). 当y=45时,x=20, 即用水20方. 故答案为:20.【点睛】本题主要考查了一次函数的应用,用待定系数法求函数的解析式和根据自变量的值求函数值.弄清对应的水费是解决问题的关键.16.某医药研究所研发了一种新药,经临床实验发现,成人按规定剂量服用,每毫升血液中含药量y (微克)随时间x (小时)而变化的情况如图所示.研究表明,当血液中含药量5y ≥(微克)时,对治疗疾病有效,则有效时间是__________小时.【答案】3【提示】当2x ≤时,设1y k x =,把(2,6)代入计算即可得3y x =,当2x >时,设2y k x b =+,把点(2,6),(10,3)代入计算即可得82734y x =-+,把5y =代入3y x =中得53x =,把5y =代入82734y x =-+中得143x =,进行计算即可得.【解答】解:当2x ≤时,设1y k x =,把(2,6)代入得, 162k =,解得,13k =, ∴当2x ≤,3y x =,当2x >时,设2y k x b =+,把点(2,6),(10,3)代入得,2226103k b k b +=⎧⎨+=⎩ 解得,283274k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴当2x >时,82734y x =-+,把5y =代入3y x =中,得53x =,把5y =代入82734y x =-+中,得143x =,则145333-=(小时), 即该药治疗的有效时间是3小时, 故答案为:3.【点睛】本题考查了一次函数的应用,解题的关键是掌握一次函数的性质.17.2022年4月7日,许昌市首批新能源出租车上路,新车空间更大,舒适度更高,受到大众欢迎.新车的收费方式也做了调整,新车的打车费用y (单位:元)与行驶里程x (单位:千米)的函数关系如图所示.老款出租的收费方式为:不超过2千米收费5元,超过2千米部分收费1.5元/千米,同时,每次再加收1元的燃料附加费.小明爸爸从家到公司打车上班的行驶里程为22千米,则他上班乘坐新车的打车费用比老款车多______元.【答案】3【提示】待定系数法求出x≥2时y 关于x 的函数解析式,再求出x=22时y 的值可求得新车的费用,根据老款车的收费标准进行计算求得老款车的费用,比较即可求解. 【解答】解:当行驶里程x≥2时,设新车的打车费用为y=kx+b , 将(2,7)、(7,15)代入,得:27715k b k b +=⎧⎨+=⎩,解得:85195k b ⎧=⎪⎪⎨⎪=⎪⎩,∴y=85x+195,当x=22时,y=85×22+195=39, 即新车的打车费用为39(元),老款车的费用为:5+1.5×(22-2)+1=36(元),39-36=3(元). 故答案为:3.【点睛】本题主要考查一次函数的图象与待定系数法求一次函数解析式,熟练掌握待定系数法求得一次函数解析式是解题的关键.18.已知A ,C 两地之间有一站点B ,甲从A 地匀速跑步去C 地,2分钟后乙以50米/分钟的速度从站点B 走向C 地,两人到达C 地后均原地休息.甲、乙两人与站点B 的距离y(米)与甲所用的时间x(分钟)之间的关系如图所示.(1)站点B 到C 地的距离为_____米; (2)当x=_____时,甲、乙两人相遇.【答案】 800 10【提示】(1)由图象可知乙从站点B 到C 地所用时间,再用时间×速度=路程得出结论; (2)先求出甲的速度,再根据追击问题写出方程,解方程即可.【解答】解:(1)根据题意,站点B 到C 地的距离为:50×(18-2)=800(米), 故答案为:800;(2)由图象可知甲的速度:400÷5=80(米/分), 设经过x 分钟,甲、乙两人相遇, 则80x=400+50(x-2), 解得x=10,∴甲出发10分钟,甲、乙两人相遇, 故答案为:10.【点睛】本题考查了一次函数的实际应用,理解图象上各点的实际含义,并根据题意列方程是解题的关键.三、解答题19.某种气体在0℃时的体积为100L ,温度每升高1℃,它的体积增加0.37L . (1)写出气体体积()L V 与温度()t ℃之间的函数表达式(2)求当温度为30℃时气体的体积.(3)当气体的体积为107.4L 时,温度为多少摄氏度? 【答案】(1)1000.37V t =+ (2)111.1L (3)20℃【提示】(1)根据题意,直接写出函数表达式即可,气体体积=0℃时的体积+增加的体积; (2)将30t =℃代入(1)中的函数表达式即可; (3)将107.4L V =代入(1)中的函数表达式即可. 【解答】(1)解:根据题意得:1000.37V t =+.(2)当30t =℃时,1000.3730111.1V =+⨯=, ∴当温度为30℃时,气体的体积为111.1L . (3)当107.4L V =时,107.41000.37t =+, 解得:20t =,∴气体的体积为107.4L 时,温度为20℃.【点睛】本题主要考查了一次函数的实际应用,解题的关键是根据题意找出等量关系,写出一次函数的表达式.20.在某一段时期,一年期定期储蓄的年利率为4.14%,规定储蓄利息应付个人所得税的税率为5%.设按一年期定期储蓄存入银行的本金为x 元,到期支取时扣除个人所得税后实得本利和为y 元. (1)求y 关于x 的函数表达式.(2)把18000元钱按一年期定期储蓄存入银行.问:到期支取时,扣除个人所得税后实得本利和为多少元?【答案】(1) 1.03312y x = (2)18707.94元【提示】(1)根据利息=本金⨯利率⨯时间列式计算求出本金;根据税率为利息的20%可得扣除个人所得税后实际利息=利息()120%⨯-;(2)将18000x =代入(1)的解析式进行计算即可求解.【解答】(1)解:依题意,()()1 4.14%1 4.14%5%1 1.04140.00207 1.03933y x x x x =+⨯-⨯⨯=-= 即: 1.03933y x =,(2)当18000x =时, 1.039331800018707.94y =⨯= 到期支取时,扣除个人所得税后实得本利和为18707.94元.【点睛】本题考查了一次函数的应用,根据题意列出函数关系是解题的关键.21.“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的销售方式,让大山深处的农产品远销全国各地.若要对某地特色花生与茶叶两种产品助销,已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同. (1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克,计划两种产品共助销600千克,若花生销售m 千克()120m ≥,花生和茶叶的销售总利润为w 元,求w 的最大值. 【答案】(1)每千克花生10元,每千克茶叶50元(2)当花生销售120千克,茶叶销售480千克时利润最大,w 的最大值为7200【提示】(1)设每千克花生x 元,每千克茶叶(40)x +元,列出一元一次方程求解即可;(2)设花生销售m 千克,茶叶销售(600)m -千克,先根据总成本不高于1260元,且花生的数量不高于茶叶数量的2倍求出m 的取值范围,再根据利润之和求出函数解析式,根据函数的性质求出最大值.【解答】(1)解:设每千克花生x 元,每千克茶叶(40)x +元, 根据题意得:5010(40)x x =+, 解得:10x =,40401050x +=+=(元),答:每千克花生10元,每千克茶叶50元;(2)解:设花生销售m 千克,茶叶销售(600)m -千克获利最大,利润w 元, 由题意得:(106)(5036)(600)484014108400w m m m m m =-+--=+-=-+,100-<,w ∴随m 的增大而减小,120m ,∴当120m =时,利润w 最大,此时花生销售120千克,茶叶销售600120480-=(千克),1012084007200w =-⨯+=最大(元), ∴当花生销售120千克,茶叶销售480千克时利润最大,w 的最大值为7200.【点睛】本题考查一次函数的性质和一元一次方程的应用,解题的关键是读懂题意,列出方程和函数关系式进行求解.22.某电信公司手机的A 类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费12元,另外,通话费按0.2元/min 计;B 类收费标准如下:没有月租费,但通话费按0.6元/min 计.按照此类收费标准完成下列各题:(1)直接写出每月应缴费用y (元)与通话时长x (分)之间的关系式: A 类:________;B 类:______.(2)若每月平均通话时长为300分钟,选择类收费方式较少.(3)求每月通话多长时间时,按A ,B 两类收费标准缴费,所缴话费相等. 【答案】(1)0.212y x =+;0.6y x = (2)选择A 收费方式较少 (3)30分钟【提示】(1)根据题目中收费标准可列出函数关系式; (2)根据两种收费方式,计算结果比较得出答案即可;(3)设每月通话时间x 分钟,按A 、B 两类收费标准缴费,所缴话费相等列出方程解答即可. 【解答】(1)解:根据题意,得A 类:0.212y x =+,B 类:0.6y x =;故答案为:0.212y x =+;0.6y x =. (2)解:A 类收费:120.230072+⨯=元;B 类收费:0.6300180⨯=元;18072>,所以选择A 类收费方式;(3)解:设每月通话时间x 分钟,根据题意,得120.20.6x x +=,解得:30x =.答:每月通话时间30分钟,按A 、B 两类收费标准缴费,所缴话费相等【点睛】本题主要考查一次函数的应用,由条件列出相应的函数关系式是解题的关键.23.某移动公司设了两类通讯业务,A 类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B 类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x 分钟,两种方式费用分别是A y ,B y 元. (1)分别写出A y ,B y 与x 之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程.(3)小明用的A 卡,他计算了一下,若是B 卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?【答案】(1)500.4A y x =+,0.6B y x = (2)选择A 类 (3)350元【提示】(1)A 类应缴50元月租费,每通话1分钟,付0.4元,则费用是月租费加上通话费;B 类不缴月租费,每通话1分钟,付话费0.6元,则费用是通话费与时间的乘积,通讯x 分钟,由此即可求解; (2)由(1)的结论可知,当300x =时,170A y =元,180B y =元,由此即可求解;(3)由题意可知选择A 卡的费用比选择B 卡的费用少100元,由此可列出等量关系100A B y y +=,由此即可求解.【解答】(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4A y x =+;B 类的费用是通话费与时间的乘积,即0.6B y x =,∴500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元) ∵AB y y <,∴选择A 类.(3)解:根据题意得,100A B y y +=,∴500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, ∴500.4500.4750350A y x =+=+⨯=(元), ∴小明实际话费是350元.【点睛】本题主要考查一次函数在实际中的运用,解题的关键是理解两类缴费的方式,A 类的费用是月租费加上通话费,B 类的费用是通话费与时间的乘积.24.如图,有80名师生要到离学校若干千米的大剧院参加演出,学校只有一辆能做40人的汽车,学校决定采用步行和乘车相结合的办法:先把一部分人送到大剧院,车按原路返回接到步行的师生后开往大剧院,其中车和人的速度保持不变.(学生上下车,汽车掉头的时间忽略不计).y 表示车离学校的距离(千米),x 表示汽车所行驶的时间(小时).请结合图象解答下列问题:(1)学校离大剧院相距 千米,汽车的速度为 千米/小时; (2)求线段BC 所在直线的函数表达式;(3)若有一名老师因临时有事晚了0.5小时出发,为了赶上学生,该老师选择从学校打车前往,已知出租车速度为80千米/小时,请问该老师能在学生全部达到前赶到大剧院吗?并画出相关图象. 【答案】(1)15,60 (2)105604y x =-(3)该老师能在学生全部达到前赶到大剧院,图象见解析【提示】(1)由图象直接可得学校与大剧院的距离,由路程除以时间可得汽车的速度; (2)设步行速度为m 千米/小时,可得:15(60)21532m +=⨯,即可解得15(32B ,15)8,从而可得11(16C ,15),用待定系数法得线段BC 所在直线的函数表达式为105604y x =-; (3)由学生全部达到大剧院时,1116x =,出租车到达大剧院时,15110.58016x =+=,知该老师能在学生全部达到前赶到大剧院,再画出图象即可.【解答】(1)解:由图象可得,学校与大剧院相距15千米, 汽车的速度为115604÷=(千米/小时), 故答案为:15,60;(2)设步行速度为m 千米/小时, 根据题意得:15(60)21532m +=⨯, 解得4m =, ∴步行的路程为15154328⨯=(千米), 15(32B ∴,15)8,。
生活生产中有关的一次函数
生活、生产中有关的一次函数运用函数知识解决简单的实际问题,体会函数是解决实际问题的数学模型和方法,既是新课程标准的要求,也是中考命题的热点,近几年的中考试题对一次函数的考查力度呈加大趋势,热点问题集中在一次函数的实际应用上,应该引起同学们的关注.现就应用一次函数知识在生活、生产实际中解决实际问题举几例说明.1在日常生活中的应用一次函数在我们的日常生活中应用十分广泛.例如,当我们购物、租车、住宿、缴水电费时,会为我们提供两种或多种优惠方案,这些问题往往可利用一元一次函数解决.例1为加强公民的节水意识,某市制定如下的用水标准:每月每户用水未超过7 m3时,每立方米收1.0元并加收0.2元污水处理费;超过7 m3时,超过部分每立方米收1.5元并加收0.4元污水费,设某户每月的用水为x m3,应交水费y元.(1)写出y与x之间的函数关系式.(2)若某单元所在小区共有50户,某月共交水费541.6元,且每户用水均未超过10 m3,这个月用水未超过7 m3的用户最多可能有多少户?解(1)由题意可知,当0≤x≤7时,y=1.2x.当x>7时,y=1.9(x-7)+7×1.2=1.9(x-7)+8.4.所以y与x之间的函数关系式为(2)设月用水量未超过7 m3共有x户.因为月用水7 m3的应交水费8.4元,用水10 m3的应交水费(5.7+8.4)元,根据题意,得(50-x)(5.7+8.4)+8.4x=541.6.解得x≈28. 67.若x=29时,交费的最大额数为29×8.4+21×14.1=539.7<541.6.所以x=28(户).即月用水量未超过7 m3的用户最多有28户.2在市场经济中的应用随着市场经济体制的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,存款与保险,股票与债券……都已进入我们的生活.同时与这一系列经济活动相关的数学,利息与利率,统计与概率,运筹与优化等,都将在数学课程中呈现出来.例2某镇组织20辆汽车装运完A、B、C三种脐橙共100 t到外地销售.按计划20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运A种脐橙的车辆数为x,装运B,种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.解 (1)根据题意,装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,那么装运C 种脐橙的车辆数为(20-x -y ),则有6x +5 y +4(20-x -y )=100.整理,得y =-2x +20.(2)由(1)知,装运A 、B 、C 三种脐橙的车辆数分别为x 、-2x +20、x ,根据题意,得42204x x ≥⎧⎨-+≥⎩,解得4≤x ≤8.因为x 为整数,所以x 的值为4、5、6、7、8,所以安排方案共有5种,方案一:装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车;方案二:装运A 种脐橙5车,B 种脐橙10车,C 种脐橙5车;方案三:装运A 种脐橙6车,B 种脐橙8车,C 种脐橙6车;方案四:装运A 种脐橙7车,B 种脐橙6车,C 种脐橙7车;方案五:装运A 种脐橙8车,B 种脐橙4车,C 种脐橙8车.(3)设利润为W(百元),根据题意,得W =6x ×12+5(-2x +20)×16+4x ×10=-48x +1 600.因为k =-48<0,所以W 的值随x 的增大而减小,要使利润W 最大,x 取最小值4,故选方案一.W 最大=-48×4+1 600=1 408(百元)=14.08(万元).3 在工程问题中的应用下面这道题看似平常却是别有新意的好题,本题突破了传统的工程问题的模式,将工程问题与一次函数图像相联系,进一步加强了传统经典习题与现实生活的联系,以利于同学们在新的时代背景中更好地学习和掌握数学知识.例3 某县在实施“村村通”工程中,决定在P 、Q 两村之间修筑一条公路,甲、乙两个工程队分别从P 、Q 两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.如图1是甲、乙两个工程队所修道路的长度y (m)与修筑时间x (天)之间的函数图像,请根据图像所提供的信息,求该公路的总长.解 由乙图像可知,A(12,840).设y 乙=k x (0≤x ≤12),因为840=12k ,所以k =70.解得y 乙=70x .当x =8时,y 乙=560,所以C(8,560).设y 甲=m x +n(4≤x ≤16),将B(4,360)、C(8, 560)代入,得43608560m n m n +=⎧⎨+=⎩,解得50160m n =⎧⎨=⎩. 所以y 甲=50x +160.当x =16时,y 甲=50×16+160=960.由此可得乙修筑公路长840 m ,甲修筑公路长960 m .故该公路全长为1800 m .4在行程问题中的应用行程问题是一个常规的问题,而新课程下的行程问题,往往与图像、图形、表格等结合在一起,不仅考查了我们对知识的理解,而且考查了识图能力和数形结合的数学思想.例4甲、乙两人骑自行车前往A地,他们距A地的路程5 (km)与行驶时间t(h)之间的关系如图2所示,请根据图像所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A地的路程s与行驶时间t之间的函数关系式(任写一个).(3)在什么时间段内乙比甲离A地更近?解(1)由图像知,甲2.5 h行驶50 km,所以V甲=502.5=20(km/h).乙2h行驶60 km,所以V乙=602=30(km/h).(2)s甲=50-20t或s乙=60-30t.(3)当1<t<2.5时,s乙的图像在s甲的图像的下面,说明在同一时刻,s乙<s甲,即乙离A 地距离小于甲离A地距离,乙比甲离A地更近,以上四例说明,一次函数在我们的日常生活中应用十分广泛,内容十分丰富,上述题目联系实际和时代的热点,较为自然地考查了一次函数模型的实际问题,同时也考查了同学们利用函数思想和方程、不等式、最值等知识解决问题的能力,希望同学们能从中得到启示,善于运用数学去分析身边周围的现象,学会用数学知识分析和解决生产、生活中的一些实际问题.。
一次函数在生活中的具体应用
一次函数在生活中的具体应用1. 引言1.1 一次函数的定义一次函数,又称为线性函数,是指形式为y=ax+b的函数,其中a 和b为常数,且a不为零。
在一次函数中,x的最高次数为1,因此表现为直线的图像。
一次函数具有简单的特征:斜率为a,截距为b。
一次函数在数学中的地位十分重要,它是初等数学中最基本的函数之一。
通过一次函数,我们可以描述简单的线性关系,例如时间和距离之间的关系、价格和数量之间的关系等。
一次函数在解决实际问题中具有广泛的应用。
除了在数学中应用广泛之外,一次函数在生活中也有着重要的作用。
它被广泛运用在经济学、物理学、工程学等领域中,帮助人们分析问题、预测趋势、优化方案等。
通过一次函数的建模方法,人们可以更好地理解现实世界中的复杂现象,并做出科学的决策。
一次函数在生活中扮演着重要的角色,是现代社会中不可或缺的数学工具之一。
通过深入研究一次函数的应用,我们可以更好地理解世界,解决问题,推动社会的发展和进步。
1.2 一次函数在生活中的重要性一次函数在生活中的重要性体现在许多方面。
一次函数在生活中的具体应用非常广泛,涉及到经济学、物理学、工程学等多个领域。
通过一次函数的应用,可以更好地解决实际问题,提高生活质量和工作效率。
一次函数能够帮助我们更好地理解和分析各种现象,为决策和规划提供重要参考。
一次函数在生活中的重要性不可忽视,它为我们提供了丰富的思维工具和解决问题的方法。
在日常生活中,无论是计算开支、预测销量,还是设计建筑、分析运动,都离不开一次函数的运用。
了解和掌握一次函数的知识,对我们发展个人能力和解决各种实际问题都有着重要的意义。
通过对一次函数的深入研究和应用,我们可以更好地理解世界的运行规律,提高自身的分析能力和解决问题的能力,从而更好地适应社会的发展需求。
2. 正文2.1 经济学中的应用在经济学中,一次函数也被广泛运用于各种实际问题的建模和分析中。
经济学家常常使用一次函数来描述市场需求、供给和成本等关键概念,从而帮助他们预测市场走势、制定政策和做出决策。
一次函数的应用举例及实际意义
一次函数的应用举例及实际意义一次函数,也被称为线性函数,是数学中的基本函数之一。
它是指函数的表达式为 y = kx + b,其中 k 和 b 分别代表常数。
一次函数在现实生活中有着广泛的应用,本文将探讨一些具体的应用案例,并介绍其实际意义。
一、物理运动中的一次函数应用在物理学中,一次函数被广泛用于描述物体在匀速直线运动中的位置变化。
例如,当一个小车以恒定速度沿着直线行驶时,其位置与时间的关系可以用一次函数来表示。
设小车在时刻 t 时的位置为 x,速度为 v,则可以建立一次函数 x = vt + x0,其中 x0 代表小车的初始位置。
这个一次函数的实际意义在于可以准确地描述小车在不同时间点的位置,从而帮助我们预测车辆的行进轨迹和到达目的地所需的时间。
二、经济学中的一次函数应用在经济学中,一次函数被广泛应用于相关的数据分析和预测。
例如,假设某个企业的销售额与广告投入之间存在着线性关系,可以用一次函数来描述这种关系。
设销售额为 y,广告投入为 x,则可以建立一次函数 y = kx + b,其中 k 代表单位广告投入对销售额的影响程度,b 代表其他影响销售额的因素。
通过分析一次函数的斜率 k 和截距 b,可以判断广告投入对销售额的贡献度及其经济效益,为企业的决策提供依据。
三、人口增长模型中的一次函数应用在人口学领域,一次函数也常用于描述人口的增长模型。
人口增长通常可以用一个简单的一次函数进行近似,例如使用一次函数 P = at +b 来表示人口数量的变化,其中 P 代表人口数量,t 代表时间,a 和 b是常数。
通过观察一次函数的斜率a,我们可以了解到人口增长的速率,从而为制定人口政策提供参考。
四、交通规划中的一次函数应用在交通规划中,一次函数也有着重要的应用。
例如,在城市交通流量的研究中,可以用一次函数来描绘车辆流量与时间的关系。
假设车辆流量为 V,时间为 t,则可以建立一次函数 V = kt + c,其中 k 表示车辆流量的增长速率,c 表示初始的车辆流量。