八年级数学上册 与三角形有关的线段

合集下载

人教版数学八年级上册第十一章三角形第一课《与三角形有关的线段》

人教版数学八年级上册第十一章三角形第一课《与三角形有关的线段》
如果6厘米长的边为腰,设底边长为x 厘米,则2×6 + x = 20,解得x = 8.
由以上讨论可知,其他两边的长分别为7 厘米,7 厘米或6 厘米,8 厘米.
课堂小结
边、顶点、内角
A
概念
(直角、 锐角、钝
c
b

按角分 角)三角

分类 形B
a
C
形 按边分
性质
三角形两边的和大于第三边. 三角形两边的差小于第三边.
等腰三角形的周长为20厘米. (1)若已知腰长是底长的2倍,求各边的长; (2)若已知一边长为6厘米,求其他两边的长.
解:(1)设底边长为x厘米,则腰长为2x 厘米. x + 2x + 2x = 20, 解得 x = 4.
所以三边长分别为4cm,8cm,8cm.
(2)如果6 厘米长的边为底边,设腰长为x 厘米,则6 + 2x = 20,解得x = 7;
所以,三角形的特征有: (1)三条线段;(2)不在同一直线上;(3)首尾顺次连接.
探究新知
①边:组成三角形的每条线段叫做三角形的边.
②顶点:每两条线段的交点叫做三角形的顶点.
③内角:相邻两边组成的角.
顶点A

边c
边b
顶点B
角 边a
角 顶点C
探究新知
三角形的表示: 三角形用符号“△”表示.
记作“△ ABC”读作“三角形ABC”.
课堂检测
基础巩固题
1. 如图,图中直角三角形共有( C )
A.1个 B.2个
C.3个
D.4个
2. 下列各组数中,能作为一个三角形三边边长的是
( C)
A.1,1,2
B.1,2,4

八年级数学上学期与三角形有关的线段(基础)知识讲解——含课后作业与答案

八年级数学上学期与三角形有关的线段(基础)知识讲解——含课后作业与答案

与三角形有关的线段(基础)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并会应用三角形三边间的关系;3. 理解三角形的高、中线、角平分线及重心的概念,学会它们的画法及简单应用;4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点一、三角形的定义及分类1. 定义: 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; ③三角形的顶点:即相邻两边的公共端点.(2)三角形定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3) 三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.【高清课堂:与三角形有关的线段 2、三角形的分类 】2.三角形的分类(1)按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.(2)按边分类:要点诠释:①等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;②等边三角形:三边都相等的三角形.要点二、三角形的三边关系定理:三角形任意两边的和大于第三边.推论:三角形任意两边的差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.要点三、三角形的高、中线与角平分线1、三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.三角形的高的数学语言:如下图,AD 是ΔABC 的高,或AD 是ΔABC 的BC 边上的高,或AD⊥BC 于D ,或∠ADB =∠ADC=∠90°.注意:AD 是ΔABC 的高 ∠ADB=∠ADC=90°(或AD⊥BC 于D);要点诠释:(1)三角形的高是线段;(2)三角形有三条高,且相交于一点,这一点叫做三角形的垂心;(3)三角形的三条高:(ⅰ)锐角三角形的三条高在三角形内部,三条高的交点也在三角形内部;(ⅱ)钝角三角形有两条高在三角形的外部,且三条高的交点在三角形的外部;(ⅲ)直角三角形三条高的交点是直角的顶点.2、三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.三角形的中线的数学语言:如下图,AD 是ΔABC 的中线或AD 是ΔA BC 的BC 边上的中线或BD =CD =21BC.要点诠释:(1)三角形的中线是线段;(2)三角形三条中线全在三角形内部;(3)三角形三条中线交于三角形内部一点,这一点叫三角形的重心;(4)中线把三角形分成面积相等的两个三角形.3、三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线的数学语言:如下图,AD 是ΔABC 的角平分线,或∠BAD=∠CAD 且点D 在BC 上.注意:AD 是ΔABC 的角平分线 ∠BAD=∠DAC=21∠B AC (或∠BAC=2∠BAD=2∠DAC) . 要点诠释:(1)三角形的角平分线是线段;(2)一个三角形有三条角平分线,并且都在三角形的内部;(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;(4)可以用量角器或圆规画三角形的角平分线.要点四、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.【典型例题】类型一、三角形的定义及表示1.如图所示.(1)图中共有多少个三角形?并把它们写出来;(2)线段AE是哪些三角形的边?(3)∠B是哪些三角形的角?【思路点拨】在(1)问中数三角形的个数时,应按一定规律去找,这样才会不重、不漏地找出所有的三角形;在(2)问中,突破口在于由三角形定义知,除了A、E再找一个第三点,使这点不在AE上,便可得到以AE为边的三角形;(3)问的突破口是∠B一定是以B为一个顶点组成的三角形中.【答案与解析】解:(1)图中共有6个三角形,它们是△ABD,△ABE,△ABC,△ADE,△ADC,△AEC.(2)线段AE分别为△ABE,△ADE,△ACE的边.(3)∠B分别为△ABD,△ABE,△ABC的角.【总结升华】在数三角形的个数时一定要按照一定的顺序进行,做到不重不漏.举一反三:【变式】如图,,以A为顶点的三角形有几个?用符号表示这些三角形.【答案】3个,分别是△EAB, △BAC, △CAD.类型二、三角形的三边关系2. 三根木条的长度如图所示,能组成三角形的是( )【答案】D.【解析】要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.A、B、C三个选项中,较短两边之和小于或等于第三边.故不能组成三角形.D选项中,2cm+3cm>4cm.故能够组成三角形.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:①判断出较长的一边;②看较短的两边之和是否大于较长的一边,大于则能够成三角形,不大于则不能够成三角形.【高清课堂:与三角形有关的线段 例1】举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.【答案】(1)能; (2)不能; (3)能.3.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______.【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7, 即5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b.举一反三:【变式】(2015春•盱眙县期中)四边形ABCD 是任意四边形,AC 与BD 交点O .求证:AC+BD >(AB+BC+CD+DA ).【答案】证明:∵在△OAB 中OA+OB >AB在△OAD 中有OA+OD >AD ,在△ODC 中有OD+OC >CD ,在△OBC 中有OB+OC >BC ,∴OA+OB+OA+OD+OD+OC+OC+OB >AB+BC+CD+DA即2(AC+BD )>AB+BC+CD+DA ,即AC+BD >(AB+BC+CD+DA ).类型三、三角形中重要线段4. (2016春•江阴市月考)如图,AD ⊥BC 于点D ,GC ⊥BC 于点C ,CF ⊥AB 于点F ,下列关于高的说法中错误的是( )A .△ABC 中,AD 是BC 边上的高B .△GBC 中,CF 是BG 边上的高C .△ABC 中,GC 是BC 边上的高D .△GBC 中,GC 是BC 边上的高【思路点拨】根据三角形的一个顶点到对边的垂线段叫做三角形的高对各选项分析判断后利用排除法求解.【答案与解析】解:A 、△ABC 中,AD 是BC 边上的高正确,故本选项错误;B 、△GBC 中,CF 是BG 边上的高正确,故本选项错误;C 、△ABC 中,GC 是BC 边上的高错误,故本选项正确;D 、△GBC 中,GC 是BC 边上的高正确,故本选项错误.故选C .【总结升华】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,是基础题,熟记概念是解题的关键.举一反三:【变式】(2015•长沙)如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .【答案】A . 5.如图所示,CD 为△ABC 的AB 边上的中线,△BCD 的周长比△ACD 的周长大3cm ,BC =8cm ,求边AC 的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD =BD ,②△BCD 的周长比△ACD 的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm ,故有:BC+CD+BD-(AC+CD+AD)=3.又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3.又∵ BC =8,∴ AC =5.答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法.举一反三:【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1.类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.与三角形有关的线段(基础)巩固练习【巩固练习】一、选择题1.(2016•西宁)下列每组数分别是三根木棒的长度,能用他们摆成三角形的是( ).A.3cm ,4cm,8cm B.8cm,7cm,15cmC.5cm ,6cm,11cm D.13cm ,12cm,20cm2.如图所示的图形中,三角形的个数共有( ).A.1个 B.2个 C.3个 D.4个3.(2015春•常州期中)如果三角形的两边长分别为4和5,第三边的长是整数,而且是奇数,则第三边的长可以是()A. 6 B. 7 C. 8 D. 94.为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( ).A.5m B.15m C.20m D.28m5.三角形的角平分线、中线和高都是( ).A.直线 B.线段 C.射线 D.以上答案都不对6.下列说法不正确的是( ).A.三角形的中线在三角形的内部 B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部 D.三角形必有一高线在三角形的内部7.如图,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM的面积,则S1和S2的大小关系是( ).A.S1>S2 B.S1<S2 C.S1=S2 D.以上三种情况都有可能8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( ).A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短二、填空题9.(2016•金平区一模)如图,自行车的三角形支架,这是利用三角形具有________性.10.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________.11. 已知等腰三角形的两边分别为4cm和7cm,则这个三角形的周长为________.12. 如图,AD是△ABC的角平分线,则∠______=∠______=12∠_______;BE是△ABC的中线,则_____=_____=12____ ;CF是△ABC的高,则∠________=∠________=90°,CF________AB.13. 如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.14.(2015春•焦作校级期中)AD是△ABC的边BC上的中线,AB=3,AC=4,则中线AD的取值范围是_____________.三、解答题15.判断下列所给的三条线段是否能围成三角形?(1)5cm,5cm,a cm(0<a<10);(2)a+1,a+2,a+3;(3)三条线段之比为2:3:5.16.如图,在△ABC中,∠BAD=∠CAD,AE=CE,AG⊥BC,AD与BE相交于点F,试指出AD、AF分别是哪两个三角形的角平分线,BE、DE分别是哪两个三角形的中线?AG是哪些三角形的高?17.(2014春•苏州期末)如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.18.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题1. 【答案】D.2. 【答案】C;【解析】三个三角形:△ABC, △ACD, △ABD.3. 【答案】B;【解析】解:由题意,令第三边为x,则5﹣4<x<5+4,即1<x<9,∵第三边长为奇数,∴第三边长是3或5或7.∴三角形的第三边长可以为7.故选B.4. 【答案】D;【解析】因为第三边满足:|另两边之差|<第三边<另两边之和,故|6-12<AB<16+12 即4<AB<28故选D.5. 【答案】B.6. 【答案】C;【解析】三角形的三条高线不一定都在三角形内部.7. 【答案】C;【解析】中线把三角形分成面积相等的两个三角形.8. 【答案】A.二、填空题9. 【答案】稳定.10.【答案】5 cm或7 cm;【解析】三角形三边关系的应用.11.【答案】15cm或18cm;【解析】按腰为4 cm或7 cm分类讨论.12.【答案】BAD CAD BAC;AE CE AC;AFC BFC ⊥.13.【答案】15cm2,30cm2;【解析】S△ABE=S△A CE=15 cm2,S△AB C=2 S△ABE=30 cm2.14.【答案】解:延长AD至E,使DE=AD,连接CE.∵BD=CD,∠ADB=∠EDC,AD=DE,∴△ABD≌△ECD,∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即1<2AD<7,<AD<.故答案为:<AD<.三、解答题15.【解析】解:(1)5+5=10>a(0<a<10),且5+a>5,所以能围成三角形;(2)当-1<a<0时,因为a+1+a+2=2a+3<a+3,所以此时不能围成三角形,当a=0时,因为a+1+a+2=2a+3=3,而a+3=3,所以a+1+a+2=a+3,所以此时不能围成三角形.当a >0时,因为a+1+a+2=2a+3>a+3.所以此时能围成三角形.(3)因为三条线段之比为2:3:5,则可设三条线段的长分别是2k,3k,5k,则2k+3k=5k不满足三角形三边关系.所以不能围成三角形.16.【解析】解:AD、AF分别是△ABC,△ABE的角平分线.BE、DE分别是△ABC,△ADC的中线,AG是△ABC,△ABD,△ACD,△ABG,△ACG,△ADG的高.17.【解析】解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15﹣6﹣5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21﹣6﹣8=7cm.故AC长为7cm.18.【解析】解:如图。

八年级数学上册 11.1《与三角形有关的线段》学案(新版)新人教版

八年级数学上册 11.1《与三角形有关的线段》学案(新版)新人教版

八年级数学上册 11.1《与三角形有关的线段》学案(新版)新人教版11、1、1 三角形的边(一)学习目标1、认识三角形,能用符号语言表示三角形,并把三角形分类;2、知道三角形三边不等的关系;3、懂得判断三条线段能否构成一个三角形的方法,并能用于解决有关的问题。

(二)学习重点知道三角形三边不等关系。

(三)学习难点判断三条线段能否构成一个三角形的方法。

(四)课前预习1、如图,图中共个三角形,分别是;以AB为边的三角形有;以AD为边的三角形有、2、如图所示,图中含∠A的所有三角形有个,它们分别是是:、3、下列长度的线段不能组成三角形的是()A、5,3,3B、6,3,8C、6,8,10D、9,4,54、为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么A,B间的距离不可能是( )A、5 mB、15mC、20 mD、28 m5、等腰三角形的周长为16,(1)其一边长为6,则另两边为;(2)其一边长为4,则另两边为、(五)疑惑摘要预习之后,你还有哪些没有弄清的问题,请记下来,课堂上我们共同探讨。

典型例题例1、(1)图中有几个三角形?用符号表示这些三角形、(2)以AB为边的三角形有哪些?(3)以E为顶点的三角形有哪些?(4)以∠D为角的三角形有哪些?例2、下列长度的三条线段能否组成三角形?为什么?(1)3,4,8;(2)5,6,11;(3)5,6,10课后作业一、选择题1、若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有()A、2对B、3对C、4对D、6对2、如果以4cm长的线段为底组成一个等腰三角形,腰长的取值范围是()A、>4cmB、>2cmC、≥4cmD、≥2cm3、已知三角形的三边长分别为2,,13,若为正整数,则这样的三角形个数为()A、2B、3C、5D、134、ABC的三边分别为,且,那么ABC为()A、不等边三角形B、等边三角形C、等腰三角形D、锐角三角形二、填空题5、有四根木条,长度分别是12cm、10cm、8cm、4cm,选其中三根组成三角形,能组成三角形的个数是个、6、△ABC的边长均为整数,且最大边为4,那么这样的三角形共有个、7、已知线段3cm,5cm,cm,为偶数,以3,5,为边能组成个三角形、8、若三角形的三条边长分别是3cm,5cm,cm,则这个三角形的最长边的取值范围为、三、解答题9、一个三角形有两条边相等,周长为20cm,三角形的一边长6cm,求其他两边长、10、已知是△ABC的三边长,化简、11、如图,O为△ABC内部任意一点,求证:OA+OB+OC>(AB+BC+AC)、四、拓展提高已知一个等腰三角形的三边长分别为,,,求这个等腰三角形的周长、11、1、2 三角形的高、中线、角平分线(一)学习目标1、认识并会画出三角形的高线,利用其解决相关问题;2、认识并会画出三角形的中线,利用其解决相关问题;3、认识并会画出三角形的角平分线,利用其解决相关问题。

人教版八年级上册11.1《与三角形有关的线段》说课稿

人教版八年级上册11.1《与三角形有关的线段》说课稿
2.多媒体资源:PPT、几何画板等,展示动态的几何图形和性质,增强学生的空间想象能力。
3.技术工具:网络资源、在线学习平台等,提供丰富的学习资料,拓展学生的学习视野。
它们在教学中的作用主要有:
1.直观展示几何图形和性质,降低学生的理解难度。
2.提供丰富的学习资源,满足学生的个性化学习需求。
3.创设生动、有趣的学习情境,激发学生的学习兴趣。
人教版八年级上册11.1《与三角形有关的线段》说课稿
一、教材分析
(一)内容概述
本节课选自人教版八年级上册11.1《与三角形有关的线段》,它是整个课程体系中几何部分的重要内容,主要介绍了三角形的中线、高线、角平分线等基本概念及其性质。这部分内容是对三角形知识的深入探究,旨在帮助学生巩固对三角形基本概念的理解,并为后续学习相似三角形、解直角三角形等知识打下基础。
(二)新知讲授
在新知讲授阶段,我将采用以下步骤逐步呈现知识点,引导学生深入理解:
1.通过动态PPT或几何画板展示三角形的中线、高线、角平分线的定义和性质,让学生直观地理解这些概念。
2.结合实际例题,讲解中线、高线、角平分线的判定方法和应用,让学生在具体情境中掌握知识。
3.分步骤演示如何准确地画出三角形的中线、高线、角平分线,并指导学生进行动手操作,加深对知识点的理解。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.基础练习:布置一些基本的画图题目,如画出给定三角形的中线、高线、角平分线,让学生独立完成。
2.提高练习:设计一些综合性的题目,让学生运用所学知识解决实际问题,如求三角形的面积、判断三角形的类型等。
3.小组合作活动:组织小组讨论,让学生共同探究与三角形有关的线段在生活中的应用,培养学生的团队合作能力和创新思维。

八年级数学上册三角形(与三角形有关的线段专项小练习)(后附详细答案)

八年级数学上册三角形(与三角形有关的线段专项小练习)(后附详细答案)

一、三角形的概念及分类1、如图1,在∆ABC中,∠A的对边是:;在∆ABD中,∠A的对是。

2、如图2,以BD为边的三角形是;以∠DAC为一个内角的三角形是;∆ADE的三个内角分别是:。

3、若一个三角形三边长的比为2:3:4,周长为27cm,则这个三角形三边长分别为:。

4、已知一个三角形的两边长为2和8,那么第三条边a的长度的取值范围为:。

5、若一个等腰三角形的两边长分别为3和8,则它的周长为;若一个三角形的两边长分别为3和4,则它的周长为。

6、若a、b、c是∆ABC三边的长,化简|a−b−c|+|b−a−c|-|c−a+b|.(AB+BC+AC)7、如图3,已知P是∆ABC内一点,试说明PA+PB+PC>12一、三角形的概念及分类1、如图1,在∆ABC中,∠A的对边是:BC;在∆ABD中,∠A的对是BD。

2、如图2,以BD为边的三角形是∆ABD;以∠DAC为一个内角的三角形是∆DAC;∆ADE的三个内角分别是:∠ADE,∠DEA,∠EAD。

3、若一个三角形三边长的比为2:3:4,周长为27cm,则这个三角形三边长分别为:6cm,9cm,12cm。

4、已知一个三角形的两边长为2和8,那么第三条边a的长度的取值范围为:6<a<10。

5、若一个等腰三角形的两边长分别为3和8,则它的周长为19;若一个三角形的两边长分别为3和4,则它的周长为10或11。

6、若a、b、c是∆ABC三边的长,化简|a−b−c|+|b−a−c|-|c−a+b|.解: a、b、c是∆ABC三边的长∴ a<b+c,b<a+c ,c>a−b∴ a-b-c<0 ,b−a−c<0 ,c−a+b>0∴|a−b−c|+|b−a−c|-|c−a+b|.=-( a-b-c)-( b−a−c)-( c−a+b)=-a+b+c-b+a+c-c+a-b=a-b+c7、如图3,已知P是∆ABC内一点,试说明PA+PB+PC>1(AB+BC+AC)2解:根据三角形的两边之和大于第三边可得:在∆ABP中:PA+PB>AB ①在∆BPC中:PB+PC>BC ②在∆APC中:PA+PC>AC ③①+②+ ③得PA+PB+ PB+PC+ PA+ PC>AB+ BC+ AC合并得:2(PA+PB+PC)>AB+ BC+ AC即: PA+PB+PC>1(AB+BC+AC)2。

八年级数学上册与三角形有关的线段

八年级数学上册与三角形有关的线段

八年级数学上册与三角形有关的线段Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】b acA BC 11.1与三角形有关的线段习题一、基础梳理1.三角形定义:由不在的三条线段,首尾所组成的图形叫做三角形;2.三角形的表示:如图1所示,顶点是A 、B 、C 的三角形记作,三角形的三边3.三角形,每一个内角都90○; 按角分 三角形,有一个内角90○;三角形,有一个内角90○;注:等腰三角形是条边相等的三角形;等边三角形是条边相等的三角形。

那么等边三角形是否属于等腰三角形呢?。

三角形,三边; 按边分 三角形两边;三边;(三角形)二、练一练1、图中有个三角形?分别是:。

2、图中以E 为顶点的三角形是:。

3、图中以∠D 为角的三角形是:。

4、图中以AB 为边的三角形是:。

三、议一议右图中由A 点至B 点,有条路线。

那条路线最近?根据是: 这样三角形的三边之间存在着这样的不等关系: 于是有:(得出的结论)。

新知运用:下列长度的三条线段能否组成三角形?①3,4,11()②2,5,6()③3,5,8() 四、(学习教材P64例子,仿照例子再完成下面的习题。

) 例1用一条长为18cm 的细绳围成一个等腰三角形。

(1) 如果腰长是底边的2倍,那么各边的长是多少? (2) 能围成有一边唱为4cm 的等腰三角形吗为什么 (3)练习:一个等腰三角形的周长为28cm.①已知腰长是底边长的3倍,求各边的长;②已知其中一边的长为6cm,求其它两边的长.(要有完整的过程) 五、想一想小曾同学有两根长度为40cm 、90cm 的木条,他想钉一个三角形的木框,那他第三根应该如何选择下列的几根木条有适合的吗(40cm ,50cm ,60cm ,90cm ,130cm ) 六、测一测1、图中有个三角形。

以E 为顶点的三角形有。

以AD 为边的三角形有。

2、下列长度的三条线段能组成三角形的是() A 、3,4,8B 、5,6,11C 、2,4,53、等腰三角形一条边等于5,一条边等于6,求它的周长。

2023-2024学年八年级上学期数学:与三形有关的线段(附答案解析)

2023-2024学年八年级上学期数学:与三形有关的线段(附答案解析)

2023-2024学年八年级上数学:第十一章三角形
11.1
与三角形有关的线段
一、选择题
1.下列各组数中,不可能是同一个三角形的三边长的是()
A.3,4,5B.5,7,7C.6,8,10D.5,7,12 2.劳动课上,小莉要用三根木棒首尾相接钉一个三角形框架,现有两根木棒长分别为4cm,5cm,则第三根木棒的长可取()
A.1cm B.4cm C.9cm D.10cm
3.已知三角形的三边长分别为3、5、x,则x的取值范围为()
A.8
x<<
x<<D.28
x>C.08
x<B.2
4.如图所示,工人师傅在砌门时,通常用木条BD固定长方形门框ABCD,使其不变形,这样做的数学根据是()
A.两点确定一条直线B.两点之间,线段最短
C.同角的余角相等D.三角形具有稳定性
5.若三角形的两边长分别为4和7,则该三角形的周长可能为()
A.9B.14C.18D.22
6.下列说法中,正确的是()
第1页(共12页)。

人教版八年级数学上册11.1与三角形有关的线段教学课件

人教版八年级数学上册11.1与三角形有关的线段教学课件
9
【按三个内角大小分】
锐角三角形
三角形 直角三角形
钝角三角形
【按边的相等关系分】
不等边三角形
三角形 等腰三角形
底边和腰不相等 的等腰三角形
等边三角形
10
任意画一个△ABC,假设一只小虫从 点B出发,沿三角形的边爬到点C,它有几
条线路可以选择?各条线路的长一样吗?
三角形两边的和大于第三边
A
AB AC BC
A
A
A
B
D
CB
C
D
B
(1)
(2)
(3)
C
25
(1)如图(1),AD,BE,CF是△ABC的三条 中线,则AB=2 AF ,BD= CD ,AE=1/2 AC . (2)如图(2),AD,BE,CF是△ABC的三条
角平分线,则∠1= ∠2 , ∠3 =1/2 ∠AB,C
∠ACB=2 ∠4.
(1)
(2)
用同样的方法,你能 画出△ABC的另两条 边上的高吗?
A
FE
根据你的观察,三角 形的三条高交于几个 B 点呢?
D
C
三角形的三条高交于一个点.
1直角三角形和钝角三角
形的三条高吗?
AE
B
DC
画钝角三角形的三条高时, 有两个垂足落在边的延长线上.
DA
B
C
18
你能根据自己的观察,画出
形的三条中线吗?
A
A
F
E
F
E
B
D
B
C
D
C
任意三角形的三条中线都在三角形的内部.
21
你能根据自己的观察,画 出三角形的一条角平分线吗?

与三角形有关的线段(课件)八年级数学上册(人教版)

与三角形有关的线段(课件)八年级数学上册(人教版)
1
1
AD×BC= BP×AC.
2
2
24
代入数值,可解得BP= .
5
【点睛】面积法的应用:若涉及两条高求长度,一般需结合面积(但不求出
面积),利用三角形面积的两种不同表示方法列等式求解.
如图所示,AD,CE是△ABC的两条高,AB=6cm,BC=12cm,CE=9cm.
(1)求△ABC的面积;
(2)求AD的长.
第十一章 三角形
11.1 与三角形有关的线段
(11.1.1-11.1.3)
情景引入
在我们日常生活中经常能看到三角形的影子.
减速慢行
注意儿童
前方村庄
11.1.1 三角形的边
三角形的概念
问题1:观察下面三角形的形成过程,说一说什么叫三
角形?
A
定义:由不在同一条直线上的三条
线段首尾顺次相接所组成的图形叫
解:
1
2
1
2
(1)由题意得:△ = AB×CE= ×6×9=27cm2 .
1
2
(2)∵△ = BC×AD,

1
27=
2
×12×AD
解得AD=4.5cm.
思考 已知D是BC的中点,试问△ABD的面积与△ADC的面积有何
关系?
连接△ABC的顶点A和它所对的边BC的
中点D,所得线段AD叫做△ABC的边BC
把一条线段分成两条相等的线段的点.
3.角平分线的定义:
一条射线把一个角分成两个相等的角,这条射线叫做这个角
的平分线.
思考 你还记得“过一点画已知直线的垂线”吗?
A
B
思考 如何求△ABC的面积?
D
从△ABC的顶点A向它所对的边BC所在直线画垂线,垂足为D,所

人教版八年级数学上册第十一章《与三角形有关的线段》课时练习题(含答案)

人教版八年级数学上册第十一章《与三角形有关的线段》课时练习题(含答案)

人教版八年级数学上册第十一章《与三角形有关的线段》课时练习题(含答案)一、单选题1.已知ABC 中,D 、E 分别是边AB 、AC 上的点,连接DE 、BE 、DC ,下列各式中正确的是( ).A .ADE ABC S AD S AB =△△ B .ADE ABC S AE S AC =△△ C .ADC ABC S AD S AB =△△ D .ADE EDC S AE S AC=△△ 2.平面内,将长分别为1,5,1,1,d 的线段,顺次首尾相接组成凸五边形(如图),则d 可能是( )A .1B .2C .7D .83.下列说法中正确的是( )A .三角形的三条中线必交于一点B .直角三角形只有一条高C .三角形的中线可能在三角形的外部D .三角形的高线都在三角形的内部 4.如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l ,则l 是△ABC 的( )A .中线B .中位线C .高线D .角平分线5.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7B.8C.9D.106.如图,在ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一点,将ACD沿CD翻折后得到CED,边CE交AB于点F.若DEF中有两个角相等,则∠ACD的度数为()A.15°或20°B.20°或30°C.15°或30°D.15°或25°二、填空题7.如图,BE是△ABC的中线,点D是BC边上一点,BD=2CD,BE、AD交于点F,若△ABC 的面积为24,则S△BDF﹣S△AEF等于_____.8.已知三角形三边长分别为2,9,x,若x为偶数,则这样的三角形有___________个.9.周长为30,各边长互不相等且都是整数的三角形共有_______个.--+-+---=______.10.已知a,b,c是ABC的三边长,则b c a a b c a b c三、解答题11.如图,在△ABC中,AE为边BC上的高,点D为边BC上的一点,连接AD.(1)当AD为边BC上的中线时.若AE=4,△ABC的面积为24,求CD的长;(2)当AD为∠BAC的角平分线时.①若∠C =65°,∠B =35°,求∠DAE 的度数;②若∠C -∠B =20°,则∠DAE = °.12.(1)若一个三角形三边分别为1x +,3,4,求x 的取值范围; (2)若一个三角形两边长为6和8,求最长边x 的取值范围.13.在△ABC 中,BC =8,AB =1;(1)若AC 是整数,求AC 的长;(2)已知BD 是△ABC 的中线,若△ABD 的周长为17,求△BCD 的周长考答案1.C2.C3.A4.D5.C6.C7.48.29.12##十二10.33a b c -+11.(1)6 ;(2)①15°;②10.12.(1)06x <<;(2)814x ≤<13.(1)8(2)24。

八年级数学上册听课记录:第十一章三角形《与三角形有关的线段:三角形的高、中线与角平分线》

八年级数学上册听课记录:第十一章三角形《与三角形有关的线段:三角形的高、中线与角平分线》

新2024秋季八年级人教版数学上册:第十一章三角形《与三角形有关的线段:三角形的稳定性》听课记录教学目标(核心素养)1.1 知识与技能:理解并掌握三角形的高、中线与角平分线的定义及性质,能够准确地在三角形中画出这些线段,并能运用它们解决相关问题。

1.2 思维能力:通过观察、分析、作图等数学活动,发展学生的空间想象能力、逻辑推理能力和问题解决能力。

1.3 情感态度:培养学生对几何图形的审美感,激发探索几何世界的兴趣,增强合作学习的意识。

导入教师行为•教师首先展示一个三角形模型,引导学生观察并思考:“除了三角形的边和角,还有哪些重要的线段与三角形紧密相关?”•接着,教师利用多媒体展示三角形的高、中线与角平分线的动态作图过程,初步引入这三个概念。

学生活动•学生观察三角形模型,思考并尝试回答教师的问题,提出自己对三角形内部线段的初步认识。

•观看多媒体展示,对三角形的高、中线与角平分线产生直观印象。

过程点评•导入环节通过设问和直观展示,有效激发了学生的好奇心和探索欲,为后续学习奠定了良好的基础。

教学过程1. 定义与性质讲解(教师行为与学生活动)1.1 定义讲解•教师分别讲解三角形的高、中线与角平分线的定义,并强调它们在三角形中的位置和作用。

•学生认真听讲,记录关键信息,尝试用自己的话复述这些定义。

1.2 性质探究•教师引导学生探究三角形的高、中线与角平分线的性质,如中线的性质(将三角形分为面积相等的两部分)、角平分线的性质(将相对的对边分为两段,且这两段与这个角的两边的对应成比例)等。

•学生分组讨论,利用图形工具进行作图验证,总结归纳性质。

1.3 示例讲解•教师展示典型例题,如“在三角形中画出某一边上的高、中线与角平分线,并说明其性质”,进行详细讲解。

•学生跟随教师思路,理解解题步骤,尝试独立作图并说明性质。

2. 巩固练习(教师行为与学生活动)•教师分发练习题,要求学生独立完成,题目涉及三角形高、中线与角平分线的识别、作图及性质应用。

八年级数学上册第十一章三角形11.1与三角形有关的线段11.1.1三角形的边

八年级数学上册第十一章三角形11.1与三角形有关的线段11.1.1三角形的边

第十一章 三角形 11.1 与三角形有关的线段 11.1.1 三角形的边学习目标 1.了解三角形的概念,会用符号语言表示三角形. 2.通过具体的实践活动理解三角形三边的不等关系.学习过程 一、自主学习 问题 1:观察下面的图片,你能找到哪些我们熟悉的图形?问题 2:在小学,我们学过三角形,你了解三角形的哪些性质? 二、深化探究 探究 1:观察三角形的构成,探索三角形的概念 问题 1:你能画出一个三角形吗?问题 2:结合你画的三角形,说明三角形是由什么组成的? 问题 3:下面的几个图形都是由三条线段组成的,它们都是三角形吗?问题 4:什么叫三角形?探究 2:自主学习三角形的表示方法及分类 阅读教材第 2 页到第 3 页探究前内容,回答下列问题. 问题 1:如图回答以下问题: (1)在三角形中,什么叫边?什么叫内角?什么叫顶点? (2)三角形有几条边?有几个内角?有几个顶点? (3)如何用符号表示三角形 ABC? (4)如何用小写字母表示三角形 ABC 的三条边?问题 2:如果将三角形分类,按照边的关系分可以分成几类?按照角的关系又如何分类呢?问题 3:如图,找出图中的三角形,用符号表示出来,并指出 AB,AD,CD 分别是哪个三角形的边.探究 3:通过观察实践,理解三角形三边关系 问题 1:任意画一个△ABC,假设有一只小虫从点 B 出发,沿三角形的边爬到点 C,它有几条线路 可以选择?各条线路的长一样吗?问题 2:联系三角形的三边,从问题 1 中你可以得到怎样的结论? 问题 3:用三条长度分别为 5,9,3 的线段能组成一个三角形吗?为什么? 三、练习巩固 练习 1:三角形是指( ) A.由三条线段所组成的封闭图形 B.由不在同一直线上的三条直线首尾顺次相接组成的图形 C.由不在同一直线上的三条线段首尾顺次相接组成的图形 D.由三条线段首尾顺次相接组成的图形 练习 2:图中有几个三角形?用符号表示这些三角形.练习 3.有三根木棒的长度分别为 3 cm,6 cm 和 4 cm,用这些木棒能否围成一个三角形?为什么?练习 4:用一条长 18 cm 的细绳围成一个等腰三角形. (1)如果腰长是底边的 2 倍,那么各边的长是多少? (2)能围成有一边的长为 4 cm 的等腰三角形吗?为什么?四、深化提高 练习 1:下面各组数中作为线段长不能构成三角形的一组是( ) A.0.2,0.6,0.7 B.5k,7k,10k(k>0) C.m-a,m,m+a(m>a,m>0,a>0) D.22,22,33 练习 2:小明想要钉一个三边长都是整数的三角形,现在他只有两根分别长 4 cm 和 5 cm 的木 条,那么第三根木条的长度可以是多少?(写出所有可能结果)练习 3:平面上有四个点 A,B,C,D,用它们作顶点可以组成几个三角形?参考答案 一、自主学习问题 1:三角形、四边形等. 问题 2:三条边;三个内角;具有稳定性;三角形的内角和是 180°. 二、深化探究 探究 1: 问题 1:能 问题 2:三角形是由三条线段组成的. 问题 3:只有第(1)个是三角形,其他的都不是. 问题 4:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 探究 2: 问题 1:组成三角形的三条线段都叫做三角形的边;相邻两边所组成的角叫做三角形的内角,简 称三角形的角;相邻两边的公共端点是三角形的顶点.三角形有三条边、三个内角、三个顶点.三角 形 ABC 用符号表示为△ABC.△ABC 的边 AB 为∠C 所对的边,可以用顶点 C 的小写字母 c 表示,同样, 边 AC 可用 b 表示,边 BC 可用 a 表示. 问题 2:三角形按照“有几条边相等”可以分为:{ 等边三角形 等腰三角形 三角形 不等边三角形也可以按照边的相等关系分为:{ { 不等边三角形等腰三角形底边和腰不相等的等腰三角形 等边三角形三角形三角形按照角的关系可以分为:{直角三角形锐角三角形 三角形 钝角三角形 问题 3:图中共有三个三角形,分别是△ABC,△ABD,△ADC,其中 AB 既是△ABC 的边,也是△ABD 的边,AD 既是△ABD 的边,也是△ADC 的边,CD 是△ADC 的边. 探究 3: 问题 1:小虫从点 B 出发沿三角形的边爬到点 C 有 2 条线路: (1)从 B→C,即线段 BC 的长; (2)从 B→A→C,即线段 BA 与线段 AC 长之和:BA+AC. 经过测量可得 BA+AC>BC,所以这两条线路的长不一样. 根据“两点的所有连线中,线段最短”,说明 BA+AC>BC. 问题 2:三角形两边的和大于第三边. 问题 3:用三条长度分别为 5,9,3 的线段不能组成一个三角形,因为 5+3<9. 三、练习巩固 答案:1.C 2.共有 5 个三角形.分别是:△ABC,△BCD,△BCE,△ABE,△CDE. 3.能,因为 3+4>6. 4.解:(1)设底边长为 x cm,则腰长 2x cm. x+2x+2x=18, 解得 x=3.6. 所以,三边长分别为 3.6 cm,7.2 cm,7.2 cm. (2)因为长 4 cm 的边可能是腰,也可能是底边,所以需要分情况讨论. 如果长 4 cm 的边为底边,设腰长为 x cm,则 4+2x=18, 解得 x=7. 如果长 4 cm 的边为腰,设底边长为 x cm,则 2×4+x=18, 解得 x=10. 因为 4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是 4 cm 的等腰三角形. 由以上讨论可知,可以围成一边长是 4 cm 的等腰三角形. 四、深化提高 练习 1:C 练习 2:解:第三根木条的长度可以是 2 cm,3 cm,4 cm,5 cm,6 cm,7 cm,8 cm. 练习 3:解:由于题中并没有说明这四个点是否在同一条直线上,所以要分情况讨论. (1)四点共线时,不能组成三角形. (2)三点共线时,可以组成三个三角形. (3)任意三点都不共线时,可以组成四个三角形.。

人教版八年级上册数学与三角形有关的线段含答案

人教版八年级上册数学与三角形有关的线段含答案

第十一章三角形11.1与三角形有关的线段专题一三角形个数的确定1.如图,图中三角形的个数为()A.2 B.18 C.19 D.202.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形__________个.3.阅读材料,并填表:在△ABC中,有一点P1,当P1、A、B、C 没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?完成下表:△ABC内点的个数 1 2 3 (100)7构成不重叠的小三角3 5 …形的个数专题二根据三角形的三边不等关系确定未知字母的范围4.三角形的三边分别为3,1-2a,8,则a的取值范围是()A .-6<a <-3B .-5<a <-2C .2<a <5D .a <-5或a >-25. 在△ABC 中,三边长分别为正整数a 、b 、c ,且c ≥b ≥a >0,如果b =4,则这样的三角形共有______个.6.若三角形的三边长分别是2、x 、8,且x 是不等式22x +>123x --的正整数解,试求第三边x 的长.状元笔记【知识要点】1.三角形的三边关系三角形两边的和大于第三边,两边的差小于第三边.2.三角形三条重要线段(1)高:从三角形的顶点向对边所在的直线作垂线,顶点与垂足之间的线段叫做三角形的高.(2)中线:连接三角形的顶点与对边中点的线段叫做三角形的中线.(3)角平分线:三角形内角的平分线与对边相交,顶点与交点之间的线段叫做三角形的角平分线.3.三角形的稳定性三角形具有稳定性.【温馨提示】1.以“是否有边相等”,可以将三角形分为两类:三边都不相等的三角形和等腰三角形.而不是分为三类:三边都不相等的三角形、等腰三角形、等边三角形,等边三角形是等腰三角形的一种.2.三角形的高、中线、角平分线都是线段,而不是直线或射线.【方法技巧】1.根据三角形的三边关系判定三条线段能否组成三角形时,要看两条较短边之和是否大于最长边.2.三角形的中线将三角形分成两个同底等高的三角形,这两个三角形面积相等.参考答案:1.D 解析:线段AB上有5个点,线段AB与点C组成5×(5-1)÷2=10个三角形;同样,线段DE上也有5个点,线段DE与点C组成5×(5-1)÷2=10个三角形,图中三角形的个数为20个.故选D.2.21 解析:根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,若把第一个图形中三角形的个数看作是1=4-3,则第n个图形中,三角形的个数是4n-3.所以当n=6时,原式=21.3.解:填表如下:△ABC内点的个数 1 2 3 (100)7构成不重叠的小三角形的个数3 5 7 (201)5解析:当△ABC内有1个点时,构成不重叠的三角形的个数是3=1×2+1;当△ABC内有2个点时,构成不重叠的三角形的个数是5=2×2+1;参考上面数据可知,三角形的个数与点的个数之间的关系是:三角形内有n个点时,三角形内互不重叠的小三角形的个数是2n+1,故当有3个点时,三角形的个数是3×2+1=7;当有1007个点时,三角形的个数是1007×2+1=2015.4.B 解析:根据题意,得8-3<1-2a<8+3,即5<1-2a<11,解得-5<a<-2.故选B.5.10 解析:∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b.∵b=4,∴a=1,2,3,4.a=1时,c=4;a=2时,c=4或5;a=3时,c=4,5,6;a=4时,c=4,5,6,7.∴这样的三角形共有1+2+3+4=10个.6.解:原不等式可化为3(x+2)>-2(1-2x),解得x<8.∵x是它的正整数解,∴x可取1,2,3,5,6,7.再根据三角形三边关系,得6<x<10,∴x=7.别浪费一分一秒——如何利用零散时间学人们常说,时间是公平的,每个人的一天只有24个小时,所以应该珍惜时间去充实自己。

人教版数学八年级上册第11章第3课11.1与三角形有关的线段(教案)

人教版数学八年级上册第11章第3课11.1与三角形有关的线段(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形线段在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
2.提升逻辑推理能力:在教学过程中,引导学生运用已知性质推导三角形中线、高和角平分线的性质,培养学生的逻辑思维和推理能力。
3.培养数据分析观念:通过解决与三角形有关的实际问题,使学生能够运用所学知识进行数据分析,提高解决实际问题的能力。
4.强化数学运算能力:在学习过程中,使学生熟练掌握三角形相关线段的计算方法,提高数学运算速度和准确性。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形中线、高和角平分线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些线段的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对于三角形的中线、高和角平分线的概念掌握得还算不错。他们在实践活动和小组讨论中表现出了较高的兴趣和参与度。不过,我也注意到几个需要改进的地方。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形的中线、高和角平分线的基本概念。中线是连接三角形一边中点与对角的线段,它等分三角形;高是从三角形的一个顶点垂直于对边的线段,它可以帮助我们计算三角形的高度;角平分线是从三角形的一个顶点出发,将顶角平分的线段,它在几何图形中有着重要的应用。

八年级数学上册第十一章三角形11.1与三角形有关的线段11.1.1三角形的边教学

八年级数学上册第十一章三角形11.1与三角形有关的线段11.1.1三角形的边教学

分 直角三角形
三边都不相等的三角形

边 分 等腰三角形
底边和腰不相等的等腰三角形
等边三角形
12/13/2021
第十六页,共三十一页。
新课讲解( jiǎngjiě)
练一练 下列说法:①等边三角形是等腰三角形;②等腰三角形也可能是直角
三角形;③三角形按边分类可分为等腰三角形、等边三角形和三边(sān biān)
3 下列长度的三条线段(xiànduàn)能组成三角形的是( A )
A.5,6,10
B.5,6,11
C.3,4,8
D.4a,4a,8a(a>0)
12/13/2021
第二十五页,共三十一页。
课堂(kètáng)小结
三 角 形
12/13/2021
概念
表示方法
分类 三边关系
三条线段 不在同一条(yī tiáo)
12/13/2021
第十七页,共三十一页。
新课讲解( jiǎngjiě)
练一练
2 已知一个三角形是等腰三角形,则这个(zhè ge)三角形( D) A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形、直角三角形或钝角三角形
12/13/2021
第十八页,共三十一页。
第二十页,共三十一页。
新课讲解( jiǎngjiě)
知识点3 三角形的三边(sān biān)关系
例题一
用一条长为18 cm的细绳围成一个等腰三角形. (1)如果腰长是底边(dǐ biān)长的2倍,那么各边的长是多少? (2)能围成有一边的长是4 cm的等腰三角形吗?为什么?
(1) 设底边长为x cm,则腰长为2x cm. x+2x+2x = 18. 解得x=3. 6. 所以,三边长分别为3. 6 cm,7.2 cm,7.2 cm.

数学人教版八年级上册《与三角形有关的线段》教学设计

数学人教版八年级上册《与三角形有关的线段》教学设计

11.1《与三角形有关的线段》教学设计教材分析:在学本节以前,学生已经学习了线段、角以及相交线、平行线等知识,他们的空间观念得到了进一步发展。

现在学习三角形的相关知识,就有了更为充实的基础和准备。

通过学习,可以丰富和加深学生对三角形的认识,同时为学习其他图形知识打好基础。

教学目标:知识与能力:认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。

过程与方法:经历度量三角形边长的实践活动中,理解三角形三边不等的关系。

情感态度与价值观:懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。

重难点分析:教学重点:三角形三边关系的探究和归纳三角形边角关系是平面几何中的几何形态问题。

在突出重点时,主要在学生已有知识经验(两点之间线段最短)的基础上,大胆提出猜想:三角形两边之和大于第三边.利用课前准备好的小木棒,让学生动手操作,体验思考、实验和归纳的过程,加深对三边关系的理解和记忆.此外,教学中还可辅以几何画板进行动画演示,对实验过程进行直观的演示.教师在学生小组动手操作过程中进行个别的指导,在动画演示过程中进行讲解,以明确学生的认识.教学难点:三角形三边关系的应用。

三角形的三边关系不仅涉及到几何的重要内容,而且同不等式有机结合,这给学生理解三角形的三边关系带来了很大的难度.学生往往能够记住这些结论,但是在实际应用时,缺乏灵活的分析和判断能力.另通过学生对三角形三边关系的实际例子的分析和操作,实现对三边关系的判断过程的把握,从而提高利用不等关系解决实际问题的能力.教学过程一、创设情境,导入新课(多媒体图片引入)在小学,我们认识了三角形,三角形看起来简单,但在工农业生产和日常生活中却有许多用处.一起来欣赏图片(古埃及金字塔,香港中银大厦,交通标志,等等),处处都有三角形的形象。

图片欣赏完后,请同学们举例说明在日常生活中见到什么物体上有三角形?(设计意图:以生活中的实例导入,学生有熟悉感,随后提出问题,易激发学习兴趣,使学生能快速进入到学习情境中去。

人教初中数学课标八年级上册 第十一章 11.1与三角形有关的线段(第二课时) 教案

人教初中数学课标八年级上册 第十一章 11.1与三角形有关的线段(第二课时) 教案

11.1与三角形有关的线段(第二课时)一、内容和内容解析1.内容三角形的高、中线与角平分线,三角形的稳定性2.内容解析三角形的高、中线与角平分线是三角形内部的三条重要线段,也是“图形与几何”必备的知识基础。

既是对前面学过的线段的中点、垂线及角平分线等知识的内化,又为后面学习全等三角形及相似三角形等知识奠定了基础。

理解三角形的高、中线与角平分线的概念到用几何语言精确表述,这是学生在几何学习上的一个深入.基于以上分析,确定本节课的教学重点:理解三角形的高、中线与角平分线的概念,会用工具准确画出三角形的高、中线与角平分线。

二、目标和目标解析1.目标(1)理解三角形的高、中线与角平分线的概念,了解三角形的稳定性。

(2)会用工具准确画出三角形的高、中线与角平分线。

2.目标解析达成目标(1)的标志是:学生通过画图操作理解三角形的高、中线与角平分线的概念,并能用几何语言表述;通过教具展示感受三角形的稳定性。

达成目标(2)的标志是:能在具体的图形中利用工具作出三角形的高线、中线、角平分线。

三、教学问题诊断分析画钝角三角形的高时,有两个垂足落在边的延长线上,对于图形的这种特点学生不太适应,教学时可结合过线段外一点画已知线段的垂线(垂足在线段的延长线上)的知识帮助学生理解。

基于以上分析,确定本节课的教学难点是:画钝角三角形的高。

四、教学过程设计1.质疑展示,操作验证问题1.通过画三角形的中线,你有什么发现?师生活动:学生回答,三角形有三条中线。

追问1.教材中以三角形一条边上的中线为例介绍了三角形的中线,结合作图你能用语言描述三角形中线的定义吗?师生活动:学生通过讨论概括三角形中线的定义,教师加以完善。

设计意图:让学生通过亲自作图,先从形象上认识三角形中线的定义,然后用语言归纳出中线定义,这样做,不仅容易理解定义,同时也培养了他们的语言表达能力。

追问2.除此之外你还有什么发现?师生活动:学生回答,三角形三条中线交于一点追问3.在作图过程中三角形的三条中线都交于一点吗?师生活动:学生交流,提出质疑,教师提供技术帮助,学生亲自操作验证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b a c
A B C
11.1与三角形有关的线段习题
一、基础梳理
1.三角形定义:由不在 的三条线段,首尾 所组成的图形叫做三角形;
练习:根据你的理解,下列的图形是三角形有哪些?
2.三角形的表示:如图1所示,顶点是A 、B 、C 的三角形记作 ,三角形的三边
分别是 ,三个顶点是 ,三个内角是 ;
3.三角形的分类:
⎪⎩
⎪⎨⎧
三角形,每一个内角都 90○; 按角分 三角形,有一个内角 90○;
三角形,有一个内角 90○; 注:等腰三角形是 条边相等的三角形;等边三角形是 条边相等的三角形。

那么等
边三角形是否属于等腰三角形呢? 。



⎧ 三角形,三边 ;
按边分 三角形 ⎩⎨⎧
两边 ; 三边 ;( 三角形) 二、练一练
1、图中有 个三角形?分别是: 。

2、图中以E 为顶点的三角形是: 。

3、 图中以∠D 为角的三角形是: 。

4、图中以AB 为边的三角形是: 。

三、议一议
右图中由A 点至B 点,有 条路线。

那条路线最近? 根据是: 这样三角形的三边之间存在着这样的不等关系: 于是有:(得出的结论) 。

新知运用:下列长度的三条线段能否组成三角形?
① 3,4,11 ( ) ② 2,5,6 ( ) ③ 3,5,8 ( ) 四、(学习教材P64例子,仿照例子再完成下面的习题。


例1 用一条长为18cm 的细绳围成一个等腰三角形。

(1) 如果腰长是底边的2倍,那么各边的长是多少?
(2) 能围成有一边唱为4cm 的等腰三角形吗?为什么?
练习:一个等腰三角形的周长为28cm.①已知腰长是底边长的3倍,求各边的长;
②已知其中一边的长为6cm,求其它两边的长.(要有完整的过程) 五、想一想
小曾同学有两根长度为40cm 、90cm 的木条,他想钉一个三角形的木框,那他第三根应
该如何选择?下列的几根木条有适合的吗?
(40cm ,50cm ,60cm ,90cm ,130 cm )
六、测一测
1、图中有 个三角形。

以E 为顶点的三角形有 。

以AD 为边的三角形有 。

2、下列长度的三条线段能组成三角形的是( )
A 、3,4,8
B 、5,6,11
C 、2,4,5
3、等腰三角形一条边等于5,一条边等于6,求它的周长。

课后检测
1.如图2所示,图中共有三角形个数为( ) A.1个 B.2个 C.3个 D.4个
2.如图3所示,以AB 为边的三角形有 个,分别是 ;以C 为 顶点的三角形有 个,分别是 ;
3.已知三角形的两边长分别为3CM 和8CM ,则此三角形的第三边长可能是( ) A.4CM B.5CM C.6CM D.11CM
4.已知等腰三角形的周长为24,且一边长为4
5.如图5所示,图中一共有 个三角形,分别是
6. (1
)等腰三角形的两边长分别为3和7 (2)有四根木条,分别长为2,3,6,7。

从中选取三根组成一个三角形,则可组成 个
三角形; 7. 如图所示,图中三角形的个数共有()
A .1个
B .2个
C .3 个
D .4个
2.下列三条线段,能组成三角形的是( )
A .3,3,3
B .3,3,6
C .3,2,5
D .3,2,6 8.如果一个三角形的两边为2cm 和7cm ,且第三边为奇数,则这个三角形的周长
是 .
9.一个等腰三角形的两边长分别为2和5,则它的周长为()
A .7
B .9
C .12
D .912或
10.如图,为估计池塘岸边A B 、的距离,小方在池塘的一侧选取一点O ,测得15OA =米,
10OB =米,A B 、间的距离不可能是( ) A .20米 B .15米 C .10米 D .5米
O
A
B
图3C A B 图2B D C
B A
综合练习
例1.一条线段的长为a,若要使3a-l,4a+1,12-a这三条线段组成一个三角形,则a的取值范围______
例2.等腰三角形的周长是12cm,一边比另一边的差是3cm,求三边长分别是多少?
例3.如图,BM是△ABC中AC边上的中线,已知AB=6cm,BC=4cm,那么△ABM与△BCM的周长差是多少?
例4.如图,已知P是△ABC内一点,连结AP,PB,PC, 求证:(1)PA+PB+PC > 2/1 (AB+AC+BC) (2) PA+PB+PC < AB+AC+BC
6已知a,b,c是一个三角形的三条边长,则化简|a-b-c|+|b-a-c|-|c-a+b|
7.在直角坐标系中A(2,0),B(-3,-4),O(0,0),则△AOB的面积为() A.4 B.6 C.8 D.3
8.在△ABC中,D为BC中点,则△ABD和△ACD面积的大小关系为()
A.S△ABD>S△ACD
B.S△ABD<S△ACD
C.S△ABD=S△ACD
D.无法确定
9.已知等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,求这个三角形的腰长。

相关文档
最新文档