(完整版)2质点运动定律习题思考题

合集下载

大学物理习题册及解答(第二版)第二章 质点的运动定律

大学物理习题册及解答(第二版)第二章 质点的运动定律

M
a
mg
N cos θ − mg = 0
则外力
F = (m + M )a = (m + M)gtgθ
由牛顿第三定律,m对M的压力与N大小相等方向相反,数值为:
N = mg / cosθ
2. 一质量为 m的物体,最初静止于x0 处,在力 F= - k/x2 的作用 下沿直线运动,试求出物体在任意位置x处的速度 k 解: Q F = ma= − 2 x
( A ) 2 mv
( B)
( 2mv ) + ( mgπR / v )
2
2
( C) πRmg/v
( D) 0
m
8. 在作匀速转动的水平转台上,与转轴相距R处有一体 积很小的工件A,如图所示.设工件与转台间静摩擦系数 为µ0,若使工件在转台上无滑动,则转台的角速度ω应满 足
( A) ω ≤
(C) ω ≤
=∫
b
= ∫ kdr = k (rb − ra ) a b r b r b W2 = ∫ F2 ⋅ dr = F2 ds = ∫ kds = kS a a ∫
a
a b
r r b F1 ⋅ dr = ∫ F1ds cos θ
a
a
ra
O
F2 S
θ
F1
rb
b
(2) 因F1所作的功与具体路径无关,由质点开末位置确定,而F2作 的功与具体路径有关,所以F1是保守力。
2 2
(2)ω = ω
ccΒιβλιοθήκη N =0ω = g / l cosθ T = mg / cosθ
r r dθ θ r v θ r dθ 2 2 = ∫ (−mRω cos θi − mRω sin θj ) I = ∫ Fdt = ∫ F 0 0 ω ω r r θ = ∫ (−mRω cosθi − mRω sinθj )dθ 0 r r r = −mRω sin θi + mRω cos θj − mRωj π 3π 将 θ = ,π , ,2π 分别带入上式,得到冲量 2 2 r v r v r I 1/ 4圆周 = −mRωi − mRωj I 1/ 2圆周 = −2mRωj v r r v I 3 / 4圆周 = mRωi − mRωj I 整圆周 = 0

练习册第2章《质点力学的运动定律守恒定律》答案(1)

练习册第2章《质点力学的运动定律守恒定律》答案(1)

练习册第2章《质点⼒学的运动定律守恒定律》答案(1)第2章质点⼒学的运动定律守恒定律⼀、选择题1(C),2(E),3(D),4(C),5(C),6(B),7(C),8(C),9(B),10(C),11(D),12(A),13(D)⼆、填空题(1). ω2=12rad/s ,A=0.027J (2). 290J (3). 3J (4). 18 N ·s(5). j t i t 2323+ (SI) (6). 16 N ·s , 176 J (7). 16 N ·s ,176 J (8). M k l /0,Mknm M Ml +0(9). j i5- (10).2m v ,指向正西南或南偏西45°三、计算题1. 已知⼀质量为m 的质点在x 轴上运动,质点只受到指向原点的引⼒的作⽤,引⼒⼤⼩与质点离原点的距离x 的平⽅成反⽐,即2/x k f -=,k 是⽐例常数.设质点在 x =A 时的速度为零,求质点在x =A /4处的速度的⼤⼩.解:根据⽜顿第⼆定律x m t x x m t m xk f d d d d d d d d 2vv v v =?==-= ∴ ??-=-=4/202d d ,d d A Ax mx kmx x k v v v v vk mAA A m k 3)14(212=-=v ∴ )/(6mA k =v2. 质量为m 的⼦弹以速度v 0⽔平射⼊沙⼟中,设⼦弹所受阻⼒与速度反向,⼤⼩与速度成正⽐,⽐例系数为K,忽略⼦弹的重⼒,求:(1) ⼦弹射⼊沙⼟后,速度随时间变化的函数式; (2) ⼦弹进⼊沙⼟的最⼤深度.解:(1) ⼦弹进⼊沙⼟后受⼒为-Kv ,由⽜顿定律tmK d d vv =- ∴ ??=-=-v v v v vv 0d d ,d d 0t t m K t m K∴ mKt /0e -=v v(2) 求最⼤深度解法⼀: t xd d =vt x mKt d ed /0-=vt x m Kt txd e d /000-?=v∴ )e 1()/(/0mKt K m x --=vK m x /0m ax v =解法⼆: x m t x x m t m K d d )d d )(d d (d d vvv v v ===- ∴ v d K mdx -=v v d d 000m a x ??-=K mx x∴ K m x /0m ax v =3. ⼀物体按规律x =ct 3在流体媒质中作直线运动,式中c 为常量,t 为时间.设媒质对物体的阻⼒正⽐于速度的平⽅,阻⼒系数为k ,试求物体由x =0运动到x =l 时,阻⼒所作的功.解:由x =ct 3可求物体的速度: 23d d ct tx==v 物体受到的阻⼒⼤⼩为: 343242299x kc t kc k f ===v ⼒对物体所作的功为:=W W d =-lx x kc 03432d 9 =7273732l kc -4. ⼀质量为2 kg 的质点,在xy 平⾯上运动,受到外⼒j t i F 2244-= (SI)的作⽤,t = 0时,它的初速度为j i430+=v (SI),求t = 1 s 时质点的速度及受到的法向⼒n F .解: j t i m F a 2122/-==t a d /d v = ∴ t j t i d )122(d 2-=v=?vv vd ?-t t j t i 02d )122(∴ j t i t 3042-=-v vj t i t j t i t )44()23(42330-++=-+=v v当t = 1 s 时, i51=v 沿x 轴故这时, j a a y n12-==j a m F n n24-== (SI)5.⼀辆⽔平运动的装煤车,以速率v 0从煤⽃下⾯通过,每单位时间内有质量为m 0的煤卸⼊煤车.如果煤车的速率保持不变,煤车与钢轨间摩擦忽略不计,试求:(1) 牵引煤车的⼒的⼤⼩;(2) 牵引煤车所需功率的⼤⼩;(3) 牵引煤车所提供的能量中有多少转化为煤的动能?其余部分⽤于何处?解:(1) 以煤车和?t 时间内卸⼊车内的煤为研究对象,⽔平⽅向煤车受牵引⼒F 的作⽤,由动量定理: 000)(v v M t m M t F -+=?? 求出: 00v m F = (2) 2000v v m F P ==(3) 单位时间内煤获得的动能: 2021v m E K =单位时间内牵引煤车提供的能量为 P E ===21/E E K 50%即有50%的能量转变为煤的动能,其余部分⽤于在拖动煤时不可避免的滑动摩擦损耗.6.⼀链条总长为l ,质量为m ,放在桌⾯上,并使其部分下垂,下垂⼀段的长度为a .设链条与桌⾯之间的滑动摩擦系数为µ.令链条由静⽌开始运动,则(1)到链条刚离开桌⾯的过程中,摩擦⼒对链条作了多少功?(2)链条刚离开桌⾯时的速率是多少?解:(1)建⽴如图坐标.某⼀时刻桌⾯上全链条长为y ,则摩擦⼒⼤⼩为 g lym f µ=摩擦⼒的功 ??--==0d d al al f y gy lmy f W µ=22al y lmg-µ =2)(2a l lmg--µ(2)以链条为对象,应⽤质点的动能定理 ∑W =222121v v m m - 其中 ∑W = W P +W f ,v 0 = 0 W P =?la x P d =la l mg x x l mg la 2)(d 22-=? 由上问知 la l mg W f 2)(2--=µal -a-a1)(22)(v m a l l mg l a l mg =---µ得 []21222)()(a l a l lg ---=µv7. 如图所⽰,在中间有⼀⼩孔O 的⽔平光滑桌⾯上放置⼀个⽤绳⼦连结的、质量m = 4 kg 的⼩块物体.绳的另⼀端穿过⼩孔下垂且⽤⼿拉住.开始时物体以半径R 0 = 0.5 m 在桌⾯上转动,其线速度是4 m/s .现将绳缓慢地匀速下拉以缩短物体的转动半径.⽽绳最多只能承受 600 N 的拉⼒.求绳刚被拉断时,物体的转动半径R 等于多少?解:物体因受合外⼒矩为零,故⾓动量守恒.设开始时和绳被拉断时物体的切向速度、转动惯量、⾓速度分别为v 0、J 0、ω0和v 、J 、ω.则ωωJ J =00 ①因绳是缓慢地下拉,物体运动可始终视为圆周运动.①式可写成R mR R mR //20020v v =整理后得: v v /00R R =②物体作圆周运动的向⼼⼒由绳的张⼒提供 R m F /2v = 1分再由②式可得: 3/12020)/(F mR R v =当F = 600 N 时,绳刚好被拉断,此时物体的转动半径为R = 0.3 m8.设两个粒⼦之间相互作⽤⼒是排斥⼒,其⼤⼩与粒⼦间距离r 的函数关系为3r k f =,k 为正值常量,试求这两个粒⼦相距为r 时的势能.(设相互作⽤⼒为零的地⽅势能为零.)解:两个粒⼦的相互作⽤⼒ 3r k f =已知f =0即r =∞处为势能零点, 则势能∞∞∞=?==r r P P r r kW E d d 3r f)2(2r k =1. 汽车发动机内⽓体对活塞的推⼒以及各种传动部件之间的作⽤⼒能使汽车前进吗?使汽车前进的⼒是什么⼒?参考解答:汽车发动机内⽓体对活塞的推⼒以及各种传动部件之间的作⽤⼒都是汽车系统的内⼒,内⼒只会改变内部各质点的运动状态,不会改变系统的总动量,所以不能使汽车前进。

力学答案 第二章 质点运动学(思考题)

力学答案 第二章 质点运动学(思考题)

第二章 质点运动学思考题2.1质点位置矢量方向不变,质点是否作直线运动?质点沿直线运动,其位置矢量是否一定方向不变?解答:质点位置矢量方向不变,质点沿直线运动。

质点沿直线运动,质点位置矢量方向不一定不变。

如图所示。

2.2若质点的速度矢量的方向不变仅大小改变,质点作何种运动?速度矢量的大小不变而方向改变作何种运动?解答:质点的速度矢量的方向不变仅大小改变,质点作变速率直线运动;速度矢量的大小不变而方向改变作匀速率曲线运动。

2.3“瞬时速度就是很短时间内的平均速度”这一说法是否正确?如何正确表述瞬时速度的定义?我们是否能按照瞬时速度的定义通过实验测量瞬时速度? 解答:“瞬时速度就是很短时间内的平均速度”这一说法不正确。

因为瞬时速度与一定的时刻相对应。

瞬时速度的定义是质点在t 时刻的瞬时速度等于t 至t+△t 时间内平均速度t /r ∆∆,当△t →0时的极限,即dt r d t r lim v 0t=∆∆=→∆。

很难直接测量,在技术上常常用很短时间内的平均速度近似地表示瞬时速度,随着技术的进步,测量可以达到很高的精确度。

2.4试就质点直线运动论证:加速度与速度同号时,质点作加速运动;加速度与速度反号时,作减速运动。

是否可能存在这样的直线运动,质点速度逐渐增加但加速度却在减小?解答:,dt dv t v lim a xx 0t x =∆∆=→∆加速度与速度同号时,就是说,0a ,0v 0a ,0v x x x x <<>>或以0a ,0v x x >>为例,速度为正表示速度的方向与x 轴正向相同,加速度为正表示速度的增量为正,t t ∆+时刻的速度大于t 时刻的速度,质点作加速运动。

同理可说明,0a ,0v x x <<质点作加速运动。

质点在作直线运动中速度逐渐增加但加速度却在减小是可能存在的。

例如初速度为x 0v ,加速度为t 6a x -=,速度为20t0x 0x t21t 6vdt )t 6(v v -+=-+=⎰,,0v ,0a 6t x x >><时,速度逐渐增加。

质点力学思考题解答

质点力学思考题解答

第一章 质点力学1.1平均速度与瞬时速度有何不同?在上面情况下,它们一致?答:平均速度是运动质点在某一时间间隔t t t ∆+→内位矢大小和方向改变的平均快慢速度,其方向沿位移的方向即沿t ∆对应的轨迹割线方向;瞬时速度是运动质点在某时刻或某未知位矢和方向变化的快慢程度其方向沿该时刻质点所在点轨迹的切线方向。

在0→∆t 的极限情况,二者一致,在匀速直线运动中二者也一致的。

1.2 在极坐标系中,r v r =,θθ r v =.为什么2θ r r a r -=而非r ?为什么θθr r a 20+=而非θθ r r +?你能说出r a 中的2θ r -和θa 中另一个θ r 出现的原因和它们的物理意义吗?答:质点运动时,径向速度r V 和横向速度θV 的大小、方向都改变,而r a 中的r 只反映了rV 本身大小的改变,θa 中的θθr r +只是θV 本身大小的改变。

事实上,横向速度θV 方向的改变会引起径向速度r V 大小大改变,2θ r -就是反映这种改变的加速度分量;经向速度r V 的方向改变也引起θV 的大小改变,另一个θ r 即为反映这种改变的加速度分量,故2θ r r a r -=,.2θθθ r r a +=。

这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况1.3 在内禀方程中,n a 是怎样产生的?为什么在空间曲线中它总沿着主法线方向?当质点沿空间运动时,副法线方向的加速度b a 等于零,而作用力在副法线方向的分量b F 一般不等于零,这是不是违背了牛顿运动定律呢?答:内禀方程中,n a 是由于速度方向的改变产生的,在空间曲线中,由于a 恒位于密切面内,速度v 总是沿轨迹的切线方向,而n a 垂直于v 指向曲线凹陷一方,故n a 总是沿助法线方向。

质点沿空间曲线运动时,0,0≠=b b F a z 何与牛顿运动定律不矛盾。

因质点除受作用力F ,还受到被动的约反作用力R ,二者在副法线方向的分量成平衡力0=+b b R F ,故0=b a 符合牛顿运动率。

质点力学习题与参考解答

质点力学习题与参考解答

【郑重说明】《理论力学》课程的习题及解答方面的参考书很多,学习者可以通过各种形式阅读与学习,按照学院对教学工作的要求,为了满足学习者使用不同媒体学习的实际需要,通过各种渠道收集、整理了部分习题及参考解答,仅供学习者学习时参考。

由于理论力学的题目解答比较灵活,技巧性也比较强,下面这些解答不一定是最好的方法,也可能会存在不够完善的地方,希望阅读时注意之。

学习理论力学课程更重要的是对物理概念的掌握与理解,学习处理问题的思想与方法,仅盲目的做题目或者阅读现成的答案,很难达到理想的结果。

质点动力学思考题与习题及参考解答思考题(1) 有一质量为m 的珠子, 沿一根置于水平面内的铁丝滑动, 采用自然坐标法描述. 珠子受重力g m W=, 铁丝施与的约束力b Nb n Nn t Nt Ne F e F e F F ++=.t Nt e F 即为滑动摩擦力f F, 设动摩擦因数为μ. 试判断下列各式正误: (1) mg F f μ=; (2) Nb f F F μ= (3)Nn f F F μ=;(4) 22Nb Nnf F F F +=μ(2) 用极坐标系描述单摆的运动. 某甲如思考题(2图(a)规定θ角正向, 得到动力学方程θθsin mg ml -= ; 某乙如思考题(2图(b)规定θ角正向, 则得到θθsin mg ml += . 你认为谁的做法正确?(a) (b)思考题(2图(3) 质量为m 的质点, 由静止开始自高处自由落下. 设空气阻力f F与速度成正比, 比例系数为k . 某甲建立竖直向上的坐标如思考题(3图(a), 得到方程为y k mg y m+-=. 某乙建立竖直向下的坐标如思考题(3图(b), 得到方程为y k mg y m-=.他们列出的方程对吗?(a) (b)思考题(3(4)有人认为: 用极坐标系讨论质点的平面运动时, 如果0≡r F , 则沿径向动量守恒,==rm p r 常量;若0≡θF , 则沿横向动量守恒. 这种看法对吗? (5) 试判断以下二论断是否正确:(1) 若质点对固定点O 的角动量守恒, 则对过O 点的任意固定轴的角动量守恒. (2) 若质点对固定轴的角动量守恒, 则对该轴上任一固定点的角动量守恒.(6) 一质点动量守恒, 它对空间任一固定点的角动量是否守恒? 如质点对空间某一固定点角动量守恒, 该质点动量是否守恒?(7) 当质点做匀速直线运动时, 其动量是否守恒? 角动量是否守恒?(8) 在固定的直角坐标系Oxyz 中, 质量为m 的质点的速度k v j v i v v z y x++=, 所受合力为k F j F i F F z y x ++=. 能否将质点的动能定理r F mv d )21(d 2⋅=向x 轴方向投影而得出分量方程x F mv x x d )21(d 2= 该方程是否正确?思考题解答(1) 仅(4)式正确.(2) 甲正确. 乙错在角度不可以定义为从动线指向定线.(3) 乙的方程正确. 甲错在空气阻力亦应为yk -,y 取负值,y k -取正值. (4) 仅对固定方向才有动量守恒的分量形式. 径向和横向均不是空间固定方向. (5) (1)对;(2)错. (6) 一质点动量守恒,则对空间任一固定点角动量守恒. 质点对空间某一固定点角动量守恒,其动量不一定守恒.(7) 质点作匀速直线运动时,其动量和角动量均守恒.(8) 动能定理是标量方程,不可能投影而得出分量方程. 但xF mv x d )21(d 2=是正确的. 仿照动能定理的导出,用x t v x d d =乘牛顿第二定律的x 分量方程x xF t v m=d d 即可证明.质点动力学习题及参考解答【1】研究自由电子在沿x 轴的振荡电场中的运动. 已知电场强度i t E E)cos(0ϕω+=,ϕω,,0E 为常量. 电子电量为e -, 质量为m . 初始时, 即当0=t 时i x r00=, i v v 00=. 忽略重力及阻力, 求电子的运动学方程.【解】力为时间的函数,积分两次可得)cos(200ϕωω+++=t m eE t V X x ,其中ϕωcos 2000m eE x X -=,ϕωsin 00m eE v V +=.【2】 以很大的初速度0v自地球表面竖直上抛一质点, 设地球无自转并忽略空气阻力, 求质点能达到的最大高度. 已知地球半径为R , 地球表面处重力加速度为g .【解】以地心O 为原点,建立x 轴经抛出点竖直向上. 质点受万有引力沿x 轴负方向. 所以2x GMm xm -= . 因为2R GMmmg =,故g R GM 2=. 故有22x g R x -= . 做变换)2(d d d d d d d d 2x x x x x t x x x x ===,则x x g R x d )2(d 222-= . 积分并用0=t 时R x =,0v x = 定积分常数,得到 )11()(212202R x g R v x -=- . 质点达最大高度时H R x +=,0=x,可求出 1220)21(2--=Rg v g v H .三点讨论:(1)令∞=H ,对应Rg v 20=为第二宇宙速度.(2)若Rg v 220<<,则回到重力场模型所得结果. (3)题中不考虑地球自转及空气阻力,均不大合理,试进一步讨论之.【3】 将质量为m 的质点竖直上抛, 设空气阻力与速度平方成正比, 其大小22gv mk F R =.如上抛初速度为0v , 试证该质点落回抛出点时的速率2201v k v v +=.【解】质点运动微分方程为(Oy 轴竖直向上);上升阶段22y g mk mg y m--=,下降阶段22y g mk mg ym +-=. 【4】向电场强度为E 、磁感应强度为B 的均匀稳定电磁场中入射一电子. 已知B E⊥, 电子初速0v 与E 和B 均垂直, 如题4图所示. 试求电子的运动规律. 设电子电量为e -.题4图【解】令m eB=ω,电子运动微分方程为y xω-=, (1) m eEx y-= ω, (2)0=z . (3)对(2)式求导,利用(1)式得02=+y yω,解出)sin(αω+=t A y . 0=t 时0=y 故0=α,由t A y ωωcos = ,且0=t 时m eBv Ee y0+-= ,故B Bv E A 0+-=,则t B Bv E y ωsin 0+-= . 积分得)cos 1()(20t m eB eB Bv E m y -+-=. 代入(1)式积分可得t m eB eB Bv E m t B E x sin )(20--=.【5】 旋轮线如题5图所示, 可理解为一半径为a 的圆轮在直线上做无滑滚动时轮缘上一点P 的轨迹, 其参数方程为)sin (ϕϕ+=a x , )cos 1(ϕ-=a y . 在重力场中, 设y 轴竖直向上, 一质点沿光滑旋轮线滑动, 试证质点运动具有等时性(绕O 点运动周期与振幅无关).题5图【解】(旋轮线是如图圆轮在直线AB 上作无滑滚动时P 点的轨迹,曲线上P 点切线方向即为轮上P 点速度方向. 因无滑,0P 为瞬心,故P 点切线与P P 0垂直,因此可知P 点切线与x 轴夹角为2ϕ. )以曲线最低点(0=ϕ)为自然坐标原点,弧长正方向与t e 一致. 质点运动微分方程为2sinϕmg s m -= .对曲线参数方程求微分,得ϕϕd )cos 1(d +=a x 和ϕϕd sin d a y =,所以ϕϕd 2cos 2d d d 22a y x s =+=,积分并用0=ϕ时0=s 定积分常数,得2sin 4ϕa s =. 代入质点运动微分方程消去ϕ,得到4=+s a gs ,s 作简谐振动而具有等时性. 其解为)cos(0αω+=t A s ,a g40=ω与振幅无关.【6】 一小球质量为m , 系在不可伸长的轻绳之一端, 可在光滑水平桌面上滑动. 绳的另一端穿过桌面上的小孔, 握在一个人的手中使它向下做匀速运动, 速率为a , 如题【6图所示. 设初始时绳是拉直的, 小球与小孔的距离为R , 其初速度在垂直绳方向上的投影为0v . 试求小球的运动规律及绳的张力.题6图【解】小球运动微分方程为T F r r m -=-)(2θ , (1) 0)2(=+θθr r m , (2)a r-= . (3) 由(3)式求出at R r -=,代入(2)式求出)/(0at R t v -=θ,再由(1)式求出3220)(at R R mv F T -=.【7】 一质量为m 的珠子串在一半径为R 的铁丝做成的圆环上, 圆环水平放置. 设珠子的初始速率为0v , 珠子与圆环间动摩擦因数为μ, 求珠子经过多少弧长后停止运动 (根据牛顿第二定律求解).【解】珠子的运动微分方程为2b 2n d d N N F F t v m+-=μ, (1)n 2/N F mv =ρ, (2)mg F N -=b 0, (3)R =ρ(约束方程). (4)把(2)、(3)、(4)式代入(1)式,作变换sv t v d /)21(d d d 2=,可求出]/)ln[()2/(224020Rg g R v v R s ++=μ.【8】 质量为m 的小球沿光滑的、半长轴为a 、半短轴为b 的椭圆弧滑下, 此椭圆弧在竖直平面内且短轴沿竖直方向. 设小球自长轴端点开始运动时其初速度为零. 求小球达到椭圆弧最低点时对椭圆弧的压力 (根据牛顿第二定律求解). 【解】以椭圆最低点为自然坐标原点O ,弧长正方向指向小球初始位置,θ为切向与水平方向的夹角,小球的运动微分方程为θsin mg vm -= , (1) θρcos /2mg F mv N -=. (2)Oy 竖直向上,将s y d /d sin =θ代入(1)式得s y g s v v d /d d /d -=,积分可求出小球达最低点时gb v 22=. 由轨道方程22x a a by --=求出当0=x 时0='y ,2/a b y ='',由公式可求出22/32)1(1a b y y ='+''=ρ. 再由(2)式求出0=θ时)/21(/cos 22a b mg mv mg F N +=+=ρθ.【9】 力1F 和2F分别作用在长方体的顶角A 和B 上, 长方体的尺寸和坐标系如题【9图所示. 试计算1F 和2F对原点O 及3个坐标轴的力矩.题9图【解】11bF M x =,11aF M y -=,01=z M ,2222/b a bcF M x +=,2222/b a acF M y +-=,02=z M .【10】 已知质量为0m 的质点做螺旋运动, 其运动学方程为t r x ωcos 0=, t r y ωsin 0=,kt z =,k r ,,0ω为常量. 试求: (1)t 时刻质点对坐标原点的角动量;(2) t 时刻质点对过),,(c b a P 点, 方向余弦为),,(n m l 的轴的角动量.【解】由运动学方程求出→v ,根据定义即可求出→→→→→→++--=⨯=k r m j t t t r km i t t t r km v r m L ωωωωωωω200000000)sin (cos )cos (sin ,)]cos ()sin )([(]cos )()sin ([000000),,(a t r k t r c kt m m t r c kt b t r k l m L n m l -+-----=ωωωωωω)sin cos (00200t br t ar r n m ωωωωω--+.【11】 如题【11图所示, 质量为m 的小球安装在长为l 的细轻杆的A 端, 杆的B 端与轴21O O 垂直地固连. 小球在液体中可绕21O O 轴做定轴转动, 轴承1O 和2O 是光滑的. 转动中小球所受液体阻力与角速度成正比, ωαm F R =,α为常量. 设初始角速度为0ω,试求经多少时间后, 角速度减小为初始值的一半,以及在这段时间内小球所转圈数.(忽略杆的质量及所受阻力.)题 11图【解】由对21O O 轴的角动量定理ωαωm l ml t -=)(d d2,积分可得lt /0e αωω-=,求出α/)2ln (l t =. 将角动量定理化为l /d d θαω-=,积分可以求得αωαωθπ4/)r a d (2/00l l ==(圈)【12】 质量为m 的质点沿椭圆轨道运动, 其运动学方程为kt a x cos =, kt b y sin = (k b a ,,为常量). 用两种方法计算质点所受合力在0=t 到k t 4π=时间内所做的功.【解】(1)由动能定理)(4121212222122b a mk mv mv W -=-=.(2)用曲线积分算⎰⎰+=⋅=→→2121)d d (y ym x x m r d F W ,把轨道参数方程kt b y kt a x sin ,cos ==代入,则曲线积分化为对t 的积分,可得同样结果.【13】 试用动能定理求解7题.【解】珠子的动能定理为sF F mv N N d )21(d 2b 2n 2--=μ,参见3.7提示【14】 有一小球质量为m , 沿如题【14图所示的光滑的水平的对数螺旋线轨道滑动. 螺旋线轨道方程为θa e r r -=0, a 为常数. 已知当极角0=θ时,小球初速为0v . 求轨道对小球的水平约束力N F 的大小. (用角动量及动能定理求解, 图中δ为θe 与v 方向间夹角,a =δtg.)题14图【解】因机械能守恒,小球动能不变,因此0v v =.过O 点作z 轴竖直向上(垂直纸面向外),质点对z 轴的角动量δcos rmv L z =. 质点所受对z 轴力矩δsin N z rF M -=. 由对z 轴的角动量定理得δδsin )cos (d d0N rF rmv t -=.由于θθθθθ ar ar t r r v a r -=-===-e d d d d 0,θθ r v =. 故a v v r =-=θδtan . 将它代入角动量定理方程,得到N N arF rF rmv -=-=δtan 0 . 而δδsin sin 0v v v r r -=-== ,所以θδδδa N a r mv a r mv ar mv ar mv F e 11tan 1tan sin 2020220222020+=+=+==.【15】 已知质点所受力F 的3个分量为z a y a x a F x 131211++=,z a y a x a F y232221++=, z a y a x a F z 333231++=,系数)3,2,1,(=j i a ij 都是常量. 这些ij a 满足什么条件时与力F相关的势能存在? 在这些条件被满足的条件下, 计算其势能.【解】当0=⨯∇→F 时势能存在,要求311332232112,,a a a a a a ===. 以原点为势能零点,则)222(21132312233222211xz a zy a xy a z a y a x a V +++++-=.【16】 一带有电荷q 的质点在电偶极子的场中所受的力为3c o s 2r pq F r θ=,3sin r pq F θθ=,p 为偶极距, r 为质点到偶极子中心的距离.试证此力场为有势场.【解】)/cos (d d d )d d (d 2r pq r F r F e r e r F r F r r θθθθθ-=+=+⋅=⋅→→→→→,故为有势场 【17】 如题17图所示, 自由质点在Oxy 平面内运动, 静止中心A 和B 均以与距离成正比的力吸引质点M , 比例系数为k . 试证明势能存在并求出质点的势能.v题【17图【解】y ky x kx y ky ky x b x k b x k r F d 2d 2d )(d )]()([d --=--+--+-=⋅→→)](d [22y x k +-=.故势能存在. 以O 为势能零点,则)(22y x k V +=.【18】 试用机械能守恒定律求解8题.【解】根据机械能守恒定律,以椭圆弧最低点为势能零点,mgbmv =221,可知gb v 2=,参见3.8提示.【20】 将质量为m 的质点竖直抛上于有阻力的媒质中。

大学物理教材习题答案

大学物理教材习题答案

⼤学物理教材习题答案第⼀章质点运动习题解答⼀、分析题1.⼀辆车沿直线⾏驶,习题图1-1给出了汽车车程随时间的变化,请问在图中标出的哪个阶段汽车具有的加速度最⼤。

答: E 。

位移-速度曲线斜率为速率,E 阶段斜率最⼤,速度最⼤。

2.有⼒P 与Q 同时作⽤于⼀个物体,由于摩擦⼒F 的存在⽽使物体处于平衡状态,请分析习题图1-2中哪个可以正确表⽰这三个⼒之间的关系。

答: C 。

三个⼒合⼒为零时,物体才可能处于平衡状态,只有(C )满⾜条件。

3.习题图1-3(a )为⼀个物体运动的速度与时间的关系,请问习题图1-3(b )中哪个图可以正确反映物体的位移与时间的关系。

答:C 。

由v-t 图可知,速度先增加,然后保持不变,再减少,但速度始终为正,位移⼀直在增加,且三段变化中位移增加快慢不同,根据v-t 图推知s-t 图为C 。

三、综合题:1.质量为的kg 50.0的物体在⽔平桌⾯上做直线运动,其速率随时间的变化如习题图1-4所⽰。

问:(1)设s 0=t 时,物体在cm 0.2=x 处,那么s 9=t 时物体在x ⽅向的位移是多少?(2)在某⼀时刻,物体刚好运动到桌⼦边缘,试分析物体之后的运动情况。

解:(1)由v-t 可知,0~9秒内物体作匀减速直线运动,且加速度为:220.8cm/s 0.2cm/s 4a == 由图可得:0 2.0cm s =,00.8cm/s v =, 1.0cm/s t v =-,则由匀减速直线运动的位移与速度关系可得:22002() t a s s v v -=- 2200()/2t s v v a s =-+ 22[0.8( 1.0)]/20.2 2.0cm =--?+1.1c m =(2)当物体运动到桌⼦边缘后,物体将以⼀定的初速度作平抛运动。

2.设计师正在设计⼀种新型的过⼭车,习题图1- 5为过⼭车的模型,车的质量为0.50kg ,它将沿着图⽰轨迹运动,忽略过⼭车与轨道之间的摩擦⼒。

质点运动学习题思考题

质点运动学习题思考题

大学物理 第一章习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。

解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt=,有速度:sin Rcos v R t i t j ωωωω=-+ 而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。

1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。

求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。

解:(1)由24(32)r t i t j =++,可知24x t = ,32y t =+ 消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。

(2)由d rv dt=,有速度:82v t i j =+ 从0=t 到1=t 秒的位移为:11(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。

1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:(1)由d r v dt =,有:22v t i j =+,d va dt=,有:2a i =; (2)而v v =,有速率:12222[(2)2]21v t t =+=+∴t dva dt=221t t =+,利用222t n a a a =+有: 22221n t a a a t =-=+。

最新力学漆安慎后小结习题答案02章

最新力学漆安慎后小结习题答案02章

力学(第二版)漆安慎习题解答第二章质点运动学第二章 质点运动学一、基本知识小结1、基本概念 22)(dtr d dt v d a dtrd v t r r====)()()(t a t v t r ⇔⇔(向右箭头表示求导运算,向左箭头表示积分运算,积分运算需初始条件:000,,v v r r t t ===)2、直角坐标系 ,,ˆˆˆ222z y x r k z j y i x r ++=++= r 与x,y,z 轴夹角的余弦分别为 r z r y r x /,/,/.v v v v v k v j v i v v z y x z y x ,,ˆˆˆ222++=++=与x,y,z 轴夹角的余弦分别为 v v v v v v z y x /,/,/. a a a a a k a j a i a a z y x z y x ,,ˆˆˆ222++=++=与x,y,z 轴夹角的余弦分别为 ./,/,/a a a a a a z y x222222,,,,dt zd dt dv a dt y d dt dv a dt x d dt dv a dtdzv dt dy v dt dx v z z y y x x z y x =========),,(),,(),,(z y x z y x a a a v v v z y x ⇔⇔3、自然坐标系 ||,,ˆ);(ττττv v dtds v v v s r r ====ρτττττ22222,,,ˆˆv a dts d dt dv a a a a n a a a n n n ===+=+= )()()(t a t v t s ττ⇔⇔4、极坐标系 22,ˆˆ,ˆθθθv v v v r v v r r r r r +=+== dtd rv dt dr v r θθ==,5、相对运动 对于两个相对平动的参考系 ',0't t r r r =+=(时空变换) 0'v v v+= (速度变换) 0'a a a+= (加速度变换)若两个参考系相对做匀速直线运动,则为伽利略变换,在图示情况下,则有: zz y y x x z z y y x x a a a a a a v v v v V v v t t z z y y Vt x x =====-====-=',','',','',',','y y' Vo x o' x' z z'二、思考题解答2.1质点位置矢量方向不变,质点是否作直线运动?质点沿直线运动,其位置矢量是否一定方向不变?解答:质点位置矢量方向不变,质点沿直线运动。

大学物理第2章 质点动力学习题(含解答)

大学物理第2章 质点动力学习题(含解答)

第2章质点动力学习题解答2-1 如图所示,电梯作加速度大小为a 运动。

物体质量为m ,弹簧的弹性系数为k ,•求图示三种情况下物体所受的电梯支持力(图a 、b )及电梯所受的弹簧对其拉力(图c )。

解:(a )ma mg N =- )(a g m N += (b )ma N mg =- )(a g m N -= (c )ma mg F =- )(a g m F +=2-2 如图所示,质量为10kg 物体,•所受拉力为变力2132+=t F (SI ),0=t 时物体静止。

该物体与地面的静摩擦系数为20.0=s μ,滑动摩擦系数为10.0=μ,取10=g m/s 2,求1=t s 时,物体的速度和加速度。

解:最大静摩擦力)(20max N mg f s ==μmax f F >,0=t 时物体开始运动。

ma mg F =-μ,1.13.02+=-=t mmgF a μ 1=t s 时,)/(4.12s m a =dtdv a =Θ,adt dv =,⎰⎰+=t v dt t dv 0201.13.0t t v 1.11.03+=1=t s 时,)/(2.1s m v =2-3 一质点质量为2.0kg ,在Oxy 平面内运动,•其所受合力j t i t F ρρρ232+=(SI ),0=t 时,速度j v ρρ20=(SI ),位矢i r ρρ20=。

求:(1)1=t s 时,质点加速度的大小及方向;(2)1=t s 时质点的速度和位矢。

解:j t i t m Fa ρρρρ+==223 223t a x =,00=x v ,20=x ⎰⎰=tv x dt t dv x0223,23t v x =⎰⎰⎰==txtx dt t dt v dx 03202,284+=t xt a y =,20=y v ,00=y⎰⎰=tv y tdt dv y02,222+=t v y⎰⎰⎰+==tyty dt t dt v dy 020)22(,t t y 263+=(1)1=t s 时,)/(232s m j i a ρρρ+=(2)j t i t v ρρρ)22(223++=,1=t s 时,j i v ρρρ2521+= j t t i t r ρρρ)26()28(34+++=,1=t s 时,j i r ρρρ613817+=2-4 质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度随时间变化的关系;(2)子弹射入沙土的最大深度。

练习册第2章《质点力学的运动定律守恒定律》答案(1)

练习册第2章《质点力学的运动定律守恒定律》答案(1)

练习册第2章《质点力学的运动定律守恒定律》答案(1)篇一:2《质点力学的运动定律、守恒定律》2 质点力学的运动定律守恒定律1. 水平地面上放一物体A,它与地面间的滑动摩擦系数为?.现加一恒力F如图?所示.欲使物体A有最大加速度,那么恒力F与水平方向夹角??应满足(A) sin??=?.(B) cos??=?.(C) tg??=?.(D) ctg??=?.答案:(C)参考解答:按牛顿定律水平方向列方程:Fcos??(mAg?Fsin?)??mAa, ?显然加速度a能够看作? 的函数,用高等数学求极值的方法,令dad??0,,有tg.分支程序:凡选择答复错误的,均给出下面的进一步讨论:1.一质量为m的木块,放在木板上,当木板与水平面间的夹角θ由00变化到900的过程中,画出木块与木板之间摩擦力f随θ变化的曲线(设θ角变化过程中,摩擦系数μ不变).在图上标出木块开场滑动时,木板与水平面间的夹角θ0 ,并指出θ0与摩擦系数μ的关系.(A)图(B)正确,sin=?.(B)图(A)正确,tg??0=?.答案:(B)参考解答:(1) 当θ较小时,木块静止在木板上,静摩擦力f?mgsin?;(正确画出?为0到??0之间的f-??曲线)(2) 当?=??0时(tg??0=μ),木块开场滑动;(3) 0时,滑动摩擦力f??mgcos?,(正确画出?为??0到90°之间的f-θ曲线) .1. 如以下图,假设物体沿着竖直面上圆弧形轨道下滑,轨RA道是光滑的,在从A至C的下滑过程中,下面哪个说法是正确的?(A) 它的加速度大小不变,方向永远指向圆心.(B) 它的速率均匀增加.(C) 它的合外力大小变化,方向永远指向圆心.(D) 它的合外力大小不变.(E) 轨道支持力的大小不断增加.答案:(E)参考解答:按照牛顿定律法向与切向分量公式:Fn?mυ2R,Ft?mdυdt.Fn?N?mgsin?,Ft?mgcos?.物体做变速圆周运动,从A至C的下滑过程中速度增大,法向加速度增大。

大学物理第一章习题答案

大学物理第一章习题答案

21

站在台秤上,当你蹲下时台秤的读数如何变?如何解释?

台秤的示数为台秤对人的支持力。当人静止站在台秤上时, 台秤对人的支持力等于人的重力。当人蹲下时有向下的加速 度,按牛顿第二定律有
mg N ma N mg ma mg
N

可见,当人蹲下时台秤对人的支持力 小于人的重力,示数减小,当人停止 运动后回复为原值。
7

1-23:用绳子系一小球使之在竖直平面内做圆周运动,指出绳 内张力最大和最小的位置。
解:小球做圆周运动时满足
T mg ma
m
在法向投影得 绳子上的张力为
v T mg cos man m R v2 T m mg cos R
2
o

T
mg
显然,当夹角为 0 时(最上方)绳子上的张力最小,夹角为 π 时(最下方)绳子上的张力最大。
t1
r

都不相等。
r1
r
ˆ ˆ ˆ ˆ y ˆ ˆ r1 x1 i y1 j z1k , r2 x2 i j z k 2 2 O ˆ (y y )ˆ ˆ ˆ ˆ ˆ r ( x2 x1 )i 2 1 j ( z 2 z1 )k xi yj zk | r | x 2 y 2 z 2 , r r2 r1 x2 2 y2 2 z2 2 ) x12 y12 z12

3

1-2:说明建立参照系、坐标系的必要性,对于描述质点的运 动而言,参照系应如何选择? 为了描述一个物体的运动,必须选择另一个物体作为参照, 才能确定物体的运动特征,参照物不同,物体的运动形式就 可能不同,因此必须指明参照系。 只有选择了坐标系,才能把物体的运动特征定量表示出来。 坐标系一般固定于参照系上。 在描述质点运动的问题中,参照系可以任意选择,没有任何 限制,但要注意解决问题是否方便。

第01章(质点运动学)习题答案

第01章(质点运动学)习题答案

思 考 题1-1 什么是矢径?矢径和对初始位置的位移矢量之间有何关系?怎样选取坐标原点才能够 使两者一致?答:矢径即位置矢量,是从坐标原点O 指向质点所在处P 的有向线段。

位移 r vD 和矢径r v不同,矢径确定某一时刻质点的位置,位移则描述某段时间内始未质点位置的变化。

矢径是相对坐标原点的,位移矢量是相对初始位置的。

对于相对静止的不同坐标系来说,位矢依 赖于坐标系的选择,而位移则与所选取的坐标系无关。

若取初始位置为坐标原点才能够使两 者一致。

1-2 在下列各图中质点 M 作曲线运动,指出哪些运动是不可能的?答:(A) 质点只要作曲线运动,肯定有法向加速度,不可能加速度为零。

(C) 在质点作曲线运动时,加速度的方向总是指向轨迹曲线凹的一侧。

(D) 质点只要作曲线运动,肯定有法向加速度,不可能只有切向加速度。

1-3 下列说法哪一条是正确的?(A) 加速度恒定不变时,物体运动方向也不变. (B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成 ( ) 2 / 2 1 v v v += ,其中 v 1、v 2 分 别为初、末速率.(D) 运动物体速率不变时,速度可以变化.答:加速度恒定不变时,意味着速度的大小和方向的变化是恒定的。

不是物体运动方向 不变。

平均速率不等于平均速度的大小。

若速率的变化是线性的(加速度恒定)平均速率表 达式才可以写成 ( ) 2 / 2 1 v v v + = , 否则不可以。

只有运动物体速率不变时, 速度可以变化. 才 是正确的。

1-4 如图所示,质点作曲线运动,质点的加速度 a 是恒矢量(a 1=a 2=a 3=a ).试问质点是否能作匀变速率运动? 答:质点作匀变速率运动要求切向加速度是恒量,如图 所示, 质点作曲线运动, 质点的加速度 a 是恒矢量(a 1=a 2=a 3=a) 则切向分量不一样,质点不能作匀变速率运动。

1-5 以下五种运动形式中,加速度 a 保持不变的运动是哪一a 3M 1M 2M 3a 3a 3思考题 1-4图aMMMvva =0 (A)(B)(C)(D)a vM av思考题 1-2图种或哪几种?(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动. (E) 圆锥摆运动.答:加速度a 保持不变(意味加速度 a 的大小和方向都保持不变)的运动是抛体运动。

大学物理第2章 质点动力学习题解答

大学物理第2章 质点动力学习题解答

第2章 质点动力学习题解答2-17 质量为2kg 的质点的运动学方程为 j t t i t r ˆ)133(ˆ)16(22+++-=ρ(单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。

解:∵j i dt r d a ˆ6ˆ12/22+==ρρ, j ia m F ˆ12ˆ24+==ρρ 为一与时间无关的恒矢量,∴质点受恒力而运动。

F=(242+122)1/2=125N ,力与x 轴之间夹角为:'34265.0/︒===arctg F arctgF x y α2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b i t a r ˆsin ˆcos ωω+=ρ,a,b,ω为正常数,证明作用于质点的合力总指向原点。

证明:∵r j t b it a dt r d a ρρρ2222)ˆsin ˆcos (/ωωωω-=+-== r m a m F ρρρ2ω-==, ∴作用于质点的合力总指向原点。

2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。

解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律:②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ①+②可求得:g m m gm F a μμ-+-=2112将a 代入①中,可求得:2111)2(m m g m F m T +-=μf 1 N 1 m 1g TaFN 2 m 2gTaN 1 f 1 f 22-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。

大学物理第2章质点动力学习题答案

大学物理第2章质点动力学习题答案

第二章 质点动力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数。

解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-20(2)(31)v s g u ∴=-把式(2)代入式(1)得,()222200.1983v v u v v-==+2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。

解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdt v F T mg mR αα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr vg rrv mg mg rmg ααααωαααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。

习题2-2图Ao B r DCT α解:如图所示()1212minmax sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+-2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少。

第2章《质点运动学》习题解答

第2章《质点运动学》习题解答

第2章 《质点运动学》习题解答2.1.1 质点的运动学方程为ˆˆˆˆ(1).(32)5,(2).(23)(41)r t i j r t i t j =++=-+-求质点轨迹并用图表示。

【解】①.32,5,x t y =+=轨迹方程为y=5②2341x t y t =-⎧⎨=-⎩消去时间参量t 得:3450y x +-=2.1.2 质点运动学方程为22ˆˆˆ2t t r e i e j k-=++,(1). 求质点的轨迹;(2).求自t=-1至t=1质点的位移。

【解】①222tt x e y e z -⎧=⎪=⎨⎪=⎩消去t 得轨迹:xy=1,z=2②221ˆˆˆ2r e i e j k --=++,221ˆˆˆ2r e i e j k -+=++, 222211ˆˆ()()r r r e e i e e j --+-∆=-=-+-2.1.3 质点运动学方程为2ˆˆ4(23)r t i t j =++,(1). 求质点的轨迹;(2).求自t=0至t=1质点的位移。

【解】①.24,23,x t y t ==+消去t 得轨迹方程2(3)x y =-②0110ˆˆˆˆˆ3,45,42r j r i j r r r i j ==+∆=-=+2.2.1 雷达站于某瞬时测得飞机位置为0114100,33.7R m θ==,0.75s 后测得022124240,29.3,,R m R R θ==均在铅直平面内。

求飞机瞬时速率的近似值和飞行方向(α角)。

【解】 221212122cos()R R R R R θθ∆=+--代入数值得:22041004240-241004240cos 4.4349.385()R m ∆=+⨯⨯≈349.385465.8(/)0.75Rv m s t ∆≈==∆ 利用正弦定理可解出034.89α=-2.2.2 一小圆柱体沿抛物线轨道运动,抛物线轨道为2/200y x =(长度mm )。

力学第二章质点运动学思考题答案

力学第二章质点运动学思考题答案

第二章质点运动学思考题2.1质点位置矢量方向不变,质点是否作直线运动?质点沿直线运动,其位置矢量是否一定方向不变?答:质点位置矢量方向不变,质点沿直线运动。

质点沿直线运动,质点位置矢量方向不一定不变。

如图所示。

2.2若质点的速度矢量的方向不变仅大小改变,质点作何种运动?速度矢量的大小不变而方向改变作何种运动?答:质点的速度矢量的方向不变仅大小改变,质点作变速率直线运动;速度矢量的大小不变而方向改变作匀速率曲线运动。

2.3“瞬时速度就是很短时间内的平均速度”这一说法是否正确?如何正确表述瞬时速度的定义?我们是否能按照瞬时速度的定义通过实验测量瞬时速度?答:“瞬时速度就是很短时间内的平均速度”这一说法不正确。

因为瞬时速度与一定的时刻相对应。

瞬时速度的定义是质点在t时刻的瞬时速度等于t至t+△t时间内平均速度t/r∆∆,当△t→0时的极限,即dtr dtrlimvt=∆∆=→∆。

很难直接测量,在技术上常常用很短时间内的平均速度近似地表示瞬时速度,随着技术的进步,测量可以达到很高的精确度。

2.4试就质点直线运动论证:加速度与速度同号时,质点作加速运动;加速度与速度反号时,作减速运动。

是否可能存在这样的直线运动,质点速度逐渐增加但加速度却在减小?答:,dtdvtvlima xxtx=∆∆=→∆加速度与速度同号时,就是说,0a,0va,0vxxxx<<>>或以a,0vxx>>为例,速度为正表示速度的方向与x轴正向相同,加速度为正表示速度的增量为正,t t ∆+时刻的速度大于t 时刻的速度,质点作加速运动。

同理可说明,0a ,0v x x <<质点作加速运动。

质点在作直线运动中速度逐渐增加但加速度却在减小是可能存在的。

例如初速度为x 0v ,加速度为t 6a x -=,速度为20t0x 0x t21t 6v dt )t 6(v v -+=-+=⎰,,0v ,0a 6t x x >><时,速度逐渐增加。

质点运动学 习题分析与解答

质点运动学 习题分析与解答

第1章 质点运动学 习题解答(一). 选择题1.一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为A. t r d dB. d d t rC. d d t rD.22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ ] 【分析与解答】t r d d 表示质点到坐标原点的距离随时间的变化率,d d t r表示速度矢量,d d t r 与t rd d 意义相同,在直角坐标系中,速度大小即速率可由2222d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x v v v yx求解,在自然坐标系中,速率可用公式t s v d d =计算。

正确答案是D 。

2. 一质点在平面上运动,已知质点位置矢量的表示式为22at bt =+r i j (其中a 、b 为常量), 则该质点作 A. 匀速直线运动. B. 变速直线运动. C. 抛物线运动. D.一般曲线运动. [ ] 【分析与解答】22at bt =+v i j 是变速运动,22,,ax at y bt x yb ===为直线方程正确答案是B 。

3. 某质点的速度为,已知,时它过点(3,-7),则该质点的运动方程为:A. B.C. D.不能确定 [ ]【分析与解答】22d 24(23)(47)t t t t t ==-+=+-+⎰r v i j c i j正确答案是B 。

4. 以初速将一物体斜向上抛,抛射角为,不计空气阻力,则物体在轨道最高点处的曲率半径为:A. B. C. D.不能确定。

[ ] 【分析与解答】v 0θv 0sin θg g v 02v 02cos 2θg v =2i -8t j t =02t i -4t 2j (2t +3)i -(4t 2+7)j -8j轨道最高点22220,(cos ),x xn v v v v v a g θρ=====v i ,故曲率半径2v g ρ=正确答案是C 。

5. 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为..[ ] 【分析与解答】平均速度为位移除以时间间隔,平均速率为路程除以时间, 质点沿半径为R 的圆周转动一周,位移为零,路程等于。

2质点运动定律习题思考题(可编辑修改word版)

2质点运动定律习题思考题(可编辑修改word版)

t习题 22-1 质量为 16kg 的质点在 xOy 平面内运动,受一恒力作用,力的分量为 f x = 6N , f y = 7N ,当t = 0 时,x = y = 0 , v x = -2m / s , v y = 0 。

当t = 2s 时,求:(1) 质点的位矢; (2) 质点的速度。

解:由 a = f x,有: a = 6 = 3 m / s 2, a = f y = -7 m / s 2x m x 16 8 y m 162 3 5(1) v x = v x 0 + ⎰0 a x dt = -2 + 8 ⨯ 2 = - 4m / s ,v = v + 2 a dt = -7 ⨯ 2 = - 7 m / s 。

y y 0⎰y168于是质点在2s 时的速度: v = - 5 i - 7j 4 8m / s(2) r= (v t + 1 a t 2 )i + 1 a t 2 j = (-2 ⨯ 2 + 1 ⨯ 3 ⨯ 4)i + 1 ( -7 ) ⨯ 4 j2 x 2 y = - 13 i - 7 j m4 82 8 2 162-2 摩托快艇以速率 v 0 行驶,它受到的摩擦阻力与速率平方成正比,可表示为 F = -kv 2(k 为正值常量)。

设摩托快艇的质量为 m ,当摩托快艇发动机关闭后,求: (1) 求速率 v 随时间 t 的变化规律; (2) 求路程 x 随时间 t 的变化规律;(3) 证明速度 v 与路程 x 之间的关系为v = v e -k 'x ,其中 k ' = k / m 。

解:(1)由牛顿运动定律 F = ma 得: -kv 2 = md v,分离变量有- k d t =d v ,d tmv 2两边积分得:速率随时间变化的规律为 1 = 1 + kt ;v v 0 m(2) 由位移和速度的积分关系: x =⎰0v ⋅ dt ,积分有:x =1⋅ dt = k ln( 1 + k t ) - k ln 1 ∴路程随时间变化的规律为: x = k ln(1+ kv t ) ;⎰1 k + t mv 0mm v 0mm 0v 0 m(3) 由-kv 2= m d v ⋅ d x , - k d x = d v ,∴ - k ⎰ xdx =⎰v dvd x d t m v m 0v 0 v积分有: v = v e -k 'x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题22-1 质量为16kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为6N x f =,7N y f =,当0t =时,0x y ==,2m /s x v =-,0y v =。

当2s t =时,求: (1) 质点的位矢; (2) 质点的速度。

解:由 x x f a m =,有:x a 263m /168s ==,27m /16y y f a s m -== (1)2003522m /84x x xv v a dt s =+=-+⨯=-⎰, 200772m /168y y y v v a dt s -=+=⨯=-⎰。

于是质点在2s 时的速度:57m /s 48v i j =--v v v(2)22011()22x y r v t a t i a t j =++v v v1317(224)()428216i j -=-⨯+⨯⨯+⨯v v137m 48i j =--v v2-2 摩托快艇以速率v 0行驶,它受到的摩擦阻力与速率平方成正比,可表示为F = -kv 2(k 为正值常量)。

设摩托快艇的质量为m ,当摩托快艇发动机关闭后,求: (1) 求速率v 随时间t 的变化规律; (2) 求路程x 随时间t 的变化规律;(3) 证明速度v 与路程x 之间的关系为x0ek v v '-=,其中m k k /='。

解:(1)由牛顿运动定律F ma =得:2d v kv md t -=,分离变量有2k d vd t m v-=, 两边积分得:速率随时间变化的规律为011k t v v m=+; (2)由位移和速度的积分关系:0tx v dt =⋅⎰,积分有:000111ln()ln 1tk k k x dt t k m v m m v t v m=⋅=+-+⎰∴路程随时间变化的规律为:0ln(1)k kx v t m m=+ ; (3)由2d v d x kv md x d t -=⋅,k d v d x m v -=,∴00xv v k dv dx m v -=⎰⎰积分有:x0k v v e'-=。

2-3.质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度。

解:(1)由题意,子弹射入沙土中的阻力表达式为:f kv =- 又由牛顿第二定律可得:dv f m dt =,则dv kv m dt-= 分离变量,可得:dv k dt v m =-,两边同时积分,有:000t v dv kdt v m=-⎰⎰,所以:t mke v v -=0(2)子弹进入沙土的最大深度也就是0v =的时候子弹的位移,则:考虑到dv dv dx dt dx dt =,dx v dt =,可推出:mdx dv k=-,而这个式子两边积分就可以得到位移:00max0v m m x dv v k k=-=⎰ 。

2-4.一条质量分布均匀的绳子,质量为M 、长度为L ,一端拴在竖直转轴OO ′上,并以恒定角速度ω在水平面上旋转.设转动过程中绳子始终伸直不打弯,且忽略重力,求距转轴为r 处绳中的张力T ( r ).解:在绳子L 上距离转轴为r 处取一小段微元绳子,假设其质量为dm ,可知:M dm dr L=,因为它做的是圆周运动,所以微元绳的所受合力提供向心力:LMdrrrdm r dT 22ωω==)(。

距转轴为r 处绳中的张力T ( r )将提供的是r 以外的绳子转动的向心力,所以两边积分:)()()(2222r L LM r dT r T Lr-==⎰ω。

2-5.已知一质量为m 的质点在x 轴上运动,质点只受到指向原点的引力作用,引力大小与质点离原点的距离x 的平方成反比,即2/x k f -=,k 是比例常数.设质点在A x =时的速度为零,求质点在4/A x =处的速度的大小。

解:由题意:2k f x =-,再由牛顿第二定律可得:2k dv m x dt-=, 考虑到dv dv dx dt dx dt =,dx v dt =,可推出:2k mvdv dx x =- 两边同时取积分,则:/4201v A A m vdv k dx x=-⎰⎰ 有:mAkv 6=2-6.一质量为kg 2的质点,在xy 平面上运动,受到外力2424F i t j =-v v v (SI)的作用,0=t 时,它的初速度为034v i j =+v v v(SI),求s t 1=时质点的速度及受到的法向力n F 。

解:由于是在平面运动,所以考虑矢量。

由:d v F m d t =v v ,有:24242d v i t j dt-=⋅v v v ,两边积分有:0201(424)2vt v d v i t j dt =-⎰⎰v v v ,∴3024v v t i t j =+-v v v v , 考虑到034v i j =+v v v ,s t 1=,有15v i =v v由于在自然坐标系中,t v v e =v v ,而15v i =v v(s t 1=时),表明在s t 1=时,切向速度方向就是i v 方向,所以,此时法向的力是j v 方向的,则利用2424F i t j =-v v v ,将s t 1=代入有424424t n F i j e e =-=-v v v v v ,∴24n F N =-。

2-7.如图,用质量为1m 的板车运载一质量为2m 的木箱,车板与箱底间的摩擦系数为μ,车与路面间的滚动摩擦可不计,计算拉车的力F 为多少才能保证木箱不致滑动?解法一:根据题意,要使木箱不致于滑动,必须使板车与木箱具有相同的加速度,且上限车板与箱底间为最大摩擦。

即:max 212222f m g f Fa m m m m m μ==<=+可得:12()F m m g μ<+解法二:设木箱不致于滑动的最大拉力为max F ,列式有:max 2122F m g m am g m aμμ-==联立得:max 12()F m m g μ=+, 有:12()F m m g μ<+。

2-8.如图所示一倾角为θ的斜面放在水平面上,斜面上放一木块,两者间摩擦系数为)(θμtg <。

为使木块相对斜面静止,求斜面加速度a 的范围。

解法一:在斜面具有不同的加速度的时候, 木块将分别具有向上和向下滑动的趋势,这就是加速度的两个范围,由题意,可得:(1)当木块具有向下滑动的趋势时(见图a ),列式为:sin cos N N mg μθθ+= 1sin cos N N ma θμθ-= 可计算得到:此时的θμμθtan 1tan 1+-=a g(2)当木快具有向上滑动的趋势时(见图b ),列式为:sin cos N mg N μθθ+=2sin cos N N ma θμθ+=可计算得到:此时的θμμθtan 1tan 2-+=a g ,所以:tan tan 1tan 1tan g a g θμθμμθμθ-+≤≤+-。

解法二:考虑物体m 放在与斜面固连的非惯性系中, 将物体m 受力沿'x 和'y 方向分解,如图示,同时考虑非惯性力,隔离物块和斜面体,列出木块平衡式: 'x 方向:sin cos 0mg ma f θθ-±='y 方向:cos sin 0N mg ma θθ--= 考虑到f N μ=,有:sin cos (cos sin )0mg ma mg ma θθμθθ-±+=,θx 'y Nmamg解得:sin cos tan cos sin 1tan a g g θμθθμθμθμθ±±==m m 。

∴a 的取值范围:tan tan 1tan 1tan g a g θμθμμθμθ-+≤≤+-。

2-9 密度为ρ1的液体,上方悬一长为l ,密度为ρ2的均质细棒AB ,棒的B 端刚好和液面接触。

今剪断绳,并设棒只在重力和浮力作用下下沉,求: (1) 棒刚好全部浸入液体时的速度;(2) 若ρ2<ρ1/2,棒进入液体的最大深度; (3) 棒下落过程中能达到的最大速度。

解:(1)由牛顿运动定律G F ma -=n 得:212d v g l S g x S l S d t ρρρ⋅-⋅=⋅⋅,考虑到d v d v d x d t d x d t =⋅,d xv d t=,分离变量,有:212g l g xv d v d x l ρρρ-⋅=,棒刚好全部浸入液体时,速度为v ,此时x l =, 则两边积分,21002vlg l g xv d v d x lρρρ-⋅=⎰⎰得:212122g l v g l ρρ=-,∴212(2)gl v ρρρ-= (2)由212(2)glv ρρρ-=2120ρρ->,即:122ρρ>,假若有条件122ρρ<,则棒不能全部浸入液体;若122ρρ<,设棒进入液体的最大深度为h ,由积分2102vhg l g xv d v d x lρρρ-⋅=⎰⎰可得:2212122g h v g h lρρ=-,考虑到棒在最大深度时速度为零,有:212l h ρρ=。

(3)由牛顿运动定律G F ma -=n 知,当G F =n 时,0a =,速度最大(设为m v ) 有:21g l S g x S ρρ⋅=⋅,即21lx ρρ=, 由积分212102mlv g l g xv d v d x lρρρρρ-⋅=⎰⎰,有:222121211()22m l g l v g l ρρρρρρ=⋅-,∴21m g lv ρρ2-10.圆柱形容器内装有一定量的液体,若它们一起绕圆柱轴以角速度ω匀速转动,试问稳定旋转时液面的形状如何?解:取容器内稳定旋转液面某处一小块液体微元m ∆,m ∆受重力mg ∆v和支持力N v 的作用,考虑yoz 剖面,受力分析如图示。

列式:2sin N m y αω=∆ ①,cos N mg α=∆ ②①/②有:2tan ygωα=,又由导数几何意义,有:tan d zd yα=∴ 2ydz dy g ω=,积分有: C y gωz +=222 当 0=y 时 0z z = 所以 0z C =0222z y gωz +=,表明yoz 剖面上,形成液面的抛物线;同理,在xoz 剖面上,可得:2202z x z gω=+,稳定旋转时液面是一个抛物面,综上,在立体的三维坐标xyz 上,抛物面的方程为:2220()2z x y z gω=++。

2-11.质量为2m 的物体可以在劈形物体的斜面上无摩擦滑动, 劈形物质量为1m ,放置在光滑的水平面上,斜面倾角为θ, 求释放后两物体的加速度及它们的相互作用力。

相关文档
最新文档