中考压轴题---抛物线.doc

合集下载

(已整理)中考数学必刷压轴题专题:抛物线之角度关系处理(含解析)

(已整理)中考数学必刷压轴题专题:抛物线之角度关系处理(含解析)

中考数学抛物线压轴题之角度关系处理(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.2.如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;(3)求满足∠MPO=∠POA的点M的坐标.3.如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(1,﹣),且与x轴交于A、B两点,与y轴交于C 点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.(l)求抛物线所对应的二次函数的表达式;(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;(3)当P点的横坐标m<0时,过P点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.4.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.5.如图,抛物线y=ax2+bx﹣3a经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.(1)求此抛物线的解析式;(2)已知点D(m,﹣m﹣1)在第四象限的抛物线上,求点D关于直线BC对称的点D'的坐标.(3)在(2)的条件下,连接BD,问在x轴上是否存在点P,使∠PCB=∠CBD?若存在,请求出P点的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D.(1)求抛物线的解析式及点A、B的坐标;(2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标;(3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.7.如图,已知抛物线y=ax2+bx+c与x轴交于点A、B,与直线AC:y=﹣x﹣6交y轴于点C,点D是抛物线的顶点,且横坐标为﹣2.(1)求出抛物线的解析式.(2)判断△ACD的形状,并说明理由.(3)直线AD交y轴于点F,在线段AD上是否存在一点P,使∠ADC=∠PCF?若存在,直接写出点P的坐标;若不存在,说明理由.8.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(,0)和点B(1,),与x轴的另一个交点为C.(1)求抛物线的函数表达式;(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.①判断四边形OAEB的形状,并说明理由;②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=∠MFO时,请直接写出线段BM的长.9.如图,在平面直角坐标系中,抛物线y=ax2+bx与x轴交于点A,顶点B的坐标为(﹣2,﹣2).(1)求a,b的值;(2)在y轴正半轴上取点C(0,4),在点A左侧抛物线上有一点P,连接PB交x轴于点D,连接CB交x 轴于点F,当CB平分∠DCO时,求点P的坐标;(3)在(2)的条件下,连接PC,在PB上有一点E,连接EC,若∠ECB=∠PDC,求点E的坐标.10.如图,在平面直角坐标系中,一次函数y=x﹣2的图象分别交x、y轴于点A、B,抛物线y=x2+bx+c 经过点A、B,点P为第四象限内抛物线上的一个动点.(1)求此抛物线对应的函数表达式;(2)如图1所示,过点P作PM∥y轴,分别交直线AB、x轴于点C、D,若以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,求点P的坐标;(3)如图2所示,过点P作PQ⊥AB于点Q,连接PB,当△PBQ中有某个角的度数等于∠OAB度数的2倍时,请直接写出点P的横坐标.11.如图,直线y=x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=x2+bx+c经过点B,C,与x轴的另一个交点为点A.(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;(3)若点M是抛物线上一点,请直接写出使∠MBC=∠ABC的点M的坐标.12.如图,二次函数y=ax2﹣3ax+c的图象与x轴交于点A、B,与y轴交于点C直线y=﹣x+4经过点B、C.(1)求抛物线的表达式;(2)过点A的直线交抛物线于点M,交直线BC于点N.①点N位于x轴上方时,是否存在这样的点M,使得AM:NM=5:3?若存在,求出点M的坐标;若不存在,请说明理由.②连接AC,当直线AM与直线BC的夹角∠ANB等于∠ACB的2倍时,请求出点M的横坐标.13.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;(3)在直线x=﹣2上是否存在点M,使得∠MAC=2∠MCA,若存在,求出M点坐标.若不存在,说明理由.14.在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;(3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.15.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式.(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),点P是抛物线上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.16.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c 经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点,①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.17.二次函数y=ax2+bx+2的图象交x轴于点(﹣1,0),B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标;(4)当t=时,在直线MN上存在一点Q,使得∠AQC+∠OAC=90°,求点Q的坐标.18.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.19.如图1,抛物线y=x2﹣(m﹣1)x﹣m(m>0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=3OA.(1)求该抛物线的函数表达式;(2)动点D在线段BC下方的抛物线上.①连接AC、BC,过点D作x轴的垂线,垂足为E,交BC于点F.过点F作FG⊥AC,垂足为G.设点D的横坐标为t,线段FG的长为d,用含t的代数式表示d;②过点D作DH⊥BC,垂足为H,连接CD.是否存在点D,使得△CDH中的一个角恰好等于∠ABC的2倍?如果存在,求出点D的横坐标;如果不存在,请说明理由.1.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入求得a的值即可;(2)过点P作PD⊥x,交BC与点D,先求得直线BC的解析式为y=﹣x+1,设点P(x,﹣x2+x+1),则D(x,﹣x+1),然后可得到PD与x之间的关系式,接下来,依据△PBC的面积为1列方程求解即可;(3)首先依据点A和点C的坐标可得到∠BQC=∠BAC=45°,设△ABC外接圆圆心为M,则∠CMB=90°,设⊙M的半径为x,则Rt△CMB中,依据勾股定理可求得⊙M的半径,然后依据外心的性质可得到点M为直线y=﹣x与x=1的交点,从而可求得点M的坐标,然后由点M的坐标以及⊙M的半径可得到点Q的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入得﹣3a=1,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=﹣,∴直线BC的解析式为y=﹣x+1.设点P(x,﹣x2+x+1),则D(x,﹣x+1)∴PD=(﹣x2+x+1)﹣(﹣x+1)=﹣x2+x,∴S△PBC=OB•DP=×3×(﹣x2+x)=﹣x2+x.又∵S△PBC=1,∴﹣x2+x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).(3)存在.∵A(﹣1,0),C(0,1),∴OC=OA=1∴∠BAC=45°.∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,则∠CMB=90°.设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=﹣x,AB的垂直平分线为直线x=1,∴点M为直线y=﹣x与x=1的交点,即M(1,﹣1),∴Q的坐标为(1,﹣1﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、三角形的外心的性质,求得点M的坐标以及⊙M的半径的长度是解题的关键.2.如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;(3)求满足∠MPO=∠POA的点M的坐标.【分析】(1)代入y=c可求出点C、P的坐标,利用一次函数图象上点的坐标特征可求出点A、B的坐标,再由△PCB≌△BOA即可得出b、c的值,进而可得出点P的坐标及抛物线的解析式;(2)利用二次函数图象上点的坐标特征求出点F的坐标,过点M作ME∥y轴,交直线AB于点E,由点M的横坐标可得出点M、E的坐标,进而可得出ME的长度,再利用三角形的面积公式可找出S=﹣(m﹣3)2+5,由m的取值范围结合二次函数的性质即可求出S的最大值及最小值;(3)分两种情况考虑:①当点M在线段OP上方时,由CP∥x轴利用平行线的性质可得出:当点C、M重合时,∠MPO=∠POA,由此可找出点M的坐标;②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA,设点D的坐标为(n,0),则DO=n,DP=,由DO=DP 可求出n的值,进而可得出点D的坐标,由点P、D的坐标利用待定系数法即可求出直线PD的解析式,再联立直线PD及抛物线的解析式成方程组,通过解方程组求出点M的坐标.综上此题得解.【解答】解:(1)当y=c时,有c=﹣x2+bx+c,解得:x1=0,x2=b,∴点C的坐标为(0,c),点P的坐标为(b,c).∵直线y=﹣3x+3与x轴、y轴分别交于A、B两点,∴点A的坐标为(1,0),点B的坐标为(0,3),∴OB=3,OA=1,BC=c﹣3,CP=b.∵△PCB≌△BOA,∴BC=OA,CP=OB,∴b=3,c=4,∴点P的坐标为(3,4),抛物线的解析式为y=﹣x2+3x+4.(2)当y=0时,有﹣x2+3x+4=0,解得:x1=﹣1,x2=4,∴点F的坐标为(4,0).过点M作ME∥y轴,交直线AB于点E,如图1所示.∵点M的横坐标为m(0≤m≤4),∴点M的坐标为(m,﹣m2+3m+4),点E的坐标为(m,﹣3m+3),∴ME=﹣m2+3m+4﹣(﹣3m+3)=﹣m2+6m+1,∴S=S梯形OEMB﹣S△OEB﹣S△AEM=OA•ME=﹣m2+3m+=﹣(m﹣3)2+5.∵﹣<0,0≤m≤4,∴当m=0时,S取最小值,最小值为;当m=3时,S取最大值,最大值为5.(3)①当点M在线段OP上方时,∵CP∥x轴,∴当点C、M重合时,∠MPO=∠POA,∴点M的坐标为(0,4);②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA.设点D的坐标为(n,0),则DO=n,DP=,∴n2=(n﹣3)2+16,解得:n=,∴点D的坐标为(,0).设直线PD的解析式为y=kx+a(k≠0),将P(3,4)、D(,0)代入y=kx+a,,解得:,∴直线PD的解析式为y=﹣x+.联立直线PD及抛物线的解析式成方程组,得:,解得:,.∴点M的坐标为(,).综上所述:满足∠MPO=∠POA的点M的坐标为(0,4)或(,).【点评】本题考查了待定系数法求一次函数解析式、一次(二次)函数图象上点的坐标特征、全等三角形的性质、二次函数的性质、三角形的面积以及等腰三角形的性质,解题的关键是:(1)利用全等三角形的性质求出b、c的值;(2)利用三角形的面积公式找出S=﹣(m﹣3)2+5;(3)分点M在线段OP上方和点M在线段OP下方两种情况求出点M的坐标.3.如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(1,﹣),且与x轴交于A、B两点,与y轴交于C 点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.(l)求抛物线所对应的二次函数的表达式;(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;(3)当P点的横坐标m<0时,过P点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.【分析】(1)根据函数值相等的点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;。

中考数学与抛物线有关的中考压轴题

中考数学与抛物线有关的中考压轴题

与抛物线有关的中考压轴题一、(2009江津市)如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(- 3,0)两点, (1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由. (3)在(1)中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.解析:(1)将A(1,0),B(-3,0)代2y x bx c =-++中得10930b c b c -++⎧⎨--+=⎩=……………………(2分) ∴23b c =-⎧⎨=⎩……………………(3分)∴抛物线解析式为:223y x x =--+…………………… (4分)(2)存在…………………………………………………………………………(5分) 理由如下:由题知A 、B 两点关于抛物线的对称轴1x =-对称 ∴直线BC 与1x =-的交点即为Q 点, 此时△AQC 周长最小 ∵223y x x =--+ ∴C 的坐标为:(0,3)直线BC 解析式为:3y x =+……………………………………(6分)Q 点坐标即为13x y x =-⎧⎨=+⎩的解∴12x y =-⎧⎨=⎩ABC∴Q(-1,2)…………………………………………………………………(7分)(3)答:存在。

…………………………………………………………………(8分)理由如下:设P 点2(23) (30)x x x x --+-<<,∵92BPC BOC BPCO BPCO S S S S ∆∆=-=-四边形四边形若BPCO S 四边形有最大值,则BPC S ∆就最大,∴BPE BPCO PEOC S S S ∆+Rt 四边形直角梯形=……………………………………………(9分)11()22BE PE OE PE OC =⋅++ =2211(3)(23)()(233)22x x x x x x +--++---++=233927()2228x -+++当32x =-时,BPCO S 四边形最大值=92728+∴BPC S ∆最大=9279272828+-=………………………………………(10分) 当32x =-时,215234x x --+=∴点P 坐标为315( )24-,………………………………………(11分)二、(2009某某)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.解析:(1)B (1(2)设抛物线的解析式为y =ax (x+a ),代入点B (,得a =,因此2y =+ (3)如图,抛物线的对称轴是直线x =—1,当点C 位于对称轴与线段AB 的交点时,△BOC 的周长最小.设直线AB 为y =kx +b .所以20.k k b k b b ⎧⎪⎧+=⎪⎪⎨⎨-+=⎪⎩⎪=⎪⎩解得因此直线AB 为y x =, 当x =-1时,y =, 因此点C 的坐标为(-1.(4)如图,过P 作y 轴的平行线交AB 于D . 2221()()213212PAB PAD PBD D P B A S S S y y x x x x x ∆∆∆=+=--⎡⎤⎫=+-⨯⎢⎥⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=⎫=+⎪⎝⎭当x =-12时,△PAB ,此时1,2P ⎛- ⎝⎭. 三 、(2007某某某某).已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2. (1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点 (与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值X 围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由. 解析(1)点B (2,0),点C (0,8),点A (-6,0),(2)抛物线的表达式为y =-23x 2-83x +8 ,(3)由EF AC =BE AB ,因为AC=2268+=10,BE=8-m ,AB=8.所以EF =40-5m4.作FG ⊥AB ,垂足为G ,则sin ∠FEG=sin ∠CAB=54108=.所以在Rt △EGF 中, FG =EF ·sin ∠FEG=45·40-5m4=8-m ,所以S =BFE BCE S S ∆∆-=()8821⨯-m -()()m m --8821=-12m 2+4m , m 的取值X 围是0<m <8 (4)存在.因为S =-12m 2+4m ,又a=21-<0,当m=ab2-=⎪⎭⎫ ⎝⎛-⨯-2124=4时,a4b ac 42-=最大S =8.因为m=4,所以点E 的坐标为(-2,0),△BCE 为等腰三角形.四(2006·某某市)施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM 为12米.现以O 点为原点,OM 所在直线为X 轴建立直角坐标系(如图所示). (1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数解析式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A 、D 点在抛物线上,B 、C 点在地面OM 上.为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和....的最大值是多少?请你帮施工队计算一下.解:⑴()()12,0,6,6M P⑵(法1)设这条抛物线的函数解析式 为:()266y a x =-+ ∵抛物线过O(0,0) ∴06)60(2=+-a 解得16a =-∴这条抛物线的函数解析式为:()21666y x =--+ 即2126y x x =-+. (法2)设这条抛物线的函数解析式 为:c bx ax y ++=2∵抛物线过O(0,0),()()12,0,6,6M P 三点,∴⎪⎩⎪⎨⎧=+⋅+⋅=+⋅+⋅=01212666022c b a c b a c 解得:⎪⎪⎩⎪⎪⎨⎧==-=0261c b a ∴这条抛物线的函数解析式为:2126y x x =-+.⑶设点A 的坐标为21,26m m m ⎛⎫-+ ⎪⎝⎭∴OB=m ,AB=DC=m m 2612+-根据抛物线的轴对称,可得:OB CM m == ∴122BC m =- 即AD=12-2m ∴l =AB+AD+DC=m m m m m 26121226122+--++-=122312++-m m =15)3(312+--m∴当m=3,即OB=3米时,三根木杆长度之和l的最大值为15米.。

中考数学压轴题100题精选及答案(全)

中考数学压轴题100题精选及答案(全)
【013】如图,抛物线经过 三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作 轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与 相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得 的面积最大,求出点D的坐标.
【014】在平面直角坐标中,边长为2的正方形 的两顶点 、 分别在 轴、 轴的正半轴上,点 在原点.现将正方形 绕 点顺时针旋转,当 点第一次落在直线 上时停止旋转,旋转过程中, 边交直线 于点 , 边交 轴于点 (如图).
②当点 在线段 上时(如图3),是否存在点 ,使 为等腰三角形?若存在,请求出所有满足要求的 的值;若不存在,请说明理由.
【006】如图13,二次函数 的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为 。
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;
(3)第(2)问中的一次函数的图象与 轴、 轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积 与四边形OABD的面积S满足: ?若存在,求点E的坐标;
若不存在,请说明理由.
【017】如图,已知抛物线 经过 , 两点,顶点为 .
⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.
【016】如图9,已知正比例函数和反比例函数的图象都经过点 .
(1)求正比例函数和反比例函数的解析式;

人教版中考数学解答题压轴题突破 重难点突破七 二次函数的实际应用 类型二:抛物线型问题

人教版中考数学解答题压轴题突破 重难点突破七 二次函数的实际应用 类型二:抛物线型问题

解:∵a=-510,b=190,∴y=-510x2+190x+66, ∵基准点K到起跳台的水平距离为75m, ∴y=-510×752+190×75+66=21, ∴基准点K的高度h为21 m.
9 ②若a=-510时,运动员落地点要超过K点,则b的取值范围为bb>>10 ; 【分层分析】运动员落地点要超过K点,即是x=75时,y>221 1,故- 510×752+75b+66>2211 ,即可解得答案;
(1)求抛物线的解析式; 解:由题意知, 点(5,3.2)是抛物线 y=a(x-h)2 +k的顶点,∴y=a(x-5)2 +3.2. 又∵抛物线经过点(0,0.7), ∴ 0.7=a(0-5)2 + 3.2,解得a=- 0.1. ∴抛物线的解析式为 y=-0.1(x-5)2 +3.2(或y=-0.1x2 +x +0.7).
解: b=6,c=1.
(2)求大棚的最高处到地面的距离;
解:∵y=-16x2+76x+1=-16x-722+7234, ∴当x=72时,y有最大值7234,
73 即大棚最高处到地面的距离为24 m.
37 (3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为 24 m的竹竿支架若 干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共 需要准备多少根竹竿?
【分层分析】运动员飞行的水平距离为25m时,恰好达到最大高度76 m,即是抛物线的顶点为((225,5,76)7,6)设抛物线解析式为y==a(xa-(x225)25+ ,可得抛物线解析式为y=--1225((xx--2255))2+2+7676,当x=777556时,y= 3366,从而可知他的落地点能超超 过K点.
解:令y=-16x2+76x+1=3274, 1 13
解得x1=2,x2= 2 , 1 11

中考数学抛物线压轴题

中考数学抛物线压轴题

在中考数学中,抛物线是一个常见的考点,经常以压轴题的形式出现。

以下是一个关于抛物线的中考压轴题的示例:题目:已知抛物线y=ax^2+bx+c(a,b,c是常数,a≠0)经过点(-1,-1),(0,1),当x=-2时,与其对应的函数值y>1。

1. 请你求出abc的值,并判断抛物线的开口方向。

2. 设直线y=kx+d(k≠0)经过点(1,-1),且与抛物线的对称轴平行。

请你求出该直线的解析式。

3. 设E(m,n)是抛物线y=ax^2+bx+c上的一个动点,且满足∠APE=90°,请你求出m的值。

解析:1. 根据题目条件,抛物线经过点(-1,-1),(0,1),可得到方程:$a-b+c=-1$ ①$c=1$ ②将x=-2,y>1代入解析式得:$4a-2b+1>1$化简得:$2a-b>0$ ③由①②③解得:$a>0$$b>0$$c=1$所以,abc=1。

由于a>0,抛物线开口向上。

2. 由题意知:直线y=kx+d经过点(1,-1),则有:k+d=-1 ④又因为直线与对称轴平行,所以其斜率等于对称轴的斜率,即:k=-b/2a=-1/2 ⑤由④⑤解得:d=-3/2所以,直线的解析式为:y=-x/2-3/2。

3. 根据题意知:E(m,n)在抛物线上,则有:$n=am^2+bm+c$ ⑥由于∠APE=90°,所以AE与PE垂直。

根据两直线垂直的条件:斜率之积等于-1。

即:$(m-1)/(n+1)=-1$ ⑦由⑥⑦解得:m=0或m=-2综上所述,m的值为0或-2。

中考压轴题专项训练1——抛物线专题(带答案解析)

中考压轴题专项训练1——抛物线专题(带答案解析)

中考压轴题专项训练1——抛物线专题考点分析:命题预测:函数是数形结合的重要体现,是每年中考的必考内容,函数的概念主要用选择、填空的形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占2%左右.一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考查,占5%左右.反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,3—6分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中.要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决复杂的图形综合问题。

二次函数常考点汇总:1. 两点间的距离公式:22)()(AB B A B A x x y y -+-=2. 中点坐标公式:已知A ),(A A y x ,B ),(B B y x ,则线段AB 的中点C 的坐标为⎪⎭⎫⎝⎛++2,2B A B A y y x x 。

3. 在平面直角坐标系中求面积的方法:公式法、割补法(做铅垂高或水平宽) 4. 几何分析法:特别是构造“平行四边形”、“梯形”、“相似三角形”、“直角三角形”、“等腰三角形”等图形时,利用几何分析法能给解题带来方便。

例题精讲:1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2.如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠P AQ=∠AQB,求点Q的坐标.3.已知,在平面直角坐标系xoy 中,点A 的坐标为(0,2),点P (m ,n )是抛物线2114y x =+上的一个动点.(1)①如图1,过动点P 作PB ⊥x 轴,垂足为B ,连接PA ,求证:PA=PB ; ②如图2,设C 的坐标为(2,5),连接PC ,AP+PC 是否存在最小值?如果存在,求点P 的坐标;如果不存在,请说明理由;(2)如图3,过动点P 和原点O 作直线交抛物线于另一点D ,若AP=2AD ,求直线OP 的解析式.4.【变式】在平面直角坐标系xOy 中,抛物线21124y x =+的顶点为M ,直线2y x =,点()0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B.(1)直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3) 已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤2124x +,求a ,b ,c 的值.5.如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.6.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标; (3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.7.(8分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.答案解析1.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.2.【解答】解:(1)∵y=﹣x2+(a+1)x﹣a令y=0,即﹣x2+(a+1)x﹣a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵s△ABC=6∴解得:a=﹣3,(a=4舍去)(2)设直线AC:y=kx+b,由A(﹣3,0),C(0,3),可得﹣3k+b=0,且b=3∴k=1即直线AC:y=x+3,A、C的中点D坐标为(﹣,)∴线段AC的垂直平分线解析式为:y=﹣x,线段AB的垂直平分线为x=﹣1代入y=﹣x,解得:y=1∴△ABC外接圆圆心的坐标(﹣1,1)(3)作PM⊥x轴,则=∵∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x﹣1联立解得:∴点P坐标为(﹣4,﹣5)又∵∠P AQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:解得:m=﹣4,m=﹣8(当m=﹣8时,∠P AQ≠∠AQB,故应舍去)∴Q坐标为(﹣4,﹣1)3.【解答】解:(1)①设P(m,n)∴n=m2+1,∵PB⊥x 轴,∴PB=m2+1,∵A(0,2)∴AP==m2+1,∴PB=PA;②过点P作PB⊥x轴于B,由(1)得PA=PB,所以要使AP+CP最小,只需当BP+CP最小,因此当C,P,B共线时取得,此时点P的横坐标等于点C(2,5)的横坐标,所以点P的坐标为(2,2),(2)如图,作DE⊥x轴于E,作PF⊥x轴于F,由(1)得:DA=DE,PA=PF∵PA=2DA,∴PF=2DE,∵△ODE∽△OPF,∴==,设P(m,m2+1),则D(m,m2+)∵点D在抛物线y=x2+1上,∴m2+=(m)2+1,解得m=±2,∴P 1(,3),直线OP 的解析式为y=x , P 2(﹣,3)直线OP 的解析式为y=﹣x , 综上所求,所求直线OP 的解析式为y=x 或y=﹣x .4.【解答】解:(1)21(2)4A n n +,,()B n n ,. (2) d =AB=A B y y -=2124n n -+.∴ d =2112()48n -+=2112()48n -+.∴ 当14n =时,d 取得最小值18. 当d 取最小值时,线段OB 与线段PM 的位置 关系和数量关系是OB ⊥PM 且OB=PM. (如图)(3) ∵对一切实数x 恒有 x ≤y ≤2124x +, ∴对一切实数x ,x ≤2ax bx c ++≤2124x +都成立. (0a ≠) ①当0x =时,①式化为 0≤c ≤14.xy111APBMO∴整数c 的值为0.此时,对一切实数x ,x ≤2ax bx +≤2124x +都成立.(0a ≠) 即 222,12.4x ax bx ax bx x ⎧≤+⎪⎨+≤+⎪⎩ 对一切实数x 均成立. 由②得 ()21ax b x +-≥0 (0a ≠) 对一切实数x 均成立.∴()210,10.a b >⎧⎪⎨∆=-≤⎪⎩ 由⑤得整数b 的值为1.此时由③式得,2ax x +≤2124x +对一切实数x 均成立. (0a ≠) 即21(2)4a x x --+≥0对一切实数x 均成立. (0a ≠) 当a=2时,此不等式化为14x -+≥0,不满足对一切实数x 均成立.当a≠2时,∵ 21(2)4a x x --+≥0对一切实数x 均成立,(0a ≠)∴2220,1(1)4(2)0.4a a ->⎧⎪⎨∆=--⨯-⨯≤⎪⎩∴由④,⑥,⑦得 0 <a ≤1.∴整数a 的值为1.∴整数a ,b ,c 的值分别为1a =,1b =,0c =.5.【解答】解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =. ∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. ④⑤② ③ ⑥ ⑦图①图②(3)存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.6. 【解答】解:(1).3)(03,20.0,c -),,0(,.2,12.1x 2CD x //2-=∴=-=++=∴∴=-==-∴=∴=c c c c c c B c C OC OB b bl CD ,舍去或解得)点坐标为(:抛物线对称轴为直线,轴,(2)设点F 坐标为(0,m ).∵对称轴是直线,1:=x l ∴点F 关于直线l 的对称点’F 的坐标为(2,m ). ∵直线BE 经过点B (3,0),E (1,-4),∴利用待定系数法可得直线BE 的表达式为y=2x-6. ∵点’F 在BE 上,∴m=2⨯2-6=-2,即点F 的坐标为(0,-2). (3)存在点Q 满足题意。

中考数学压轴题抛物线与动点精选

中考数学压轴题抛物线与动点精选

动点与抛物线专题复习一、平行四边形与抛物线1、(2012•钦州)如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c经过点B,且对称轴是直线x=﹣.(1)求抛物线对应的函数解析式;(2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上;(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴是直线x=﹣.)2、(2012•鸡西)如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2﹣7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.(1)求A、B两点的坐标.(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.3.(2012•恩施州)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD 交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.二、梯形与抛物线1、已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.2、(2012•泉州)如图,O为坐标原点,直线l绕着点A(0,2)旋转,与经过点C(0,1)的二次函数y=x2+h的图象交于不同的两点P、Q.(1)求h的值;(2)通过操作、观察,算出△POQ的面积的最小值(不必说理);(3)过点P、C作直线,与x轴交于点B,试问:在直线l的旋转过程中,四边形AOBQ是否为梯形?若是,请说明理由;若不是,请指出四边形的形状.3.(2012•玉林)如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2.(1)求点D的坐标,并直接写出t的取值范围.(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?三、等腰三角形、菱形与抛物线1、(2012•龙岩)在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(﹣1,0).(1)请直接写出点B、C的坐标:B、C;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于点M.①设AE=x,当x为何值时,△OCE∽△OBC;②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.3、(2012•湛江)如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?4、如图,直线l 1经过点A(﹣1,0),直线l2经过点B(3,0),l1、l2均为与y轴交于点C(0,),抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.(1)求抛物线的函数表达式;(2)抛物线的对称轴依次与x轴交于点D、与l2交于点E、与抛物线交于点F、与l1交于点G.求证:DE=EF=FG;(3)若l1⊥l2于y轴上的C点处,点P为抛物线上一动点,要使△PCG为等腰三角形,请写出符合条件的点P的坐标,并简述理由.5、如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(﹣18,0).(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE 的解析式;(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.6、(2012•铁岭)如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由.四、直角三角形与抛物线1、(2012•广州)如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.2、(2012•河池)如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=﹣x2+x+4经过A、B两点.(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连接P A、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,抛物线上是否存在一点P,使得△P AM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.3.(2012•海南)如图,顶点为P(4,﹣4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON,(1)求该二次函数的关系式;(2)若点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:①证明:∠ANM=∠ONM;②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.4、(2012•云南)如图,在平面直角坐标系中,直线y=x+2交x轴于点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(﹣1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.五、相似三角形与抛物线1、(2012•福州)如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m 的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).3、(2012•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,﹣).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA=2S△AOB;(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.4.(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.5、(2012•常德)如图,已知二次函数的图象过点A(﹣4,3),B(4,4).(1)求二次函数的解析式:(2)求证:△ACB是直角三角形;(3)若点P在第二象限,且是抛物线上的一动点,过点P作PH垂直x轴于点H,是否存在以P、H、D为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.6(2012•鞍山)如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x 轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.(1)直接写出直线AB的解析式;(2)求点D的坐标;(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF与△FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由.7.(2012•阜新)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;考生注意:下面的(3)、(4)、(5)题为三选一的选做题,即只能选做其中一个题目,多答时只按作答的首题评分,切记啊!(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;(4)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;(5)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.六、抛物线中的翻折问题1、(2012•天门)如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.(1)求抛物线解析式及点D坐标;(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.2、(2010•恩施州)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.动点与抛物线专题复习答案一、平行四边形与抛物线1、解:(1)由于抛物线y=x2+bx+c与y轴交于点B(0,4),则c=4;∵抛物线的对称轴x=﹣=﹣,∴b=5a=;即抛物线的解析式:y=x2+x+4.(2)∵A(4,0)、B(3,0)∴OA=4,OB=3,AB==5;若四边形ABCD是菱形,则BC=AD=AB=5,∴C(﹣5,3)、D(﹣1,0).将C(﹣5,3)代入y=x2+x+4中,得:×(﹣5)2+×(﹣5)+4=3,所以点C在抛物线上;同理可证:点D也在抛物线上.(3)设直线CD的解析式为:y=kx+b,依题意,有:,解得∴直线CD:y=﹣x﹣.由于MN∥y轴,设M(t,t2+t+4),则N(t,﹣t﹣);①t<﹣5或t>﹣1时,l=MN=(t2+t+4)﹣(﹣t﹣)=t2+t+;②﹣5<t<﹣1时,l=MN=(﹣t﹣)﹣(t2+t+4)=﹣t2﹣t﹣;若以M、N、C、E为顶点的四边形是平行四边形,由于MN∥CE,则MN=CE=3,则有:t2+t+=3,解得:t=﹣3±2;﹣t2﹣t﹣=3,解得:t=﹣3;综上,l=且当t=﹣3±2或﹣3时,以M、N、C、E为顶点的四边形是平行四边形.2、解:(1)解方程x2﹣7x+12=0,得x1=3,x2=4,∵OA<OB,∴OA=3,OB=4.∴A(0,3),B(4,0).(2)在Rt△AOB中,OA=3,OB=4,∴AB=5,∴AP=t,QB=2t,AQ=5﹣2t.△APQ与△AOB相似,可能有两种情况:(I)△APQ∽△AOB,如图(2)a所示.则有,即,解得t=.此时OP=OA﹣AP=,PQ=AP•tanA=,∴Q(,);(II)△APQ∽△ABO,如图(2)b所示.则有,即,解得t=.此时AQ=,AH=AQ•cosA=,HQ=AQ•sinA=,OH=OA﹣AH=,∴Q(,).综上所述,当t=秒或t=秒时,△APQ与△AOB相似,所对应的Q点坐标分别为(,)或(,).(3)结论:存在.如图(3)所示.∵t=2,∴AP=2,AQ=1,OP=1.过Q点作QE⊥y轴于点E,则QE=AQ•sin∠QAP=,AE=AQ•cos∠QAP=,∴OE=OA﹣AE=,∴Q(,).∵▱APQM1,∴QM1⊥x轴,且QM1=AP=2,∴M1(,);∵▱APQM2,∴QM2⊥x轴,且QM2=AP=2,∴M2(,);如图(3),过M3点作M3F⊥y轴于点F,∵▱AQPM3,∴M3P=AQ,∠QAE=∠M3PF,∴∠PM3F=∠AQE;在△M3PF与△QAE中,∵∠QAE=∠M3PF,M3P=AQ,∠PM3F=∠AQE,∴△M3PF≌△QAE,∴M3F=QE=,PF=AE=,∴OF=OP+PF=,∴M3(﹣,).∴当t=2时,在坐标平面内,存在点M,使以A、P、Q、M为顶点的四边形是平行四边形.点M的坐标为:M1(,),M2(,),M3(﹣,).3.解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3又设直线为y=kx+n过点A(﹣1,0)及C(2,3)得,解得故直线AC为y=x+1;(2)作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),故直线DN′的函数关系式为y=﹣x+,当M(3,m)在直线DN′上时,MN+MD的值最小,则m=﹣×=;(3)由(1)、(2)得D(1,4),B(1,2)∵点E在直线AC上,设E(x,x+1),①当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3,解得,x=0或x=1(舍去)∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1)由F在抛物线上∴x﹣1=﹣x2+2x+3解得x=或x=∴E(,)或(,)综上,满足条件的点E为E(0,1)、(,)或(,);(4)过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图2,设Q(x,x+1),则P(x,﹣x2+2x+3)又∵S△APC=S△APH+S直角梯形PHGC﹣S△AGC=(x+1)(﹣x2+2x+3)+(﹣x2+2x+3+3)(2﹣x)﹣×3×3=﹣x2+x+3=﹣(x﹣)2+∴△APC的面积的最大值为.二、梯形与抛物线1、解:(1)过点C作CH⊥x轴,垂足为H;∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,∴OB=4,OA=2;由折叠的性质知:∠COB=30°,OC=AO=2,∴∠COH=60°,OH=,CH=3;∴C点坐标为(,3).(2)∵抛物线y=ax2+bx(a≠0)经过C(,3)、A(2,0)两点,∴,解得;∴此抛物线的函数关系式为:y=﹣x2+2x.(3)存在.因为y=﹣x2+2x的顶点坐标为(,3),即为点C,MP⊥x轴,垂足为N,设PN=t;因为∠BOA=30°,所以ON=t,∴P(t,t);作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E;把x=t代入y=﹣x2+2x,得y=﹣3t2+6t,∴M(t,﹣3t2+6t),E(,﹣3t2+6t),同理:Q(,t),D(,1);要使四边形CDPM为等腰梯形,只需CE=QD,即3﹣(﹣3t2+6t)=t﹣1,解得t=,t=1(舍),∴P点坐标为(,),∴存在满足条件的P点,使得四边形CDPM为等腰梯形,此时P点坐标为(,).2、解:(1)∵抛物线y=x2+h经过点C(0,1),∴+h=1,解得h=1.(2)依题意,设抛物线y=x2+1上的点,P(a,a2+1)、Q(b,b2+1)(a<0<b)过点A的直线l:y=kx+2经过点P、Q,∴a2+1=ak+2…①b2+1=bk+2…②①×b﹣②×a得:(a2b﹣b2a)+b﹣a=2(b﹣a),化简得:b=﹣;∴S△POQ=OA•|x Q﹣x P|=•OA•|﹣﹣a|=(﹣)+(﹣a)≥2•=4 由上式知:当﹣=﹣a,即|a|=|b|(P、Q关于y轴对称)时,△POQ的面积最小;即PQ∥x轴时,△POQ的面积最小,且POQ的面积最小为4.(3)连接BQ,若l与x轴不平行(如图),即PQ与x轴不平行,依题意,设抛物线y=x2+1上的点,P(a,a2+1)、Q(b,b2+1)(a<0<b)直线BC:y=k1x+1过点P,∴a2+1=ak1+1,得k1=﹣a,即y=ax+1.令y=0得:x B=﹣,同理,由(2)得:b=﹣∴点B与Q的横坐标相同,∴BQ∥y轴,即BQ∥OA,又∵AQ与OB不平行,∴四边形AOBQ是梯形,据抛物线的对称性可得(a>0>b)结论相同.故在直线l旋转的过程中:当l与x轴不平行时,四边形AOBQ是梯形;当l与x轴平行时,四边形AOBQ是正方形.3.解:(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,在Rt△PCQ中,由勾股定理得:PC===4,∴OC=OP+PC=4+4=8,又∵矩形AOCD,A(0,4),∴D(8,4).点P到达终点所需时间为=4秒,点Q到达终点所需时间为=4秒,由题意可知,t的取值范围为:0<t<4.(2)结论:△AEF的面积S不变化.∵AOCD是矩形,∴AD∥OE,∴△AQD∽△EQC,∴,即,解得CE=.由翻折变换的性质可知:DF=DQ=4﹣t,则CF=CD+DF=8﹣t.S=S梯形AOCF+S△FCE﹣S△AOE=(OA+CF)•OC+CF•CE﹣OA•OE=[4+(8﹣t)]×8+(8﹣t)•﹣×4×(8+)化简得:S=32为定值.所以△AEF的面积S不变化,S=32.(3)若四边形APQF是梯形,因为AP与CF不平行,所以只有PQ∥AF.由PQ∥AF可得:△CPQ∽△DAF,∴,即,化简得t2﹣12t+16=0,解得:t1=6+2,t2=6﹣2,由(1)可知,0<t<4,∴t1=6+2不符合题意,舍去.∴当t=(6﹣2)秒时,四边形APQF是梯形.三、等腰三角形、菱形与抛物线1、解:(1)∵点A(﹣1,0),∴OA=1,由图可知,∠BAC是三角板的60°角,∠ABC是30°角,所以,OC=OA•tan60°=1×=,OB=OC•cot30°=×=3,所以,点B(3,0),C(0,),设抛物线解析式为y=ax2+bx+c,则,解得,所以,抛物线的解析式为y=﹣x2+x+;(2)①∵△OCE∽△OBC,∴=,即=,解得OE=1,所以,AE=OA+OE=1+1=2,即x=2时,△OCE∽△OBC;②存在.理由如下:抛物线的对称轴为x=﹣=﹣=1,所以,点E为抛物线的对称轴与x轴的交点,∵OA=OE,OC⊥x轴,∠BAC=60°,∴△ACE是等边三角形,∴∠AEC=60°,又∠DEF=60°,∴∠FEB=60°,∴∠BAC=∠FEB,∴EF∥AC,由A(﹣1,0),C(0,)可得直线AC的解析式为y=x+,∵点E(1,0),∴直线EF的解析式为y=x﹣,联立,解得,(舍去),∴点M的坐标为(2,),EM==2,分三种情况讨论△PEM是等腰三角形,当PE=EM时,PE=2,所以,点P的坐标为(1,2)或(1,﹣2),当PE=PM时,∵∠FEB=60°,∴∠PEF=90°﹣60°=30°,PE=EM÷cos30°=×2÷=,所以,点P的坐标为(1,),当PM=EM时,PE=2EM•cos30°=2×2×=2,所以,点P的坐标为(1,2),综上所述,抛物线对称轴上存在点P(1,2)或(1,﹣2)或(1,)或(1,2),使△PEM是等腰三角形.3、解:(1)由题意,A(6,0)、B(0,8),则OA=6,OB=8,AB=10;当t=3时,AN=t=5=AB,即N是线段AB的中点;∴N(3,4).设抛物线的解析式为:y=ax(x﹣6),则:4=3a(3﹣6),a=﹣;∴抛物线的解析式:y=﹣x(x﹣6)=﹣x2+x.(2)过点N作NC⊥OA于C;由题意,AN=t,AM=OA﹣OM=6﹣t,NC=NA•sin∠BAO=t•=t;则:S△MNA=AM•NC=×(6﹣t)×t=﹣(t﹣3)2+6.∴△MNA的面积有最大值,且最大值为6.(3)Rt△NCA中,AN=t,NC=AN•sin∠BAO=t,AC=AN•cos∠BAO=t;∴OC=OA﹣AC=6﹣t,∴N(6﹣t,t).∴NM==;又:AM=6﹣t,AN=t(0<t<6);①当MN=AN时,=t,即:t2﹣8t+12=0,t1=2,t2=6(舍去);②当MN=MA时,=6﹣t,即:t2﹣12t=0,t1=0(舍去),t2=;③当AM=AN时,6﹣t=t,即t=;综上,当t的值取2或或时,△MAN是等腰三角形.4、解:(1)抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(3,0),C(0,)三点,∴,解得a=,b=,c=,∴抛物线的解析式为:y=x2x.(2)设直线l1的解析式为y=kx+b,由题意可知,直线l1经过A(﹣1,0),C(0,)两点,∴,解得k=,b=,∴直线l1的解析式为:y=x;直线l2经过B(3,0),C(0,)两点,同理可求得直线l2解析式为:y=x.∵抛物线y=x2x=(x﹣1)2,∴对称轴为x=1,D(1,0),顶点坐标为F(1,);点E为x=1与直线l2:y=x的交点,令x=1,得y=,∴E(1,);点G为x=1与直线l1:y=x的交点,令x=1,得y=,∴G(1,).∴各点坐标为:D(1,0),E(1,),F(1,),G(1,),它们均位于对称轴x=1上,∴DE=EF=FG=.(3)如右图,过C点作C关于对称轴x=1的对称点P1,CP1交对称轴于H点,连接CF.△PCG为等腰三角形,有三种情况:①当CG=PG时,如右图,由抛物线的对称性可知,此时P1满足P1G=CG.∵C(0,),对称轴x=1,∴P1(2,).②当CG=PC时,此时P点在抛物线上,且CP的长度等于CG.如右图,C(1,),H点在x=1上,∴H(1,),在Rt△CHG中,CH=1,HG=|y G﹣y H|=|﹣()|=,∴由勾股定理得:CG==2.∴PC=2.如右图,CP1=2,此时与①中情形重合;又Rt△OAC中,AC==2,∴点A满足PC=2的条件,但点A、C、G在同一条直线上,所以不能构成等腰三角形.③当PC=PG时,此时P点位于线段CG的垂直平分线上.∵l1⊥l2,∴△ECG为直角三角形,由(2)可知,EF=FG,即F为斜边EG的中点,∴CF=FG,∴F为满足条件的P点,∴P2(1,);又cos∠CGE==,∴∠CGE=30°,∴∠HCG=60°,又P1C=CG,∴△P1CG为等边三角形,∴P1点也在CG的垂直平分线上,此种情形与①重合.综上所述,P点的坐标为P1(2,)或P2(1,).5、解:(1)过点B作BF⊥x轴于F在Rt△BCF中∵∠BCO=45°,BC=6∴CF=BF=12∵C的坐标为(﹣18,0)∴AB=OF=6∴点B的坐标为(﹣6,12).(2)过点D作DG⊥y轴于点G∵AB∥DG∴△ODG∽△OBA∵===,AB=6,OA=12∴DG=4,OG=8∴D(﹣4,8),E(0,4)设直线DE解析式为y=kx+b(k≠0)∴∴∴直线DE解析式为y=﹣x+4.(3)结论:存在.设直线y=﹣x+4分别与x轴、y轴交于点E、点F,则E(0,4),F(4,0),OE=OF=4,EF=4.如答图2所示,有四个菱形满足题意.①菱形OEP1Q1,此时OE为菱形一边.则有P1E=P1Q1=OE=4,P1F=EF﹣P1E=4﹣4.易知△P1NF为等腰直角三角形,∴P1N=NF=P1F=4﹣2;设P1Q1交x轴于点N,则NQ1=P1Q1﹣P1N=4﹣(4﹣2)=2,又ON=OF﹣NF=2,∴Q1(2,﹣2);②菱形OEP2Q2,此时OE为菱形一边.此时Q2与Q1关于原点对称,∴Q2(﹣2,2);③菱形OEQ3P3,此时OE为菱形一边.此时P3与点F重合,菱形OEQ3P3为正方形,∴Q3(4,4);④菱形OP4EQ4,此时OE为菱形对角线.由菱形性质可知,P4Q4为OE的垂直平分线,由OE=4,得P4纵坐标为2,代入直线解析式y=﹣x+4得横坐标为2,则P4(2,2),由菱形性质可知,P4、Q4关于OE或x轴对称,∴Q4(﹣2,2).综上所述,存在点Q,使以O、E、P、Q为顶点的四边形是菱形;点Q的坐标为:Q1(2,﹣2),Q2(﹣2,2),Q3(4,4),Q4(﹣2,2).6、解:(1)∵点B(﹣2,m)在直线y=﹣2x﹣1上∴m=3 即B(﹣2,3)又∵抛物线经过原点O∴设抛物线的解析式为y=ax2+bx∵点B(﹣2,3),A(4,0)在抛物线上∴,解得:.∴设抛物线的解析式为.(2)∵P(x,y)是抛物线上的一点,∴,若S△ADP=S△ADC,∵,,又∵点C是直线y=﹣2x﹣1与y轴交点,∴C(0,1),∴OC=1,∴,即或,解得:.∴点P的坐标为.(3)结论:存在.∵抛物线的解析式为,∴顶点E(2,﹣1),对称轴为x=2;点F是直线y=﹣2x﹣1与对称轴x=2的交点,∴F(2,﹣5),DF=5.又∵A(4,0),∴AE=.如右图所示,在点M的运动过程中,依次出现四个菱形:①菱形AEM1Q1.∵此时DM1=AE=,∴M1F=DF﹣DE﹣DM1=4﹣,∴t1=4﹣;②菱形AEOM2.∵此时DM2=DE=1,∴M2F=DF+DM2=6,∴t2=6;③菱形AEM3Q3.∵此时EM3=AE=,∴DM3=EM3﹣DE=﹣1,∴M3F=DM3+DF=(﹣1)+5=4+,∴t3=4+;④菱形AM4EQ4.此时AE为菱形的对角线,设对角线AE与M4Q4交于点H,则AE⊥M4Q4,∵易知△AED∽△M4EH,∴,即,得M4E=,∴DM4=M4E﹣DE=﹣1=,∴M4F=DM4+DF=+5=,∴t4=.综上所述,存在点M、点Q,使得以Q、A、E、M四点为顶点的四边形是菱形;时间t的值为:t1=4﹣,t2=6,t3=4+,t4=.四、直角三角形与抛物线1、解:(1)令y=0,即=0,解得x1=﹣4,x2=2,∴A、B点的坐标为A(﹣4,0)、B(2,0).(2)S△ACB=AB•OC=9,在Rt△AOC中,AC===5,设△ACD中AC边上的高为h,则有AC•h=9,解得h=.如答图1,在坐标平面内作直线平行于AC,且到AC的距离=h=,这样的直线有2条,分别是l1和l2,则直线与对称轴x=﹣1的两个交点即为所求的点D.设l1交y轴于E,过C作CF⊥l1于F,则CF=h=,∴CE==.设直线AC的解析式为y=kx+b,将A(﹣4,0),B(0,3)坐标代入,得到,解得,∴直线AC解析式为y=x+3.直线l1可以看做直线AC向下平移CE长度单位(个长度单位)而形成的,∴直线l1的解析式为y=x+3﹣=x﹣.则D1的纵坐标为×(﹣1)﹣=,∴D1(﹣4,).同理,直线AC向上平移个长度单位得到l2,可求得D2(﹣1,)综上所述,D点坐标为:D1(﹣4,),D2(﹣1,).(3)如答图2,以AB为直径作⊙F,圆心为F.过E点作⊙F的切线,这样的切线有2条.连接FM,过M作MN⊥x轴于点N.∵A(﹣4,0),B(2,0),∴F(﹣1,0),⊙F半径FM=FB=3.又FE=5,则在Rt△MEF中,ME==4,sin∠MFE=,cos∠MFE=.在Rt△FMN中,MN=MN•sin∠MFE=3×=,FN=MN•cos∠MFE=3×=,则ON=,∴M点坐标为(,)直线l过M(,),E(4,0),设直线l的解析式为y=kx+b,则有,解得,所以直线l的解析式为y=x+3.同理,可以求得另一条切线的解析式为y=x﹣3.综上所述,直线l的解析式为y=x+3或y=x﹣3.2、解:(1)抛物线y=﹣x2+x+4中:令x=0,y=4,则B(0,4);令y=0,0=﹣x2+x+4,解得x1=﹣1、x2=8,则A(8,0);∴A(8,0)、B(0,4).(2)△ABC中,AB=AC,AO⊥BC,则OB=OC=4,∴C(0,﹣4).由A(8,0)、B(0,4),得:直线AC:y=﹣x+4;依题意,知:OE=2t,即E(2t,0);∴P(2t,﹣2t2+7t+4)、Q(2t,﹣t+4),PQ=(﹣2t2+7t+4)﹣(﹣t+4)=﹣2t2+8t;S=S△ABC+S△P AB=×8×8+×(﹣2t2+8t)×8=﹣8t2+32t+32=﹣8(t﹣2)2+64;∴当t=2时,S有最大值,且最大值为64.(3)∵PM∥y轴,∴∠AMP=∠ACO<90°;而∠APM是锐角,所以△P AM若是直角三角形,只能是∠P AM=90°;由A(8,0)、C(0,﹣4),得:直线AC:y=x﹣4;所以,直线AP可设为:y=﹣2x+h,代入A(8,0),得:﹣16+h=0,h=16∴直线AP:y=﹣2x+16,联立抛物线的解析式,得:,解得、∴存在符合条件的点P,且坐标为(3,10).3.解:(1)∵二次函数的顶点坐标为(4,﹣4),∴设二次函数的解析式为y=a(x﹣4)2﹣4,又二次函数过(0,0),∴0=a(0﹣4)2﹣4,解得:a=,∴二次函数解析式为y=(x﹣4)2﹣4=x2﹣2x;(2)①证明:过A作AH⊥l于H,l与x轴交于点D,如图所示:设A(m,m2﹣2m),又O(0,0),∴直线AO的解析式为y=x=(m﹣2)x,则M(4,m﹣8),N(4,﹣m),H(4,m2﹣2m),∴OD=4,ND=m,HA=m﹣4,NH=ND﹣HD=m2﹣m,在Rt△OND中,tan∠ONM==,在Rt△ANH中,tan∠ANM====,∴tan∠ONM=tan∠ANM,则∠ANM=∠ONM;②△ANO不能为直角三角形,理由如下:分三种情况考虑:(i)若∠ONA为直角,由①得:∠ANM=∠ONM=45°,∴△AHN为等腰直角三角形,∴HA=NH,即m﹣4=m2﹣m,整理得:m2﹣8m+16=0,即(m﹣4)2=0,解得:m=4,此时点A与点P重合,故不存在A点使△ONA为直角三角形;(ii)若∠AON为直角,根据勾股定理得:OA2+ON2=AN2,∵OA2=m2+(m2﹣2m)2,ON2=42+m2,AN2=(m﹣4)2+(m2﹣2m+m)2,∴m2+(m2﹣2m)2+42+m2=(m﹣4)2+(m2﹣2m+m)2,整理得:m(m﹣4)2=0,解得:m=0或m=4,此时A点与P点重合或与原点重合,故∠AON不能为直角;(iii)若∠NAO为直角,可得∠NAM=∠ODM=90°,且∠AMN=∠DMO,∴△AMN∽△DMO,又∠MAN=∠ODN=90°,且∠ANM=∠OND,∴△AMN∽△DON,∴△AMN∽△DMO∽△DON,∴=,即=,整理得:(m﹣4)2=0,解得:m=4,此时A与P重合,故∠NAO不能为直角,综上,点A在对称轴l右侧的二次函数图象上运动时,△ANO不能为直角三角形4、解:(1)直线解析式为y=x+2,令x=0,则y=2,∴A(0,2),∵抛物线y=x2+bx+c的图象过点A(0,2),E(﹣1,0),∴,解得.∴抛物线的解析式为:y=x2+x+2.(2)∵直线y=x+2分别交x轴、y轴于点P、点A,∴P(6,0),A(0,2),∴OP=6,OA=2.∵AC⊥AB,OA⊥OP,∴Rt△OCA∽Rt△OP A,∴,∴OC=,又C点在x轴负半轴上,∴点C的坐标为C(,0).(3)抛物线y=x2+x+2与直线y=x+2交于A、B两点,令x2+x+2=x+2,解得x1=0,x2=,∴B(,).如答图①所示,过点B作BD⊥x轴于点D,则D(,0),BD=,DP=6﹣=.点M在坐标轴上,且△MAB是直角三角形,有以下几种情况:①当点M在x轴上,且BM⊥AB,如答图①所示.设M(m,0),则MD=﹣m.∵BM⊥AB,BD⊥x轴,∴,即,解得m=,∴此时M点坐标为(,0);②当点M在x轴上,且BM⊥AM,如答图①所示.设M(m,0),则MD=﹣m.∵BM⊥AM,易知Rt△AOM∽Rt△MDB,∴,即,化简得:m2﹣m+=0,解得:x1=,x2=,∴此时M点坐标为(,0),(,0);(说明:此时的M点相当于以AB为直径的圆与x轴的两个交点)③当点M在y轴上,且BM⊥AM,如答图②所示.此时M点坐标为(0,);④当点M在y轴上,且BM′⊥AB,如答图②所示.设M′(0,m),则AM=2﹣=,BM=,MM′=﹣m.易知Rt△ABM∽Rt△MBM′,∴,即,解得m=,∴此时M点坐标为(0,).综上所述,除点C外,在坐标轴上存在点M,使得△MAB是直角三角形.符合条件的点M有5个,其坐标分别为:(,0)、(,0)、(,0)、(0,)或(0,).五、相似三角形与抛物线1、解:(1)∵抛物线y=y=ax2+bx(a≠0)经过A(3,0)、B(4,4)∴,解得:∴抛物线的解析式是y=x2﹣3x.(2)设直线OB的解析式为y=k1x,由点B(4,4),得:4=4k1,解得:k1=1∴直线OB的解析式为y=x,∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,∵点D在抛物线y=x2﹣3x上,∴可设D(x,x2﹣3x),又点D在直线y=x﹣m上,∴x2﹣3x=x﹣m,即x2﹣4x+m=0,∵抛物线与直线只有一个公共点,∴△=16﹣4m=0,解得:m=4,此时x1=x2=2,y=x2﹣3x=﹣2,∴D点的坐标为(2,﹣2).(3)∵直线OB的解析式为y=x,且A(3,0),∴点A关于直线OB的对称点A′的坐标是(0,3),设直线A′B的解析式为y=k2x+3,过点(4,4),∴4k2+3=4,解得:k2=,∴直线A′B的解析式是y=,∵∠NBO=∠ABO,∴点N在直线A′B上,∴设点N(n,),又点N在抛物线y=x2﹣3x上,∴=n2﹣3n,解得:n1=﹣,n2=4(不合题意,舍去)∴N点的坐标为(﹣,).方法一:如图1,将△NOB沿x轴翻折,得到△N1OB1,则N1(,),B1(4,﹣4),∴O、D、B1都在直线y=﹣x上.∵△P1OD∽△NOB,∴△P1OD∽△N1OB1,∴,∴点P1的坐标为(,).将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(,),综上所述,点P的坐标是(,)或(,).2、解:(1)设函数解析式为:y=ax2+bx+c,由函数经过点A(﹣4,0)、B(1,0)、C(﹣2,6),可得,解得:,故经过A、B、C三点的抛物线解析式为:y=﹣x2﹣3x+4;(2)设直线BC的函数解析式为y=kx+b,由题意得:,解得:,即直线BC的解析式为y=﹣2x+2.故可得点E的坐标为(0,2),从而可得:AE==2,CE==2,故可得出AE=CE;(3)相似.理由如下:设直线AD的解析式为y=kx+b,则,解得:,即直线AD的解析式为y=x+4.联立直线AD与直线BC的函数解析式可得:,解得:,即点F的坐标为(﹣,),则BF==,AF==,又∵AB=5,BC==3,∴=,=,∴=,又∵∠ABF=∠CBA,∴△ABF∽△CBA.故以A、B、F为顶点的三角形与△ABC相似.3、解:(1)由函数图象经过原点得,函数解析式为y=ax2+bx(a≠0),又∵函数的顶点坐标为(3,﹣),∴,解得:,故函数解析式为:y=x2﹣x,由二次函数图象的对称性可得点A的坐标为(6,0);(2)∵S△POA=2S△AOB,∴点P到OA的距离是点B到OA距离的2倍,即点P的纵坐标为2,代入函数解析式得:2=x2﹣x,解得:x1=3+,x2=3﹣,即可得满足条件的有两个,P1(3+,2),P2(3﹣,2).(3)存在.过点B作BP⊥OA,则tan∠BAP==,故可得∠BOA=60°,设Q1坐标为(x,x2﹣x),过点Q1作Q1F⊥x轴,∵△OAB∽△OQ1A,∴∠Q1OA=30°,故可得OF=Q1F,即x=(x2﹣x),解得:x=9或x=0(舍去),即可得Q1坐标为(9,3),根据函数的对称性可得Q2坐标为(﹣3,3).4.解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如答图1,连接BC,交x=1于H点,此时BH+CH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如答图2所示.则,∴BC2=BE•BF.由(2)知B(﹣2,0),E(0,2),即OB=OB,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x轴于点F,则BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0(∵x>0),∴x=2m,F(2m,﹣2m﹣2).。

中考压轴题(二)--------与抛物线有关压轴题.

中考压轴题(二)--------与抛物线有关压轴题.

1.如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x 轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G,.若FG=DQ,求点F的坐标.2.如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(-1,0),对称轴为直线x=-2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E 向上运动.设点P运动的时间为t秒.①当t为__________秒时,△PAD的周长最小?当t为__________秒时,△PAD是以AD 为腰的等腰三角形?(结果保留根号)2②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.3.如图,已知抛物线2y ax bx c =++的顶点坐标为Q (2,-1),且与轴交于点C (0,3),与轴交于A 、B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥轴, 交AC 于点D .(1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,若点E 在轴上,点F 在抛物线上,问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在,求点F 的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,点A 的坐标为(m ,m ),点B 的坐标为(n ,-n ),抛物线经过A 、O 、B 三点,连接OA 、OB 、AB ,线段AB 交y 轴于点C .已知实数m 、n (m <n )分别是方程x 2-2x-3=0的两根. (1)求抛物线的解析式;(2)若点P 为线段OB 上的一个动点(不与点O 、B 重合),直线PC 与抛物线交于D 、E 两点(点D 在y 轴右侧),连接OD 、BD . ①当△OPC 为等腰三角形时,求点P 的坐标;②求△BOD 面积的最大值,并写出此时点D 的坐标.y x y x 图165.如图,抛物线y=a(x-h)2+k经过点A(0,1),且顶点坐标为B(1,2),它的对称轴与x轴交于点C.(1)求此抛物线的解析式.(2)在第一象限内的抛物线上求点P,使得△ACP是以AC为底的等腰三角形,请求出此时点P的坐标.(3)上述点是否是第一象限内此抛物线上与AC距离最远的点?若是,请说明理由;若不是,请求出第一象限内此抛物线上与AC距离最远的点的坐标.6.如图,已知抛物线y=14x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(-2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△AOC与△COB是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由.7.已知抛物线y=ax 2-2ax+c 与y 轴交于C 点,与x 轴交于A 、B 两点,点A 的坐标是(-1,0),O 是坐标原点,且.(1 )求抛物线的函数表达式;(2 )直接写出直线BC 的函数表达式;(3 )如图1 ,D 为y 轴的负半轴上的一点,且OD=2,以OD 为边作正方形ODEF.将正方形ODEF 以每秒1个单位的速度沿x 轴的正方向移动,在运动过程中,设正方形ODEF与△OBC 重叠部分的面积为s ,运动的时间为t 秒(0<t ≤2).求: ①s 与t 之间的函数关系式;②在运动过程中,s 是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(4 )如图2 ,点P (1,k )在直线BC 上,点M 在x 轴上,点N 在抛物线上,是否存在以A 、M 、N 、P 为顶点的平行四边形?若存在,请直接写出M 点坐标;若不存在,请说明理由。

中考数学 抛物线-压轴题

中考数学 抛物线-压轴题

数学中考题精选----------抛物线1、在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值. (3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 直接写出相应的点Q 的坐标.2、已知抛物线y =-x 2+bx +c 经过点A (0,4),且抛物线的对称轴为直 线x =2. (1)求该抛物线的解析式; (2)若该抛物线的顶点为B ,在抛物线上是否存在点C ,使得A 、B 、O 、C 点构成的四边形为梯形?若存在,请求出点C (3)试问在抛物线上是否存在着点P ,使得以3为半径的⊙P 既与x 又与对称轴相交?若存在,请求出点P 的坐标,并求出对称轴被⊙P 的弦EF 的长度;若不存在,请说明理由.3、如图,已知抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为Q (2,-1),且与y 轴交于点C (0,3),与x 轴交于A 、B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交AC 于点D . (1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标; (3)在题(2)的结论下,若点E 在x 轴上,点F 在抛物线上,问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在,求点F 的坐标;若不存在,请说明理由..4、如图,平面直角坐标系中,点A 、B 、C 在x 轴上,点D 、E 在y 轴上,OA =OD =2,OC =OE =4,DB ⊥DC ,直线AD 与经过B 、E 、C 三点的抛物线交于F 、G 两点,与其对称轴交于M .点,P 为线段FG 上一个动点(与F 、G 不重合),PQ ∥y 轴与抛物线交于点Q .(1)求经过B 、E 、C 三点的抛物线的解析式;(2)是否存在点P ,使得以P 、Q 、M 为顶点的三角形与△AOD 相似?若存在,求出满足条件的点P 的坐标;若不存在,请说明理由; (3)若抛物线的顶点为N ,连接QN ,探究四边形PMNQ 的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P 的坐标;若不能,请说明理由.5、如图,把抛物线y=-x2(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线l1,抛物线l2与抛物线l1关于y轴对称.点A、O、B分别是抛物线l1、l2与x轴的交点,D、C分别是抛物线l1、l2的顶点,线段CD交y轴于点E.(1)分别写出抛物线l1与l2的解析式;(2)设P是抛物线l1上与D、O两点不重合的任意一点,Q点是P 点关于y轴的对称点,试判断以P、Q、C、D为顶点的四边形是什么特殊的四边形?说明你的理由.(3)在抛物线l1上是否存在点M,使得S△ABM =S四边形AOED ,如果存在,求出M点的坐标;如果不存在,请说明理由.6、已知二次函数y=ax2+bx+c的图象经过点A(3,0),B(2,-3),C(0,-3).(1)求此函数的解析式及图象的对称轴;(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.①当t为何值时,四边形ABPQ为等腰梯形;②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.说明理由.7、如图,二次函数y=-x2+ax+b的图象与x轴交于A(-21,0),B(2,0)两点,且与y轴交于点C.(1)求该抛物线的解析式,并判断△ABC的形状;(2)在x轴上方的抛物线上有一点D,且以A、C、D、B四点为顶点的四边形是等腰梯形,请直接写出D点的坐标;(3)在此抛物线上是否存在点P,使得以A、C、B、P四点为顶点的四边形是直角梯形?若存在,求出P点的坐标;若不存在,说明理由.8、如图,Rt△ABC的顶点坐标分别为A(0,3),B(-21,23),C(1,0),∠ABC=90°,BC与y轴的交点为D,D点坐标为(0,33),以点D为顶点、y轴为对称轴的抛物线过点B.(1)求该抛物线的解析式;(2)将△ABC沿AC折叠后得到点B的对应点B′,求证:四边形AOCB′是矩形,并判断点B′是否在(1)的抛物线上;(3)延长BA交抛物线于点E,在线段BE上取一点P,过P点作x轴的垂线,交抛物线于点F,是否存在这样的点P,使四边形PADF是平行四边形?若存在,求出点P的坐标,若不存在,说明理由.9、如图,矩形OABC 的两边OA 、OC 分别在x 轴和y 轴上,A (-3,0),过点C 的直线y =-2x +4与x 轴交于点D ,二次函数y =-21x 2+bx +c 的图象经过B 、C 两点. (1)求B 、C 两点的坐标;(2)求二次函数的解析式;(3)若点P 是CD 的中点,求证:AP ⊥CD ;(4)在二次函数的图象上是否存在这样的点M ,使以A 、P 、C 、M 为顶点的四边形为矩形?若存在,求出点M 的坐标;若不存在,请说明理由.10、如图,在平面直角坐标系中,以点A (-3,0)为圆心、5为半径的圆与x 轴相交于点B 、C 两点(点B 在点C 的左边),与y 轴相交于D 、M 两点(点D 在点M 的下方).(1)求以直线x =-3为对称轴、且经过D 、C 两点的抛物线的解析式;(2)若点P 是这条抛物线对称轴上的一个动点,求PC +PD 的取值范围;(3)若点E 为这条抛物线对称轴上的点,则在抛物线上是否存在这样的点F ,使得以点B 、C 、E 、F 为顶点的四边形是平行四边形?若存在,求出点F11、如图,已知抛物线y =ax 2-2ax -b (a >0)与x 轴的一个交点为B (-1,0),与y 轴的负半轴交于点C ,顶点为D .(1)直接写出抛物线的对称轴及抛物线与x 轴的另一个交点A 的坐标; (2)以AD 为直径的圆经过点C .①求抛物线的解析式;②点E 在抛物线的对称轴上,点F 在抛物线上,且以B ,A ,F ,E四点为顶点的四边形为平行四边形,求点F 的坐标.12、如图,已知抛物线与x 轴交于点A (-1,0)和点B (1,0),与y 轴交于点C (0,-2),直线x =m (m >1)与x 轴交于点D .(1)求该抛物线的解析式;(2)在直线x =m (m >1)上有一点P (点P 在第一象限),使得以P 、D 、B 为顶点的三角形与以B 、C 、O 为顶点的三角形相似,求点P 的坐标(用含m 的代数式表示);(3)在(2)成立的条件下,在抛物线上是否存在点Q ,使得四边形ABPQ 为平行四边形?若存在,请求出点Q 的坐标;若不存在,请说明理由.13、已知抛物线: x x y 22121+-= (1)求抛物线y 1的顶点坐标;(2)将抛物线y 1向右平移2个单位,再向上平移1个单位,得到抛物线y 2,求抛物线y 2的解析式;(3)如下图,抛物线y 2的顶点为P ,x 轴上有一动点M ,在y 1、y 2这两条抛物线上是否存在点N ,使O (原点)、P 、M 、N 四点构成以OP 为一边的平行四边形?若存在,求出N 点的坐标;若不存在,请说明理由.14如图,在水平地面点A 处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B .有人在直线AB 上点C (靠点B 一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB =4米,AC =3米,网球飞行最大高度OM =5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内? (2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?15、已知抛物线y =x 2+bx +c 交y 轴于点A ,点A 关于抛物线对称轴的对称点为B (3,-4),直线y =41x 与抛物线在第一象限的交点为C ,连结OB .(1)求抛物线的解析式;(2)如图(1),点P 在射线..OC ..上运动,连结BP ,设点P 的横坐标为x ,△OBP 的面积为y ,求y 与x 之间的函数关系式; (3)如图(2),点P 在直线..OC ..上运动,点Q 在抛物线上运动,试问点P 、Q 在运动过程中是否存在以O 、B 、P 、Q 为顶点的四边形是平行四边形的情况,若存在,请求出点P 的坐标;若不存在,请说明理由.图(1) 图(2) 备用图。

抛物线中考压轴题(精选)

抛物线中考压轴题(精选)

1.(08福建莆田)如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1) 求抛物线的解析式.(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。

(注:抛物线2y ax bx c =++的对称轴为2b x a=-)4.(08广东深圳)如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan∠ACO=31. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.(4)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.y x O E D CB A GA BCD O xy7.(08湖北荆门)已知抛物线y =ax 2+bx +c 的顶点A 在x 轴上,与y 轴的交点为B (0,1),且b =-4ac . (1) 求抛物线的解析式;(2) 在抛物线上是否存在一点C ,使以BC 为直径的圆经过抛物线的顶点A ?若不存在说明理由;若存在,求出点C 的坐标,并求出此时圆的圆心点P 的坐标;(3) 根据(2)小题的结论,你发现B 、P 、C 三点的横坐标之间、纵坐标之间分别有何关系?10.(08湖北武汉)如图 1,抛物线y=ax2-3ax+b 经过A (-1,0),C (3,2)两点,与y 轴交于点D ,与x 轴交于另一点B.(1)求此抛物线的解析式;(2)若直线y=kx-1(k≠0)将 四 边 形ABCD 面积二等分,求k 的值;(3)如图2,过点 E (1,-1)作EF ⊥x 轴于点F ,将△AEF 绕平面内某点旋转 180°后得△MNQ (点M ,N ,Q 分别与 点 A ,E ,F 对应),使点M ,N 在抛物线上,求点M ,N 的坐标.3(08湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,已知点D 的坐标为(0,-3),AB 为半圆的直径,半圆圆心M 的坐标为(1,0),半圆半径为2.(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围; (2)你能求出经过点C 的“蛋圆”切线的解析式吗?试试看;O x y ABO x y A C B P P 1 D P 2 PAOBMDCyx(3)开动脑筋想一想,相信你能求出经过点D 的“蛋圆”切线的解析式.14.(08江苏常州)如图,抛物线24y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l ,设P 是直线l 上一动点.(1) 求点A 的坐标;(2) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;(3) 设以点A 、B 、O 、P 为顶点的四边形的面积为S,点P 的横坐标为x,当462682S +≤≤+,求x 的取值范围.15、(08江苏淮安)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的顶点为P ,与x 轴交点为 A 、B ,与y 轴交点为C .连结BP 并延长交y 轴于点D. (1)写出点P 的坐标;(2)连结AP ,如果△APB 为等腰直角三角形,求a 的值及点C 、D 的坐标; (3)在(2)的条件下,连结BC 、AC 、AD ,点E(0,b)在线段CD(端点C 、D 除外)上,将△BCD 绕点E 逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S ,根据不同情况,分别用含b 的代数式表示S .选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b 为何值时,重叠部分的面积最大?写出最大值.27、(08江西南昌)如图,抛物211y ax ax =--+经过点19(,)28P -,且与抛物线221y ax ax =--相交于A 、B 两点(1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x为何值时,线段CD 有最大值?其最大值为多少?33、(08山东临沂)如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。

中考数学压轴题-抛物线与圆含答案

中考数学压轴题-抛物线与圆含答案

中考数学压轴题分类强化训练3-抛物线与圆CDEOAB重合,的等边△恰好与坐标系中的△1、如图①②,在平面直角坐标系中,边长为2CDEABGGDECDE180°到△点也是现将△绕边,按顺时针方向旋转的中点的中点()1的位置。

C点的坐标;求 (1)1OA、C求经过三点的抛物线的解析式;、 (2)1GABBGxFBF求切线是以的切线与为直径的圆,过,点作⊙(3)如图③,⊙轴相交于点的解析式;S:S?16:3MM的坐标;请求出点使得.(4)抛物线上是否存在一点若存在,,OAB??AMF若不存在,请说明理由。

3)(3,解(1)C1 2:*#z@zste~p.c^om]来源xyax[b= (2)∵抛物线过原点O(0,0),设抛物线解析式为+0?2b4a??323?3a=-=C`(3,, )带入,得解得b,把A(2,0)?333b?9a?3??3232xyx-∴抛物线解析式为=33 :~zzste^p.c@*#om]∵∠ABF=90°,∠BAF=60°,∴∠AFB=30°[来源(3)0),(-2又AB=2 ∴AF=4 ∴OF=2 ∴F xy*~@#%][k中国教育出版网+b 设直线BF的解析式为=?3323b?k??3,=解得k,0)2F(-,=带入,得b B(1把,)?330??bk?2??332xy=BF∴直线的解析式为+33.2332xxxx) M(, (4)①当M在-轴上方时,存在33332112xx)]:[×2×4]=16:3[中国×4×#@*(教育出-S△AMF:S△OAB=[%~版网] 33222xxxx=-2 =48=0得,解得-2,-21338322yx]%网中@~国教育出#&版×4当4=时,-×4==;[1333 383232yx=2 当时,-2)-×(-2)=-=×(13333388,2) ∴M(4,,M(-)21333232xxxx,M在M(-轴下方时,不存在,设点) ②当33323112xx)]:[×2×4]= S△AMF:S△OAB=[-×4×16(:-3332222xxa c<0 无实解 0,b-得4-28+=3883,). (4 综上所述,存在点的坐标为M,,M(-2)21333)为圆心的圆与y轴相切于(2 ,2.已知:如图,在平面直角坐标系xOy中,以点P点A,与x轴相交于B、C两点(点B在点C的左边).(1)求经过A、B、C三点的抛物线的解析式;1.如果的面积是菱形ABCP面积的1)在()中的抛物线上是否存在点M,使△MBP(22存在,请直接写出所有满足条件的M点的坐标;如果若不存在,请说明理由;(3)如果一个动点D自点P出发,先到达y轴上的某点,再到达x轴上某点,最后运动到(1)中抛物线的顶点Q处,求使点D运动的总路径最.短的路径的长.G.⊥P作PGBC于点,过点,1 解:()联结PAPB,PC A,P∵⊙与y轴相切于点轴,A⊥yP∴3 2,,)(∵PZ*X*X*K]网*科*学来源[3 =PG=OA∴OG=AP=2,∴PB==2.PC =1.∴BG yBC=2.∴CG=1,OC=3.∴OB=1,PA3 1,0),C(3,0∴A(0),),B(GCOB x3)x?1)(x?y?a(根据题意设二次函数解析式为:,33(0?1)(0?3)a?,解得a∴.= 334323?xy??x∴二次函数的解析式为:333338,,0(,7),(3,0),(4,))的坐标为((2)存在.点M334333222?)x?2x?x?x?3)3y??((x?43=,)∵(33333y3?,2∴抛物线的顶点Q ().3PP'A3OBC-2,.)y作点P关于轴的对称点P',则P'(x Q83 =P' Q'Q,则P Q是最短总路径,根据勾股定理,可得联结P'3P(2,3)PA?y轴yA Pxoy,以点3中,已知点作.如图,在直角坐标系交,过轴于点2?bx?cy?axxCB,PAP APBC三点.,轴于点经过,,抛物线为圆心为半径作⊙交,ABC的坐标;)求点,,(1(2)求出该抛物线的解析式;Q?BPQ ABCP面积的面积是(3)抛物线上是否存在点,使得四边形的2倍?若存在,请求出所有满足条件的点;若不存在,请说明理由.PD?BCBCDP,1解:()过交作于PD?OA?32PBPA???PC :由题意得,1CDBD??, ∴1OB?∴)3A(0,)),0C(3B(1,0 ,∴,)3)(x?y?a(x?1,则有(2)设该抛物线解析式为:3?a)33?a0(?1)(0?解之得33)x?3y?(x?1)(故该抛物线的解析式为3 3)存在(2?BD?1,BP??BDP?90∵,1BD???DBPcos∴2BP?60DBP??∴??60BPA?∴BPC?ABP?∴与都是等边三角形S2?S2S?∴BCP??ABPABCP四边形)(23,P)0B1(,,∵3?3x?yPB,两点的直线解析式为:∴过?y?b3x BPA平行的直线解析式为:则可设经过点且与13x?y?3?03??bb3?3且有解之得即11?33yx??7x?x?0???或得解方程组???333y8?y??y3)(x?)1(x????3?b3x?y?CBP且与也可设经过点平行的直线解析式为:23x??3??3y3b0?33?b3解之得即且有22?33?3x?y4x??3x???或解方程组得???3y?0y?3y?)(x?3)?(x1???3?Q(0,3),(7,83),(3,0),(4,3)∴.x32CB,,(3A0),4.如图,在直角坐标系中,轴相交于点为圆心,以点为半径的圆与以ED,y轴相交于点与.12D,C c?x??bxyB是否在)若抛物线经过两点,求抛物线的解析式,并判断点1(3该抛物线上.PBD△P2)在(1)中的抛物线的对称轴上求一点的周长最小.,使得(QM,使得为(1(3)设)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点BCQMM是平行四边形.若存在,求出点的坐标;若不存在,说明理由.四边形yECBO A x32?AC∵?OA?3AB0),,0)C(3∴3B(?3)1,, 解:,(DAODRt△3OA??23AD又在中,,223?OA∴OD??AD,3)(0?D∴的坐标为,C,D又两点在抛物线上,3?2c????3b???∴解得31??20?c??(33)33b??3?c?3??32123???xxy∴抛物线的解析式为:333?x?,?3B0)(0y?∴点当时,, 在抛物线上3121223∵?xy??x4?3)?x?( 2)(33332123x???yx?3x∴抛物线的对称轴方程为33PBD△P,使的周长最小.在抛物线的对称轴上存在点PBD△PDPB∴∵BD?周长最小只需最小.的长为定值要使PBD△DCDC周长最小的点.连结,则与对称轴的交点即为使y?mx?nDC.的解析式为设直线?33?n??3?m??DC?yx?3∴的解析式为,直线由得??3333m?n?0???n??3??3??yx?33?x??2),-(3P3的坐标为,故点由得??2??y???3?x?3?x3,(t)Q M在抛物线上要使四边形3(为抛物线对称轴上一点,)存在,设BCQMBC∥QMBC?QMM在对称轴的左侧.且为平行四边形,则,点L∥BC M(x,t)Q作直线于是,过点与抛物线交于点m t?123?3?x3?QM4QM?BC,由,得从而m M(?,312)BCQM故在抛物线上存在点,使得四边形为平行四边形.。

抛物线压轴题答案

抛物线压轴题答案

综合题答案1.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形若存在,请直接写出Q点的坐标;若不存在,请说明理由.1答案:2.如图,二次函数y=ax2+x+c的图象与x轴交于点A、B两点,且A点坐标为(-2,0),与y轴交于点C(0,3).(1)求出这个二次函数的解析式;(2)直接写出点B的坐标为______;(3)在x轴是否存在一点P,使△ACP是等腰三角形若存在,求出满足条件的P点坐标;若不存在,请说明理由;(4)在第一象限中的抛物线上是否存在一点Q,使得四边形ABQC的面积最大若存在,请求出Q点坐标及面积的最大值;若不存在,请说明理由.解答:解:(1)∵y=ax2+x+c的图象经过A(-2,0),C(0,3),∴c=3,a=-,∴所求解析式为:y=-x2+x+3;(2)(6,0);(3)在Rt△AOC中,∵AO=2,OC=3,∴AC=,①当P1A=AC时(P1在x轴的负半轴),P1(-2-,0);②当P2A=AC时(P2在x轴的正半轴),P2(-2,0);③当P3C=AC时(P3在x轴的正半轴),P3(2,0);④当P4C=P4A时(P4在x轴的正半轴),在Rt△P4OC中,设P4O=x,则(x+2)2=x2+32解得:x=,∴P4(,0);(4)解:如图,设Q点坐标为(x,y),因为点Q在y=-x2+x+3上,即:Q点坐标为(x,-x2+x+3),连接OQ,S四边形ABQC=S△AOC+S△OQC+S△OBQ=3+x+3(-x2+x+3)=-x2+x+12,∵a<0,∴S四边形ABQC最大值=,Q点坐标为(3,)。

中考压轴题——抛物线平行四边形(含详细答案分析)

中考压轴题——抛物线平行四边形(含详细答案分析)

中考总复习抛物线之平行四边形题型1.如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系式.2.已知抛物线经过A(2,0).设顶点为点P,与x轴的另一交点为点B.(1)求b的值,求出点P、点B的坐标;(2)如图,在直线y=x上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由;(3)在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由.3.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.4.已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2,(1)求抛物线的解析式.(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.5.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.6.边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E 在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.7.如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:y=x+2经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线y=﹣x2+bx+c.(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S与m之间的函数解析式,并写出m的取值范围;(3)设抛物线与y轴交于G点,当顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.8.已知抛物线:(1)求抛物线y1的顶点坐标.(2)将抛物线y1向右平移2个单位,再向上平移1个单位,得到抛物线y2,求抛物线y2的解析式.(3)如图,抛物线y2的顶点为P,x轴上有一动点M,在y1、y2这两条抛物线上是否存在点N,使O(原点)、P、M、N四点构成以OP为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.9.如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO 以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t 为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.10.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.11.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M坐标;(2)求△BCM面积与△ABC面积的比;(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.12.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.13.如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.14.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B 的抛物线y=﹣x2+bx+c与直线BC交于点D(3,﹣4).(1)求直线BD和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在一点M,作MN垂直于x轴,垂足为点N,使得以M、O、N为顶点的三角形与△BOC相似?若存在,求出点M的坐标;若不存在,请说明理由;(3)在直线BD上方的抛物线上有一动点P,过点P作PH垂直于x轴,交直线BD于点H,当四边形BOHP 是平行四边形时,试求动点P的坐标.15.综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.16.如图,抛物线与x轴交于点A(﹣5,0)和点B(3,0).与y轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N.交x轴于点E和F.(1)求抛物线的解析式;(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF=,求点Q的坐标;(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.17.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.1.解:(1)A(﹣1,0),B(3,0),C(0,3).抛物线的对称轴是:直线x=1.(2)①设直线BC的函数关系式为:y=kx+b.把B(3,0),C(0,3)分别代入得:解得:.所以直线BC的函数关系式为:y=﹣x+3.当x=1时,y=﹣1+3=2,∴E(1,2).当x=m时,y=﹣m+3,∴P(m,﹣m+3).在y=﹣x2+2x+3中,当x=1时,y=4.∴D(1,4)当x=m时,y=﹣m2+2m+3,∴F(m,﹣m2+2m+3)∴线段DE=4﹣2=2,线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m∵PF∥DE,∴当PF=ED时,四边形PEDF为平行四边形.由﹣m2+3m=2,解得:m1=2,m2=1(不合题意,舍去).因此,当m=2时,四边形PEDF为平行四边形.②设直线PF与x轴交于点M,由B(3,0),O(0,0),可得:OB=OM+MB=3.∵S=S△BPF+S△CPF即S=PF•BM+PF•OM=PF•(BM+OM)=PF•OB.∴S=×3(﹣m2+3m)=﹣m2+m(0≤m≤3).方法二:(3)∵B(3,0),C(0,3),D(1,4),∴,∴,∵∠DEC=∠COB=90°,∴△DEC∽△COB,∴∠DCE=∠CBO,∴∠DCE+∠OCB=90°,∴DC⊥BC,∴△BCD的外接圆圆心M为BD中点,∴M X==2,M Y==2,∴△BCD的外接圆圆心M(2,2).2.(2012•东营)已知抛物线经过A(2,0).设顶点为点P,与x轴的另一交点为点B.(1)求b的值,求出点P、点B的坐标;(2)如图,在直线y=x上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由;(3)在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由.【解答】解:(1)由于抛物线经过A(2,0),所以,解得.所以抛物线的解析式为,①将①式配方,得,所以顶点P的坐标为(4,﹣2),令y=0,得,解得x1=2,x2=6.所以点B的坐标是(6,0).(2)在直线y=x上存在点D,使四边形OPBD为平行四边形.理由如下:设直线PB的解析式为y=kx+b,把B(6,0),P(4,﹣2)分别代入,得,解得,所以直线PB的解析式为.又因为直线OD的解析式为,所以直线PB∥OD.设直线OP的解析式为y=mx,把P(4,﹣2)代入,得,解得.如果OP∥BD,那么四边形OPBD为平行四边形.设直线BD的解析式为,将B(6,0)代入,得0=,所以所以直线BD的解析式为,解方程组,得,同样还存在第二种情况,如图所示,D′点和D关于原点对称,因此D′的坐标为(﹣2,﹣2),所以D点的坐标为(2,2)或(﹣2,﹣2).(3)符合条件的点M存在.验证如下:过点P作x轴的垂线,垂足为C,则PC=2,AC=2,由勾股定理,可得AP=4,PB=4,又AB=4,所以△APB是等边三角形,只要作∠PAB的平分线交抛物线于M点,连接PM,BM,由于AM=AM,∠PAM=∠BAM,AB=AP,可得△AMP≌△AMB.因此即存在这样的点M,使△AMP≌△AMB.方法二:(4)过点G作x轴垂线,垂足为H,∵⊙G为△OBD的外接圆,∴点G在线段OH的垂直平分线上,且GO=GD,∵B(6,0),∴l GH:x=3,设G点坐标为(3,m),O(0,0),D(2,2),∴(3﹣0)2+(m﹣0)2=(3﹣2)2+(m﹣2)2,∴m=,∴G点的坐标为(3,).3.(2012•宜宾)如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.【解答】方法一:解:(1)∵顶点A的横坐标为x=﹣=1,且顶点A在y=x﹣5上,∴当x=1时,y=1﹣5=﹣4,∴A(1,﹣4).(2)△ABD是直角三角形.将A(1,﹣4)代入y=x2﹣2x+c,可得,1﹣2+c=﹣4,∴c=﹣3,∴y=x2﹣2x﹣3,∴B(0,﹣3)当y=0时,x2﹣2x﹣3=0,x1=﹣1,x2=3∴C(﹣1,0),D(3,0),BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,BD2+AB2=AD2,∴∠ABD=90°,即△ABD是直角三角形.(3)存在.由题意知:直线y=x﹣5交y轴于点E(0,﹣5),交x轴于点F(5,0)∴OE=OF=5,又∵OB=OD=3∴△OEF与△OBD都是等腰直角三角形∴BD∥l,即PA∥BD则构成平行四边形只能是PADB或PABD,如图,过点P作y轴的垂线,过点A作x轴的垂线交过P且平行于x轴的直线于点G.设P(x1,x1﹣5),则G(1,x1﹣5)则PG=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|PA=BD=3由勾股定理得:(1﹣x1)2+(1﹣x1)2=18,x12﹣2x1﹣8=0,x1=﹣2或4∴P(﹣2,﹣7)或P(4,﹣1),存在点P(﹣2,﹣7)或P(4,﹣1)使以点A、B、D、P为顶点的四边形是平行四边形.方法二:(1)略.(2)把A(1,﹣4)代入y=x2﹣2x+c,得c=3,∴y=x2﹣2x+3=(x﹣3)(x+1),∴D(3,0),B(0,﹣3),A(1,﹣4),K BD==1,K AB==﹣1,∴K BD•K AB=﹣1,∴AB⊥BD,即△ABD为直角三角形.(3)略.(4)∵,解得:x1=1(舍),x2=2,∴G(2,﹣3),∵A(1,﹣4),B(0,﹣3),D(3,0),∴GA==,BD==3,AB==,∴S△BDG==4.4.(2015•德州)已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2,(1)求抛物线的解析式.(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.【解答】解:(1)由题意可得:α,β是方程﹣mx2+4x+2m=0的两根,由根与系数的关系可得,α+β=,αβ=﹣2,∵=﹣2,∴=﹣2,即=﹣2,解得:m=1,故抛物线解析式为:y=﹣x2+4x+2;(2)存在x轴上的点M,y轴上的点N,使得四边形DNME的周长最小,∵y=﹣x2+4x+2=﹣(x﹣2)2+6,∴抛物线的对称轴l为x=2,顶点D的坐标为:(2,6),又∵抛物线与y轴交点C的坐标为:(0,2),点E与点C关于l对称,∴E点坐标为:(4,2),作点D关于y轴的对称点D′,点E关于x轴的对称点E′,则D′的坐标为;(﹣2,6),E′坐标为:(4,﹣2),连接D′E′,交x轴于M,交y轴于N,此时,四边形DNME的周长最小为:D′E′+DE,如图1所示:延长E′E,′D交于一点F,在Rt△D′E′F中,D′F=6,E′F=8,则D′E′===10,设对称轴l与CE交于点G,在Rt△DGE中,DG=4,EG=2,∴DE===2,∴四边形DNME的周长最小值为:10+2;(3)如图2,P为抛物线上的点,过点P作PH⊥x轴,垂足为H,若以点D、E、P、Q为顶点的四边形为平行四边形,则△PHQ≌△DGE,∴PH=DG=4,∴|y|=4,∴当y=4时,﹣x2+4x+2=4,解得:x1=2+,x2=2﹣,当y=﹣4时,﹣x2+4x+2=﹣4,解得:x3=2+,x4=2﹣,故P点的坐标为;(2﹣,4),(2+,4),(2﹣,﹣4),(2+,﹣4).5.(2015•绵阳)已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)由题意得,,整理得2x2+5x﹣4a=0.∵△=25+32a>0,解得a>﹣.∵a≠0,∴a>﹣且a≠0.令x=0,得y=a,∴A(0,a).由y=﹣(x+1)2+1+a得,M(﹣1,1+a).(2)设直线MA的解析式为y=kx+b(k≠0),∵A(0,a),M(﹣1,1+a),∴,解得,∴直线MA的解析式为y=﹣x+a,联立得,,解得,∴N(,﹣).∵点P是点N关于y轴的对称点,∴P(﹣,﹣).代入y=﹣x2﹣2x+a得,﹣=﹣a2+a+a,解得a=或a=0(舍去).∴A(0,),C(0,﹣),M(﹣1,),|AC|=,∴S△PCD=S△PAC﹣S△ADC=|AC|•|x p|﹣|AC|•|x0|=••(3﹣1)=;(3)①当点P在y轴左侧时,∵四边形APCN是平行四边形,∴AC与PN互相平分,N(,﹣),∴P(﹣,);代入y=﹣x2﹣2x+a得,=﹣a2+a+a,解得a=,∴P1(﹣,).②当点P在y轴右侧时,∵四边形ACPN是平行四边形,∴NP∥AC且NP=AC,∵N(,﹣),A(0,a),C(0,﹣a),∴P(,﹣).代入y=﹣x2﹣2x+a得,﹣=﹣a2﹣a+a,解得a=,∴P2(,﹣).综上所述,当点P1(﹣,)和P2(,﹣)时,A、C、P、N能构成平行四边形.6.(2015•湖北)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.【解答】解:(1)方法一:过点E作EG⊥x轴于G点.∵四边形OABC是边长为2的正方形,D是OA的中点,∴OA=OC=2,OD=1,∠AOC=∠DGE=90°.∵∠CDE=90°,∴∠ODC+∠GDE=90°.∵∠ODC+∠OCD=90°,∴∠OCD=∠GDE.在△OCD和△GED中,∴△ODC≌△GED (AAS),∴EG=OD=1,DG=OC=2.∴点E的坐标为(3,1).∵抛物线的对称轴为直线AB即直线x=2,∴可设抛物线的解析式为y=a(x﹣2)2+k,将C、E点的坐标代入解析式,得.解得,抛物线的解析式为y=(x﹣2)2+;方法二:过点E作EG⊥x轴于G点.DE⊥DC⇒∠CDO+∠EDH=90°,EG⊥x轴⇒∠DEH+∠EDH=90°,∴∠CDO=∠DEH,DC=DE,∴△ODC≌△GED⇒DG=OC=2,EG=OD=1,∴E(3,1),∴9a+3b+2=0,∵﹣=2,抛物线的解析式为y=(x﹣2)2+;(2)方法一:①若△DFP∽△COD,则∠PDF=∠DCO,∴PD∥OC,∴∠PDO=∠OCP=∠AOC=90°,∴四边形PDOC是矩形,∴PC=OD=1,∴t=1;②若△PFD∽△COD,则∠DPF=∠DCO,=.∴∠PCF=90°﹣∠DCO=90﹣∠DPF=∠PDF.∴PC=PD,∴DF=CD.∵CD2=OD2+OC2=22+12=5,∴CD=,∴DF=.∵=,∴PC=PD=×=,t=,综上所述:t=1或t=时,以点P,F,D为顶点的三角形与△COD相似;方法二:过点F作x轴的垂线,分别交BC,OA于G,H,PF⊥CD⇒∠PFG+∠DFH=90°,GH⊥OA⇒∠FDH+∠DFH=90°,∴∠PFG=∠FDH⇒△PFG∽△FDH⇒,∵PF⊥CD⇒K PF×K CD=﹣1,∴l CD:y=﹣2x+2,∴F(m,﹣2m+2),P(t,2),∴,∴m=,∴F(,﹣),∴=,∴以P,F,D为顶点的三角形与△COD相似,①,∴,∴t=,②,∴,∴t=1,综上所述:t=1或t=时,以点P,F,D为顶点的三角形与△COD相似;方法三:若以P,F,D为顶点的三角形与△COD相似,则∠OCD=∠PDF或∠ODC=∠PDF,①∠OCD=∠PDF⇒PD∥OC,∴CP=OD=1,∴t=1,②∠ODC=∠PDF,作OO′⊥CD交CD于H,∴K OO′×K CD=﹣1,∴l CD:y=﹣2x+2,∴H(m,﹣2m+2),∴﹣2×=﹣1,∴m=,∴H(,),∵H为OO′中点,∴O′(,),∴l O′D:y=,令y=2,∴x=,即P(,2),∴t=.(3)存在,四边形MDEN是平行四边形时,M1(2,1),N1(4,2);四边形MNDE是平行四边形时,M2(2,3),N2(0,2);四边形NDME是平行四边形时,M3(2,),N3(2,).7.(2015•广安)如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:y=x+2经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线y=﹣x2+bx+c.(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S与m之间的函数解析式,并写出m的取值范围;(3)设抛物线与y轴交于G点,当顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.【解答】解:(1)∵直线l:y=x+2经过点B(x,1),∴1=x+2,解得x=﹣2,∴B(﹣2,1),∴A(﹣2,0),D(﹣3,0),∵抛物线经过A,D两点,∴,解得,∴抛物线经过A,D两点时的解析式为y=﹣x2﹣5x﹣6;(2)∵点E(m,n)在直线l上,∴n=m+2,∴S=×1×[±(m+2)]=±(m+1),即S=m+1(m>﹣4)或S=﹣m﹣1(m<﹣4);(3)如图,若以A,C,E,G为顶点的四边形能成为平行四边形,则AC=EG,AC∥EG,作EH∥y轴交过G点平行于x轴的直线相交于H,则EH⊥GH,△EHG≌△CDA,∴GH=AD=1,∴E的横坐标为±1,∵点E在直线l上,∴y=×(﹣1)+2=,或y=×1+2=当AC为对角线时,有E和G的横坐标之和等于A和C的横坐标之和,故可求得E(﹣5,﹣1/2)∴E(﹣1,);(1,)或(﹣5,﹣1/2);由于E为抛物线的顶点,G为抛物线与y轴的交点,故将其坐标代入y=﹣x2+bx+c,检验可知当E取(1,)或(﹣5,﹣1/2)时,与此时的A、C、E构成平行四边形的G点并不是y轴与抛物线的交点,与前提相矛盾;综上,满足题意的E的坐标为(﹣1,).8.(2012秋•义乌市校级期中)已知抛物线:(1)求抛物线y1的顶点坐标.(2)将抛物线y1向右平移2个单位,再向上平移1个单位,得到抛物线y2,求抛物线y2的解析式.(3)如图,抛物线y2的顶点为P,x轴上有一动点M,在y1、y2这两条抛物线上是否存在点N,使O(原点)、P、M、N四点构成以OP为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.【解答】解:(1)依题意把抛物线:y1=﹣x2+2x=﹣(x2﹣4x)=﹣[(x﹣2)2﹣4]=﹣(x﹣2)2+2,故抛物线y1的顶点坐标为:(2,2);(2)∵抛物线y1向右平移2个单位,再向上平移1个单位,得到y2=﹣(x﹣4)2+3,整理得y2=﹣x2+4x﹣5;(3)符合条件的N点存在.如图:作PA⊥x轴于点A,NB⊥x轴于点B,∴∠PAO=∠MBN=90°,若四边形OPMN为符合条件的平行四边形,则OP∥MN,且OP=MN,∴∠POA=∠BMN,在△POA和△NMB中∴△POA≌△NMB(AAS),∴PA=BN,∵点P的坐标为(4,3),∴NB=PA=3,∵点N在抛物线y1、y2上,且P点为y1、y2的最高点∴符合条件的N点只能在x轴下方,①点N在抛物线y1上,则有:﹣x2+2x=﹣3解得:x1=2﹣,x2=2+,②点N在抛物线y2上,则有:﹣(x﹣4)2+3=﹣3解得:x3=4﹣2或x4=4+2故符合条件的N点有四个:N1(2﹣,﹣3),N2(4﹣2,﹣3),N3(2+,﹣3),N4(4+2,﹣3).9.(2012•襄阳)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B 落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c 经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO 以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t 为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.【解答】方法一:解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.由题意,△BDC≌△EDC.∴∠B=∠DEC=90°,EC=BC=10,ED=BD.由勾股定理易得EO=6.∴AE=10﹣6=4,设AD=x,则BD=ED=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3,∴AD=3.∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),O(0,0)∴,解得∴抛物线的解析式为:y=﹣x2+x.(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,由(1)可得AD=3,AE=4,DE=5.而CQ=t,EP=2t,∴PC=10﹣2t.当∠PQC=∠DAE=90°,△ADE∽△QPC,∴=,即=,解得t=.当∠QPC=∠DAE=90°,△ADE∽△PQC,∴=,即=,解得t=.∴当t=或时,以P、Q、C为顶点的三角形与△ADE相似.(3)假设存在符合条件的M、N点,分两种情况讨论:①EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC是平行四边形,那么M点必为抛物线顶点;则:M(4,);而平行四边形的对角线互相平分,那么线段MN必被EC中点(4,3)平分,则N(4,﹣);②EC为平行四边形的边,则EC MN,设N(4,m),则M(4﹣8,m+6)或M(4+8,m﹣6);将M(﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,此时N(4,﹣38)、M(﹣4,﹣32);将M(12,m﹣6)代入抛物线的解析式中,得:m=﹣26,此时N(4,﹣26)、M(12,﹣32);综上,存在符合条件的M、N点,且它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣).方法二:(1)略.(2)∵E(0,6),C(8,0),∴l EC:y=﹣x+6,∵,EP=2t,∴P x=t,∴P(t,﹣t+6),Q(8﹣t,0),∵△PQC∽△ADE,且∠ECO=∠AED,∴PQ⊥OC或PQ⊥PC.当PQ⊥OC时,Px=Qx,即t=8﹣t,∴t1=,当PQ⊥PC时,K PQ•K PC=﹣1,∴t2=.(3)M,N,C,E为顶点的四边形是平行四边形.设N(4,t),C(8,0),E(0,6),∴,∴M1(4,6﹣t),同理M2(﹣4,t+6),M3(12,t﹣6),∴﹣t,∴t=﹣,﹣×(﹣4)2+(﹣4)=t+6,∴t=﹣38,﹣×122+×12=t﹣6,∴t=﹣26,综上,存在符合条件的M、N点,且它们的坐标为:①M1(4,),N1(4,﹣);②M2(12,﹣32),N2(4,﹣26);③M3(﹣4,﹣32),N3(4,﹣38).10.(2012•恩施州)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.【解答】解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3又设直线为y=kx+n过点A(﹣1,0)及C(2,3)得,解得故直线AC为y=x+1;(2)如图1,作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),故直线DN′的函数关系式为y=﹣x+,当M(3,m)在直线DN′上时,MN+MD的值最小,则m=﹣×=;(3)由(1)、(2)得D(1,4),B(1,2),∵点E在直线AC上,设E(x,x+1),①如图2,当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3,解得,x=0或x=1(舍去)∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1)由F在抛物线上∴x﹣1=﹣x2+2x+3解得x=或x=∴E(,)或(,)综上,满足条件的点E的坐标为(0,1)、(,)或(,);(4)方法一:如图3,过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,设Q (x,x+1),则P(x,﹣x2+2x+3)∴PQ=(﹣x2+2x+3)﹣(x+1)=﹣x2+x+2又∵S△APC=S△APQ+S△CPQ=PQ•AG=(﹣x2+x+2)×3=﹣(x﹣)2+∴面积的最大值为.方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图3,设Q(x,x+1),则P(x,﹣x2+2x+3)又∵S△APC=S△APH+S直角梯形PHGC﹣S△AGC=(x+1)(﹣x2+2x+3)+(﹣x2+2x+3+3)(2﹣x)﹣×3×3=﹣x2+x+3=﹣(x﹣)2+∴△APC的面积的最大值为.11.(2014•赤峰)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M坐标;(2)求△BCM面积与△ABC面积的比;(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.【解答】方法一:解:(1)设抛物线解析式为y=a(x+1)(x﹣3),∵抛物线过点(0,﹣3),∴﹣3=a(0+1)(0﹣3),∴a=1,∴抛物线解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴M(1,﹣4).(2)如图1,连接BC、BM、CM,作MD⊥x轴于D,∵S△BCM=S梯形OCMD+S△BMD﹣S△BOC=•(3+4)•1+•2×4﹣•3•3=+﹣=3S△ABC=•AB•OC=•4•3=6,∴S△BCM:S△ABC=3:6=1:2.(3)存在,理由如下:①如图2,当Q在x轴下方时,作QE⊥x轴于E,∵四边形ACQP为平行四边形,∴PQ平行且相等AC,∴△PEQ≌△AOC,∴EQ=OC=3,∴﹣3=x2﹣2x﹣3,解得x=2或x=0(与C点重合,舍去),∴Q(2,﹣3).②如图3,当Q在x轴上方时,作QF⊥x轴于F,∵四边形ACPQ为平行四边形,∴QP平行且相等AC,∴△PFQ≌△AOC,∴FQ=OC=3,∴3=x2﹣2x﹣3,解得x=1+或x=1﹣,∴Q(1+,3)或(1﹣,3).综上所述,Q点为(2,﹣3)或(1+,3)或(1﹣,3)方法二:(1)略.(2)连接BC、BM、CM,作MD⊥x轴于D,交BC于H,∵B(3,0),C(0,﹣3),∴l BC:y=x﹣3,当x=1时,y=﹣2,∴H(1,﹣2)∴S△BCM=(3﹣0)(﹣2+4)=3,∵S△ABC=AB×OC=×3×4=6,∴S△BCM:S△ABC=3:6=1:2,(3)∵PQ∥AC,∴当PQ=AC时,A、P、Q、C为顶点的四边形为平行四边形,即|Q Y|=|C Y|,设Q(t,t2﹣2t﹣3),∴|t2﹣2t﹣3|=3,①t2﹣2t﹣3=3,解得:t1=1+,t2=1﹣,②t2﹣2t﹣3=﹣3,解得:t1=0(舍),t2=2,综上所述,Q点为(2,﹣3)或(1+,3)或(1﹣,3).12.(2014•潍坊)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.【解答】方法一:解:(1)∵抛物线y=ax2+bx+c(a≠0)过点C(0,4),∴c=4 ①.∵对称轴x=﹣=1,∴b=﹣2a ②.∵抛物线过点A(﹣2,0),∴0=4a﹣2b+c ③,由①②③解得,a=﹣,b=1,c=4,∴抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),其中0<t<4,则FH=﹣t2+t+4,FG=t,∴S△OBF=OB•FH=×4×(﹣t2+t+4)=﹣t2+2t+8,S△OFC=OC•FG=×4×t=2t,∴S四边形ABFC=S△AOC+S△OBF+S△OFC=4﹣t2+2t+8+2t=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,则△=(﹣4)2﹣4×5=﹣4<0,∴方程t2﹣4t+5=0无解,故不存在满足条件的点F;(3)设直线BC的解析式为y=kx+n(k≠0),∵B(4,0),C(0,4),∴,解得,∴直线BC的解析式为y=﹣x+4.由y=﹣x2+x+4=﹣(x﹣1)2+,∴顶点D(1,),又点E在直线BC上,则点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,由﹣m2+2m=,解得:m=1或3.当m=1时,线段PQ与DE重合,m=1舍去,∴m=3,P1(3,1).②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,由m2﹣2m=,解得m=2±,经检验适合题意,此时P2(2+,2﹣),P3(2﹣,2+).综上所述,满足题意的点P有三个,分别是P1(3,1),P2(2+,2﹣),P3(2﹣,2+).方法二:(1)略.(2)∵B(4,0),C(0,4),∴l BC:y=﹣x+4,过F点作x轴垂线,交BC于H,设F(t,﹣t2+t+4),∴H(t,﹣t+4),∵S四边形ABFC=S△ABC+S△BCF=17,∴(4+2)×4+(﹣t2+t+4+t﹣4)×4=17,∴t2﹣4t+5=0,∴△=(﹣4)2﹣4×5<0,∴方程t2﹣4t+5=0无解,故不存在满足条件的点F.(3)∵DE∥PQ,∴当DE=PQ时,以D、E、P、Q为顶点的四边形是平行四边形,∵y=﹣x2+x+4,∴D(1,),∵l BC:y=﹣x+4,∴E(1,3),∴DE=﹣3=,设点F的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4),∴|﹣m+4+m2﹣m﹣4|=,∴m2﹣2m=或m2﹣2m=﹣,∴m=1,m=3,m=2+,m=2﹣,经检验,当m=1时,线段PQ与DE重合,故舍去.∴P1(3,1),P2(2+,2﹣),P3(2﹣,2+).13.(2014•济宁)如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【解答】方法一:解:(1)∵y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,∴,解得.∴抛物线的解析式为y=x2﹣x﹣.(2)如答图所示,过点A′作A′E⊥x轴于E,AA′与OC交于点D,∵点C在直线y=2x上,∴C(5,10)∵点A和A′关于直线y=2x对称,∴OC⊥AA′,A′D=AD.∵OA=5,AC=10,∴OC===.∵S△OAC=OC•AD=OA•AC,∴AD=.∴AA′=,在Rt△A′EA和Rt△OAC中,∵∠A′AE+∠A′AC=90°,∠ACD+∠A′AC=90°,∴∠A′AE=∠ACD.又∵∠A′EA=∠OAC=90°,∴Rt△A′EA∽Rt△OAC.∴,即.∴A′E=4,AE=8.∴OE=AE﹣OA=3.∴点A′的坐标为(﹣3,4),当x=﹣3时,y=×(﹣3)2+3﹣=4.所以,点A′在该抛物线上.(3)存在.理由:设直线CA′的解析式为y=kx+b,则,解得∴直线CA′的解析式为y=x+设点P的坐标为(x,x2﹣x﹣),则点M为(x,x+).∵PM∥AC,∴要使四边形PACM是平行四边形,只需PM=AC.又点M在点P的上方,∴(x+)﹣(x2﹣x﹣)=10.解得x1=2,x2=5(不合题意,舍去)当x=2时,y=﹣.∴当点P运动到(2,﹣)时,四边形PACM是平行四边形.方法二:(1)略.(2)设AA′与直线OC的交点为H,∵点A,点A′关于直线OC:y=2x对称,∴AA′⊥OC,K OC•K AA′=﹣1,∵K OC=2,∴K AA′=﹣,∵A(5,0),∴l AA′:y=﹣x+,l OC:y=2x,∴H(1,2),∵H为AA′的中点,∴⇒,∴A′X=﹣3,A′Y=4,∴A′(﹣3,4),当x=﹣3时,y=×(﹣3)2+3﹣=4,∴点A在抛物线上.(3)∵PM∥AC,要使四边形PACM是平行四边形,只需PM=AC,∵直线AC⊥x轴,∴C x=A x,∵A(5,0),∴C x=5,∵l OC:y=2x,∴C Y=10,∴C(5,10),∵A′(﹣3,4),∴l CA′:y=x+,∵M在线段CA′上,点M在点P的上方,∴设M(t,),∴P(t,t2﹣t﹣),∴﹣(t2﹣t﹣)=10,∴t1=2,t2=5(舍),∴P(2,﹣).14.(2014•东营)如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B的抛物线y=﹣x2+bx+c与直线BC交于点D(3,﹣4).(1)求直线BD和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在一点M,作MN垂直于x轴,垂足为点N,使得以M、O、N为顶点的三角形与△BOC相似?若存在,求出点M的坐标;若不存在,请说明理由;(3)在直线BD上方的抛物线上有一动点P,过点P作PH垂直于x轴,交直线BD于点H,当四边形BOHP 是平行四边形时,试求动点P的坐标.。

中考数学压轴题100题含答案解析

中考数学压轴题100题含答案解析

中考数学压轴题100题精选【含答案】【001】如图,已知抛物线y a(x 3 3( a z 0)经过点A2 °),抛物线的顶点为D , 过O作射线OM // AD •过顶点D平行于x轴的直线交射线OM于点C , B在x轴正半轴上,连结BC •(1)求该抛物线的解析式;(2)若动点P从点0出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s) •问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若0C °B,动点P和动点Q分别从点0和点B同时出发,分别以每秒1个长度单位和2 个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动•设它们的运动的时间为t (s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.【002】如图16,在Rt A ABC中,/ C=90 , AC = 3 , AB = 5 .点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t >0).(1) 当t = 2时,AP = ,点Q到AC的距离是:(2) 在点P从C向A运动的过程中,求△ APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3) 在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4) 当DE经过点C时,请直接写出t的值.【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B (4, 0)、C ( 8, 0)、D ( 8,8) •抛物线y=ax2+bx过A、C两点.(1) 直接写出点A的坐标,并求出抛物线的解析式;(2) 动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒•过点P作PE丄AB交AC于点E,①过点E作EF丄AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△ CEQ是等腰三角形?请直接写出相应的t值。

2022年中考数学压轴题(附答案)

2022年中考数学压轴题(附答案)

一、解答题1.如图,在平面直角坐标系中,一抛物线的对称轴为直线x=1,且该抛物线与y轴负半轴交于C点,与x轴交于A,B两点,其中B点的坐标为(3,0),且OB=OC.(1)求此抛物线的函数表达式;(2)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ是以MN为一直角边的等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.2.直线y=﹣x+6与x轴、y轴分别交于点A,点B.点P为线段AB上一动点(与点A,B不重合).过点P作PM⊥OA于点M,以OB,OM为邻边作矩形BOMN.点Q在直线BN上,且PQ⊥OP.(1)如图1,①判断△APM的形状,并说明理由;②求证:△PNQ≌△OMP;③若∠PQN=22.5°,直接写出点P的坐标.(2)作射线OQ交直线AB于点K,∠OPQ的角平分线交边OB于点G.若BGOG=35,①当∠PKQ为钝角时,直接写出线段PK的长;②当∠PKQ为锐角时,直接写出BK2+AP2的值.3.已知抛物线29 4y ax x c=++与x轴交于A、B两点,与y轴交于C点,且点A的坐标为1,0、点C 的坐标为()0,3.(1)求该抛物线的函数表达式;(2)如图1,若该抛物线的顶点为P ,求PBC 的面积;(3)如图2,有两动点D 、E 在COB △的边上运动,速度均为每秒1个单位长度,它们分别从点C 和点B 同时出发,点D 沿折线COB 按C →O →B 方向向终点B 运动,点E 沿线段BC 按B →C 方向向终点C 运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动时间为t 秒,在点D 、E 运动过程中,该抛物线上存在点F ,使得依次连接AD 、DF 、FE 、EA 得到的四边形ADFE 是平行四边形,请直接写出所有符合条件的点F 的坐标.4.如图,在平面直角坐标系中,抛物线264y ax ax =-+与x 轴的一个交点为()2,0A -,与y 轴的交点为C ,点B 为抛物线对称轴上一动点.(1)抛物线的函数表达式为________,抛物线的对称轴为________.(2)线段BC 绕点B 顺时针旋转90︒得到BP ,当点P 落在抛物线上时,求出点B 坐标.(3)当点B 在x 轴上时,M ,N 是抛物线上的两个动点,M 在N 的右侧,若以B ,C ,M ,N 四点为顶点的四边形是平行四边形,求出此时点M 的横坐标.5.如图,抛物线顶点(1,4)P ,与y 轴交于点(0,3)C ,与x 轴交于点A ,B .(1)求抛物线的解析式;(2)Q 是抛物线上除点P 外一点,BCQ △与BCP 的面积相等,求点Q 的坐标:(3)M 是线段BC 上方抛物线上一个动点,过点M 作x 轴的垂线,交线段BC 于点D ,再过点M 做MN //x 轴交抛物线于点N ,连结DN ,请问是否存在点M 使MDN △为等腰直角三角形?若存在,求出点M 的坐标;若不存在,说明理由.6.已知二次函数y =x 2+bx +b ﹣1,其中b 为常数.(1)当y =0时,求x 的值;(用含b 的式子表示)(2)抛物线y =x 2+bx +b ﹣1与x 轴交于A ,B 两点(点A 在点B 的左侧),过点E (4,2)作直线交抛物线于P ,Q 两点,其中点P 在第一象限,点Q 在第四象限,连接AP ,AQ 分别交y 轴于点M (0,m ),N (0,n ).①当b <2时,求点P 的横坐标xP 的值;(用含m ,b 的式子表示)②当b =﹣3时,求证:OM •ON 是一个定值.7.如图,抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点,其中A (3,0),B (-1,0),与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,直线y =kx +b 1经过点A 、C ,连接CD .(1)分别求抛物线和直线AC 的解析式;(2)在直线AC 下方的抛物线上,是否存在一点P ,使得△ACP 的面积是△ACD 面积的2倍,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在一点Q ,使线段AQ 绕Q 点顺时针旋转90°得到线段QA 1,且点A 1恰好落在该抛物线上?若存在,求出点Q 的坐标;若不存在,请说明理由.8.如图1,在ABC 中,90,ACB CD ∠=︒平分ACB ∠,且AD BD ⊥于点D .(1)判断ABD △的形状;(2)如图2,在(1)的结论下,若22,3,75BQ DQ BQD ==∠=︒,求AQ 的长;(3)如图3,在(1)的结论下,若将DB 绕着点D 顺时针旋转()090αα︒<<︒得到DP ,连接BP ,作DE BP ⊥交AP 于点F .试探究AF 与DE 的数量关系,并说明理由.9.如图1,已知数轴上的点A 、B 对应的数分别是﹣5和1.(1)若P 到点A 、B 的距离相等,求点P 对应的数;(2)动点P 从点A 出发,以2个单位/秒的速度向右运动,设运动时间为t 秒,问:是否存在某个时刻t ,恰好使得P 到点A 的距离是点P 到点B 的距离的2倍?若存在,请求出t 的值;若不存在,请说明理由;(3)如图2在数轴上的点M 和点N 处各竖立一个挡板(点M 在原点左侧,点N 在原点右侧且OM >ON ),数轴上甲、乙两个弹珠同时从原点出发,甲弹珠以2个单位/秒的速度沿数轴向右运动,乙弹珠以5个单位/秒的速度沿数轴向左运动.当弹珠遇到挡板后立即以原速度向反方向运动,若甲、乙两个弹珠相遇的位置恰好到点M 和点N 的距离相等,试探究点M 对应的数m 与点N 对应的数n 是否满足某种数量关系,请写出它们的关系式,并说明理由.10.如图,在平面直角坐标系xOy 中,△ABC 是等腰直角三角形,∠BAC =90°,A (1,0),B (0,2),二次函数y =x 2+bx ﹣2的图象经过C 点.(1)求二次函数的解析式;(2)若点P是抛物线的一个动点且在x轴的下方,则当点P运动至何处时,恰好使△PBC 的面积等于△ABC的面积的两倍.(3)若点Q是抛物线上的一个动点,则当点Q运动至何处时,恰好使∠QAC=45°?请你求出此时的Q点坐标.11.已知,如图,抛物线y=14x2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x﹣2经过A、C两点.(1)直接写出抛物线的解析式;(2)P为抛物线上一点,若点P关于直线AC的对称点Q落在y轴上,求P点坐标;(3)现将抛物线平移,保持顶点在直线y=x﹣114,若平移后的抛物线与直线y=x﹣2交于M、N两点.①求证:MN的长度为定值;②结合(2)的条件,直接写出△QMN的周长的最小值12.已知二次函数经过点A(﹣3,0)、B(1,0)、C(0,3).(1)求该抛物线解析式;(2)如图1,点M 为抛物线上第二象限内一动点,BM 交y 轴于点N ,当BM 将四边形ABCM 的面积分为1:2两部分时,求点M 的坐标;(3)如图2,点P 为对称轴上D 点下方一动点,点Q 为直线y =x 第一象限上的动点,且DP =2OQ ,求BP +2BQ 的最小值并求此时点P 的坐标.13.如图,在平面直角坐标系中,函数的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴的正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式.(2)如果在直线AM 上有一点P ,使得,请求出点P 的坐标.(3)在坐标平面内是否存在点N ,使以A 、B 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出所有点N 的坐标;若不存在,请说明理由.14.定义:在平面直角坐标系中,对于任意两点()11,A x y ,()22,B x y ,如果点(),M x y 满足122x x x -=,122y y y -=,那么称点M 是点A 、B 的“双减点”. 例如:()4,5A -,()6,1B -、当点(),T x y 满足4652x --==-,()5132y --==,则称点()5,3M -是点A 、B 的“双减点”.(1)写出点()1,3A -,()1,4B -的“双减点”C 的坐标;(2)点()6,4E -,点4,43F m m --⎛⎫ ⎪⎝⎭,点(),M x y 是点E 、F 的“双减点”.求y 与x 之间的函数关系式;(3)在(2)的条件下,y 与x 之间的函数图象与y 轴、x 轴分别交于点A 、C 两点,B 点坐标为3,0,若点E 在平面直角坐标系内,在直线AC 上是否存在点F ,使以A 、B 、E 、F 为顶点的四边形为菱形?若存在,请求出F 点的坐标;若不存在,请说明理由. 15.如图,拋物线24832999y x x =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),顶点为D .点P 为对称轴右侧抛物线上的一个动点,其横坐标为m ,直线AD 交y 轴于点C ,过点P 作PF ∥AD 交x 轴于点.F ,PE ∥x 轴,交直线AD 于点E ,交直线DF 于点M .(1)求直线AD 的表达式及点C 的坐标;(2)当DM =3MF 时,求m 的值;(3)试探究点P 在运动过程中,是否存在m ,使四边形AFPE 是菱形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.16.如图(1),抛物线y =﹣x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,已知点B 坐标为(2,0),点C 坐标为(0,2).(1)求抛物线的表达式;(2)如图(1),点P 为直线BC 上方抛物线上的一个动点,当△PBC 的面积最大时,求点P 的坐标;(3)如图(2),过点M(1,3)作直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.17.在平面直角坐标系中,抛物线y12=-x22x+3与x轴交于A、B两点(A在B左侧),与y轴交于点C,抛物线的顶点为D,过点B作BC的垂线,交对称轴于E.(1)如图1,点P为第一象限内的抛物线上一动点,当△PAE面积最大时,在对称轴上找一点M,在y轴上找一点N,使得OM+MN+NP最小,求此时点M的坐标及OM+MN+NP 的最小值;(2)如图2,平移抛物线,使抛物线的顶点D在射线AD上移动,点D平移后的对应点为D',点A的对应点A',设原抛物线的对称轴与x轴交于点F,将△FBC沿BC翻折,使点F 落在点F′处,在平面上找一点G,使得以A'、D'、F'、G为顶点的四边形为菱形.直接写出D′的坐标.18.如图,在矩形ABCD中,6cmAB=,12cmBC=,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动.(1)几秒钟后DPQ的面积等于228cm;(2)在运动过程中,是否存在这样的时刻,使点D恰好落在以点Q为圆心,PQ为半径的圆上?若存在,求出运动时间;若不存在,请说明理由.(3)在点P、Q的运动过程中,几秒后DPQ是直角三角形?请直接写出答案.19.已知AB、CD为O的两条弦,//AB CD.(1)如图1,求证弧AC=弧BD;(2)如图2,连接AC、BC、OA、BD,弦BC与半径OA相交于点G,延长AO交CD于点E,连接BE,使BE BD=,若OA BC⊥,求证:四边形ABEC为菱形;(3)在(2)的条件下,CH与O相切于点C,连接CO并延长交BE于点F,延长BE交CH于点H,11OF=,24sin25BDC∠=,求CH长.20.如图1和图2,在△ABC中,AB=AC=5,sinC=35.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接写出点K被扫描到的总时长.【参考答案】**科目模拟测试一、解答题1.(1)y=x2﹣2x﹣3(2)0)或(20)或(00)【解析】【分析】(1)根据线段相等、对称轴求出A,C两点的坐标,设出抛物线的函数表达式,并代入A,B,C三点坐标,得方程组,解出未知数的值,即可得到函数表达式;(2)根据题意,设出M点的坐标,表示出MN的长度,再分类讨论,当点M、N在x轴下方和下方时,分别根据MN=MQ、MN=NQ列出方程,解方程即可.(1)∵B点的坐标为(3,0)且OB=OC∴C点的坐标为(0,﹣3)∵抛物线的对称轴为直线x=1,B点的坐标为(3,0)∴A点的坐标为(﹣1,0)设抛物线的函数表达式为y=a(x+1)(x﹣3)(a≠0)将C(0,﹣3)代人y=a(x+1)(x﹣3)中解得:a=1∴抛物线的函数表达式为y=(x+1)(x﹣3)=x2﹣2x﹣3.(2)∵MN∥x轴,且M、N在抛物线上∴M、N关于直线x=1对称设点M(m,m2﹣2m﹣3)且m>1则MN=2(m﹣1)①当点M、N在x轴下方时,若∠QMN=90°且MN=MQ时,△MNQ为等腰直角三角形∴MQ⊥MN即MQ⊥x轴∴2(m﹣1)=﹣(m2﹣2m﹣3)解得:m1m2∴点M2﹣Q10)由MQ1=MN可得﹣(2﹣xN解得:xN=2∴点N为(22﹣故当∠MNQ2=90°,MN=NQ2时,点Q2的坐标为(2﹣5,0)②当点M、N在x轴上方时,若∠QMN=90°且MN=MQ时,△MNQ为等腰直角三角形∴MQ⊥MN,即MQ⊥x轴∴2(m﹣1)=m2﹣2m﹣3解得:m1=2+5,m2=2﹣5(舍去)∴点M为(2+5,2+25),点Q3为(2+5,0)由MQ3=MN,可得2+25=2+5﹣xN,解得xN=﹣5∴点N为(﹣5,2+25)当∠MNQ4=90°,MN=NQ4时,点Q4的坐标为(﹣5,0)综上所述,存在满足条件的点Q,其坐标分别为(5,0)或(2﹣5,0)或(2+5,0)或(﹣5,0).,【点睛】本题是二次函数的综合题目,涉及等腰直角三角形的存在性问题,主要考查了待定系数法求二次函数解析式、二次函数的性质、等腰三角形的性质及判定,熟练运用上述知识是解题的关键.2.(1)①等腰直角三角形,理由见解析,②证明见解析,③(63232),,(2)52,②225 2【解析】【分析】(1)①求出直线y=﹣x+6与x轴、y轴交点坐标,得出∠BAO=45°即可证明;②由①得出BN=PN=OM,再根据PQ⊥OP得出∠PQB=∠OPM,即可证明△PNQ≌△OMP;③∠PQN=22.5°,可得BQ=PB,设点P坐标为(a,-a+6),列出关于a的方程求解即可;(2)①证△OPG∽△OBP,求出OP长,得出P点坐标,再证△OPB∽△KPO,求出PK 的长即可;②类似①得出P点坐标,求出PK的长即可.【详解】解:(1)①△APM是等腰直角三角形,理由如下:y=﹣x+6与x轴、y轴分别交于点A,点B.当x=0时,y=6,当y=0时,x=6,则点A(6,0)点B(0,6);∴OA=OB,∴∠BAO=45°,∵PM⊥OA,∴∠BAO=∠MPA=45°,∴PM=PA,∴△APM是等腰直角三角形;②由①同理可得BN=PN,∵BN=OM,∴PN=OM,∵PQ⊥OP,∴∠QPN+∠OPM=90°,∵∠POM+∠OPM=90°,∴∠POM=∠QPN,∵∠PMO=∠PNQ=90°,∴△PNQ≌△OMP;③设点P坐标为(a,-a+6),∵∠PQN=22.5°,∠PBN=45°,∴∠PQN=∠BPQ=22.5°,∴BQ=PB,∵△PNQ≌△OMP;∴QN=PM=-a+6,6a a+=-+,解得,6a=-则点P坐标为(6-;(2)∵BGOG=35,OB=6,∴94BG=,154OG=,①∵∠OPQ 的角平分线交边OB 于点G ,∴∠OPG =∠OBA =45°,∵∠PGO =45°+∠BPG ,∠BPO =45°+∠BPG ,∴∠PGO =∠BPO ,∴△OPG ∽△OBP , ∴OP OG OB OP =,即1546OP OP =,解得3102OP =(负值舍去), 设点P 坐标为(a ,-a +6),222310(6)()2a a +-+=, 解得,132a =,292a =; 当∠PKQ 为钝角时,92a =,P 坐标为93()22,, 则322AP =,922BP =, ∵∠POK =∠OBA =45°,∠BPO =∠BPO ,∴△OPB ∽△KPO ,∴OP PB KP OP =,即31092223102KP =,解得522KP =;②当∠PKQ 为锐角时,32a =,P 坐标为39()22,, 则92AP =32BP = 由①得,310OP =OP PB KP OP =即31032223102KP =,1522KP =, 152326222BK =-=, BK 2+AP 2=229222562+=22()().【点睛】本题考查了一次函数与图形,全等三角形的判定与性质,相似三角形的判定与性质,解题关键是熟练运用相关定理进行推理证明.3.(1)239344y x x =-++;(2)458;(3)1013,36⎛⎫ ⎪⎝⎭或()3,3. 【解析】【分析】(1)把A 、C 两点代入抛物线294y ax x c =++解析式,即可得表达式. (2)把解析式配方得顶点式,即可得顶点坐标,令y=0,得B 点的坐标,连接OP ,可求得PBC OPC OPB OBC S S S S =+-=111••••••222p p OC x OB y OB OC +-,即得结果. (3)在△OBC 中,BC <OC +OB ,当动点E 运动到终点C 时,另一个动点D 也停止运动,由勾股定理得BC =5,当运动时间为t 秒时,BE =t ,过点E 作EN ⊥x 轴,垂足为N ,根据相似三角形的判定得△BEN ∽△BCO ,根据相似三角形的性质得,点E 的坐标为43(4,)55t t -,分两种情形讨论当点D 在线段CO 上运动时,0<t <3,此时CD =t ,点D 的坐标为(0,3-t ),当点D 在线段OB 上运动时,3≤t ≤5,BD =7-t ,根据平行四边形ADFE 的性质得出坐标.【详解】解:(1)∵抛物线294y ax x c =++经过A (-1,0),C (0,3)两点, ∴9043a c c ⎧-+=⎪⎨⎪=⎩, 解得343a c ⎧=-⎪⎨⎪=⎩, ∴该抛物线的函数表达式为239344y x x =-++; (2)∵抛物线223933753()444216y x x x =-++=--+, ∴抛物线的顶点P 的坐标为375(,)216, ∵239y 344x x =-++, 令y=0,解得:x 1=-1,x 2=4,∴B 点的坐标为(4,0),OB =4,如图,连接OP ,则PBC OPC OPB OBC S S S S =+-,=111222p p OC x OB y OB OC ⋅⋅+⋅⋅-⋅⋅ =1317513443222162⨯⨯+⨯⨯-⨯⨯ =975648+- =458∴△PBC 的面积为458; (3)∵在△OBC 中,BC <OC +OB ,∴当动点E 运动到终点C 时,另一个动点D 也停止运动,∵OC =3,OB =4,∴在Rt △OBC 中,225BC OB OC =+=∴0<t ≤5,当运动时间为t 秒时,BE =t ,如图,过点E 作EN ⊥x 轴,垂足为N ,则△BEN ∽△BCO ,∴5BN EN BE t BO CO BC === 43BN ,,55t EN t == ∴点E 的坐标为43(4,)55t t -, 下面分两种情形讨论:Ⅰ、当点D 在线段CO 上运动时,0<t <3,此时CD =t ,点D 的坐标为(0,3-t ),设点239,344F a a a ⎛⎫-++ ⎪⎝⎭根据平行四边对角线互相平分,得,2414533933544a t t t a a ⎧-=-⎪⎪⎨⎪-+=-++⎪⎩, 消去t 得,237100a a --= ,解得1210,13a a ==- (舍去) 当1103a =时,239163443a a -++=, ∴ F 坐标为1013(,)36Ⅱ、如图,当点D 在线段OB 上运动时,3≤t ≤5,BD=7-t ,()473OD t t =--=- ()3,0D t ∴-根据平行四边的性质,AD DF = ,AE DF =,243(1)(4)53933445t a t a a t ⎧---=--⎪⎪∴⎨⎪-++=⎪⎩,消去t 得,2120a a +-=, 解得14a =-(舍去),23a =当3a =时,2393344a a -++= ∴ F 坐标为(3,3),综上所述:F 坐标为1013(,)36或(3,3). 【点睛】 本题考查了抛物线的综合运用,本题涉及到抛物线的求解,勾股定理,二次函数的性质,相似三角形的判定与性质,正确运用分类讨论思想是解题的关键.4.(1)20.25 1.54=-++y x x ,直线3x =;(2)12(3,3),(3,1)B B ;(3)M 的横坐标为3259±或436 【解析】【分析】(1)把()2,0A -代入函数解析式,求出a 的值即可得函数关系式,再进行配方可得函数的对称轴;(2)设(3,)B t ,过B 作BE y ⊥轴垂足为E ,过点P 作PF BE ⊥垂足为F ,证明≌CEB BFP 得3,4PF BE BF CE t ====-,可得(7,3)P t t -+,代入抛物线解析式得方程,求解即可;(3)分两种情况,根据平行四边形的判定与性质求解即可.【详解】解:(1)把()2,0A -代入264y ax ax =-+得,4+124=0a a +解得,a=-0.25∴抛物线的函数表达式为20.25 1.54=-++y x x ,由220.25 1.54=0.25(3) 6.25y x x x =-++-⨯-+∴抛物线的对称轴为直线3x =,故答案为:20.25 1.54=-++y x x ,直线3x =;(2)∵点B 为抛物线对称轴上一动点∴设(3,)B t过B 作BE y ⊥轴垂足为E ,过点P 作PF BE ⊥垂足为F∵90CBP ∠=︒,∴CBE BPF ∠=∠,∵,90=∠=∠=︒BC BP CEB BFP , ∴≌CEB BFP∴3,4PF BE BF CE t ====-∴(3,7)+-P t t ,∵点P 落在抛物线上,∴把(7,3)P t t -+代入20.25 1.54=-++y x x ,整理得2430t t -+=得121,3t t ==所以12(3,3),(3,1)B B(3)①如图,当BC 为边时,∵四边形BCNM 是平行四边形,∴//,=BC MN BC MN∵点B 向左平移3个单位,再向上平移4个单位得到点C ∴设点23,442⎛⎫-++ ⎪⎝⎭m m M m ,则N 坐标为233,842⎛⎫--++ ⎪⎝⎭m m m ∵点N 在抛物线上,∴把233,842⎛⎫--++ ⎪⎝⎭m m N m 代入23442=-++x x y 得223(3)3(3)844242---++=-++m m m m , 解得436=m ②如图,当BC 为对角线时,∵四边形BNCM 是平行四边形,∴,==CQ BQ NQ MQ∵(3,0),(0,4)B C ,∴(1.5,2)Q ,∴设点23,442⎛⎫-++ ⎪⎝⎭m m M m ,则N 坐标为233,42m m m ⎛⎫-- ⎪⎝⎭∵点N 在抛物线上,∴把233,42m m N m ⎛⎫-- ⎪⎝⎭代入23442=-++x x y 得()()22333344242m m m m ---=-++,解得32592m ±= 所以点M 的横坐标为32592±或436. 【点睛】本题是二次函数综合题目,考查了二次函数解析式的求法、平行四边形的性质、平移的性质、解方程等知识;本题综合性强,有一定难度.5.(1)2y x 2x 3=-++;(2)1(2,3)Q ,2317117(,)22Q +--,3317117(,)22Q --+;(3)存在,(2,3)M 或5175317(,)22--+ 【解析】【分析】(1)设2(1)4(0)y a x a =-+≠,把C(0,3)代入求出a ,即可得出答案;(2)①过P 作PQ //BC ,交抛物线于点Q ,如图1所示;②求出点G 坐标,可得2PG GH ==,过H 作直线23Q Q //BC ,交x 轴于点H ,分别求出Q 的坐标即可; (3)MDN △为等腰直角三角形,则MN MD =,求出MN 、MD 的长度即可列出等量关系式,从而得出答案.【详解】(1)设2(1)4(0)y a x a =-+≠,把C(0,3)代入抛物线解析式得:43a +=,即1a =-,则抛物线解析式为22(1)423 y x x x =--+=-++;(2)由(3,0)B ,C(0,3),得到直线BC 解析式为3y x =-+,①过P 作1PQ //BC ,交抛物线于点1Q ,如图1所示,(1,4)P ,∴直线PQ 解析式为5y x =-+,联立得:2235y x x y x ⎧=-++⎨=-+⎩,解得:14x y =⎧⎨=⎩或23x y =⎧⎨=⎩,即1(2,3)Q ;②过P 作PH x ⊥轴,交BC 于点G ,交x 轴于点H , 令1x =,代入3y x =-+,得2y =,(1,2)G ∴,2PG GH ∴==,过H 作直线23Q Q //BC ,则直线23Q Q 解析式为1y x =-+,联立得:2231y x x y x ⎧=-++⎨=-+⎩,解得:x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧⎪⎪⎨⎪=⎪⎩2Q ∴,3Q , 综上所述:点Q 的坐标为1(2,3)Q,2Q,3Q ; (3)MDN △为等腰直角三角形,则MN MD =, 点()2,23M m m m -++,令x m =,代入3y x =-+得:3y m =-+,(,3)D m m ∴-+,函数的对称轴为:1x =,则点N 的横坐标为:2m -, 则|22|MN m =-,2223(3)3MD m m m m m =-++--+=-+,2223m m m ∴-=-+,2223m m m -=-+或2223m m m -+=-+,解得:12m =或21m =-(舍)或3m =4m =当2m =时,2233m m -++=,当m =223m m -++= 故点M 的坐标为:(2,3)或. 【点睛】本题考查了二次函数综合题,设计知识有:用待定系数法求函数解析式、同底等高的面积计算、等腰直角三角形的性质,一次函数与二次函数交点问题,熟练掌握相关知识点是解决本题的关键.6.(1)x 1=-1,x 2=1-b ;(2)①xP =m -b +1;②OM •ON =2. 【解析】 【分析】(1)令y =0可得x 2+bx +b -1=0,然后解一元二次方程即可解答;(2)①当b <2时,由不等式性质可得:1-b >-1,根据点A 在点B 的左侧,可得A (-1,0),再利用待定系数法求得直线AM 的解斤式为y =mx +m ,联立方程组可得:x 2+(b -m )x +b -m -1=0,由根与系数关系可得xA +xP =-(b -m )=m -b ,进而确定xP ;②当b =-3时,二次函数解析式为y =x 2-3x -4,由题意可得P (m +4,m 2+5m ),Q (n +4,n 2+5),再根据直线PQ 过点E (4,2),可推出(mn +2)m -n )=0,再由P 、Q 不重合,即mn ,得出mn =-2即可.【详解】解:(1)当y =0时,x 2+bx +b -1=0,即(x +1)(x +b -1)=0, ∴x +1=0或x +b -1=0,即x 1=-1,x 2=1-b ; (2)①当b <2时,由(1)可知:x 1=-1,x 2=1-b , ∵b <2, ∴-b >-2, ∴1-b >-1,∵点A 在点B 的左侧, ∴A (-1,0),设直线AM 的解析式为y =kx +a , ∵A (-1,0),M 0,m ),∴0k a a m -+=⎧⎨=⎩,解得k m a m =⎧⎨=⎩∴直线AM 的解析式为y =mx +m ,联立方程组,得:2,1y mx my x bx b =+⎧⎨=++-⎩消去y 可得:x 2+(b -m )x +b -m -1=0, 由根与系数关系,得xA +xP =-(b -m )=m -b , ∴xP =m -b +1;②证明:当b =-3时,二次函数解析式为y =x 2-3x -4, ∴A (-1,0),B (4,0), ∵xP =m +4,∴yP =m +4)2-3(m +4)-4=m 2+5m , ∴P (m +4,m 2+5m ), ∴直线AN 的解析式为:(1)01ny x nx n =+=++, 联立方程组可得:234,y x x y nx n ⎧=--⎨=+⎩∴x 2-(3+n )x -4-n =0∴xQ =4+n ,yQ =n 2+5n ,即Q (n +4,n 2+5n ), ∵直线PQ 过点E (4,2), ∴kEP =kEQ ,∴2225254444m m n n m n ++=+-+-,即mn 2+5mn -2m =m 2n +5mn -2n ,即(mn +2)(m -n )=0, ∵P 、Q 不重合,即m ≠n , ∴mn =-2,∴OM ·ON =|mn |=2为定值. 【点睛】本题主要考查了二次函数的性质、待定系数法、一次函数图象和性质、一元二次方程根与系数关系等知识点,本题综合性较强,熟练掌握二次函数的图象及性质、灵活应用根与系数的关系成为解答本题的关键.7.(1)y =-x 2+2x +3,y =-x +3;(2)存在,(-1,0)或(4,-5);(3)存在,(1,2)或(1,-3) 【解析】 【分析】(1)将点A ,B 坐标代入抛物线解析式中,求出b ,c 得出抛物线的解析式,进而求出点C 的坐标,再将点A ,C 坐标代入直线AC 的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD AD =,进而判断出ABC 的面积和ACP △的面积相等,即可得出结论;(3)分点Q 在x 轴上方和在x 轴下方,构造全等三角形即可得出结论. 【详解】(1)把(30)A ,、(10)B -,代入2y x bx c =-++, 解得2b =、3c =∴抛物线的解析式为2y x 2x 3=-++则C 点为(0,3),又(30)A ,,代入1y kx b =+, 得1k =-,13b =, ∴直线AC 的解析式为3y x =-+, (2)如图,连接BC ,∵点D 是抛物线的对称轴与x 轴的交点, ∴AD BD =, ∴2ABCACDSS=,∵2ACP ACD S S =△△,∴ACP ABC S S =△△,此时,点P 与点B 重合, 即:(10)P -,, 过B 点作PB AC ∥交抛物线于点P ,则直线BP 的解析式为1y x =--①, ∵抛物线的解析式为2y x 2x 3=-++②,联立①②解得,10x y =-⎧⎨=⎩或45x y =⎧⎨=-⎩,∴P (4,﹣5),∴即点P 的坐标为(﹣1,0)或(4,﹣5); (3)由(1)可知,抛物线解析式为()214y x =--+ 把1x =代入直线AC 解析式3y x =-+得AC 与抛物线对称轴的交点(1,2)M ,如下图所示:22222BM AM ==+,4AB =即222BM AM AB +=则MAB △是等腰直角三角形,符合题意,M 点即为所求Q 点的一种情况,当Q 点在x 轴下方时,设Q 为(1,)m ,0m <, 因为线段AQ 绕Q 点顺时针旋转90°得到线段1QA 过A1作直线DQ 的垂线于E 点,则1ADQ QEA ≌ ∴2AD QE ==,1DQ EA m ==- ∴12(1)A m m --,∵点A1恰好落在抛物线2y x 2x 3=-++上, 代入,解得m=-3或2m = (舍去) ∴Q (1,-3)综上,Q 点坐标为(1,2)或(1,-3), 【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,全等三角形的判定与性质,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.8.(1)ABD △是等腰直角三角形,证明见解析;(2)38;(3)2,AF DE =证明见解析 【解析】 【分析】(1)先求解45,ACD BCD ∠=∠=︒取AB 的中点,G 连接,,CG DG 再证明,,,A C B D 在以G 为圆心,GC 为半径的同一个圆上,从而可得答案.(2)如图, 把ADQ △顺时针旋转90︒得到,BDQ ' 连接,QQ ' 过Q '作,Q F BQ '⊥ 交BQ 的延长线于,F 证明45,32,DQQ QQ ∠=︒='' 证明120,60,BQQ FQQ ∠=︒∠='︒' 求解3236·cos 60,?sin 60,22QF QQ FQ QQ =︒==︒=''' 再利用勾股定理可得答案; (3)如图,连接,BF 证明 ,DPE ABF ∽ 可得,DP DEAB AF= 结合(1)问的结论可得答案. 【详解】解:(1) 90,ACB CD ∠=︒平分ACB ∠, 45,ACD BCD ∴∠=∠=︒取AB 的中点,G 连接,,CG DG90,ACB ADB ∠=∠=︒ ,CG AG BG DG ∴===,,,A C B D ∴在以G 为圆心,GC 为半径的同一个圆上, 45,ABD ACD ∴∠=∠=︒ABD ∴为等腰直角三角形.(2)如图,,90,AD BD ADB =∠=︒把ADQ △顺时针旋转90︒得到,BDQ ' 连接,QQ ' 过Q '作,Q F BQ '⊥ 交BQ 的延长线于,F3,90,,DQ DQ QDQ AQ BQ ''∴∠=︒='==2245,3332,DQQ QQ ''∴∠=︒=+=75,BQD ∠=︒120,60,BQQ FQQ ∴∠=︒∠='︒'3236·cos 60?sin 60QF QQ FQ QQ ∴=︒==︒=''' 327222BF BQ QF ∴=+== 22723638,22BQ ⎛⎫⎛⎫∴=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭' 38.AQ BQ '∴==(3)2,AF DE =理由如下: 如图,连接,BF2,90,45,BD AD BD ADB ABD BAD AB =∠=︒∠=∠=︒= ,,,DB DP BDP DE BP α=∠=⊥11,,90,,22BE PE BDE PDE DBE FB FP αα∴=∠=∠=∠=︒-=,90,AD DP ADP α=∠=︒+145,2DAP DPA α∴∠=∠=︒-114545,22BAP PDE αα⎛⎫∴∠=︒-︒-==∠ ⎪⎝⎭11180459045,22APB αα⎛⎫∴∠=︒--︒-︒-=︒ ⎪⎝⎭,FB FP =45,90,FBP FPB BFP BFA ∴∠=∠=︒∠=︒=∠ 90,BFA DEP ∴∠=∠=︒ ,DPE ABF ∴∽,DP DEAB AF∴= 2DE DB AF AB ∴== 即2.AF DE = 【点睛】本题考查的是等腰直角三角形的判定与性质,旋转的性质,相似三角形的判定与性质,圆的确定,圆周角定理的应用,是典型的综合题,熟练的运用图形的性质,作出恰当的辅助线是解本题的关键.9.(1)点P 对应的数为-2;(2)当t =2或6时,恰好使得P 到点A 的距离是点P 到点B 的距离的2倍;(3)m +13n =0.【解析】 【分析】(1)设点P 对应的数为x ,表示出BP 与PA ,根据BP =PA 求出x 的值,即可确定出点P 对应的数;(2)表示出点P 对应的数,进而表示出PA 与PB ,根据PA =2PB 求出t 的值即可; (3)因为OM >ON ,只有甲乙均反弹之后在中点相遇一种情况,设点M 对应的数为m ,点N 对应的数为n ,时间为t ,则M 、N 的中点对应的数为2m n+,根据甲、乙两个弹珠相遇的位置恰好到点M 和点N 的距离相等列出关系式即可. 【详解】解:(1)点A 、B 对应的数分别是﹣5和1, 设点P 对应的数为x , 则BP =1-x ,PA =x +5, ∵BP =PA , ∴1-x =x +5, 解得:x =-2, ∴点P 对应的数为-2; (2)P 对应的数为-5+2t , ∴PA =2t ,PB =|-5+2t -1|=|2t -6|, ∵PA =2PB , ∴2t =2|2t -6|, 当t =2t -6时,t =6; 当t +2t -6=0时,t =2;答:当t =2或6时,恰好使得P 到点A 的距离是点P 到点B 的距离的2倍; (3)设点M 对应的数为m ,点N 对应的数为n ,时间为t , 则M 、N 的中点对应的数为2m n+, ∴MN =n -m ,OM =-m ,ON =n ,∴()()252502t t n m m n t m m ⎧+=-⎪+⎨⎛⎫=-+- ⎪⎪⎝⎭⎩,即()()351073352t n m n m t ⎧=-⎪⎨-=⎪⎩, 化简得m +13n =0. 【点睛】本题考查了二元一次方程的应用,数轴,两点间的距离,运用分类讨论思想、方程思想及数形结合思想是解题的关键.10.(1);(2)当点P运动至坐标为或时,恰好使△PBC的面积等于△ABC的面积的两倍;(3)或【解析】【分析】(1)如图,过C作于先证明可得再代入二次函数y=x2+bx﹣2中,再利用待定系数法求解b即可;H再求解直线BC (2)先求解过P作轴交BC于,为:设则再利用再解方程即可;(3)分两种情况讨论:如图,作B关于AC的对称点,N连接作的角平分线H交抛物线于,Q由则再求解的交CN于,解析式,再求解与抛物线的交点坐标即可,如图,同理可得:当平分BAC时,射线与抛物线的交点Q满足按同样的方法可得答案.【详解】解:(1)如图,过C作于则而而二次函数y=x2+bx﹣2的图象经过C点,解得:∴ 二次函数的解析式为:(2)过P 作轴交BC 于,H设直线BC 为,y mx n =+解得:所以直线BC 为:设则整理得:解得:当2x =时, 当时, 或所以当点P 运动至坐标为或时,恰好使△PBC 的面积等于△ABC 的面积的两倍.(3)如图,作B 关于AC 的对称点,N 连接 作的角平分线 交CN 于,H 交抛物线于,Q由则平分则同理可得直线的解析式为:解得:或(不合题意,舍去)如图,同理可得:当平分BAC时,射线与抛物线的交点Q满足同理:直线为:解得:或(不合题意舍去)【点睛】本题考查的是利用待定系数法求解一次函数,二次函数关系式,全等三角形的性质与判定,等腰直角三角形的性质,一元二次方程的解法,清晰的分类讨论是解本题的关键.11.(1)213y x x 242=-+-;(2)P 点坐标为(6,2);(3)①【解析】【分析】(1)求出A 、C 点的坐标,再将点代入y =14-x 2+bx +c ,即可得解; (2)先求∠OCA =45º,再由对称性可知PC ⊥y 轴,即可求出点P 的纵坐标,最后利用二次函数的解析式求出结果;(3)①先求出平移后的抛物线,再利用2111()44x m m --+-=x -2,得出2121224,43x x m x x m m +=-⋅=-+,最后利用两点之间的距离公式求解;②作KQ ⊥MN ,连接MK ,MP ,先得出KM =QN 即求KM +MP 的最小值,即KP 的长,最后根据△QMN 的周长的最小值即KQ +KP ,得解.【详解】解:(1)在y =x ﹣2中,令y =0,x =2;令x =0,y =-2;∴A (2,0),C (0,-2),代入y =14-x 2+bx +c 得104242b c c⎧=-⨯++⎪⎨⎪-=⎩, 解得322b c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为:213y x x 242=-+-; (2)如图,∵OA =OC =2,∴∠OCA =45°,∵点P 关于直线AC 的对称点Q 在y 轴上,∴∠OCA =∠PCA =45°,∴PC ⊥y 轴,∴P 的纵坐标为-2,由2132242x x -=-+-; 解得16x =,20x =(舍去),∴P 点坐标为(6,2);(3)①设顶点为(m ,m ﹣114),平移后抛物线解析式为2111()44y x m m =--+-, 则2111()44x m m --+-=x -2, 22(42)430x m x m m +-+-+=,设1122(,),(,)M x y N x y , 则2121224,43x x m x x m m +=-⋅=-+,∴MN 22222121212121212()()()(22)2()8x x y y x x x x x x x x -+--+--++-22= ∴MN 的长度为定值22②如图,作KQ ⊥MN ,连接MK ,MP ,由题知P (6,2),Q (0,4),KQ =MN 2,则只需求QM +QN 的最小值即可,∵//,,KQ MN KQ MN =∴KM =QN 即求KM +MP 的最小值,即KP 的长,∵Q (0,4),KQ 2 ∴K (-2,2),∴KP 228445+=∴△QMN 的周长的最小值为52【点睛】本题考查了二次函数的综合应用,算了掌握二次函数的图象及性质,轴对称的性质,正确作出图形是解题的关键.12.(1)y=﹣x2﹣2x+3.(2)M(﹣2,3)或(,119).(3)最小值为AC=32P(﹣1,2).【解析】【分析】(1)根据A、B点的坐标设出抛物线的交点式,再将C点的坐标带图求解,即可得出结论.(2)过A点作AG⊥x轴交BM的延长线于G,则,设ON=t,则AG=4t,CN=3﹣t,进而得出或2,进而建立方程求解,即可得出结论.(3)先判断出△PCD∽△OBQ,进而得出PC2OQ,在判断出A、P、C在同一条直线上时,BP2的最小值,在求出直线AC的解析式,即可得出结论.(1)解:∵二次函数经过点A(﹣3,0)、B(1,0),∴设抛物线的解析式为y=a(x+3)(x﹣1),∵点C(0,3)在抛物线上,∴﹣3a=3,∴a=﹣1,∴抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)解:如图1,过点A作AG⊥x轴交BM的延长线于G,由(1)知,抛物线的解析式为y=﹣x2﹣2x+3,设点M(m,﹣m2﹣2m+3)(﹣3<m<0),∴S△BCM=12CN(1﹣m),S△ABM=S△ABG﹣S△AMG=12AG[(1+3)﹣(m+3)]=12AG(1﹣m),∴,∵,∴=14,设ON=t,则AG=4t,CN=3﹣t,∵BM将四边形ABCM的面积分为1:2两部分时,∴=12或2,∴,或2,∴或2,∴t=1或13t ,∴N(0,1)或N(0,13),当N(0,1)时,∵B(1,0),∴直线BM的解析式为y=﹣x+1①,由(1)知,抛物线的解析式为y=﹣(x+3)(x﹣1)②,联立①②解得,或,∴M(﹣2,3);当N(0,13)时,∵B(1,0),∴直线BM的解析式为y=﹣13x+13③,联立②③解得,或,∴M(,119);即M(﹣2,3)或(,119);(3)解:如图2,连接PC,CD,过点C作CH⊥DP于H,由(1)知,抛物线的解析式为y=﹣x2﹣2m+3=﹣(m﹣1)2+4,∴D(﹣1,4),∵C(0,3),∴CD2,DH=1,CH=1,∴DH=CH,∴∠CDP=45°,∵点Q为直线y=x第一象限上的动点,∴∠BOQ=45°=∠CDP,∵DP2OQ,∴2,∵2∴=2∴△PCD∽△OBQ,∴,∴PC2OQ,∴BP2=BP+PC,连接AP,∵点P是抛物线的对称轴上的点,∴PB=PA,∴BP+2OQ=BP+PC=PA+PC,∴当点A,P,C在同一条直线上时,BP+2OQ最小,最小值为AC==32,∵A(﹣3,0),C(0,3),∴直线AC的解析式为y=x+3,当x=﹣1时,y=2,∴点P(﹣1,2).【点睛】本题考察了二次函数解析式的求法,抛物线的性质,三角形面积公式,相识三角形等问题,需要数形结合解答问题.13.(1)443y x=-+(2)(0,4)或(6,-4)(3)(-3,12),(3,-4)或(3,4).【解析】【分析】利用一次函数图象上点的坐标特征可求得点A,B的坐标,由点M是线段OB的中点可得出点M的坐标,根据A、M的坐标,利用待定系数法即可求得直线AM的解析式;设点P的坐标为,利用三角形的面积公式结合,即可得到关于x的含绝对值符号的一元一次方程,解之即可求得点P的坐标;设点N的坐标为,分别以△ABM的三边为对角线,利用平行四边形的对角线互相平分即可得到关于m,n的方程,解之即可求解.(1)解:当x=0时,,。

九年级数学中考复习压轴题专题训练含答案解析二次函数小综合抛物线中的线段定值

九年级数学中考复习压轴题专题训练含答案解析二次函数小综合抛物线中的线段定值

专题九 二次函数小综合(四)定点、定值、定线微专题15 抛物线中的线段定值典例精讲考点 设参数→构相似计算【例1】如图,抛物线y =-2x 2-2x +3交 轴于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,D 为抛物线的顶点,E 为对称轴与x 轴的交点,P 是抛物线上B ,D 两点间的一个动点,PA ,PB 与直线DE 分别交于点F ,G ,当点P 运动时,EF +EG 是否为定值?若是,试求出该定值;若不是,请说明理由.考点 相似转化线段比→设参计算【例2】如图,抛物线y =a (x 2+2mx -3m 2)(其中a ,m 是常数,a <0,m >0)与x 轴分别交于A ,B 两点(点A 位于点B 的右侧),与y 轴交于点C (0,3),CD //AB 交抛物线于点D ,连接AD ,过点A 作射线AE 交抛物线于点E ,AB 平分∠DAE ,求证:AEAD为定值.考点 设直线的解析式→根系关系求解【例3】如图,抛物线2114y x =-与x 轴交于A ,B 两点,与y 轴交于点C ,M 为B 点右侧的抛物线上一动点,M ,N 两点关于y 轴对称,直线MB 与直线NB 分别交直线x =-3于点F ,E ,EF 交x 轴于点P ,求PF -PE 的值.典题精练训练点 利用相似求线段比1.(2020镇江改)如图,抛物线y =ax 2-2ax +c (a ,c 是常数,a <0)经过点M (-1,1),N ,已知点N 的横坐标是4,顶点为D ,它的对称轴与x 轴交于点C ,直线DM ,DN 分别与工轴相交于A ,B 两点,随着a 的变化,ACBC的值是否发生变化?请说明理由.训练点 利用根系关系求线段积2.(2020原创题)如图,抛物线y =x 2-4x +3交x 轴于点C ,B (C 在B 左边),交y 轴于点A , 直线y =kx -3k +7(k ≠0)交抛物线于M ,N 两点(M ,N 不与C ,B 重合),直线MC ,NC 分别交y 轴于点I ,点J .求证OI .OJ 为定值.训练点 利用含参直线解析式求线段积3.(2020原创题)如图,抛物线2122y x bx =-++交y 轴于点A ,点B (2,2)在抛物线上,过点C (0,4)的直线交抛物线于M ,N 两点,MB ,NB 分别交y 轴于点F ,G .求证:AF ⋅AG 为定值.专题九 二次函数小综合(四)定点、定值、定线微专题15 抛物线中的线段定值典例精讲考点 设参数→构相似计算【例1】如图,抛物线y =-2x 2-2x +3交 轴于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,D 为抛物线的顶点,E 为对称轴与x 轴的交点,P 是抛物线上B ,D 两点间的一个动点,PA ,PB 与直线DE 分别交于点F ,G ,当点P 运动时,EF +EG 是否为定值?若是,试求出该定值;若不是,请说明理由.【解答】EF +EG 为定值8,理由如下:过点P 作PQ //y 轴交x 轴于Q ,设P (t ,-t 2-2t +3),则PQ =-t 2-2t +3,AQ -3+t ,QB =1-t ,∵PQ //EF ,∴△AEF ∽△AQP ,∴EF AEPQ AQ=, ∴EF =2(23)22(1)3PQ AE t t t AQ t ⋅--+⨯==-+.又∵PQ //EG ,∴△BEG ∽△BQP ,∴EG BE PQ BQ =,∴EG =2(23)22(3)1PQ BE t t t BQ t⋅--+⨯==+-,∴EF +EG =2(1-t )+2(t +3)=8.考点 相似转化线段比→设参计算【例2】如图,抛物线y =a (x 2+2mx -3m 2)(其中a ,m 是常数,a <0,m >0)与x 轴分别交于A ,B 两点(点A 位于点B 的右侧),与y 轴交于点C (0,3),CD //AB 交抛物线于点D ,连接AD ,过点A 作射线AE 交抛物线于点E ,AB 平分∠DAE ,求证:AEAD为定值.【解答】∵-3am 2=3,∴am 2=-1,由a (x 2+2mx -3m 2)=0,得x =m 或x =-3m ,∴.A (m ,0),由CD //AB 可得D (-2m ,3),设点E (n ,t ),t =a (n 2+2mn -3m 2),分别过点D ,E 作x 轴的垂线,垂足分别为M ,N ,∵AB 平分∠DAE ,∴Rt △ADM ∽△Rt △AEN ,∴AE NE NE =AD AM DM =,即23m n tm m --=+,解得:n m t m -=,∴E (n ,n m m -),∴a (n 2 + 2mn -3m 2)=n m m -,解得n =-4m 或m (舍去m ),∴5n m t m -==-,∴E (-4m ,-5),∴4533AE AN m m =AD AM m +==为定值.考点 设直线的解析式→根系关系求解【例3】如图,抛物线2114y x =-与x 轴交于A ,B 两点,与y 轴交于点C ,M 为B 点右侧的抛物线上一动点,M ,N 两点关于y 轴对称,直线MB 与直线NB 分别交直线x =-3于点F ,E ,EF 交x 轴于点P ,求PF -PE 的值.【解答】易求点B (2.0),设BF 的解析式为y =kx -2k ,∴F (-3,-5k ),∴PF =5k ,设BN 的解析式为y =nx -2n ,∴E (-3,-5n ),∴PE =-5n ,∴PF -PE =5k +5n =5(k +n ),联立22114y kx k y x =-⎧⎪⎨=-⎪⎩得x 2-4kx +8k -4=0,∴x m ⋅x B =8k -4,∴x B =2,∴x M =4k -2,同理,x N ⋅x B =8n -4, ∴x N =4n -2,∵M ,N 关于y 轴对称,∴x M +x N =0,∴4k -2+4n -2=0,∴k +n =1, ∴PF -PE =5(k +n )=5. 典题精练训练点 利用相似求线段比1.(2020镇江改)如图,抛物线y =ax 2-2ax +c (a ,c 是常数,a <0)经过点M (-1,1),N ,已知点N 的横坐标是4,顶点为D ,它的对称轴与x 轴交于点C ,直线DM ,DN 分别与工轴相交于A ,B 两点,随着a 的变化,ACBC的值是否发生变化?请说明理由.解:∵y =ax 2-2ax +c 过M (-1,1),∴a +2a +c =1,∴c =1-3a ,∴y =a 2-2ax +(1-3a ),∴D (1,1-4a ),N (4,1+5a ).分别过点M ,N 作MG ⊥CD 于点E ,NT ⊥DC 于点T ,∴NT =3.DG =-4a . ∵MG //TN //x 轴,∴△DMG ∽△DAC ,△DCB ∽△DTN ,∴ MG DG BC DCAC DC TN DT==,,∴24141493a a CB AC a a --==--,,∴1414,23a a AC BC a a --==--,∴32AC BC =训练点 利用根系关系求线段积2.(2020原创题)如图,抛物线y =x 2-4x +3交x 轴于点C ,B (C 在B 左边),交y 轴于点A , 直线y =kx -3k +7(k ≠0)交抛物线于M ,N 两点(M ,N 不与C ,B 重合),直线MC ,NC 分别交y 轴于点I ,点J .求证OI .OJ 为定值.解:易知C (1,0),设N (x 1,x 2-4x 1 +3),M (x 2,x 2-4x 2+3),联立23743y kx k y x x =-+⎧⎨=-+⎩,得x 2-(4+k )x -4+3k =0,∴x 1 +x 2=4+k ,x 1x 2=-4+3k ,由N (x 1, 21x -4x 1+3),C (1,0),可求得直线NC :y =(x 1-3)x -(x 1-3),同理,直线MC :y =(x 2-3)x -(x 2-3),∴OI ⋅OJ =121233(3)(3)x x x x -⋅-=---=-x 1⋅x 2+3(x 1+x 2)-9=-(-4+3k )+3(4+k )-9=7.训练点 利用含参直线解析式求线段积3.(2020原创题)如图,抛物线2122y x bx =-++交y 轴于点A ,点B (2,2)在抛物线上,过点C (0,4)的直线交抛物线于M ,N 两点,MB ,NB 分别交y 轴于点F ,G .求证:AF ⋅AG 为定值.解:易知A (0,2),抛物线为2122y x x =-++.设F (0,m ),G (0,n ),设直线BF 为y =kx +m ,则2-2k +m ,∴k =22m -,∴直线BF 为y =22m x m -+,同理可求直线BG 为y =22n-x +n ,由y =22m x m -+和2122y x x =-++,解得x =2或m -2,∴x M =m -2,同理,x N =n -2,设直线CN 的解析式为y =tx +4,由y =tx +4和2122y x x =-++,得21(1)202x t x +-+=,∴x M ⋅x N =4,即(m -2)⋅(n -2)=4,∴AF ⋅AG =(2-m )⋅(2-n )=4.。

中考数学压轴题-抛物线与直线的交点问题

中考数学压轴题-抛物线与直线的交点问题

中考数学压轴题专题 抛物线与直线交点问题教学目标:1、 经历探索抛物线与直线的交点问题的过程,体会图象与函数解析式之间的联系。

2、 理解图象交点与方程(或方程组)解之间的关系,并能灵活运用解决相关问题,进一步培养学生数形结合思想。

3、 通过学生共同观察和讨论,进一步提高合作交流意识。

教学重点:1、体会方程与函数之间的联系。

2、理解抛物线与直线有两个交点、一个交点、没有交点的条件。

教学难点:理解图象交点个数与方程(或方程组)解的个数之间的关系。

讲授方法:讲授与讨论相结合 教学过程:一、抛物线与x 轴的交点问题例1:已知:抛物线322--=x x y ,求抛物线与x 轴的交点坐标。

练习:1、已知:抛物线)1(3)2(2++-+-=m x m x y (1)求证:抛物线与x 轴有交点。

(2)如果抛物线与x 轴有两个交点,求m 的取值范围。

2、已知抛物线2y x bx c =-++,当1<x <5时,y 值为正;当x <1或x >5时,y 值为负. (1)求抛物线的解析式.(2)若直线y kx b =+(k ≠0)与抛物线交于点A (32,m )和B (4,n ),求直线的解析式.方法总结:1、 抛物线与x 轴相交:抛物线c bx ax y ++=2的图象与x 轴相交 )(002≠=++a c bx ax2.抛物线与x 轴的交点的个数(1 △抛物线与x 轴相交(2 △抛物线与x 轴相切(3 △抛物线与x 轴相离二、抛物线与平行于x 轴的直线的交点例2:求抛物线322--=x x y 与y =1的交点坐标 练习:已知:抛物线c x x y ++=22(1) 如果抛物线与y =3有两个交点,求c 的取值范围。

(2) 如果对于任意x ,总有y >3,求c 的取值范围方法总结:1、抛物线与平行于x 轴的直线相交抛物线c bx ax y ++=2的图象与平行于x 轴的直线相交⎩⎨⎧=++=my c bx ax y 2新的一元二次方程m c bx ax =++22.抛物线与平行于x 轴的直线的交点的个数(1 △抛物线与直线相交(2 △抛物线与直线相切(3 △抛物线与直线相离三:抛物线与直线的交点问题 例3:若抛物线221x y =与直线y =x +m 只有一个交点,求m 的值练习:已知:抛物线),(和点0,1-3-2A x x y =过点A 作直线l 与抛物线有且只有一个交点, 并求直线l 的解析式 方法总结:抛物线与直线相离没有交点与方程组没有解时抛物线与直线相切有一个交点与方程组有一组解时抛物线与直线相交有两个交点与时方程组有两组不同的解的解的数目来确定由的交点个数的图象与抛物线的图象一次函数⇔⇔⇔⇔⇔⇔⎩⎨⎧++=+=≠++=≠+=G l G l G l c bx ax y b kx y G a c bx ax y l k b kx y 22)0()0(例4:已知:抛物线c x x y ++=22(1) 当c =-3时,求出抛物线与x 轴的交点坐标(2) 当-2<x <1时,抛物线与x 轴有且只有一个交点,求c 的取值范围方法总结:线段与抛物线的交点,要结合直线与抛物线交点和函数的图象综合分析 练习:1、 抛物线222-m mx x y +=与直线y =2x 交点的横坐标均为整数,且m <2,求满足要求的m 的整数值2、 已知:抛物线14-2+=x x y ,将此抛物线沿x 轴方向向左平移4个单位长度,得到一条新的抛物线(1)求平移后的抛物线的解析式(2)请结合图象回答,当直线y =m 与这两条抛物线有且只有四个交点时,实数m 的取值范围3、已知二次函数23(1)2(2)2y t x t x =++++,在0x =和2x =时的函数值相等。

中考函数压轴题 含答案

中考函数压轴题 含答案

中考函数压轴题1.已知抛物线c bx ax y ++=232,(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由. 解(Ⅰ)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,312=x . ∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫ ⎪⎝⎭,. 2分(Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.对于方程0232=++c x x ,判别式c 124-=∆≥0,有c ≤31. ·········· 3分①当31=c 时,由方程031232=++x x ,解得3121-==x x . 此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫- ⎪⎝⎭,. ········· 4分 ②当31<c 时, 11-=x 时,c c y +=+-=1231,12=x 时,c c y +=++=5232. 由已知11<<-x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31-=x ,应有1200.y y ⎧⎨>⎩≤, 即1050.c c +⎧⎨+>⎩≤,解得51c -<-≤.综上,31=c 或51c -<-≤. ······················ 6分 (Ⅲ)对于二次函数c bx ax y ++=232,由已知01=x 时,01>=c y ;12=x 时,0232>++=c b a y , 又0=++c b a ,∴b a b a c b a c b a +=++++=++22)(23.于是02>+b a .而c a b --=,∴02>--c a a ,即0>-c a .∴0>>c a .7分∵关于x 的一元二次方程0232=++c bx ax 的判别式0])[(412)(4124222>+-=-+=-=∆ac c a ac c a ac b , ∴抛物线c bx ax y ++=232与x 轴有两个公共点,顶点在x 轴下方. ········ 8分 又该抛物线的对称轴ab x 3-=,由0=++c b a ,0>c ,02>+b a , 得a b a -<<-2, ∴32331<-<a b . 又由已知01=x 时,01>y ;12=x 时,02>y ,观察图象,可知在10<<x 范围内,该抛物线与x 轴有两个公共点. ············ 10分 2. (本小题满分10分)已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线x x y 1252+=上. (1)求抛物线与x 轴的交点坐标;(2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.(本小题满分10分)解:(1)由5x x 122+=0,(1分)得01=x ,5122-=x .(2分)∴抛物线与x 轴的交点坐标为(0,0)、(512-,0). ········ (3分)(2)当a =1时,得A (1,17)、B (2,44)、C (3,81), (4分)分别过点A 、B 、C 作x 轴的垂线,垂足分别为D 、E 、F ,则有ABC S ∆=S ADFC 梯形 -ADEB S 梯形 -BEFC S 梯形 =22)8117(⨯+-21)4417(⨯+-21)8144(⨯+=5(个单位面积)(3)如:)(3123y y y -=.事实上,)3(12)3(523a a y ⨯+⨯= =45a 2+36a . 3(12y y -)=3[5×(2a )2+12×2a -(5a 2+12a )] =45a 2+36a . ·· (9分)∴)(3123y y y -=. ······················· (10分) 3.在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AB中考压轴题一一抛物线1. 如图,抛物线y=a^+bx+c 经过A (—1,0)、3(3,0)、C (0 ,3)三点,直线/是抛物线的对称轴.(1) 求抛物线的函数关系式;(2) 设点P 是直线/上的一个动点,当△B4C 的周长最小时,求点F 的坐标;(3) 在直线/上是否存在点使为等腰三角形,若存在,直接写出所有符合条件的点M 的 坐标;若不存在,请说明理由.2. 如图1,点A 在x 轴上,OA=4,将线段OA 绕点。

顺时针旋转120°至。

8的位置.(1) 求点B 的坐标;(2) 求经过A 、0、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P 、。

、B 为顶点的三角形是等腰三角形?若 存在,求点P 的坐标;若不存在,请说明理由.3. 如图1,已知抛物线y=-^+bx+c 经过A (0, 1)、顷4,3)两点.1) 求抛物线的解析式;2) 求 tanZABO 的值;3) 过点8作BCLx 轴,垂足为C,在对称轴的左侧旦平行于y 轴的直线交线段AB 于点N,交抛物线 于点若四边形MVCB 为平行四边形,求点M 的坐标.4. 如图1,抛物线 > =-定+2尤+ 3与尤轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C, 顶点为D.(1) 直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连结8C,与抛物线的对称轴交于点E,点F为线段BC上的一个动点,过点F作PF//DE交抛物线于点F,设点P的横坐标为m.%1用含〃2的代数式表示线段户尸的长,并求出当,〃为何值时,四边形PEDF为平行四边形?%1设的面积为S,求S与〃?的函数关系.5.如图1,已知抛物线+ +女(。

是实数旦人>2)与X轴的正半轴分别交于点A、B (点A4 4 4位于点B是左侧),与),轴的正半轴交于点C.(1)点B的坐标为,点C的坐标为 (用含人的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于M, HAPBC是以点P为直角顶点的等腰宜角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点。

的坐标;如果不存在,请说明理由.6.如图1,已知抛物线的方程Cl:),=__L Q +2)(X-梢(m>0)与工轴交于点8、C,与y轴交于点E, m旦点B在点C的左侧.(1)若抛物线C1过点M(2, 2),求实数m的值;2)在(1)的条件下,求2\8京的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点8、C、F为顶点的三角形与相似? 若存在,求〃2的值;若不存在,请说明理由.7.如图1,点A在尤轴上,Q4=4,将线段0A绕点。

顺时针旋转120°至。

8的位置.1)求点B的坐标;2)求经过A、0、B的抛物线的解析式;3)在此抛物线的对称轴上,是否存在点P,使得以点P、。

、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.1.解答(1)因为抛物线与x轴交于火一1,0)、8(3,0)两点,设y=a(x+l)(x-3),代入点C(0,3),得一3。

=3.解得。

=一1.所以抛物线的函数关系式是y=-Q+l)(x-3)=-J + 2x+3.(2)如图2,抛物线的对称轴是直线人=1.当点P落在线段上时,PA + PC最小,△0C的周长最小.设抛物线的对称轴与x轴的交点为H.ill —= —, BO=CO,得PH=BH=2.BO CO所以点P的坐标为(1,2).点M的坐标为(1, 1)、(1,灼、(1,顼)或(1,0).第(3)题的解题过程是这样的:设点M的坐标为(1皿).在△MAC 中,AC2=10, A/C2=l+(m-3)2, MA2=4+w2.%1如图3,当MA=MC时,MA2=MC1.解方程4+麻=1+仞_3)\得m=\.此时点M的坐标为(1, 1).如图4,当A M=A C 时,AM^AC2.解方程 4+/n2 = 10,得m = ±j6 .此时点M的坐标为(1,店)或(1,-化).如图5,当CM=CA时,CM2=CA2.解方程1 +(0 — 3)2=10,得〃—0 或6. 当M(l,6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0).在RtAOBC 中,ZBOC=30° , 03=4,所以BC=2, OC = 2^3 .所以点B的坐标为(-2,-273).(2)因为抛物线与尤轴交于0、A(4,0),设抛物线的解析式为4), 代入点8(—2,-2右),—2JJ = —2ox(—6).解得。

=_虫.6所以抛物线的解析式为y =—虫尤(工—4)= 一虽X1+巫x .6 6 3(3)抛物线的对称轴是直线尤=2,设点P的坐标为(2,力・①当0P=0B=4 时,。

/^=16.所以4+y2=16.解得y = ±2>/3 .当P在(2,2^3)时,B、0、P三点共线(如图2).②当BP=B0=4时,g=16.所以42 + 3 + 20)2=16.解得凹=力=一2右・③当PB=P。

时,PB2 = PO2.所以4?+ (> + 2右)2=2?+ y2.解得),=_2右.综合①、②、③,点P的坐标为(2,-2右),如图2所示.3.解答(1)将A(0, 1)、3(4,3)分别代入y=-^+bx+c,得口4^ = 3.解得T i2.解答(1)如图2,过点B作BCA.y轴,垂足为C.图3o所以抛物线的解析式是y = - j mx + 1 .(2)在RtABOC 中,OC=4, BC=3,所以OB=5.如图2,过点A作AH10B,垂足为H.4在RtZXAOH 中,OA=l f sin ZAOH = sin ZOBC =-,54所以AH = OA sin ZAOH =53 22所以。

H =己,BH = OB-OH=—.5 54/7 4 22 2在中,tan ZABO = —= 一 + —=—.BH 5 511(3)直线A8的解析式为),=上工+ 1・ . 29 1设点M的坐标为(x,-x2 + —X+1),点N的坐标为(X,—X + 1), 0 1那么MN = (-X2 + — x +1) - (一工 +1) = —J + 4工.当四边形M/VCB是平行四边形时,MN=BC=3.解方程一X2+4X=3,得尤=1或1=3.9因为x=3在对称轴的右侧(如图4),所以符合题意的点M的坐标为(1,:)(如图3).4.解答(1) A (-1, 0), B (3, 0), C (0, 3).抛物线的对称轴是x=\.(2)①直线BC的解析式为尸一尤+3.把x=l代入)=—工+3,得y=2.所以点E的坐标为(1, 2).把;1=1代入y = -x2 +2x + 3,得y=4.所以点。

的坐标为(1, 4).因此DE=2.因为PF//DE,点P的横坐标为m,设点P的坐标为(儿―〃2 + 3),点F的坐标为(0,—冰+ 2〃 + 3),因此FP = (-m2 + 2m + 3) - (-m + 3) = -m2 + 3m .当四边形PEDF是平行四边形时,DE=FP.于是得到-〃f+3m = 2.解得叫=2, m2 = 1 (与点E重合,舍去). 因此,当秫=2时,四边形PEDF是平行四边形时.②设直线PF与x轴交于点M,那么0M+BM=0B=3.因此1 1 1 ?3,9图3 图4s = S .\BCF = S \BPF + S ,\CPF = — FP・0M + — FPBM =-(-m2 + 3m)x3 = 一一m2+-m. iXoLr r AC/「2 22、/ 22zn的变化范围是解得工=5. 解答(1) B 的坐标为(农0),点C 的坐标为(0,-). 4(2)如图2,过点P 作P 。

侦轴,PE_Ly 轴,垂足分别为。

、E,那么△ PDB#^PEC. 因此PD=PE.设点P 的坐标为(x, X ).如图3,联结OP.所以 S 四边形 PCOB = S4pco + S TPB () =(3)由 y = — x 2 - — (/? + l)x + — = — (x-l)(x-b)» 得 A(l,0), OA= 1.4 4 4 4①如图4,以OA 、OC 为邻边构造矩形OAQC.那么Z^O 当 BA = QA 即 QA 2= BA OA时,△8Q4S /\QOA .QA OA所以(女)2 3 — 1.解得b = 8±4B 所以符合题意的点。

为(1,2 +右).4②如图5,以。

C 为直径的圆与直线工=1交于点0那么ZOQC =90a o 因此△ OCQ S /^QQA .当 BA = QA 时,此时ZOQB=90° .QA OA所以C 、0 B 三点共线.因此丝=堡,即2 =堡.解得04 = 4.此时01,4).CO OA b 1所以点P 的坐标为(孩,给.图2 图36.解答(1)将M(2, 2)代入 > =一~(x + 2)(x—zn) > 得2 = 一~ x4(2-tn)-解得m=4. m m (2)当m=4 时,y = -L(<x+2)(x-4) = --x2+-x + 2.所以C(4, 0), E(0, 2). 4 4 2所以S^BCE=—BC• OE = —x6x2 = 6 . 2 23)如图2,抛物线的对称轴是直线x=l,当H落在线段EC上时,BH+EH最小, 设对称轴与x 轴的交点为P,那么—. CP CO因此生=七.解得HP其.所以点H的坐标为(1,2). 34 2 2(4)①如图3,过点B作EC的平行线交抛物线于过点F作FF±x轴于尸.由于ZBCE=ZFBC,所以当—,即BC2 = CE 8尸时,△BCEs^FBC. CB BF1 FF' FC _(X + 2)(1 —时n设点 F 的坐标为(尤, (x + 2)(x-m)),由 ----- = ,W — ---------------------- =— .m BF‘ CO x + 2 m解得x=m+2.所以F'(m+2, 0).由CO = BT t得m _m + 4所以时=("4)垢司CE BF+ 4 BF m由BC2=CEBF,得(m + 2)2 = g + 4 X + 4)丁〃厂 + 4 .整理,得。

=16此方程无解. m图2 图3 图4②如图4,作ZCBF=45°交抛物线于F,过点F作FF f lx轴于尸,由于ZEBC=ZCBF,所以—,即BC2 = BE BF时,△BCEs^BFC.BC BF个y 个y 巾y6 V3 2 2^3在 RtABFF^,由 FF=BF',得二(工 +2)彼一时=工+2 .解得 x=2m.所以 F(2m,0).所以 BF=2m+2,时=很(2〃? + 2).由 BC2 = BE ・BF,得(m + 2)2 = 2>/2 x V2(2m+2).解得m = 2±2^2.综合①、②,符合题意的为2 + 2扼.7. 潢分解答(1) 如图2,过点8作BCLy 轴,垂足为C.在 RtAOBC 中,ZBOC=30° , 03=4,所以 BC=2, 0C = 2^3 -所以点B 的坐标为(-2,-273).(2) 因为抛物线与尤轴交于0、A(4,0),设抛物线的解析式为4), 代入点 8(—2,—2JJ), —2JJ = —2ox(—6).解得。

相关文档
最新文档