烟囱负压计算
烟囱
烟囱的工作原理烟囱能够自然排烟的原理是由于烟囱中的热烟气收到浮力的作用,使之由下而上自然流动,在烟囱底部形成负压。
接下来让我们看下烟囱中涉及到的流体学知识,也可以更好的了解烟囱的结构。
从窑内火焰空间到烟囱底部的两个截面列出伯努利方程: (a )ΔP 1+0+221ωρ=ΔP 2+H 1g(ρa -ρ)+222ωρ+∑21h —令ΔP 1=0得-ΔP 2=H 1g(ρa -ρ)+222ωρ+∑21h —(b )∑h =ΔP 2+H 1g(ρa -ρ)+222ωρ+∑21h —(说明了总压损来自于几何压头增量、动压头增量,还有摩擦阻力和局部阻力) 再列出烟囱底部和顶部两截面的伯努利方程式: (c )ΔP 2+Hg(ρa -ρm )+222ωρm =ΔP 3+0+223ωρm +h fΡm -------------------烟囱中热烟气的平均密度H f ——————————烟气在烟囱中的摩擦阻力 (h f =λmav avd H ρω22)λ——————烟囱的摩阻系数,对砖烟囱和混凝土烟囱,可取λ=0.05,钢板烟囱λ=0.02 d av ————————————烟囱的平均内径(d av =2d d BT +)-ΔP 2=Hg(ρa -ρm )+222ωρm -223ωρm -h f(d )Hg(ρa -ρm )=∑h +222ωρm -223ωρm +h f(式中表明烟囱的抽力是由于其几何压头形成的,烟囱越高,烟气温度越高,空气温度越低则烟囱的抽力越大,反之则小)(烟囱中热烟气的几何压头是推动力,他用于克服气体在窑炉系统中的总阻力,以及烟气在烟囱中的摩擦阻力与动压头增量)烟囱的设计首先介绍下烟囱设计小知识:砖烟囱具有取材方便、造价低和使用年限长等优点,在中小型锅炉中得到广泛的应用。
砖烟囱高度一般在50m 以下,筒身用砖砌筑,筒壁坡度为2%~3%,并按高度分为若干段,每段高度不宜超过15m 。
筒壁厚度由下至上逐段减薄,但每一段内的厚度应相同。
烟囱设计规范
锅炉房烟囱设计新建锅炉房的烟囱设计应符合下列要求:1.燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱高度的规定:1)每个新建锅炉房只允许设一个烟囱,烟囱高度可按表8.4.10-1 规定执行。
表8.4.10-1 燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱最低允许高度(GB 13271-2001)MW <0.7 0.7~< 1.4~<2.8~<7 7~<1414~<2 1.4 2.8 8锅炉房装机总容量10~<2 20~≤4t/h <1 1~<2 2~<4 4~<100 0 烟囱最低允许高度m 20 25 30 35 40 452)锅炉房装机总容量 >28MW(40t/h) 时,其烟囱高度应按批准的环境影响报告书(表)要求确定,且不得低于 45m。
新建烟囱周围半径 200m 距离内有建筑物时,其烟囱应高出最高建筑物 3m 以上。
燃气、燃油(轻柴油、煤油)锅炉烟囱高度应按批准的环境影响报告书(表)要求确定,且不得低于 8m。
2.各种锅炉烟囱高度如果达不到上述规定时,其烟尘、放浓度,应按相应区域和时段排放标准值SO2、NOx 50%执行。
最高允许排3.出力≥ 1t/h或0.7MW 的各种锅炉烟囱应按《锅炉烟尘测试方法》(GB5468)和《固定污染源排气中颗粒物测定与气态污染物采样方法》 (GB/T16157-2001)的规定,设置便于永久采样孔及其相关设施。
4.锅炉房烟囱高度及烟气排放指标除应符合上述 1~3 款(摘自 GB13271-2001)的规定外,尚应满足锅炉房所在地区的地方排放标准或规定的要求。
5.烟囱出口内径应保证在锅炉房最高负荷时,烟气流速不致过高,以免阻力过大;在锅炉房最低负荷时,烟囱出口流速不低于 2.5~3m/s,以防止空气倒灌。
烟囱出口烟气流速参见表 8.4.10-2,烟囱出口内径参见表 8.4.10-3 和表 8.4.10-4。
烟囱
什么是烟囱
烟囱是各种燃料工业炉广泛使用的排烟装 置,除引起烟气流动之外,尚有将烟气排放高
空,减轻环境污染的作用。
烟囱按其作用可分为两类:一类是主要利 用其底部的负压将各种燃烧废气抽吸出来的烟 囱,称为抽吸烟囱;另一类是主要借助其高度 将有害气体排入高空稀释扩散以减少地面污染 的烟囱,称为排放烟囱。
2 2 ) 1 0 0 2 h失1-2 2 2
烟囱的工作原理
整理得
h静1 H ( a ) g
u2 u1 2
2
2
h失1-2
一般情况下 a,即H a g 为正值,若忽略烟 囱上下截面间的动压头变化及压头损失,则得烟囱底 部静压的理论值为:
烟囱
——工作原理及主要尺寸计算
制作人: 刘博 张远翔 张金平 制作目的: 烟囱是一种常见的传输装 置。我们都知道其用途,但对其原理 却并不了解。所以这次讲说我们将围 绕烟囱的工作原理来深度了解烟囱。
普通家庭烟囱
特点: 烟囱较矮 出来气体缓慢
工业烟囱
特点: 一般较高较长 烟囱口径上口径小,下口径大 冲出烟囱的气体流速更大
烟囱的工作原理
由于烟囱有一定的高度,烟 囱中的热气体受到大气浮力的作 用,而具有一定的几何压 g 头H ,在烟囱底部造成负 a 压—“抽力”。如果这种抽力正 好能克服气体在窑炉中流动的各 种阻力,就能使窑内热气体能源 源不断地流入烟囱底部,并通过 烟囱排入大气。
设烟囱高度为 H ,内部充满密度为 的烟气,周围大气密 度为 a 。现设烟囱底部静压为 h静1 ,取顶部截面 2 - 2 面为 基准面。列双流体伯努利方程,已知 h静 2 0 则
h抽 a gH1 p f 01 HT
第八讲 烟囱的设计计算(加热炉,2013)
mg
mg ——烟气的质量流量:kg/h。
二 烟囱的高度
烟囱高度所形成的抽力用于: 克服烟气流动过程中的总压力降; 克服空气通过燃烧器的压力降; 保证炉膛内具有一定的负压; 最低高度:假定烟囱和对流室所产生的抽力应等于烟气 在加热炉和烟囱内流动的压力降。
(一)抽力的计算
抽力是由于炉内烟气的密度差而产生的。 烟囱产生的抽力ΔPI
(5)烟气通过烟囱挡板的压力降 设挡板开度为50%,ζ5 = 4.0
ws2 3.52 Δp5 = ζ 5 ρ g = 4.0 × = 45.709(Pa ) 2 2 × 0.536
(6)烟气在烟囱出口的动能损失
ws2 3.52 Δp6 = ρg = = 11.427(Pa ) 2 2 × 0.536
2
Re =
Ds ⋅ G g
μg
=
1.51 × 3.5 = 1.235 × 10 5 0.0428 × 10 −3
0.7543 = 0.0210 0.38 Re
λ = 0.01227 +
烟气在烟囱内的摩擦损失:
H s ws Hs 3.52 Δp 4 = λ ρ g = 0.0210 × × = 0.159 H s (Pa ) Ds 2 1.51 2 × 0.536
⎛ mg ⎞ ⎜ − Aso ⎟ ⎜ 3600G ⎟ go ⎝ ⎠
1.8
1 Asi.8 = Ns
⎛ dp ′ ⎞ ⎜ ⎟ ⎜ dp ′′ ⎟ ⎠ ⎝
0.2
3 烟气由对流室至烟囱的压力降ΔP3
ws Δp 3 = ζ 3 ρg 2gc
2
4 烟气在烟囱内的摩擦损失ΔP4
Δp4 = λ H s ws ρg Ds 2 g c
5 烟囱挡板的压力降ΔP5
烟道阻力损失及烟囱计算根据实例
15.烟道阻力损失及烟囱计算根据实例计算烟囱是工业炉自然排烟的设施,在烟囱根部造成的负压——抽力是能够吸引并排烟的动力。
在上一讲中讲到的喷射器是靠喷射气体的喷射来造成抽力的,而烟囱是靠烟气在大气中的浮力造成抽力的,其抽力的大小主要与烟气温度和烟囱的高度有关。
为了顺利排出烟气,烟囱的抽力必须是足够克服烟气在烟道内流动过程中产生的阻力损失,因此在烟囱计算时首先要确定烟气总的阻力损失的大小。
15.1 烟气的阻力损失烟气在烟道内的流动过程中造成的阻力损失有以下几个方面:摩擦阻力损失、局部阻力损失,此外,还有烟气由上向下流动时需要克服的烟气本身的浮力――几何压头,流动速度由小变大时所消耗的速度头——动压头等。
15.1.1 摩擦阻力损失摩擦阻力损失包括烟气与烟道壁及烟气本身的粘性产生的阻力损失,计算公式如下:t m h dLh λ=(mmH 2O) )1(2h 0204t gw βγ+= (mmH 2O)式中:λ—摩擦系数,砌砖烟道λ=0.05 L —计算段长度,(m ) d —水力学直径)(4m uFd =其中 F —通道断面积(㎡);u —通道断面周长(m );t h —烟气温度t 时的速度头(即动压头)(mmH 2O);0w —标准状态下烟气的平均流速(Nm/s );0γ—标准状态下烟气的重度(㎏/NM 3);β—体积膨胀系数,等于2731; t —烟气的实际温度(℃)15.1.2 局部阻力损失局部阻力损失是由于通道断面有显著变化或改变方向,使气流脱离通道壁形成涡流而引起的能量损失,计算公式如下:)1(202t gw K Kh h t βγ+==(㎜H 2O)式中 K —局部阻力系数,可查表。
15.1.3 几何压头的变化烟气经过竖烟道时就会产生几何压头的变化,下降烟道增加烟气的流动阻力,烟气要克服几何压头,此时几何压头的变化取正值,上升烟道与此相反,几何压头的变化取负值。
几何压头的计算公式如下:)(y k j H h γγ-=(㎜H 2O )式中 H —烟气上升或下降的垂直距离(m ) k γ—大气(即空气)的实际重度 (kg/m 3)y γ—烟气的实际重度(kg/m 3)图15.1 为大气中每米竖烟道的几何压头,曲线是按热空气算出的,烟气重度与空气重度差别不大时,可由图15.1查取几何压头值。
烟囱设计规范
锅炉房烟囱设计新建锅炉房的烟囱设计应符合下列要求:1. 燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱高度的规定: 1)每个新建锅炉房只允许设一个烟囱,烟囱高度可按表 8.4.10-1规定执行。
表8.4.10-1燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱最低允许高度13271-2001)2)锅炉房装机总容量>28MW (40t/h )时,其烟囱高度应按批准的环境影响报告书(表)要求确定,且不得低于45m 。
新建烟囱周围半径200m 距离内有建筑物时,其烟囱应咼出最咼建筑物3m 以上。
燃气、燃油(轻柴油、煤油)锅炉烟囱高度应按批准的环境影响报告书(表)要求确定,且不得低于8m 。
2.各种锅炉烟囱高度如果达不到上述规定时,其烟尘、 SO2、NOx 最高允许排放浓度,应按相应区域和时段排放标准值 50%执行。
3.出力》1t/h 或 0.7MW 的各种锅炉烟囱应按《锅炉烟尘测试方法》(GB5468)和《固定污染源排气中颗粒物测定与气态污染物采样方法》 (GB/T16157-2001)的规定,设置便于永久采样孔及其相关设施。
4.锅炉房烟囱高度及烟气排放指标除应符合上述1~3款(摘自GB13271-2001)的规定外,尚应满足锅炉房所在地区的地方排放标准或规定的要求。
5.烟囱出口内径应保证在锅炉房最高负荷时,烟气流速不致过高,以免阻力过 大;在锅炉房最低负荷时,烟囱出口流速不低于 2.5~3m/s,以防止空气倒灌。
烟 囱出口烟气流速参见表 8.4.10-2,烟囱出口内径参见表 8.4.10-3和表8410-4。
表8410-2烟囱出口烟气速表(m/s )(GB1.4~<2.8 2.8~<7 7~<142~<4 4~<1010~<220~W4 0烟囱最低允许高度m1锅炉房装机总容量-214~<2 8运行情况机械通风微正压燃烧表8410-3燃煤锅炉砖烟囱出口内径参考值表8410-4燃油、燃气锅炉钢制烟囱出口内径参考值6.当烟囱位于飞行航道或飞机场附近时,烟囱高度不得超过有关航空主管部门的规定。
燃煤锅炉排放计算
锅炉知识1、锅炉负压与烟囱负压:加热炉炉膛,烟道都就是负压,并且炉膛负压值更低,而外界大气压为正值!为什么烟气还能通过烟囱向外界排气,而不就是空气从烟囱反串如炉子呢?烟囱内外气体温度不同而引起气体密度差异,这种密度差异产生压力差,即烟囱抽力,它克服阻力推动烟气流动。
烟囱底部处于负压状态就是烟囱底部产生抽力的原因。
根据抽力公式 h抽=H( γ空—γ气),可以知道,影响烟囱抽力的因素主要就是三个,即H,γ空,γ气。
(1)高度H的影响:由公式可知,H愈大,也即烟囱愈高,抽力愈大;H愈小,也即烟囱愈低,抽力愈小。
(2)空气重度的影响:由公式可知,在H、γ气不变的情况下,γ空愈大,亦即外界空气温度愈低,抽力愈大。
同就是一个烟囱,在闸板开度一样的情况下,冬天的抽力比夏天大,晚上的抽力比白天大,这就就是因为冬天、晚上外界空气的温度比夏天、白天低,γ空比较大。
(3)烟气温度的影响:由公式可知,在H、γ空不变的情况下,γ气愈大,亦即烟气温度愈低,抽力愈小;γ气愈小,亦即烟气温度愈高,抽力愈大。
新窑投产时,烟囱抽力很小,工人师傅常常在烟囱底部烧一把火,以提高烟囱内气体的温度,借以加大抽力,就就是这个道理。
在烟囱设计时,要全面考虑上述因素对抽力的影响,不能只抓一点,不及其余。
例如,烟囱愈高,抽力固然愈大,但也不能过高。
因为烟囱愈高,基础愈要求坚固,砌筑质量也要随之提高,造价也就因而增大。
再如,烟气温度愈高,抽力固然愈大,但随着烟气带走的热量也就愈多,增加了热能的耗损,使窑炉热效率降低。
周围空气的温度就是不以人的意志为转移的,但在烟囱设计时,应该考虑该地区的气候,按该地区夏天最高气温来确定空。
所以,在烟囱设计时,应该综合考虑各方面的因素,权衡利弊,合理设计。
确定烟囱抽力时,为保证最小抽力达到要求,要以夏季最高温度与当地最大空气湿度进行计算。
炉膛的负压值不能太低,否则会造成燃料未充分燃烧,浪费能源。
我们炉腔内的负压就是利用引风机外引风产生的,负压值根据燃烧的煤或燃气不同也设置不同。
烟囱的设计计算(加热炉,2013)
( ) ΔPI
=
ρa − ρg
Hs
g gc
=
354⎜⎜⎝⎛⎞H
s
ΔPI
=
354
×
⎜⎛ ⎝
1 293
−
1 660
⎟⎞H ⎠
s
= 0.672H s (mH2O)
ΔPII
=
354⎜⎜⎝⎛
1 Ta
−1 Tf
⎟⎞ ⎟⎠
H
C
=
354
×
⎜⎛ ⎝
1 293
−
1 843.1
⎟⎞ ⎠
×
3.52
ρ1
=
354 1051
=
0.337
kg
m2
w1
=
mg
3600bLC ρ1
=
22500 3600 × 3.2 × 2.142 × 0.337
=
2.706(m
s)
Δp1
=
ζ1
w12 2
ρ1
=
0.396 ×
2.7062 2
× 0.337
=
0.498(Pa)
(2)烟气流过对流室的压力降
对流室截面积 = 3.2 × 2.142 = 6.854 (m2)
钉头区域外部流通面积:
Aso = [b – (dC + 2l) × 8]·LC = [2.142 – (0.127 + 2 × 0.025) × 8] × 3.2 = 2.323 (m2)
钉头区域内部流通面积:Asi = 3.123 – 2.323 = 0.8 (m2) 钉头间隙: d'p = 2 × 0.016 – 0.012 = 0.02 (m)
---辐射传热与管式加热炉
烟囱设计规范
锅炉房烟囱设计新建锅炉房的烟囱设计应符合下列要求:1.燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱高度的规定:1)每个新建锅炉房只允许设一个烟囱,烟囱高度可按表8.4.10-1规定执行。
表8.4.10-1燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱最低允许高度(GB微正压燃烧2.5~310~15燃煤锅炉砖烟囱出口内径参考值表8.4.10-36.当烟囱位于飞行航道或飞机场附近时,烟囱高度不得超过有关航空主管部门的规定。
烟囱上应装信号灯,并刷标志颜色。
7.自然通风的锅炉,烟囱高度除应符合上述规定外,还应保证烟囱产生的抽力,能克服锅炉和烟道系统的总阻力。
对于负压燃烧的炉膛,还应保证在炉膛出口处有20~40Pa的负压。
每米烟囱高度产生的烟气抽力参见表8.4.10-5。
烟囱的阻力计算::Pa).烟囱总阻力Pyc(单位为3(8.4.13-3)Pyc=Pycm+Pycc砖烟囱和钢筋混凝土烟囱的结构应符合下列要求:1.砖烟囱的最大高度不宜超过50m。
2.烟囱下部应设清灰孔,清灰孔在锅炉运行期间应严密封好(可用黄泥砖密封)。
3.烟囱底部应设置比水平烟道入口低0.5~1.0m的积灰坑。
4.当烟囱和水平烟道有两个接入口时,两个接口一般应相对设置,并用与水平烟道成45o角的隔板分开,隔板高出水平烟道的部分,不得小于水平烟道高度的1/2。
5.烟囱应设置维修爬梯和避雷针。
钢烟囱的设计应符合下列要求:1.钢烟囱应有足够的强度和刚度,烟囱壁厚要考虑一定量的腐蚀裕度,当烟囱高度为20~40m,直径为0.2~1.0m时,无内衬的筒体壁厚取4~10mm,有内衬的壁厚取8~18mm。
2.当烟囱高度和直径之比超过20时,必须设置可靠的牵引拉绳,拉绳沿圆周等弧度布置3~4根。
3.烟囱与基础连接部分一般制作锥形,支撑板厚度一般为20~40mm。
4.带内衬的钢烟囱,内衬可分段支承,每段长4~6m,内衬和筒体之间保持20~50mm的间隙,并应在顶部装防护环板将内衬盖住。
烟道阻力损失及烟囱计算
15.烟道阻力损失及烟囱计算烟囱是工业炉自然排烟的设施,在烟囱根部造成的负压——抽力是能够吸引并排烟的动力。
在上一讲中讲到的喷射器是靠喷射气体的喷射来造成抽力的,而烟囱是靠烟气在大气中的浮力造成抽力的,其抽力的大小主要与烟气温度和烟囱的高度有关。
为了顺利排出烟气,烟囱的抽力必须是足够克服烟气在烟道内流动过程中产生的阻力损失,因此在烟囱计算时首先要确定烟气总的阻力损失的大小。
15.1 烟气的阻力损失烟气在烟道内的流动过程中造成的阻力损失有以下几个方面:摩擦阻力损失、局部阻力损失,此外,还有烟气由上向下流动时需要克服的烟气本身的浮力――几何压头,流动速度由小变大时所消耗的速度头——动压头等。
15.1.1 摩擦阻力损失摩擦阻力损失包括烟气与烟道壁及烟气本身的粘性产生的阻力损失,计算公式如下:t m h dLh λ=(mmH 2O) )1(2h 0204t gw βγ+= (mmH 2O)式中:λ—摩擦系数,砌砖烟道λ=0.05 L —计算段长度,(m ) d —水力学直径)(4m uFd =其中 F —通道断面积(㎡);u —通道断面周长(m );t h —烟气温度t 时的速度头(即动压头)(mmH 2O);0w —标准状态下烟气的平均流速(Nm/s );0γ—标准状态下烟气的重度(㎏/NM 3);β—体积膨胀系数,等于2731; t —烟气的实际温度(℃)15.1.2 局部阻力损失局部阻力损失是由于通道断面有显著变化或改变方向,使气流脱离通道壁形成涡流而引起的能量损失,计算公式如下:)1(202t gw K Kh h t βγ+==(㎜H 2O)式中 K —局部阻力系数,可查表。
15.1.3 几何压头的变化烟气经过竖烟道时就会产生几何压头的变化,下降烟道增加烟气的流动阻力,烟气要克服几何压头,此时几何压头的变化取正值,上升烟道与此相反,几何压头的变化取负值。
几何压头的计算公式如下:)(y k j H h γγ-=(㎜H 2O )式中 H —烟气上升或下降的垂直距离(m ) k γ—大气(即空气)的实际重度 (kg/m 3)y γ—烟气的实际重度(kg/m 3)图15.1 为大气中每米竖烟道的几何压头,曲线是按热空气算出的,烟气重度与空气重度差别不大时,可由图15.1查取几何压头值。
(完整word版)烟囱设计规范
锅炉房烟囱设计新建锅炉房的烟囱设计应符合下列要求:1.燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱高度的规定:1)每个新建锅炉房只允许设一个烟囱,烟囱高度可按表规定执行。
表燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱最低允许高度(GB 13271-2001)表燃煤锅炉砖烟囱出口内径参考值表燃油、燃气锅炉钢制烟囱出口内径参考值6.当烟囱位于飞行航道或飞机场附近时,烟囱高度不得超过有关航空主管部门的规定。
烟囱上应装信号灯,并刷标志颜色。
7.自然通风的锅炉,烟囱高度除应符合上述规定外,还应保证烟囱产生的抽力,能克服锅炉和烟道系统的总阻力。
对于负压燃烧的炉膛,还应保证在炉膛出口处有20~40Pa的负压。
每米烟囱高度产生的烟气抽力参见表。
表烟囱每米高度产生的抽力(Pa)2.计算方法二:烟囱的阻力计算:1.烟囱的摩擦阻力Pycm(单位为Pa):2.烟囱出口阻力Pycc(单位为Pa):3.烟囱总阻力Pyc(单位为Pa):砖烟囱和钢筋混凝土烟囱的结构应符合下列要求:1.砖烟囱的最大高度不宜超过50m。
2.烟囱下部应设清灰孔,清灰孔在锅炉运行期间应严密封好(可用黄泥砖密封)。
3.烟囱底部应设置比水平烟道入口低0.5~1.0m的积灰坑。
4.当烟囱和水平烟道有两个接入口时,两个接口一般应相对设置,并用与水平烟道成45º角的隔板分开,隔板高出水平烟道的部分,不得小于水平烟道高度的1/2。
5.烟囱应设置维修爬梯和避雷针。
钢烟囱的设计应符合下列要求:1.钢烟囱应有足够的强度和刚度,烟囱壁厚要考虑一定量的腐蚀裕度,当烟囱高度为20~40m,直径为0.2~1.0m时,无内衬的筒体壁厚取4~10mm,有内衬的壁厚取8~18mm。
2.当烟囱高度和直径之比超过20时,必须设置可靠的牵引拉绳,拉绳沿圆周等弧度布置3~4根。
3.烟囱与基础连接部分一般制作锥形,支撑板厚度一般为20~40mm。
4.带内衬的钢烟囱,内衬可分段支承,每段长4~6m,内衬和筒体之间保持20~50mm的间隙,并应在顶部装防护环板将内衬盖住。
烟囱安装规范
当然有要求,新建锅炉房的烟囱设计应符合下列要求:1.燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱高度的规定:1)每个新建锅炉房只允许设一个烟囱,烟囱高度可按表8.4.10-1规定执行。
表8.4.10-1燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱最低允许高度(GB 13271-2001)锅炉房装机总容量MW <0.7 0.7~<1.4 1.4~<2.82.8~<7 7~<14 14~<28t/h <1 1~<2 2~<4 4~<10 10~<20 20~≤40烟囱最低允许高度m 20 25 30 35 40452)锅炉房装机总容量>28MW(40t/h)时,其烟囱高度应按批准的环境影响报告书(表)要求确定,且不得低于45m。
新建烟囱周围半径200m距离内有建筑物时,其烟囱应高出最高建筑物3m以上。
燃气、燃油(轻柴油、煤油)锅炉烟囱高度应按批准的环境影响报告书(表)要求确定,且不得低于8m。
2.各种锅炉烟囱高度如果达不到上述规定时,其烟尘、SO2、NOx最高允许排放浓度,应按相应区域和时段排放标准值50%执行。
3.出力≥1t/h或0.7MW的各种锅炉烟囱应按《锅炉烟尘测试方法》(GB5468)和《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157-2001)的规定,设置便于永久采样孔及其相关设施。
4.锅炉房烟囱高度及烟气排放指标除应符合上述1~3款(摘自GB13271-2001)的规定外,尚应满足锅炉房所在地区的地方排放标准或规定的要求。
5.烟囱出口内径应保证在锅炉房最高负荷时,烟气流速不致过高,以免阻力过大;在锅炉房最低负荷时,烟囱出口流速不低于2.5~3m/s,以防止空气倒灌。
烟囱出口烟气流速参见表8.4.10-2,烟囱出口内径参见表8.4.10-3和表8.4.10-4。
表8.4.10-2烟囱出口烟气速表(m/s)运行情况全负荷时最小负荷时机械通风12~20 2.5~3微正压燃烧10~15 2.5~3表8.4.10-3燃煤锅炉砖烟囱出口内径参考值锅炉房总容量(t/h) ≤812 16 20 30 4060 80 120 200烟囱出口内径(m) 0.8 0.8 1.0 1.0 1.2 1.4 1.72.0 2.53.0表8.4.10-4燃油、燃气锅炉钢制烟囱出口内径参考值单台锅炉容量[t/h(MW)] 1(0.7) 1.5(1.05) 2(1.4) 3(2.1) 4(2.8) 5(3.5) 6(4.2)烟囱出口直径(m) 0.25 0.30 0.35 0.45 0.5 0.55 0.60单台锅炉容量[t/h(MW)] 8(5.6) 10(7.0) 12(8.4) 15(10.5) 18(12.6) 20(14) 烟囱出口直径(m) 0.70 0.80 0.85 0.90 0.95 1.006.当烟囱位于飞行航道或飞机场附近时,烟囱高度不得超过有关航空主管部门的规定。
烟道阻力损失及烟囱计算讲解
15.烟道阻力损失及烟囱计算烟囱是工业炉自然排烟的设施,在烟囱根部造成的负压——抽力是能够吸引并排烟的动力。
在上一讲中讲到的喷射器是靠喷射气体的喷射来造成抽力的,而烟囱是靠烟气在大气中的浮力造成抽力的,其抽力的大小主要与烟气温度和烟囱的高度有关。
为了顺利排出烟气,烟囱的抽力必须是足够克服烟气在烟道内流动过程中产生的阻力损失,因此在烟囱计算时首先要确定烟气总的阻力损失的大小。
15.1 烟气的阻力损失烟气在烟道内的流动过程中造成的阻力损失有以下几个方面:摩擦阻力损失、局部阻力损失,此外,还有烟气由上向下流动时需要克服的烟气本身的浮力――几何压头,流动速度由小变大时所消耗的速度头——动压头等。
15.1.1 摩擦阻力损失摩擦阻力损失包括烟气与烟道壁及烟气本身的粘性产生的阻力损失,计算公式如下:t m h dLh λ=(mmH 2O) )1(2h 0204t gw βγ+= (mmH 2O)式中:λ—摩擦系数,砌砖烟道λ=0.05 L —计算段长度,(m ) d —水力学直径)(4m uFd =其中 F —通道断面积(㎡);u —通道断面周长(m );t h —烟气温度t 时的速度头(即动压头)(mmH 2O);0w —标准状态下烟气的平均流速(Nm/s );0γ—标准状态下烟气的重度(㎏/NM 3); β—体积膨胀系数,等于2731; t —烟气的实际温度(℃)15.1.2 局部阻力损失局部阻力损失是由于通道断面有显著变化或改变方向,使气流脱离通道壁形成涡流而引起的能量损失,计算公式如下:)1(202t gw K Kh h t βγ+==(㎜H 2O)式中 K —局部阻力系数,可查表。
15.1.3 几何压头的变化烟气经过竖烟道时就会产生几何压头的变化,下降烟道增加烟气的流动阻力,烟气要克服几何压头,此时几何压头的变化取正值,上升烟道与此相反,几何压头的变化取负值。
几何压头的计算公式如下:)(y k j H h γγ-=(㎜H 2O )式中 H —烟气上升或下降的垂直距离(m )k γ—大气(即空气)的实际重度 (kg/m 3)y γ—烟气的实际重度(kg/m 3)图15.1 为大气中每米竖烟道的几何压头,曲线是按热空气算出的,烟气重度与空气重度差别不大时,可由图15.1查取几何压头值。
烟囱安装规范
当然有要求,新建锅炉房的烟囱设计应符合下列要求:1.燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱高度的规定:1)每个新建锅炉房只允许设一个烟囱,烟囱高度可按表8.4.10-1规定执行。
表8.4.10-1燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱最低允许高度(GB13271-2001)锅炉房装机总容量MW <0.7 0.7~<1.4 1.4~<2.8 2.8~<7 t/h <1 1~<2 2~<4 4~<10 10~<20 20~≤40烟囱最低允许高度m 20 25 30 35 40 452)锅炉房装机总容量>28MW(40t/h)时,其烟囱高度应按批准的环境影响报告书(表)要求确定,且不得低于45m。
新建烟囱周围半径200m距离内有建筑物时,其烟囱应高出最高建筑物3m以上。
燃气、燃油(轻柴油、煤油)锅炉烟囱高度应按批准的环境影响报告书(表)要求确定,且不得低于8m。
2.各种锅炉烟囱高度如果达不到上述规定时,其烟尘、SO2、NOx最高允许排放浓度,应按相应区域和时段排放标准值50%执行。
3.出力≥1t/h或0.7MW的各种锅炉烟囱应按《锅炉烟尘测试方法》(GB5468)和《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157-2001)的规定,设置便于永久采样孔及其相关设施。
4.锅炉房烟囱高度及烟气排放指标除应符合上述1~3款(摘自GB13271-2001)的规定外,尚应满足锅炉房所在地区的地方排放标准或规定的要求。
5.烟囱出口内径应保证在锅炉房最高负荷时,烟气流速不致过高,以免阻力过大;在锅炉房最低负荷时,烟囱出口流速不低于2.5~3m/s,以防止空气倒灌。
烟囱出口烟气流速参见表8.4.10-2,烟囱出口内径参见表8.4.10-3和表8.4.10-4。
表8.4.10-2烟囱出口烟气速表(m/s)运行情况全负荷时最小负荷时机械通风12~20 2.5~3微正压燃烧 10~15 2.5~3表8.4.10-3燃煤锅炉砖烟囱出口内径参考值锅炉房总容量(t/h) ≤812 16 20 30 40 60烟囱出口内径(m) 0.8 0.8 1.0 1.0 1.2 1.4 1.7 2.表8.4.10-4燃油、燃气锅炉钢制烟囱出口内径参考值单台锅炉容量[t/h(MW)] 1(0.7) 1.5(1.05) 2(1.4) 3(2.1) 4(2.8) 5(3.5)6(4.2)烟囱出口直径(m) 0.25 0.30 0.35 0.45 0.5 0.55 0.60单台锅炉容量[t/h(MW)] 8(5.6) 10(7.0) 12(8.4) 15(10.5) 18(12.6) 20(14)烟囱出口直径(m) 0.70 0.80 0.85 0.90 0.95 1.006.当烟囱位于飞行航道或飞机场附近时,烟囱高度不得超过有关航空主管部门的规定。
烟囱设计规范
锅炉房烟囱设计新建锅炉房的烟囱设计应符合下列要求:1.燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱高度的规定:1)每个新建锅炉房只允许设一个烟囱,烟囱高度可按表8.4.10-1规定执行。
表8.4.10-1燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱最低允许高度(GB13271-2001)5.烟囱出口内径应保证在锅炉房最高负荷时,烟气流速不致过高,以免阻力过大;在锅炉房最低负荷时,烟囱出口流速不低于2.5~3m/s,以防止空气倒灌。
烟囱出口烟气流速参见表8.4.10-2,烟囱出口内径参见表8.4.10-3和表8.4.10-4。
表8.4.10-2烟囱出口烟气速表(m/s)表8.4.10-3燃煤锅炉砖烟囱出口内径参考值表8.4.10-4燃油、燃气锅炉钢制烟囱出口内径参考值6.当烟囱位于飞行航道或飞机场附近时,烟囱高度不得超过有关航空主管部门的规定。
烟囱上应装信号灯,并刷标志颜色。
7.自然通风的锅炉,烟囱高度除应符合上述规定外,还应保证烟囱产生的抽力,能克服锅炉和烟道系统的总阻力。
对于负压燃烧的炉膛,还应保证在炉膛出口处有20~40Pa的负压。
每米烟囱高度产生的烟气抽力参见表8.4.10-5。
表8.4.10-5烟囱每米高度产生的抽力(Pa)1.计算方法一:2.计算方法二:烟囱的阻力计算:1.烟囱的摩擦阻力Pycm(单位为Pa):2.烟囱出口阻力Pycc(单位为Pa):3.烟囱总阻力Pyc(单位为Pa):砖烟囱和钢筋混凝土烟囱的结构应符合下列要求:1.砖烟囱的最大高度不宜超过50m。
2.烟囱下部应设清灰孔,清灰孔在锅炉运行期间应严密封好(可用黄泥砖密封)。
3.烟囱底部应设置比水平烟道入口低0.5~1.0m的积灰坑。
4.当烟囱和水平烟道有两个接入口时,两个接口一般应相对设置,并用与水平烟道成45º角的隔板分开,隔板高出水平烟道的部分,不得小于水平烟道高度的1/2。
5.烟囱应设置维修爬梯和避雷针。
钢烟囱的设计应符合下列要求:1.钢烟囱应有足够的强度和刚度,烟囱壁厚要考虑一定量的腐蚀裕度,当烟囱高度为20~40m,直径为0.2~1.0m时,无内衬的筒体壁厚取4~10mm,有内衬的壁厚取8~18mm。
负压计算公式
负压计算公式负压的计算真空度1000帕相当于多少压力(公斤)?真空度1000Pa,也就是相当于压力-1000Pa=-1kPa而1公斤≈0.1MPa所以1000Pa=0.001公斤流体力学负压怎么求H1+V1^2/2/g+P1/2g=H2+V2^2/2/g+P2/2/2g。
用贝努利方程,流体力学与负压的转换方式H1+V1^2/2/g+P1/2g=H2+V2^2/2/g+P2/2/2g,按照这样的公式计算就可以求出负压。
烟囱底部负压计算公式负压值计算公式如下:负压=静压+动压功率(W)=风量(L/S)*风压(Kpa)/效率(75%)/力率(75%)风机马达功率(W)=风机功率(W)*130%= 风量(L/S)* 风压(Kpa)/效率(75%)/力(75%)*130%车间降温安装负压风机数量的计算方法负压风机是一种厂房通风降温设备,在工业、养殖业等都有比较广泛的运用,其超大的排风量和负压通风降温的原理非常适合大型空间场所使用。
应该选择什么型号的负压风机用来车间降温比较好?自己的车间平方数需要几台负压风机?这几个问题一直是人们比较关心的,下面可以用公式为大家解决这个问题。
负压风机风量的定义:风速V与风道截面积S的乘积,大型负压风机由于能够用风速计准确测出风速,所以风量计算也很简单,直接用公式Q=VS,便可算出风量。
风机数量的选择:风机数量的确定根据所选房间的换气次数,计算厂房所需总风量,进而计算得风机数量。
负压风机计算公式:N=V×n/Q 其中:N——风机数量(台);V——场地体积(m3);n——换气次数(次/时);Q——所选风机型号的单台风量(m3/h)。
负压风机型号的选择根据实际情况而定,风机尽可能分别安装在厂房的山墙两侧,实现需要的通风换气效果,排风尽量不靠近建筑物,以防影响附近环境。
在风口安装喷水装置,吸附从室内带出的污染物,以防对环境的污染。
烟囱压力计算
火电厂加装湿法烟气脱硫装置后,会使烟气温度降低,造成烟囱运行条件偏离设计工况,可能对烟囱产生不良影响。
对此,以某发电厂125 Mw 机组湿法烟气脱硫装置为例,分析脱硫后烟温变化可能对烟囱安全性和运行造成的影响。
1 烟囱内温度分布的计算某发电厂2 台125 MW 机组共用1 座烟囱,烟囱高度为180m ,脱硫前满负荷时烟囱入口烟气量为1 230000m3/h(标准状态),温度150℃,脱硫后满负荷时烟囱进口烟气量为1 306209m3/h (标准状态),温度80℃。
对脱硫装置安装前后满负荷、80%负荷、65%负荷和50%负荷共8个工况进行分析。
根据能量守恒原理,可计算出烟囱沿高度方向的一维温度分布。
由于沿高度方向烟囱直径是变化的,且烟囱较高,所以采用分段计算,并考虑了沿高度位能的变化。
将烟囱分为13段,在计算段内,根据能量守恒可得:由上式得到脱硫装置安装前后各个工况的温度分布结果见图1 、图2 。
由图1 和图2 可知,脱硫装置安装前后烟囱内进出口烟温降低都不大,但由于脱硫装置安装后烟囱进口烟气温度低,使烟气和烟囱外环境的温差减小,因而烟囱进出口的烟温较未脱硫时小。
由于烟气脱硫装置安装后烟囱内烟温低于80℃,平均比未脱硫时低70℃,因此对于烟气脱硫装置安装后的烟囱必须考虑烟温变化带来的影响。
2 烟气脱硫装置安装前后烟囱内烟气温度分布变化对烟囱的影响烟囱内烟气温度的变化可能对烟囱带来的影响主要有:(l)由于烟气温度的降低出现酸结露现象,造成烟囱内部腐蚀;(2)由于烟气温度的变化使烟囱的热应力发生改变;(3)由于烟温降低影响烟气抬升高度,(烟气排出烟囱口之后,由于排出速度和热浮力的作用,上升一段高度后再慢慢扩散,这段高度称为抬升高度。
烟气自烟囱排出,即与周围大气发生强烈的能量和热量交换,交换到一定程度,烟气的速度、温度和周围大气十分接近,此时烟气就随着大气运动而浮沉和扩散,烟气浓度逐渐降低,最后和大气融为一体完成整个扩散过程。
烟囱阻力及自拔力计算
代谢病医院DN1200烟囱自生通风力及阻力计算1、烟囱自生通风力计算烟道长度:①1200:垂直段L仁17m①1200 :长度18m计算: 1 、烟囱自生力通风力 hzshzs=h( p k o- p ) g (Pa)式中:p k o——周围空气密度,按p 9=1.293 Kg/m3p—烟气密度, Kg/m3g——重力加速度, 9.81m/ s 2h ——计算点之间的垂直高度差, h=12m 标准状况下的烟气密度p 0 =1.34 Kg/m3则p = p 0 273/273+t =1.34*273/273+170=0.825 Kg/m3 hzs=12*(1.293-0.825)*9.81=55.1Pa 2、考虑当地大气压,温度及烟囱散热的修正。
当地大气压P=100.48kpa最热天气地面环境温度t=29Cp k o (273/273+29) *100480/101325=1.16 Kg/m 3 贝Up k=烟囱内每米温降按0.5 C考虑,则出口烟气温度为:170- (17+18) *0.5=152.5 C则烟气内的平均烟温为( 170+152.5)/2=161.25 C烟囱内烟气的平均密度为:p =1.34*[273/(273+161.25)]*100480/101325=0.853Kg/m32、烟囱阻力计算已知条件:锅炉三台,每台烟气量:5100m3h烟道长度:①1200:垂直段L1= 17m ①1200 :水平长度18m入口温度:170C烟囱出口温度:152.5 CEA hy= △ h m + △ h j + △ h yc 式中△ hm ——烟道摩擦阻力A h j ――局部阻力 A h yc ――烟囱出口阻力A h m =入 L/d dl (w 2/2)pa式中入——摩擦阻力系数,对金属烟道取 0.02 L ――烟道总长度,L=35m W ――烟气流速,m/s3*5100* m 3/h= 3.8m/s3.14*(1.2/2)2*3600d dl ——烟道当量直径,圆形烟道为其内径 P 烟气密度,Kg/m3 尸 p 273/(273+t pj )=0.826p ――标准状况下烟气密度, 1.34 Kg/m3; t pj ――烟气平均温度A h m =0.02*35/1.2*(3.8 2/2)*0.853=3.6 paA h j =(90 度弯头个数 *0.7)*w 2/2*p=(3*0.7)*3.82/2*0.853=12.9pa△ h yc二?出口阻力系数,查表1.1 =1.1*(3.82/2)*0.853=6.8pahy=3.6+12.9+6.8=23.3pa代谢病医院DN400烟囱自生通风力及阻力计算1、烟囱自生通风力计算烟道长度:①400:垂直段L仁17m①400:长度22m计算: 1 、烟囱自生力通风力 hzshzs=h( p k o- p ) g (Pa)式中:p k o——周围空气密度,按p 9=1.293 Kg/m3p—烟气密度, Kg/m3g——重力加速度, 9.81m/ s 2h ——计算点之间的垂直高度差, h=12m标准状况下的烟气密度p 0 =1.34 Kg/m3则p = p 0 273/273+t =1.34*273/273+170=0.825 Kg/m3 hzs=12*(1.293-0.825)*9.81=55.1Pa2、考虑当地大气压,温度及烟囱散热的修正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烟囱负压计算
1.计算烟气密度,可使用以下公式:
ρ = (Pm×M)/[(R/ν)×(T+273.15)]
其中,ρ为烟气密度,Pm为烟气压力,M为烟气分子量,R为气体常数,ν为烟气运动粘度,T为烟气温度。
2.计算烟气动力压,可使用以下公式:
p = (ρ×v2)/2
其中,p为烟气动力压,v为烟气流速。
3.计算烟气静力压,可使用以下公式:
P = ρ×g×h
其中,P为烟气静力压,g为重力加速度,h为烟囱高度。
4.计算烟囱负压,可使用以下公式:
ΔP = [1-(Tc/T)]×(p-Patm)
其中,ΔP为烟囱负压,Tc为烟气温度,T为标准温度(一般取15℃),Patm为大气压力。
需要注意的是,上述计算方法仅适用于简单的烟囱结构和烟气组成,对于复杂的情况,还需要进行更加精确的计算和分析。