2023年十堰市中考数学试卷
2023年十堰市中考数学试卷

2023年十堰市中考数学试卷全文共四篇示例,供读者参考第一篇示例:2023年十堰市中考数学试卷将于下周一正式举行。
本次考试共分为两个卷子,分别为选择题和填空题,试卷共6页,总分为150分。
本次试卷依据新课标要求,注重理论与实践相结合,灵活运用数学知识解决实际问题。
第一部分是选择题,共计80分,包括选择题和判断题。
选择题主要涵盖了代数、几何、概率与统计等各个方面,考察学生对基础知识的掌握程度。
在代数部分,学生需要运用平方差公式、因式分解、分式化简等方法来解决问题;在几何部分,学生需要掌握角平分线、三角形性质、圆的性质等知识点;在概率与统计部分,学生需要理解事件的概率、频数统计等概念。
第二部分是填空题,共计70分,内容更偏向于实际问题的应用。
填空题主要考察学生的解题能力和灵活运用知识解决问题的能力。
题目设置涉及了日常生活中的各种实际问题,如商场促销活动中的折扣计算、小卖部货品的进销存统计等,考察学生对数学知识的实际运用能力。
试卷设计上,注重考查学生的数学基础知识和解决实际问题的能力。
在题目选择上,旨在引导学生运用所学知识解决实际问题,培养学生的数学思维和创新能力。
试卷设置了一定难度的题目,考验学生的解题能力和思维逻辑。
考生在答题时,应根据题目的要求认真思考,严格按照解题步骤进行,确保答案的准确性和完整性。
要注重细节,避免粗心错误,提高答题效率和积极性。
在备考过程中,学生可以多做真题练习,熟悉考试题型和解题技巧,提高解题速度和准确性。
要注重整理知识点,理清解题思路,培养良好的解题习惯和逻辑思维能力。
2023年十堰市中考数学试卷旨在考查学生对数学基础知识的掌握程度和实际问题的解决能力,不仅考验学生的学习成绩,也考察学生的思维能力和创新意识。
希望广大考生能够在考试中发挥出自己的优势,取得令人满意的成绩。
祝愿所有参加考试的学生都能取得成功,实现自己的梦想!第二篇示例:2023年十堰市中考数学试卷题目一:选择题1. 下列各数中,最小的是( )A. 0.8B. -0.7C. -1D. 1.13. 若x=5时,y=8,那么y=6时,x等于( )A. 3B. 4C. 5D. 610. 已知直角三角形的两条直角边长度分别为3cm和4cm,则斜边长是( )A. 5cmB. 6cmC. 7cmD. 8cm题目二:填空题16.4×7-3×1=____。
2020年湖北省十堰市中考数学试卷

2020年湖北省十堰市中考数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.的倒数是()A. 4B. -4C.D. -2.某几何体的三视图如图所示,则此几何体是()A. 圆锥B. 圆柱C. 长方体D. 四棱柱3.如图,将一副三角板重叠放在起,使直角顶点重合于点O.若∠AOC=130°,则∠BOD=()A. 30°B. 40°C. 50°D. 60°4.下列计算正确的是()A. a+a2=a3B. a6÷a3=a2C. (-a2b)3=a6b3D. (a-2)(a+2)=a2-45.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示:鞋的尺码/cm2222.52323.52424.525销售量双12511731若每双鞋的销售利润相同,则该店主最应关注的销售数据是下列统计量中的()A. 平均数B. 方差C. 众数D. 中位数6.已知平行四边形ABCD中,下列条件:①AB=BC;②AC=BD;③AC⊥BD;④AC平分∠BAD,其中能说明平行四边形ABCD是矩形的是()A. ①B. ②C. ③D. ④7.某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A. =+1B. =-1C. =+2D. =-28.如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC=30°,AE=1,则BC=()A. 2B. 4C.D. 29.根据图中数字的规律,若第n个图中出现数字396,则n=()A. 17B. 18C. 19D. 2010.如图,菱形ABCD的顶点分别在反比例函数y=和y=的图象上,若∠BAD=120°,则||=()A. B. 3 C. D.二、填空题(本大题共6小题,共18.0分)11.已知x+2y=3,则1+2x+4y=______.12.如图,在△ABC中,DE是AC的垂直平分线.若AE=3,△ABD的周长为13,则△ABC的周长为______.13.某校即将举行30周年校庆,拟定了A,B,C,D四种活动方案,为了解学生对方案的意见,学校随机抽取了部分学生进行问卷调查(每人只能赞成一种方案),将调查结果进行统计并绘制成如图两幅不完整的统计图.若该校有学生3000人,请根据以上统计结果估计该校学生赞成方案B的人数为______.14.对于实数m,n,定义运算m*n=(m+2)2-2n.若2*a=4*(-3),则a=______.15.如图,圆心角为90°的扇形ACB内,以BC为直径作半圆,连接AB.若阴影部分的面积为(π-1),则AC=______.16.如图,D是等边三角形ABC外一点.若BD=8,CD=6,连接AD,则AD的最大值与最小值的差为______.三、计算题(本大题共1小题,共5.0分)17.计算:()-1-|-2|+20200.四、解答题(本大题共8小题,共67.0分)18.先化简,再求值:1-÷,其中a=-3,b=3.19.如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°,现有一架长为6m的梯子,当梯子底端离墙面2m时,此时人是否能够安全使用这架梯子(参考数据:sin50°≈0.77,cos50°≈0.64,sin75°≈0.97,cos75°=0.26)?20.某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是______;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.21.已知关于x的一元二次方程x2-4x-2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.22.如图,AB为半圆O的直径,C为半圆O上一点,AD与过点C的切线垂直,垂足为D,AD交半圆O于点E.(1)求证:AC平分∠DAB;(2)若AE=2DE,试判断以O,A,E,C为顶点的四边形的形状,并说明理由.23.某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元/台),m与x的关系如图所示.(1)若第x天可以生产这种设备y台,则y与x的函数关系式为______,x的取值范围为______;(2)第几天时,该企业当天的销售利润最大?最大利润为多少?(3)求当天销售利润低于10800元的天数.24.如图1,已知△ABC≌△EBD,∠ACB=∠EDB=90°,点D在AB上,连接CD并延长交AE于点F.(1)猜想:线段AF与EF的数量关系为______;(2)探究:若将图1的△EBD绕点B顺时针方向旋转,当∠CBE小于180°时,得到图2,连接CD并延长交AE于点F,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中,过点E作EG⊥CB,垂足为点G.当∠ABC的大小发生变化,其它条件不变时,若∠EBG=∠BAE,BC=6,直接写出AB的长.25.已知抛物线y=ax2-2ax+c过点A(-1,0)和C(0,3),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图1,E为线段BC上方的抛物线上一点,EF⊥BC,垂足为F,EM⊥x轴,垂足为M,交BC于点G.当BG=CF时,求△EFG的面积;(3)如图2,AC与BD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使∠OPB=∠AHB?若存在,求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:的倒数是4故选:A.根据倒数的概念进行求解即可.本题考查了倒数的概念,理解倒数的概念是解决本题的关键.2.【答案】B【解析】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,故选:B.根据三视图的主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析可知几何体的名称.此题考查了由三视图判断几何体,用到的知识点为:由主视图和左视图可得几何体是柱体,椎体还是球体,由俯视图可确定几何体的具体形状.3.【答案】C【解析】解:∵∠AOC=130°,∴∠BOC=∠AOC-∠AOB=40°,∴∠BOD=∠COD-∠BOC=50°.故选:C.根据角的和差关系求解即可.本题考查角度的计算问题.弄清角与角之间的关系是解题的关键.4.【答案】D【解析】解:A、a与a2不是同类项,不能合并,原计算错误,故此选项不符合题意;B、a6÷a3=a3,原计算错误,故此选项不符合题意;C、(-a2b)3=-a6b3,原计算错误,故此选项不符合题意;D、(a-2)(a+2)=a2-4,原计算正确,故此选项符合题意,故选:D.根据合并同类项法则、同底数幂的除法法则、积的乘方法则,平方差公式计算后,得出结果,作出判断.此题主要考查了整式的运算,解题的关键是熟知公式和运算法则.5.【答案】C【解析】解:因为众数是在一组数据中出现次数最多的数,又根据题意,每双鞋的销售利润相同,鞋店为销售额考虑,应关注卖出最多的鞋子的尺码,这样可以确定进货的数量,所以该店主最应关注的销售数据是众数.故选:C.根据题意,联系商家最关注的应该是最畅销的鞋码,则考虑该店主最应关注的销售数据是众数.本题主要考查数据的收集和处理.解题关键是熟悉统计数据的意义,并结合实际情况进行分析.根据众数是在一组数据中出现次数最多的数,再联系商家最关注的应该是最畅销的鞋码,则考虑该店主最应关注的销售数据是众数.6.【答案】B【解析】解:A.AB=BC,邻边相等的平行四边形是菱形,故A错误;B.AC=BD,对角线相等的平行四边形是矩形,故B正确;C.AC⊥BD,对角线互相垂直的平行四边形是菱形,故C错误;D.AC平分∠BAD,对角线平分其每一组对角的平行四边形是菱形,故D错误.故选:B.根据矩形的判定进行分析即可.本题考查了矩形的判定,熟知矩形从边,角,对角线三个方向的判定是解题的关键.7.【答案】A【解析】解:∵原计划每周生产x万个口罩,一周后以原来速度的1.5倍生产,∴一周后每周生产1.5x万个口罩,依题意,得:=+1.故选:A.由原计划每周生产的口罩只数结合一周后提高的速度,可得出一周后每周生产1.5x万个口罩,根据工作时间=工作总量÷工作效率结合实际比原计划提前一周完成任务(第一周按原工作效率),即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.8.【答案】D【解析】解:连接OC,如图,∵∠ADC=30°,∴∠AOC=60°,∵OA⊥BC,∴CE=BE,在Rt△COE中,OE=OC,CE=OE,∵OE=OA-AE=OC-1,∴OC-1=OC,∴OC=2,∴OE=1,∴CE=,∴BC=2CE=2.故选:D.连接OC,根据圆周角定理求得∠AOC=60°,在Rt△COE中可得OE=OC=OC-1得到OC=2,从而得到CE=,然后根据垂径定理得到BC的长.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.9.【答案】B【解析】解:根据图形规律可得:上三角形的数据的规律为:2n(1+n),若2n(1+n)=396,解得n不为正整数,舍去;下左三角形的数据的规律为:n2-1,若n2-1=396,解得n不为正整数,舍去;下中三角形的数据的规律为:2n-1,若2n-1=396,解得n不为正整数,舍去;下右三角形的数据的规律为:n(n+4),若n(n+4)=396,解得n=18,或n=-22,舍去故选:B.观察上三角形,下左三角形,下中三角形,下右三角形各自的规律,让其等于396,解得n为正整数即成立,否则舍去.本题考查了图形有关数字的规律,能准确观察到相关规律是解题的关键10.【答案】B【解析】解:根据对称性可知,反比例函数,的图象是中心对称图形,菱形是中心对称图形,∴菱形ABCD的对角线AC与BD的交点即为原点O,OD⊥OC,如图:作CM⊥x轴于M,DN⊥x轴于N.连接OD,OC.∵DO⊥OC,∴∠COM+∠DON=90°,∠DON+∠ODN=90°,∴∠COM=∠ODN,∵∠CMO=∠DNO=90°,∴△COM∽△ODN,∴,∵菱形ABCD的对角线AC与BD的交点即为原点O,∠BAD=120°,∴∠OCD=60°,∠COD=90°,∴,∴,∴,∴.故选:B.据对称性可知,反比例函数,的图象是中心对称图形,菱形是中心对称图形,推出菱形ABCD的对角线AC与BD的交点即为原点O.如图:作CM⊥x轴于M,DN⊥x 轴于N.连接OD,OC.证明△COM∽△ODN,利用相似三角形的性质可得答案.本题考查菱形的性质、反比例函数的图象与性质、相似三角形的判定与性质,锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题.11.【答案】7【解析】解:∵x+2y=3,∴2(x+2y)=2x+4y=2×3=6,∴1+2x+4y=1+6=7,故答案为:7.由x+2y=3可得到2x+4y=6,然后整体代入1+2x+4y计算即可.本题考查了代数式的求值问题,注意整体代入的思想是解题的关键.12.【答案】19【解析】解:∵DE是AC的垂直平分线,AE=3,∴AC=2AE=6,AD=DC,∵AB+BD+AD=13,∴△ABC的周长=AB+BC+AC=AB+BD+AD+AC=13+6=19.故答案为:19.由线段的垂直平分线的性质可得AC=2AE,AD=DC,从而可得答案.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线的性质是解题的关键.13.【答案】1800人【解析】解:根据条形统计图和扇形统计图可知赞成C方案的有44人,占样本的22%,∴样本容量为:44÷22%=200(人),∴赞成方案B的人数占比为:,∴该校学生赞成方案B的人数为:3000×60%=1800(人),故答案为:1800人.根据条形统计图和扇形统计图可知赞成C方案的有44人,占样本的22%,可得出样本容量,即可得到赞成方案B的人数占比,用样本估计总体即可求解.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.14.【答案】-13【解析】解:∵m*n=(m+2)2-2n,∴2*a=(2+2)2-2a=16-2a,4*(-3)=(4+2)2-2×(-3)=42,∵2*a=4*(-3),∴16-2a=42,解得a=-13,故答案为:-13.根据给出的新定义分别求出2*a与4*(-3)的值,根据2*a=4*(-3)得出关于a的一元一次方程,求解即可.本题考查解一元一次方程、新定义下实数的运算等内容,理解题干中给出的新定义是解题的关键.15.【答案】2【解析】解:将原图区域划分为四部分,阴影部分分别为S1,S2;两块空白分别为S3,S4,连接DC,如下图所示:由已知得:三角形ABC为等腰直角三角形,S1+S2=π-1,∵BC为直径,∴∠CDB=90°,即CD⊥AB,故CD=DB=DA,∴D点为中点,由对称性可知与弦CD围成的面积与S3相等.设AC=BC=x,则S扇ACB-S3-S4=S1+S2,其中,,故:,求解得:x1=2,x2=-2(舍去)故答案:2.本题可利用扇形面积公式以及三角形面积公式,用大扇形面积减去空白部分面积求得阴影部分面积,继而根据已知列方程求解.本题考查几何图形面积的求法,常用割补法配合扇形面积公式以及三角形面积公式求解.16.【答案】12【解析】解:如图,以CD为边向外作等边△CDE,连接BE,∵△CDE和△ABC是等边三角形,∴CE=CD,CB=CA,∠ECD=∠BCA=60°,∴∠ECB=∠DCA,在△ECB和△DCA中,,∴△ECB≌△DCA(SAS),∴BE=AD,∵DE=CD=6,BD=8,∴在△BDE中,BD-DE<BE<BD+DE,即8-6<BE<8+6,∴2<BE<14,∴2<AD<14.∴则AD的最大值与最小值的差为14-2=12.故答案为:12.以CD为边向外作等边△CDE,连接BE,可证得△ECB≌△DCA从而得到BE=AD,再根据三角形的三边关系即可得出结论.本题考查了全等三角形的判定与性质、等边三角形的性质以及三角形的三边关系,解题关键在于添加辅助线构建全等三角形把AD转化为BE从而求解,是一道较好的中考题.17.【答案】解:=2-2+1=1.【解析】根据负整数指数幂,绝对值的运算,0次幂分别计算出每一项,再计算即可.本题考查负整数指数幂,绝对值的运算,0次幂等知识点,熟练掌握运算法则是解题的关键.18.【答案】解:原式=1-÷=1-•=1-==-,当a=-3,b=3时,原式=-=-.【解析】利用完全平方公式、平方差公式和通分等方法将原分式化简成-,再将a、b的值代入化简后的分式中即可得出结论.本题考查分式的化简求值,掌握分式的运算法则是解题的关键.19.【答案】解:在Rt△ABC中,∵cosα=,∴AC=AB•cosα,当α=50°时,AC=AB•cosα≈6×0.64≈3.84m;当α=75°时,AC=AB•cosα≈6×0.26≈1.56m;所以要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子底端与墙面的距离应该在1.56m~3.84m之间,故当梯子底端离墙面2m时,此时人能够安全使用这架梯子.【解析】分别求出当α=50°时和当α=75°时梯子底端与墙面的距离AC的长度,再进行判断即可.本题考查解直角三角形的应用,求出人能够安全使用这架梯子时,梯子底端与墙面的安全距离的范围是解题的关键.20.【答案】【解析】解:(1)P(小文诵读《长征》)=;故答案为:;(2)记《红星照耀中国》、《红岩》、《长征》分别为A、B、C,列表如下:A B CA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为.(1)根据概率公式即可求解;(2)根据题意画出树状图,利用概率公式即可求解.本题考查了用列表法或画树形图法求随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.21.【答案】解:(1)由题意可知,△=(-4)2-4×1×(-2k+8)≥0,整理得:16+8k-32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)由题意得:,由韦达定理可知:x1+x2=4,x1x2=-2k+8,故有:(-2k+8)[42-2(-2k+8)]=24,整理得:k2-4k+3=0,解得:k1=3,k2=1,又由(1)中可知k≥2,∴k的值为k=3.故答案为:k=3.【解析】(1)根据△≥0建立不等式即可求解;(2)先提取公因式对等式变形为,再结合韦达定理求解即可.本题考查了一元二次方程根的判别式、根与系数的关系、韦达定理、一元二次方程的解法等知识点,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.22.【答案】解:(1)证明:连接OC,如下图所示:∵CD为圆O的切线,∴∠OCD=90°,∴∠D+∠OCD=180°,∴OC∥AD,∴∠DAC=∠ACO,又OC=OA,∴∠ACO=∠OAC,∴∠DAC=∠OAC,∴AC平分∠DAB.(2)四边形EAOC为菱形,理由如下:连接EC、BC、EO,过C点作CH⊥AB于H点,如下图所示,由圆内接四边形对角互补可知,∠B+∠AEC=180°,又∠AEC+∠DEC=180°,∴∠DEC=∠B,又∠B+∠CAB=90°,∠DEC+∠DCE=90°,∴∠CAB=∠DCE,又∠CAB=∠CAE,∴∠DCE=∠CAE,且∠D=∠D,∴△DCE∽△DAC,设DE=x,则AE=2x,AD=AE+DE=3x,∴,∴CD2=AD•DE=3x2,∴,在Rt△ACD中,,∴∠DAC=30°,∴∠DAO=2∠DAC=60°,且OA=OE,∴△OAE为等边三角形,由同弧所对的圆周角等于圆心角的一半可知:∠EOC=2∠EAC=60°,∴△EOC为等边三角形,∴EA=AO=OE=EC=CO,即EA=AO=OC=CE,∴四边形EAOC为菱形.【解析】(1)连接OC,由切线的性质可知∠OCD+∠D=180°,进而得到OC∥AD,得到∠DAC=∠ACO,再由OC=OA得到∠ACO=∠OAC,进而得到∠DAC=∠OAC即可证明;(2)连接EC、BC、EO,过C点作CH⊥AB于H点,先证明∠DCE=∠CAE,进而得到△DCE∽△DAC,再由AE=2DE结合三角函数求出∠EAC=30°,最后证明△EAO和△ECO 均为等边三角形即可求解.本题考查了圆周角定理、相似三角形的判定和性质、三角函数、菱形的判定等知识点,属于综合题,熟练掌握其性质和定理是解决本题的关键.23.【答案】y=2x+20 1≤x≤12【解析】解:(1)根据题意,得y与x的解析式为:y=22+2(x-1)=2x+20(1≤x≤12),故答案为:y=2x+20,1≤x≤12;(2)设当天的销售利润为w元,则当1≤x≤6时,w=(1200-800)(2x+20)=800x+8000,∵800>0,∴w随x的增大而增大,∴当x=6时,w最大值=800×6+8000=12800.当6<x≤12时,设m=kx+b,将(6,800)和(10,1000)代入得:,解得:,∴m与x的关系式为:m=50x+500,∴w=[1200-(50x+500)]×(2x+20)=-100x2+400x+14000=-100(x-2)2+14400.∵此时图象开口向下,在对称轴右侧,w随x的增大而减小,天数x为整数,∴当x=7时,w有最大值,为11900元,∵12800>11900,∴当x=6时,w最大,且w最大值=12800元,答:该厂第6天获得的利润最大,最大利润是12800元.(3)由(2)可得,1≤x≤6时,800x+8000<10800,解得:x<3.5则第1-3天当天利润低于10800元,当6<x≤12时,-100(x-2)2+14400<10800,解得x<-4(舍去),或x>8,∴第9-12天当天利润低于10800元,故当天销售利润低于10800元的天数有7天.(1)根据题意确定一次函数的解析式,实际问题中x的取值范围要使实际问题有意义;(2)求出当天利润与天数的函数解析式,确定其最大值即可;(3)根据(2)中的函数解析式列出不等式方程即可解答.本题主要考查了一次函数和二次函数的应用,解题的关键在于理解题意、利用待定系数法确定函数的解析式并分类讨论.24.【答案】AF=EF【解析】解:(1)延长DF到K点,并使FK=DC,连接KE,如图1所示,∵△ABC≌△EBD,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠ADF,∴∠ADF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠ADF+∠FDE=90°,∴∠ACD=∠FDE,∵FK+DF=DC+DF,∴DK=CF,在△ACF和△EDK中,,∴△ACF≌△EDK(SAS),∴KE=AF,∠K=∠AFC,又∠AFC=∠KFE,∴∠K=∠KFE∴KE=EF∴AF=EF,故AF与EF的数量关系为:AF=EF.故答案为:AF=EF;(2)仍旧成立,理由如下:延长DF到K点,并使FK=DC,连接KE,如图2所示,设BD延长线DM交AE于M点,∵△ABC≌△EBD,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠MDF,∴∠MDF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠MDF+∠FDE=90°,∴∠ACD=∠FDE,∵FK+DF=DC+DF,∴DK=CF,在△ACF和△EDK中,,∴△ACF≌△EDK(SAS),∴KE=AF,∠K=∠AFC,又∠AFC=∠KFE,∴∠K=∠KFE,∴KE=EF,∴AF=EF,故AF与EF的数量关系为:AF=EF.(3)如图3所示,延长DF到K点,并使FK=DC,连接KE,过点E作EG⊥BC交CB的延长线于G,∵BA=BE,∴∠BAE=∠BEA,∵∠BAE=∠EBG,∴∠BEA=∠EBG,∴AE∥CG,∴∠AEG+∠G=180°,∴∠AEG=90°,∴∠ACG=∠G=∠AEG=90°,∴四边形AEGC为矩形,∴AC=EG,且AB=BE,∴Rt△ACB≌Rt△EGB(HL),∴BG=BC=6,∠ABC=∠EBG,又∵ED=AC=EG,且EB=EB,∴Rt△EDB≌Rt△EGB(HL),∴DB=GB=6,∠EBG=∠ABE,∴∠ABC=∠ABE=∠EBG=60°,∴∠BAC=30°,∴在Rt△ABC中,由30°所对的直角边等于斜边的一半可知:AB=2BC=12.(1)延长DF到K点,并使FK=DC,连接KE,证明△ACF≌△EDK,进而得到△KEF 为等腰三角形,即可证明AF=KE=EF;(2)证明原理同(1),延长DF到K点,并使FK=DC,连接KE,证明△ACF≌△EDK,进而得到△KEF为等腰三角形,即可证明AF=KE=EF;(3)补充完整图后证明四边形AEGC为矩形,进而得到∠ABC=∠ABE=∠EBG=60°即可求解.本题属于几何变换综合题,考查了三角形全等的性质和判定,矩形的性质和判定,本题的关键是延长DF到K点并使FK=DC,进而构造全等三角形.25.【答案】(1)把点A(-1,0),C(0,3)代入y=ax2-2ax+c中,,解得,∴y=-x2+2x+3,当时,y=4,∴D(1,4);(2)如图1,∵抛物线y=-x2+2x+3,令y=0,∴x=-1,或x=3,∴B(3,0).设BC的解析式为y=kx+b(k≠0),将点C(0,3),B(3,0)代入,得,解得,∴y=-x+3.∵EF⊥CB.设直线EF的解析式为y=x+b,设点E的坐标为(m,-m2+2m+3),将点E坐标代入y=x+b中,得b=-m2+m+3,∴y=x-m2+m+3.∴.∴.把x=m代入y=-x+3,得y=-m+3,∴G(m,-m+3).∵BG=CF.∴BG2=CF2,即.解得m=2或m=-3.∵点E是BC上方抛物线上的点,∴m=-3,舍去.∴点E(2,3),F(1,2),G(2,1),,∴;(3)如图2,过点A作AN⊥HB,∵点D(1,4),B(3,0),∴y DB=-2x+6.∵点A(-1,0),点C(0,3),∴y AC=3x+3,∴,∴.设,把(-1,0)代入,得b=,∴,∴,∴,∴=,∴AN=HN.∴∠H=45°.设点p(n,-n2+2n+3).过点P作PR⊥x轴于点R,在x轴上作点S使得RS=PR,∴∠RSP=45°且点S的坐标为(-n2+3n+3,0).若∠OPB=∠AHB=45°在△OPS和△OPB中,∠POS=∠POB,∠OSP=∠OPB,∴△OPS∽△OPB.∴.∴OP2=OB•OS.∴n2+(n+1)2(n-3)2=3•(-n2+2n+3).∴n=0或.∴P1(0,3),,.【解析】(1)利用待定系数法求出a的值即可得到解析式,进而得到顶点D坐标;(2)先求出BC的解析式y=-x+3,再设直线EF的解析式为y=x+b,设点E的坐标为(m,-m2+2m+3),联立方程求出点F,G的坐标,根据BG2=CF2列出关于m的方程并求解,然后求得G的坐标,再利用三角形面积公式求解即可;(3)过点A作AN⊥HB,先求得直线BD,AN的解析式,得到H,N的坐标,进而得到∠H=45°,设点p(n,-n2+2n+3),过点P作PRx轴于点R,在x轴上作点S使得RS=PR,证明△OPS∽△OPB,根据相似三角形对应边成比例得到关于n的方程,求得后即可得到点P的坐标.本题考查的是二次函数的综合,涉及到的知识点较多,运算较复杂,第3问的解题关键在于添加适当的辅助线,利用数形结合的思想列出方程求解.。
2020年湖北省十堰市中考数学试卷(含解析)

2020年湖北省十堰市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(本题有10个小题,每小题3分,共30分)1.的倒数是()A.4 B.﹣4 C.D.﹣2.某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱3.如图,将一副三角板重叠放在起,使直角顶点重合于点O.若∠AOC=130°,则∠BOD=()A.30°B.40°C.50°D.60°4.下列计算正确的是()A.a+a2=a3B.a6÷a3=a2C.(﹣a2b)3=a6b3D.(a﹣2)(a+2)=a2﹣45.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示:鞋的尺码/cm 22 22.5 23 23.5 24 24.5 25销售量双 1 2 5 11 7 3 1若每双鞋的销售利润相同,则该店主最应关注的销售数据是下列统计量中的()A.平均数B.方差C.众数D.中位数6.已知平行四边形ABCD中,下列条件:①AB=BC;②AC=BD;③AC⊥BD;④AC平分∠BAD,其中能说明平行四边形ABCD是矩形的是()A.①B.②C.③D.④7.某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A.=+1 B.=﹣1C.=+2 D.=﹣28.如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC=30°,AE=1,则BC=()A.2 B.4 C.D.29.根据图中数字的规律,若第n个图中出现数字396,则n=()A.17 B.18 C.19 D.2010.如图,菱形ABCD的顶点分别在反比例函数y=和y=的图象上,若∠BAD=120°,则||=()A.B.3 C.D.二、填空题(本题有6个小题,每小题3分,共18分)11.已知x+2y=3,则1+2x+4y=.12.如图,在△ABC中,DE是AC的垂直平分线.若AE=3,△ABD的周长为13,则△ABC的周长为.13.某校即将举行30周年校庆,拟定了A,B,C,D四种活动方案,为了解学生对方案的意见,学校随机抽取了部分学生进行问卷调查(每人只能赞成一种方案),将调查结果进行统计并绘制成如图两幅不完整的统计图.若该校有学生3000人,请根据以上统计结果估计该校学生赞成方案B的人数为.14.对于实数m,n,定义运算m*n=(m+2)2﹣2n.若2*a=4*(﹣3),则a=.15.如图,圆心角为90°的扇形ACB内,以BC为直径作半圆,连接AB.若阴影部分的面积为(π﹣1),则AC=.16.如图,D是等边三角形ABC外一点.若BD=8,CD=6,连接AD,则AD的最大值与最小值的差为.三、解答题(本题有9个小题,共72分)17.(5分)计算:()﹣1﹣|﹣2|+20200.18.(6分)先化简,再求值:1﹣÷,其中a=﹣3,b=3.19.(7分)如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°,现有一架长为6m的梯子,当梯子底端离墙面2m时,此时人是否能够安全使用这架梯子(参考数据:sin50°≈0.77,cos50°≈0.64,sin75°≈0.97,cos75°=0.26)?20.(7分)某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.21.(7分)已知关于x的一元二次方程x2﹣4x﹣2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.22.(8分)如图,AB为半圆O的直径,C为半圆O上一点,AD与过点C的切线垂直,垂足为D,AD交半圆O于点E.(1)求证:AC平分∠DAB;(2)若AE=2DE,试判断以O,A,E,C为顶点的四边形的形状,并说明理由.23.(10分)某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元/台),m与x的关系如图所示.(1)若第x天可以生产这种设备y台,则y与x的函数关系式为,x的取值范围为;(2)第几天时,该企业当天的销售利润最大?最大利润为多少?(3)求当天销售利润低于10800元的天数.24.(10分)如图1,已知△ABC≌△EBD,∠ACB=∠EDB=90°,点D在AB上,连接CD并延长交AE于点F.(1)猜想:线段AF与EF的数量关系为;(2)探究:若将图1的△EBD绕点B顺时针方向旋转,当∠CBE小于180°时,得到图2,连接CD并延长交AE于点F,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中,过点E作EG⊥CB,垂足为点G.当∠ABC的大小发生变化,其它条件不变时,若∠EBG =∠BAE,BC=6,直接写出AB的长.25.(12分)已知抛物线y=ax2﹣2ax+c过点A(﹣1,0)和C(0,3),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图1,E为线段BC上方的抛物线上一点,EF⊥BC,垂足为F,EM⊥x轴,垂足为M,交BC于点G.当BG=CF时,求△EFG的面积;(3)如图2,AC与BD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使∠OPB=∠AHB?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.【解答】解:的倒数是4故选:A.2.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,故选:B.3.【解答】解:∵∠AOC=130°,∴∠BOC=∠AOC﹣∠AOB=40°,∴∠BOD=∠COD﹣∠BOC=50°.故选:C.4.【解答】解:A、a与a2不是同类项,不能合并,原计算错误,故此选项不符合题意;B、a6÷a3=a3,原计算错误,故此选项不符合题意;C、(﹣a2b)3=﹣a6b3,原计算错误,故此选项不符合题意;D、(a﹣2)(a+2)=a2﹣4,原计算正确,故此选项符合题意,故选:D.5.【解答】解:因为众数是在一组数据中出现次数最多的数,又根据题意,每双鞋的销售利润相同,鞋店为销售额考虑,应关注卖出最多的鞋子的尺码,这样可以确定进货的数量,所以该店主最应关注的销售数据是众数.故选:C.6.【解答】解:A.AB=BC,邻边相等的平行四边形是菱形,故A错误;B.AC=BD,对角线相等的平行四边形是矩形,故B正确;C.AC⊥BD,对角线互相垂直的平行四边形是菱形,故C错误;D.AC平分∠BAD,对角线平分其每一组对角的平行四边形是菱形,故D错误.故选:B.7.【解答】解:∵原计划每周生产x万个口罩,一周后以原来速度的1.5倍生产,∴一周后每周生产1.5x万个口罩,依题意,得:=+1.故选:A.8.【解答】解:连接OC,如图,∵∠ADC=30°,∴∠AOC=60°,∵OA⊥BC,∴CE=BE,在Rt△COE中,OE=OC,CE=OE,∵OE=OA﹣AE=OC﹣1,∴OC﹣1=OC,∴OC=2,∴OE=1,∴CE=,∴BC=2CE=2.故选:D.9.【解答】解:根据图形规律可得:上三角形的数据的规律为:2n(1+n),若2n(1+n)=396,解得n不为正整数,舍去;下左三角形的数据的规律为:n2﹣1,若n2﹣1=396,解得n不为正整数,舍去;下中三角形的数据的规律为:2n﹣1,若2n﹣1=396,解得n不为正整数,舍去;下右三角形的数据的规律为:n(n+4),若n(n+4)=396,解得n=18,或n=﹣22,舍去故选:B.10.【解答】解:根据对称性可知,反比例函数,的图象是中心对称图形,菱形是中心对称图形,∴菱形ABCD的对角线AC与BD的交点即为原点O,OD⊥OC,如图:作CM⊥x轴于M,DN⊥x轴于N.连接OD,OC.∵DO⊥OC,∴∠COM+∠DON=90°,∠DON+∠ODN=90°,∴∠COM=∠ODN,∵∠CMO=∠DNO=90°,∴△COM∽△ODN,∴,∵菱形ABCD的对角线AC与BD的交点即为原点O,∠BAD=120°,∴∠OCD=60°,∠COD=90°,∴,∴,∴,∴.故选:B.二、填空题11.【解答】解:∵x+2y=3,∴2(x+2y)=2x+4y=2×3=6,∴1+2x+4y=1+6=7,故答案为:7.12.【解答】解:∵DE是AC的垂直平分线,AE=3,∴AC=2AE=6,AD=DC,∵AB+BD+AD=13,∴△ABC的周长=AB+BC+AC=AB+BD+AD+AC=13+6=19.故答案为:19.13.【解答】解:根据条形统计图和扇形统计图可知赞成C方案的有44人,占样本的22%,∴样本容量为:44÷22%=200(人),∴赞成方案B的人数占比为:,∴该校学生赞成方案B的人数为:3000×60%=1800(人),故答案为:1800人.14.【解答】解:∵m*n=(m+2)2﹣2n,∴2*a=(2+2)2﹣2a=16﹣2a,4*(﹣3)=(4+2)2﹣2×(﹣3)=42,∵2*a=4*(﹣3),∴16﹣2a=42,解得a=﹣13,故答案为:﹣13.15.【解答】解:将原图区域划分为四部分,阴影部分分别为S1,S2;两块空白分别为S3,S4,连接DC,如下图所示:由已知得:三角形ABC为等腰直角三角形,S1+S2=π﹣1,∵BC为直径,∴∠CDB=90°,即CD⊥AB,故CD=DB=DA,∴D点为中点,由对称性可知与弦CD围成的面积与S3相等.设AC=BC=x,则S扇ACB﹣S3﹣S4=S1+S2,其中,,故:,求解得:x1=2,x2=﹣2(舍去)故答案:2.16.【解答】解:如图,以CD为边向外作等边△CDE,连接BE,∵△CDE和△ABC是等边三角形,∴CE=CD,CB=CA,∠ECD=∠BCA=60°,∴∠ECB=∠DCA,在△ECB和△DCA中,,∴△ECB≌△DCA(SAS),∴BE=AD,∵DE=CD=6,BD=8,∴在△BDE中,BD﹣DE<BE<BD+DE,即8﹣6<BE<8+6,∴2<BE<14,∴2<AD<14.则当B、D、E三点共线时,可得BE的最大值与最小值分别为14和2.∴则AD的最大值与最小值的差为14﹣2=12.故答案为:12.三、解答题17.【解答】解:=2﹣2+1=1.18.【解答】解:原式=1﹣÷=1﹣•=1﹣==﹣,当a=﹣3,b=3时,原式=﹣=﹣.19.【解答】解:在Rt△ABC中,∵cosα=,∴AC=AB•cosα,当α=50°时,AC=AB•cosα≈6×0.64≈3.84m;当α=75°时,AC=AB•cosα≈6×0.26≈1.56m;所以要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子底端与墙面的距离应该在1.56m~3.84m之间,故当梯子底端离墙面2m时,此时人能够安全使用这架梯子.20.【解答】解:(1)P(小文诵读《长征》)=;故答案为:;(2)记《红星照耀中国》、《红岩》、《长征》分别为A、B、C,列表如下:A B CA (A,A)(A,B)(A,C)B (B,A)(B,B)(B,C)C (C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为.21.【解答】解:(1)由题意可知,△=(﹣4)2﹣4×1×(﹣2k+8)≥0,整理得:16+8k﹣32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)由题意得:,由韦达定理可知:x1+x2=4,x1x2=﹣2k+8,故有:(﹣2k+8)[42﹣2(﹣2k+8)]=24,整理得:k2﹣4k+3=0,解得:k1=3,k2=1,又由(1)中可知k≥2,∴k的值为k=3.故答案为:k=3.22.【解答】解:(1)证明:连接OC,如下图所示:∵CD为圆O的切线,∴∠OCD=90°,∴∠D+∠OCD=180°,∴OC∥AD,∴∠DAC=∠ACO,又OC=OA,∴∠ACO=∠OAC,∴∠DAC=∠OAC,∴AC平分∠DAB.(2)四边形EAOC为菱形,理由如下:连接EC、BC、EO,过C点作CH⊥AB于H点,如下图所示,由圆内接四边形对角互补可知,∠B+∠AEC=180°,又∠AEC+∠DEC=180°,∴∠DEC=∠B,又∠B+∠CAB=90°,∠DEC+∠DCE=90°,∴∠CAB=∠DCE,又∠CAB=∠CAE,∴∠DCE=∠CAE,且∠D=∠D,∴△DCE∽△DAC,设DE=x,则AE=2x,AD=AE+DE=3x,∴,∴CD2=AD•DE=3x2,∴,在Rt△ACD中,,∴∠DAC=30°,∴∠DAO=2∠DAC=60°,且OA=OE,∴△OAE为等边三角形,由同弧所对的圆周角等于圆心角的一半可知:∠EOC=2∠EAC=60°,∴△EOC为等边三角形,∴EA=AO=OE=EC=CO,即EA=AO=OC=CE,∴四边形EAOC为菱形.23.【解答】解:(1)根据题意,得y与x的解析式为:y=22+2(x﹣1)=2x+20(1≤x≤12),故答案为:y=2x+20,1≤x≤12;(2)设当天的销售利润为w元,则当1≤x≤6时,w=(1200﹣800)(2x+20)=800x+8000,∵800>0,∴w随x的增大而增大,∴当x=6时,w最大值=800×6+8000=12800.当6<x≤12时,设m=kx+b,将(6,800)和(10,1000)代入得:,解得:,∴m与x的关系式为:m=50x+500,∴w=[1200﹣(50x+500)]×(2x+20)=﹣100x2+400x+14000=﹣100(x﹣2)2+14400.∵此时图象开口向下,在对称轴右侧,w随x的增大而减小,天数x为整数,∴当x=7时,w有最大值,为11900元,∵12800>11900,∴当x=6时,w最大,且w最大值=12800元,答:该厂第6天获得的利润最大,最大利润是12800元.(3)由(2)可得,1≤x≤6时,800x+8000<10800,解得:x<3.5则第1﹣3天当天利润低于10800元,当6<x≤12时,﹣100(x﹣2)2+14400<10800,解得x<﹣4(舍去),或x>8,∴第9﹣12天当天利润低于10800元,故当天销售利润低于10800元的天数有7天.24.【解答】解:(1)延长DF到K点,并使FK=DC,连接KE,如图1所示,∵△ABC≌△EBD,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠ADF,∴∠ADF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠ADF+∠FDE=90°,∴∠ACD=∠FDE,∵FK+DF=DC+DF,∴DK=CF,在△ACF和△EDK中,,∴△ACF≌△EDK(SAS),∴KE=AF,∠K=∠AFC,又∠AFC=∠KFE,∴∠K=∠KFE∴KE=EF∴AF=EF,故AF与EF的数量关系为:AF=EF.故答案为:AF=EF;(2)仍旧成立,理由如下:延长DF到K点,并使FK=DC,连接KE,如图2所示,设BD延长线DM交AE于M点,∵△ABC≌△EBD,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠MDF,∴∠MDF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠MDF+∠FDE=90°,∴∠ACD=∠FDE,∵FK+DF=DC+DF,∴DK=CF,在△ACF和△EDK中,,∴△ACF≌△EDK(SAS),∴KE=AF,∠K=∠AFC,又∠AFC=∠KFE,∴∠K=∠KFE,∴KE=EF,∴AF=EF,故AF与EF的数量关系为:AF=EF.(3)如图3所示,延长DF到K点,并使FK=DC,连接KE,过点E作EG⊥BC交CB的延长线于G,∵BA=BE,∴∠BAE=∠BEA,∵∠BAE=∠EBG,∴∠BEA=∠EBG,∴AE∥CG,∴∠AEG+∠G=180°,∴∠AEG=90°,∴∠ACG=∠G=∠AEG=90°,∴四边形AEGC为矩形,∴AC=EG,且AB=BE,∴Rt△ACB≌Rt△EGB(HL),∴BG=BC=6,∠ABC=∠EBG,又∵ED=AC=EG,且EB=EB,∴Rt△EDB≌Rt△EGB(HL),∴DB=GB=6,∠EBG=∠ABE,∴∠ABC=∠ABE=∠EBG=60°,∴∠BAC=30°,∴在Rt△ABC中,由30°所对的直角边等于斜边的一半可知:AB=2BC=12.25.【解答】(1)把点A(﹣1,0),C(0,3)代入y=ax2﹣2ax+c中,,解得,∴y=﹣x2+2x+3,当时,y=4,∴D(1,4);(2)如图1,∵抛物线y=﹣x2+2x+3,令y=0,∴x=﹣1,或x=3,∴B(3,0).设BC的解析式为y=kx+b(k≠0),将点C(0,3),B(3,0)代入,得,解得,∴y=﹣x+3.∵EF⊥CB.设直线EF的解析式为y=x+b,设点E的坐标为(m,﹣m2+2m+3),将点E坐标代入y=x+b中,得b=﹣m2+m+3,∴y=x﹣m2+m+3,联立得.∴.∴.把x=m代入y=﹣x+3,得y=﹣m+3,∴G(m,﹣m+3).∵BG=CF.∴BG2=CF2,即.解得m=2或m=﹣3.∵点E是BC上方抛物线上的点,∴m=﹣3,舍去.∴点E(2,3),F(1,2),G(2,1),,,∴;(3)如图2,过点A作AN⊥HB,∵点D(1,4),B(3,0),∴y DB=﹣2x+6.∵点A(﹣1,0),点C(0,3),∴y AC=3x+3,联立得,∴,∴.设,把(﹣1,0)代入,得b=,∴,联立得,∴,∴,∴=,,∴AN=HN.∴∠H=45°.设点P(n,﹣n2+2n+3).过点P作PR⊥x轴于点R,在x轴上作点S使得RS=PR,∴∠RSP=45°且点S的坐标为(﹣n2+3n+3,0).若∠OPB=∠AHB=45°在△OPS和△OPB中,∠POS=∠POB,∠OSP=∠OPB,∴△OPS∽△OBP.∴.∴OP2=OB•OS.∴n2+(n+1)2(n﹣3)2=3•(﹣n2+2n+3).∴n=0或.∴P1(0,3),,.。
2020年湖北省十堰市中考数学试题(解析版)

2020年湖北省十堰市中考数学试卷一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)的倒数是()A.4B.﹣4C.D.﹣2.(3分)某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱3.(3分)如图,将一副三角板重叠放在起,使直角顶点重合于点O.若∠AOC=130°,则∠BOD=()A.30°B.40°C.50°D.60°4.(3分)下列计算正确的是()A.a+a2=a3B.a6÷a3=a2C.(﹣a2b)3=a6b3D.(a﹣2)(a+2)=a2﹣45.(3分)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示:鞋的尺码/cm2222.52323.52424.525销售量双12511731若每双鞋的销售利润相同,则该店主最应关注的销售数据是下列统计量中的()A.平均数B.方差C.众数D.中位数6.(3分)已知平行四边形ABCD中,下列条件:①AB=BC;②AC=BD;③AC⊥BD;④AC平分∠BAD,其中能说明平行四边形ABCD是矩形的是()A.①B.②C.③D.④7.(3分)某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A.=+1B.=﹣1C.=+2D.=﹣28.(3分)如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC=30°,AE=1,则BC=()A.2B.4C.D.29.(3分)根据图中数字的规律,若第n个图中出现数字396,则n=()A.17B.18C.19D.2010.(3分)如图,菱形ABCD的顶点分别在反比例函数y=和y=的图象上,若∠BAD =120°,则||=()A.B.3C.D.二、填空题(本题有6个小题,每小题3分,共18分)11.(3分)已知x+2y=3,则1+2x+4y=.12.(3分)如图,在△ABC中,DE是AC的垂直平分线.若AE=3,△ABD的周长为13,则△ABC的周长为.13.(3分)某校即将举行30周年校庆,拟定了A,B,C,D四种活动方案,为了解学生对方案的意见,学校随机抽取了部分学生进行问卷调查(每人只能赞成一种方案),将调查结果进行统计并绘制成如图两幅不完整的统计图.若该校有学生3000人,请根据以上统计结果估计该校学生赞成方案B的人数为.14.(3分)对于实数m,n,定义运算m*n=(m+2)2﹣2n.若2*a=4*(﹣3),则a=.15.(3分)如图,圆心角为90°的扇形ACB内,以BC为直径作半圆,连接AB.若阴影部分的面积为(π﹣1),则AC=.16.(3分)如图,D是等边三角形ABC外一点.若BD=8,CD=6,连接AD,则AD的最大值与最小值的差为.三、解答题(本题有9个小题,共72分)17.(5分)计算:()﹣1﹣|﹣2|+20200.18.(6分)先化简,再求值:1﹣÷,其中a=﹣3,b=3.19.(7分)如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°,现有一架长为6m的梯子,当梯子底端离墙面2m时,此时人是否能够安全使用这架梯子(参考数据:sin50°≈0.77,cos50°≈0.64,sin75°≈0.97,cos75°=0.26)?20.(7分)某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.21.(7分)已知关于x的一元二次方程x2﹣4x﹣2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.22.(8分)如图,AB为半圆O的直径,C为半圆O上一点,AD与过点C的切线垂直,垂足为D,AD交半圆O于点E.(1)求证:AC平分∠DAB;(2)若AE=2DE,试判断以O,A,E,C为顶点的四边形的形状,并说明理由.23.(10分)某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元/台),m与x的关系如图所示.(1)若第x天可以生产这种设备y台,则y与x的函数关系式为,x的取值范围为;(2)第几天时,该企业当天的销售利润最大?最大利润为多少?(3)求当天销售利润低于10800元的天数.24.(10分)如图1,已知△ABC≌△EBD,∠ACB=∠EDB=90°,点D在AB上,连接CD并延长交AE于点F.(1)猜想:线段AF与EF的数量关系为;(2)探究:若将图1的△EBD绕点B顺时针方向旋转,当∠CBE小于180°时,得到图2,连接CD并延长交AE于点F,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中,过点E作EG⊥CB,垂足为点G.当∠ABC的大小发生变化,其它条件不变时,若∠EBG=∠BAE,BC=6,直接写出AB的长.25.(12分)已知抛物线y=ax2﹣2ax+c过点A(﹣1,0)和C(0,3),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图1,E为线段BC上方的抛物线上一点,EF⊥BC,垂足为F,EM⊥x轴,垂足为M,交BC于点G.当BG=CF时,求△EFG的面积;(3)如图2,AC与BD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使∠OPB=∠AHB?若存在,求出点P的坐标;若不存在,请说明理由.2020年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)的倒数是()A.4B.﹣4C.D.﹣【分析】根据倒数的概念进行求解即可.【解答】解:的倒数是4故选:A.2.(3分)某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱【分析】根据三视图的主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析可知几何体的名称.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,故选:B.3.(3分)如图,将一副三角板重叠放在起,使直角顶点重合于点O.若∠AOC=130°,则∠BOD=()A.30°B.40°C.50°D.60°【分析】根据角的和差关系求解即可.【解答】解:∵∠AOC=130°,∴∠BOC=∠AOC﹣∠AOB=40°,∴∠BOD=∠COD﹣∠BOC=50°.故选:C.4.(3分)下列计算正确的是()A.a+a2=a3B.a6÷a3=a2C.(﹣a2b)3=a6b3D.(a﹣2)(a+2)=a2﹣4【分析】根据合并同类项法则、同底数幂的除法法则、积的乘方法则,平方差公式计算后,得出结果,作出判断.【解答】解:A、a与a2不是同类项,不能合并,原计算错误,故此选项不符合题意;B、a6÷a3=a3,原计算错误,故此选项不符合题意;C、(﹣a2b)3=﹣a6b3,原计算错误,故此选项不符合题意;D、(a﹣2)(a+2)=a2﹣4,原计算正确,故此选项符合题意,故选:D.5.(3分)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示:鞋的尺码/cm2222.52323.52424.525销售量双12511731若每双鞋的销售利润相同,则该店主最应关注的销售数据是下列统计量中的()A.平均数B.方差C.众数D.中位数【分析】根据题意,联系商家最关注的应该是最畅销的鞋码,则考虑该店主最应关注的销售数据是众数.【解答】解:因为众数是在一组数据中出现次数最多的数,又根据题意,每双鞋的销售利润相同,鞋店为销售额考虑,应关注卖出最多的鞋子的尺码,这样可以确定进货的数量,所以该店主最应关注的销售数据是众数.故选:C.6.(3分)已知平行四边形ABCD中,下列条件:①AB=BC;②AC=BD;③AC⊥BD;④AC平分∠BAD,其中能说明平行四边形ABCD是矩形的是()A.①B.②C.③D.④【分析】根据矩形的判定进行分析即可.【解答】解:A.AB=BC,邻边相等的平行四边形是菱形,故A错误;B.AC=BD,对角线相等的平行四边形是矩形,故B正确;C.AC⊥BD,对角线互相垂直的平行四边形是菱形,故C错误;D.AC平分∠BAD,对角线平分其每一组对角的平行四边形是菱形,故D错误.故选:B.7.(3分)某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A.=+1B.=﹣1C.=+2D.=﹣2【分析】由原计划每周生产的口罩只数结合一周后提高的速度,可得出一周后每周生产1.5x万个口罩,根据工作时间=工作总量÷工作效率结合实际比原计划提前一周完成任务(第一周按原工作效率),即可得出关于x的分式方程,此题得解.【解答】解:∵原计划每周生产x万个口罩,一周后以原来速度的1.5倍生产,∴一周后每周生产1.5x万个口罩,依题意,得:=+1.故选:A.8.(3分)如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC=30°,AE=1,则BC=()A.2B.4C.D.2【分析】连接OC,根据圆周角定理求得∠AOC=60°,在Rt△COE中可得OE=OC =OC﹣1得到OC=2,从而得到CE=,然后根据垂径定理得到BC的长.【解答】解:连接OC,如图,∵∠ADC=30°,∴∠AOC=60°,∵OA⊥BC,∴CE=BE,在Rt△COE中,OE=OC,CE=OE,∵OE=OA﹣AE=OC﹣1,∴OC﹣1=OC,∴OC=2,∴OE=1,∴CE=,∴BC=2CE=2.故选:D.9.(3分)根据图中数字的规律,若第n个图中出现数字396,则n=()A.17B.18C.19D.20【分析】观察上三角形,下左三角形,下中三角形,下右三角形各自的规律,让其等于396,解得n为正整数即成立,否则舍去.【解答】解:根据图形规律可得:上三角形的数据的规律为:2n(1+n),若2n(1+n)=396,解得n不为正整数,舍去;下左三角形的数据的规律为:n2﹣1,若n2﹣1=396,解得n不为正整数,舍去;下中三角形的数据的规律为:2n﹣1,若2n﹣1=396,解得n不为正整数,舍去;下右三角形的数据的规律为:n(n+4),若n(n+4)=396,解得n=18,或n=﹣22,舍去故选:B.10.(3分)如图,菱形ABCD的顶点分别在反比例函数y=和y=的图象上,若∠BAD =120°,则||=()A.B.3C.D.【分析】据对称性可知,反比例函数,的图象是中心对称图形,菱形是中心对称图形,推出菱形ABCD的对角线AC与BD的交点即为原点O.如图:作CM⊥x轴于M,DN⊥x轴于N.连接OD,OC.证明△COM∽△ODN,利用相似三角形的性质可得答案.【解答】解:根据对称性可知,反比例函数,的图象是中心对称图形,菱形是中心对称图形,∴菱形ABCD的对角线AC与BD的交点即为原点O,OD⊥OC,如图:作CM⊥x轴于M,DN⊥x轴于N.连接OD,OC.∵DO⊥OC,∴∠COM+∠DON=90°,∠DON+∠ODN=90°,∴∠COM=∠ODN,∵∠CMO=∠DNO=90°,∴△COM∽△ODN,∴,∵菱形ABCD的对角线AC与BD的交点即为原点O,∠BAD=120°,∴∠OCD=60°,∠COD=90°,∴,∴,∴,∴.故选:B.二、填空题(本题有6个小题,每小题3分,共18分)11.(3分)已知x+2y=3,则1+2x+4y=7.【分析】由x+2y=3可得到2x+4y=6,然后整体代入1+2x+4y计算即可.【解答】解:∵x+2y=3,∴2(x+2y)=2x+4y=2×3=6,∴1+2x+4y=1+6=7,故答案为:7.12.(3分)如图,在△ABC中,DE是AC的垂直平分线.若AE=3,△ABD的周长为13,则△ABC的周长为19.【分析】由线段的垂直平分线的性质可得AC=2AE,AD=DC,从而可得答案.【解答】解:∵DE是AC的垂直平分线,AE=3,∴AC=2AE=6,AD=DC,∵AB+BD+AD=13,∴△ABC的周长=AB+BC+AC=AB+BD+AD+AC=13+6=19.故答案为:19.13.(3分)某校即将举行30周年校庆,拟定了A,B,C,D四种活动方案,为了解学生对方案的意见,学校随机抽取了部分学生进行问卷调查(每人只能赞成一种方案),将调查结果进行统计并绘制成如图两幅不完整的统计图.若该校有学生3000人,请根据以上统计结果估计该校学生赞成方案B的人数为1800人.【分析】根据条形统计图和扇形统计图可知赞成C方案的有44人,占样本的22%,可得出样本容量,即可得到赞成方案B的人数占比,用样本估计总体即可求解.【解答】解:根据条形统计图和扇形统计图可知赞成C方案的有44人,占样本的22%,∴样本容量为:44÷22%=200(人),∴赞成方案B的人数占比为:,∴该校学生赞成方案B的人数为:3000×60%=1800(人),故答案为:1800人.14.(3分)对于实数m,n,定义运算m*n=(m+2)2﹣2n.若2*a=4*(﹣3),则a=﹣13.【分析】根据给出的新定义分别求出2*a与4*(﹣3)的值,根据2*a=4*(﹣3)得出关于a的一元一次方程,求解即可.【解答】解:∵m*n=(m+2)2﹣2n,∴2*a=(2+2)2﹣2a=16﹣2a,4*(﹣3)=(4+2)2﹣2×(﹣3)=42,∵2*a=4*(﹣3),∴16﹣2a=42,解得a=﹣13,故答案为:﹣13.15.(3分)如图,圆心角为90°的扇形ACB内,以BC为直径作半圆,连接AB.若阴影部分的面积为(π﹣1),则AC=2.【分析】本题可利用扇形面积公式以及三角形面积公式,用大扇形面积减去空白部分面积求得阴影部分面积,继而根据已知列方程求解.【解答】解:将原图区域划分为四部分,阴影部分分别为S1,S2;两块空白分别为S3,S4,连接DC,如下图所示:由已知得:三角形ABC为等腰直角三角形,S1+S2=π﹣1,∵BC为直径,∴∠CDB=90°,即CD⊥AB,故CD=DB=DA,∴D点为中点,由对称性可知与弦CD围成的面积与S3相等.设AC=BC=x,则S扇ACB﹣S3﹣S4=S1+S2,其中,,故:,求解得:x1=2,x2=﹣2(舍去)故答案:2.16.(3分)如图,D是等边三角形ABC外一点.若BD=8,CD=6,连接AD,则AD的最大值与最小值的差为12.【分析】以CD为边向外作等边△CDE,连接BE,可证得△ECB≌△DCA从而得到BE =AD,再根据三角形的三边关系即可得出结论.【解答】解:如图,以CD为边向外作等边△CDE,连接BE,∵△CDE和△ABC是等边三角形,∴CE=CD,CB=CA,∠ECD=∠BCA=60°,∴∠ECB=∠DCA,在△ECB和△DCA中,,∴△ECB≌△DCA(SAS),∴BE=AD,∵DE=CD=6,BD=8,∴在△BDE中,BD﹣DE<BE<BD+DE,即8﹣6<BE<8+6,∴2<BE<14,∴2<AD<14.则当B、D、E三点共线时,可得BE的最大值与最小值分别为14和2.∴则AD的最大值与最小值的差为14﹣2=12.故答案为:12.三、解答题(本题有9个小题,共72分)17.(5分)计算:()﹣1﹣|﹣2|+20200.【分析】根据负整数指数幂,绝对值的运算,0次幂分别计算出每一项,再计算即可.【解答】解:=2﹣2+1=1.18.(6分)先化简,再求值:1﹣÷,其中a=﹣3,b=3.【分析】利用完全平方公式、平方差公式和通分等方法将原分式化简成﹣,再将a、b的值代入化简后的分式中即可得出结论.【解答】解:原式=1﹣÷=1﹣•=1﹣==﹣,当a=﹣3,b=3时,原式=﹣=﹣.19.(7分)如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°,现有一架长为6m的梯子,当梯子底端离墙面2m时,此时人是否能够安全使用这架梯子(参考数据:sin50°≈0.77,cos50°≈0.64,sin75°≈0.97,cos75°=0.26)?【分析】分别求出当α=50°时和当α=75°时梯子底端与墙面的距离AC的长度,再进行判断即可.【解答】解:在Rt△ABC中,∵cosα=,∴AC=AB•cosα,当α=50°时,AC=AB•cosα≈6×0.64≈3.84m;当α=75°时,AC=AB•cosα≈6×0.26≈1.56m;所以要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子底端与墙面的距离应该在1.56m~3.84m之间,故当梯子底端离墙面2m时,此时人能够安全使用这架梯子.20.(7分)某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.【分析】(1)根据概率公式即可求解;(2)根据题意画出树状图,利用概率公式即可求解.【解答】解:(1)P(小文诵读《长征》)=;故答案为:;(2)记《红星照耀中国》、《红岩》、《长征》分别为A、B、C,列表如下:A B CA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为.21.(7分)已知关于x的一元二次方程x2﹣4x﹣2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.【分析】(1)根据△≥0建立不等式即可求解;(2)先提取公因式对等式变形为,再结合韦达定理求解即可.【解答】解:(1)由题意可知,△=(﹣4)2﹣4×1×(﹣2k+8)≥0,整理得:16+8k﹣32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)由题意得:,由韦达定理可知:x1+x2=4,x1x2=﹣2k+8,故有:(﹣2k+8)[42﹣2(﹣2k+8)]=24,整理得:k2﹣4k+3=0,解得:k1=3,k2=1,又由(1)中可知k≥2,∴k的值为k=3.故答案为:k=3.22.(8分)如图,AB为半圆O的直径,C为半圆O上一点,AD与过点C的切线垂直,垂足为D,AD交半圆O于点E.(1)求证:AC平分∠DAB;(2)若AE=2DE,试判断以O,A,E,C为顶点的四边形的形状,并说明理由.【分析】(1)连接OC,由切线的性质可知∠OCD+∠D=180°,进而得到OC∥AD,得到∠DAC=∠ACO,再由OC=OA得到∠ACO=∠OAC,进而得到∠DAC=∠OAC即可证明;(2)连接EC、BC、EO,过C点作CH⊥AB于H点,先证明∠DCE=∠CAE,进而得到△DCE∽△DAC,再由AE=2DE结合三角函数求出∠EAC=30°,最后证明△EAO和△ECO均为等边三角形即可求解.【解答】解:(1)证明:连接OC,如下图所示:∵CD为圆O的切线,∴∠OCD=90°,∴∠D+∠OCD=180°,∴OC∥AD,∴∠DAC=∠ACO,又OC=OA,∴∠ACO=∠OAC,∴∠DAC=∠OAC,∴AC平分∠DAB.(2)四边形EAOC为菱形,理由如下:连接EC、BC、EO,过C点作CH⊥AB于H点,如下图所示,由圆内接四边形对角互补可知,∠B+∠AEC=180°,又∠AEC+∠DEC=180°,∴∠DEC=∠B,又∠B+∠CAB=90°,∠DEC+∠DCE=90°,∴∠CAB=∠DCE,又∠CAB=∠CAE,∴∠DCE=∠CAE,且∠D=∠D,∴△DCE∽△DAC,设DE=x,则AE=2x,AD=AE+DE=3x,∴,∴CD2=AD•DE=3x2,∴,在Rt△ACD中,,∴∠DAC=30°,∴∠DAO=2∠DAC=60°,且OA=OE,∴△OAE为等边三角形,由同弧所对的圆周角等于圆心角的一半可知:∠EOC=2∠EAC=60°,∴△EOC为等边三角形,∴EA=AO=OE=EC=CO,即EA=AO=OC=CE,∴四边形EAOC为菱形.23.(10分)某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元/台),m与x的关系如图所示.(1)若第x天可以生产这种设备y台,则y与x的函数关系式为y=2x+20,x的取值范围为1≤x≤12;(2)第几天时,该企业当天的销售利润最大?最大利润为多少?(3)求当天销售利润低于10800元的天数.【分析】(1)根据题意确定一次函数的解析式,实际问题中x的取值范围要使实际问题有意义;(2)求出当天利润与天数的函数解析式,确定其最大值即可;(3)根据(2)中的函数解析式列出不等式即可解答.【解答】解:(1)根据题意,得y与x的解析式为:y=22+2(x﹣1)=2x+20(1≤x≤12),故答案为:y=2x+20,1≤x≤12;(2)设当天的销售利润为w元,则当1≤x≤6时,w=(1200﹣800)(2x+20)=800x+8000,∵800>0,∴w随x的增大而增大,∴当x=6时,w最大值=800×6+8000=12800.当6<x≤12时,设m=kx+b,将(6,800)和(10,1000)代入得:,解得:,∴m与x的关系式为:m=50x+500,∴w=[1200﹣(50x+500)]×(2x+20)=﹣100x2+400x+14000=﹣100(x﹣2)2+14400.∵此时图象开口向下,在对称轴右侧,w随x的增大而减小,天数x为整数,∴当x=7时,w有最大值,为11900元,∵12800>11900,∴当x=6时,w最大,且w最大值=12800元,答:该厂第6天获得的利润最大,最大利润是12800元.(3)由(2)可得,1≤x≤6时,800x+8000<10800,解得:x<3.5则第1﹣3天当天利润低于10800元,当6<x≤12时,﹣100(x﹣2)2+14400<10800,解得x<﹣4(舍去),或x>8,∴第9﹣12天当天利润低于10800元,故当天销售利润低于10800元的天数有7天.24.(10分)如图1,已知△ABC≌△EBD,∠ACB=∠EDB=90°,点D在AB上,连接CD并延长交AE于点F.(1)猜想:线段AF与EF的数量关系为AF=EF;(2)探究:若将图1的△EBD绕点B顺时针方向旋转,当∠CBE小于180°时,得到图2,连接CD并延长交AE于点F,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中,过点E作EG⊥CB,垂足为点G.当∠ABC的大小发生变化,其它条件不变时,若∠EBG=∠BAE,BC=6,直接写出AB的长.【分析】(1)延长DF到K点,并使FK=DC,连接KE,证明△ACF≌△EDK,进而得到△KEF为等腰三角形,即可证明AF=KE=EF;(2)证明原理同(1),延长DF到K点,并使FK=DC,连接KE,证明△ACF≌△EDK,进而得到△KEF为等腰三角形,即可证明AF=KE=EF;(3)补充完整图后证明四边形AEGC为矩形,进而得到∠ABC=∠ABE=∠EBG=60°即可求解.【解答】解:(1)延长DF到K点,并使FK=DC,连接KE,如图1所示,∵△ABC≌△EBD,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠ADF,∴∠ADF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠ADF+∠FDE=90°,∴∠ACD=∠FDE,∵FK+DF=DC+DF,∴DK=CF,在△ACF和△EDK中,,∴△ACF≌△EDK(SAS),∴KE=AF,∠K=∠AFC,又∠AFC=∠KFE,∴∠K=∠KFE∴KE=EF∴AF=EF,故AF与EF的数量关系为:AF=EF.故答案为:AF=EF;(2)仍旧成立,理由如下:延长DF到K点,并使FK=DC,连接KE,如图2所示,设BD延长线DM交AE于M点,∵△ABC≌△EBD,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠MDF,∴∠MDF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠MDF+∠FDE=90°,∴∠ACD=∠FDE,∵FK+DF=DC+DF,∴DK=CF,在△ACF和△EDK中,,∴△ACF≌△EDK(SAS),∴KE=AF,∠K=∠AFC,又∠AFC=∠KFE,∴∠K=∠KFE,∴KE=EF,∴AF=EF,故AF与EF的数量关系为:AF=EF.(3)如图3所示,延长DF到K点,并使FK=DC,连接KE,过点E作EG⊥BC交CB的延长线于G,∵BA=BE,∴∠BAE=∠BEA,∵∠BAE=∠EBG,∴∠BEA=∠EBG,∴AE∥CG,∴∠AEG+∠G=180°,∴∠AEG=90°,∴∠ACG=∠G=∠AEG=90°,∴四边形AEGC为矩形,∴AC=EG,且AB=BE,∴Rt△ACB≌Rt△EGB(HL),∴BG=BC=6,∠ABC=∠EBG,又∵ED=AC=EG,且EB=EB,∴Rt△EDB≌Rt△EGB(HL),∴DB=GB=6,∠EBG=∠ABE,∴∠ABC=∠ABE=∠EBG=60°,∴∠BAC=30°,∴在Rt△ABC中,由30°所对的直角边等于斜边的一半可知:AB=2BC=12.25.(12分)已知抛物线y=ax2﹣2ax+c过点A(﹣1,0)和C(0,3),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图1,E为线段BC上方的抛物线上一点,EF⊥BC,垂足为F,EM⊥x轴,垂足为M,交BC于点G.当BG=CF时,求△EFG的面积;(3)如图2,AC与BD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使∠OPB=∠AHB?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出a的值即可得到解析式,进而得到顶点D坐标;(2)先求出BC的解析式y=﹣x+3,再设直线EF的解析式为y=x+b,设点E的坐标为(m,﹣m2+2m+3),联立方程求出点F,G的坐标,根据BG2=CF2列出关于m的方程并求解,然后求得G的坐标,再利用三角形面积公式求解即可;(3)过点A作AN⊥HB,先求得直线BD,AN的解析式,得到H,N的坐标,进而得到∠H=45°,设点P(n,﹣n2+2n+3),过点P作PR⊥x轴于点R,在x轴上作点S使得RS=PR,证明△OPS∽△OBP,根据相似三角形对应边成比例得到关于n的方程,求得后即可得到点P的坐标.【解答】(1)把点A(﹣1,0),C(0,3)代入y=ax2﹣2ax+c中,,解得,∴y=﹣x2+2x+3,当时,y=4,∴D(1,4);(2)如图1,∵抛物线y=﹣x2+2x+3,令y=0,∴x=﹣1,或x=3,∴B(3,0).设BC的解析式为y=kx+b(k≠0),将点C(0,3),B(3,0)代入,得,解得,∴y=﹣x+3.∵EF⊥CB.设直线EF的解析式为y=x+b,设点E的坐标为(m,﹣m2+2m+3),将点E坐标代入y=x+b中,得b=﹣m2+m+3,∴y=x﹣m2+m+3,联立得.∴.∴.把x=m代入y=﹣x+3,得y=﹣m+3,∴G(m,﹣m+3).∵BG=CF.∴BG2=CF2,即.解得m=2或m=﹣3.∵点E是BC上方抛物线上的点,∴m=﹣3,舍去.∴点E(2,3),F(1,2),G(2,1),,,∴;(3)如图2,过点A作AN⊥HB,∵点D(1,4),B(3,0),∴y DB=﹣2x+6.∵点A(﹣1,0),点C(0,3),∴y AC=3x+3,联立得,∴,∴.设,把(﹣1,0)代入,得b=,∴,联立得,∴,∴,∴=,,∴AN=HN.∴∠H=45°.设点P(n,﹣n2+2n+3).过点P作PR⊥x轴于点R,在x轴上作点S使得RS=PR,∴∠RSP=45°且点S的坐标为(﹣n2+3n+3,0).若∠OPB=∠AHB=45°在△OPS和△OPB中,∠POS=∠POB,∠OSP=∠OPB,∴△OPS∽△OBP.∴.∴OP2=OB•OS.∴n2+(n+1)2(n﹣3)2=3•(﹣n2+3n+3).∴n=0或.∴P1(0,3),,.。
2020年湖北省十堰市中考数学试卷(有详细解析)

2020年湖北省十堰市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共10小题,共30.0分)1.14的倒数是()A. 4B. −4C. 14D. −142.某几何体的三视图如图所示,则此几何体是()A. 圆锥B. 圆柱C. 长方体D. 四棱柱3.如图,将一副三角板重叠放在起,使直角顶点重合于点O.若∠AOC=130°,则∠BOD=()A. 30°B. 40°C. 50°D. 60°4.下列计算正确的是()A. a+a2=a3B. a6÷a3=a2C. (−a2b)3=a6b3D. (a−2)(a+2)=a2−45.鞋的尺码/cm2222.52323.52424.525销售量双12511731若每双鞋的销售利润相同,则该店主最应关注的销售数据是下列统计量中的()A. 平均数B. 方差C. 众数D. 中位数6.已知平行四边形ABCD中,下列条件:①AB=BC;②AC=BD;③AC⊥BD;④AC平分∠BAD,其中能说明平行四边形ABCD是矩形的是()A. ①B. ②C. ③D. ④7.某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A. 180−xx =180−x1.5x+1 B. 180−xx=180−x1.5x−1C. 180x =1801.5x+2 D. 180x=1801.5x−28.如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC=30°,AE=1,则BC=()A. 2B. 4C. √3D. 2√39.根据图中数字的规律,若第n个图中出现数字396,则n=()A. 17B. 18C. 19D. 2010.如图,菱形ABCD的顶点分别在反比例函数y=k1x 和y=k2x的图象上,若∠BAD=120°,则|k1k2|=()A. 13B. 3 C. √3 D. √33二、填空题(本大题共6小题,共18.0分)11.已知x+2y=3,则1+2x+4y=______.12.如图,在△ABC中,DE是AC的垂直平分线.若AE=3,△ABD的周长为13,则△ABC的周长为______.13.某校即将举行30周年校庆,拟定了A,B,C,D四种活动方案,为了解学生对方案的意见,学校随机抽取了部分学生进行问卷调查(每人只能赞成一种方案),将调查结果进行统计并绘制成如图两幅不完整的统计图.若该校有学生3000人,请根据以上统计结果估计该校学生赞成方案B的人数为______.14.对于实数m,n,定义运算m∗n=(m+2)2−2n.若2∗a=4∗(−3),则a=______.15.如图,圆心角为90°的扇形ACB内,以BC为直径作半圆,连接AB.若阴影部分的面积为(π−1),则AC=______.16.如图,D是等边三角形ABC外一点.若BD=8,CD=6,连接AD,则AD的最大值与最小值的差为______.三、计算题(本大题共1小题,共5.0分)17.计算:(12)−1−|−2|+20200.四、解答题(本大题共8小题,共97.0分)18.先化简,再求值:1−a−ba+2b ÷a2−b2a2+4ab+4b2,其中a=√3−3,b=3.19.如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°,现有一架长为6m的梯子,当梯子底端离墙面2m时,此时人是否能够安全使用这架梯子(参考数据:sin50°≈0.77,cos50°≈0.64,sin75°≈0.97,cos75°=0.26)?20.某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是______;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.21.已知关于x的一元二次方程x2−4x−2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.22.如图,AB为半圆O的直径,C为半圆O上一点,AD与过点C的切线垂直,垂足为D,AD交半圆O于点E.(1)求证:AC平分∠DAB;(2)若AE=2DE,试判断以O,A,E,C为顶点的四边形的形状,并说明理由.23.某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元/台),m与x的关系如图所示.(1)若第x天可以生产这种设备y台,则y与x的函数关系式为______,x的取值范围为______;(2)第几天时,该企业当天的销售利润最大?最大利润为多少?(3)求当天销售利润低于10800元的天数.24.如图1,已知△ABC≌△EBD,∠ACB=∠EDB=90°,点D在AB上,连接CD并延长交AE于点F.(1)猜想:线段AF与EF的数量关系为______;(2)探究:若将图1的△EBD绕点B顺时针方向旋转,当∠CBE小于180°时,得到图2,连接CD并延长交AE于点F,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中,过点E作EG⊥CB,垂足为点G.当∠ABC的大小发生变化,其它条件不变时,若∠EBG=∠BAE,BC=6,直接写出AB的长.25.已知抛物线y=ax2−2ax+c过点A(−1,0)和C(0,3),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图1,E为线段BC上方的抛物线上一点,EF⊥BC,垂足为F,EM⊥x轴,垂足为M,交BC于点G.当BG=CF时,求△EFG的面积;(3)如图2,AC与BD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使∠OPB=∠AHB?若存在,求出点P的坐标;若不存在,请说明理由.答案和解析1.A解:14的倒数是42.B解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,3.C解:∵∠AOC=130°,∴∠BOC=∠AOC−∠AOB=40°,∴∠BOD=∠COD−∠BOC=50°.4.D解:A、a与a2不是同类项,不能合并,原计算错误,故此选项不符合题意;B、a6÷a3=a3,原计算错误,故此选项不符合题意;C、(−a2b)3=−a6b3,原计算错误,故此选项不符合题意;D、(a−2)(a+2)=a2−4,原计算正确,故此选项符合题意,5.C解:因为众数是在一组数据中出现次数最多的数,又根据题意,每双鞋的销售利润相同,鞋店为销售额考虑,应关注卖出最多的鞋子的尺码,这样可以确定进货的数量,所以该店主最应关注的销售数据是众数.6.B解:A.AB=BC,邻边相等的平行四边形是菱形,故A错误;B.AC=BD,对角线相等的平行四边形是矩形,故B正确;C.AC⊥BD,对角线互相垂直的平行四边形是菱形,故C错误;D.AC平分∠BAD,对角线平分其每一组对角的平行四边形是菱形,故D错误.7.A解:∵原计划每周生产x万个口罩,一周后以原来速度的1.5倍生产,∴一周后每周生产1.5x万个口罩,依题意,得:180−xx =180−x1.5x+1.8.D解:连接OC,如图,∵∠ADC=30°,∴∠AOC=60°,∵OA⊥BC,∴CE=BE,在Rt△COE中,OE=12OC,CE=√3OE,∵OE=OA−AE=OC−1,∴OC−1=12OC,∴OC=2,∴OE=1,∴CE=√3,∴BC=2CE=2√3.9.B解:根据图形规律可得:上三角形的数据的规律为:2n(1+n),若2n(1+n)=396,解得n不为正整数,舍去;下左三角形的数据的规律为:n2−1,若n2−1=396,解得n不为正整数,舍去;下中三角形的数据的规律为:2n−1,若2n−1=396,解得n不为正整数,舍去;下右三角形的数据的规律为:n(n+4),若n(n+4)=396,解得n=18,或n=−22,舍去10.B解:根据对称性可知,反比例函数y=k1x ,y=k2x的图象是中心对称图形,菱形是中心对称图形,∴菱形ABCD的对角线AC与BD的交点即为原点O,OD⊥OC,如图:作CM⊥x轴于M,DN⊥x轴于N.连接OD,OC.∵DO⊥OC,∴∠COM+∠DON=90°,∠DON+∠ODN=90°,∴∠COM=∠ODN,∵∠CMO=∠DNO=90°,∴△COM∽△ODN,∴S△COMS△ODN =(COOD)2=12|k2|12|k1|=|k2||k1|,∵菱形ABCD的对角线AC与BD的交点即为原点O,∠BAD=120°,∴∠OCD=60°,∠COD=90°,∴tan60°=DOCO=√3,∴CODO =√33,∴(COOD )2=|k2||k1|=(√33)2=13,∴|k1k2|=3.11.7解:∵x+2y=3,∴2(x+2y)=2x+4y=2×3=6,∴1+2x+4y=1+6=7,12.19解:∵DE是AC的垂直平分线,AE=3,∴AC=2AE=6,AD=DC,∵AB+BD+AD=13,∴△ABC的周长=AB+BC+AC=AB+BD+AD+AC=13+6=19.13.1800人解:根据条形统计图和扇形统计图可知赞成C方案的有44人,占样本的22%,∴样本容量为:44÷22%=200(人),∴赞成方案B的人数占比为:120200×100%=60%,∴该校学生赞成方案B的人数为:3000×60%=1800(人),14.−13解:∵m∗n=(m+2)2−2n,∴2∗a=(2+2)2−2a=16−2a,4∗(−3)=(4+2)2−2×(−3)=42,∵2∗a=4∗(−3),∴16−2a=42,解得a=−13,15.2解:将原图区域划分为四部分,阴影部分分别为S1,S2;两块空白分别为S3,S4,连接DC,如下图所示:由已知得:三角形ABC为等腰直角三角形,S1+S2=π−1,∵BC为直径,∴∠CDB=90°,即CD⊥AB,故CD=DB=DA,∴D点为BC⏜中点,由对称性可知CD⏜与弦CD围成的面积与S3相等.设AC=BC=x,则S扇ACB−S3−S4=S1+S2,其中S扇ACB =90⋅π⋅x2360=πx24,S4=S△ACB−S△BCD−S3=12⋅x2−12⋅x⋅x2−S3=x24−S3,故:πx24−S3−(x24−S3)=π−1,求解得:x1=2,x2=−2(舍去)故答案:2.16.12解:如图,以CD为边向外作等边△CDE,连接BE,∵△CDE和△ABC是等边三角形,∴CE=CD,CB=CA,∠ECD=∠BCA=60°,∴∠ECB=∠DCA,在△ECB和△DCA中,{CE=CD∠ECB=∠DCA CB=CA,∴△ECB≌△DCA(SAS),∴BE=AD,∵DE=CD=6,BD=8,∴在△BDE中,BD−DE<BE<BD+DE,即8−6<BE<8+6,∴2<BE<14,∴2<AD<14.∴则AD的最大值与最小值的差为14−2=12.17.解:(12)−1−|−2|+20200=2−2+1=1.18.解:原式=1−a−ba+2b ÷(a+b)(a−b)(a+2b)2=1−a−ba+2b ⋅(a+2b)2 (a+b)(a−b)=1−a+2ba+b=a+b−a−2ba+b=−ba+b,当a=√3−3,b=3时,原式=√3−3+3=−√3.19.解:在Rt△ABC中,∵cosα=ACAB,∴AC=AB⋅cosα,当α=50°时,AC=AB⋅cosα≈6×0.64≈3.84m;当α=75°时,AC=AB⋅cosα≈6×0.26≈1.56m;所以要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子底端与墙面的距离应该在1.56m~3.84m之间,故当梯子底端离墙面2m时,此时人能够安全使用这架梯子.20.13解:(1)P(小文诵读《长征》)=13;故答案为:13;(2)记《红星照耀中国》、《红岩》、《长征》分别为A、B、C,列表如下:由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为39=13.21.解:(1)由题意可知,△=(−4)2−4×1×(−2k+8)≥0,整理得:16+8k−32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)由题意得:x13x2+x1x23=x1x2[(x1+x2)2−2x1x2]=24,由韦达定理可知:x1+x2=4,x1x2=−2k+8,故有:(−2k+8)[42−2(−2k+8)]=24,整理得:k2−4k+3=0,解得:k1=3,k2=1,又由(1)中可知k≥2,∴k的值为k=3.故答案为:k=3.22.解:(1)证明:连接OC,如下图所示:∵CD为圆O的切线,∴∠OCD=90°,∴∠D+∠OCD=180°,∴OC//AD,∴∠DAC=∠ACO,又OC=OA,∴∠ACO=∠OAC,∴∠DAC=∠OAC,∴AC平分∠DAB.(2)四边形EAOC为菱形,理由如下:连接EC、BC、EO,过C点作CH⊥AB于H点,如下图所示,由圆内接四边形对角互补可知,∠B+∠AEC=180°,又∠AEC+∠DEC=180°,∴∠DEC=∠B,又∠B+∠CAB=90°,∠DEC+∠DCE=90°,∴∠CAB=∠DCE,又∠CAB=∠CAE,∴∠DCE=∠CAE,且∠D=∠D,∴△DCE∽△DAC,设DE=x,则AE=2x,AD=AE+DE=3x,∴CDAD =DECD,∴CD2=AD⋅DE=3x2,∴CD=√3x,在Rt△ACD中,tan∠DAC=DCAD =√3x3x=√33,∴∠DAC=30°,∴∠DAO=2∠DAC=60°,且OA=OE,∴△OAE为等边三角形,由同弧所对的圆周角等于圆心角的一半可知:∠EOC=2∠EAC=60°,∴△EOC为等边三角形,∴EA=AO=OE=EC=CO,即EA=AO=OC=CE,∴四边形EAOC为菱形.23.y=2x+201≤x≤12解:(1)根据题意,得y与x的解析式为:y=22+2(x−1)=2x+20(1≤x≤12),故答案为:y=2x+20,1≤x≤12;(2)设当天的销售利润为w元,则当1≤x≤6时,w=(1200−800)(2x+20)=800x+8000,∵800>0,∴w随x的增大而增大,∴当x =6时,w 最大值=800×6+8000=12800.当6<x ≤12时,设m =kx +b ,将(6,800)和(10,1000)代入得:{800=6k +b 1000=10k +b, 解得:{k =50b =500, ∴m 与x 的关系式为:m =50x +500,∴w =[1200−(50x +500)]×(2x +20)=−100x 2+400x +14000=−100(x −2)2+14400.∵此时图象开口向下,在对称轴右侧,w 随x 的增大而减小,天数x 为整数, ∴当x =7时,w 有最大值,为11900元,∵12800>11900,∴当x =6时,w 最大,且w 最大值=12800元,答:该厂第6天获得的利润最大,最大利润是12800元.(3)由(2)可得,1≤x ≤6时,800x +8000<10800,解得:x <3.5则第1−3天当天利润低于10800元,当6<x ≤12时,−100(x −2)2+14400<10800,解得x <−4(舍去),或x >8,∴第9−12天当天利润低于10800元,故当天销售利润低于10800元的天数有7天.24. AF =EF解:(1)延长DF 到K 点,并使FK =DC ,连接KE ,如图1所示, ∵△ABC≌△EBD ,∴DE =AC ,BD =BC ,∴∠CDB =∠DCB ,且∠CDB =∠ADF ,∴∠ADF =∠DCB ,∵∠ACB =90°,∴∠ACD +∠DCB =90°,∵∠EDB =90°,∴∠ADF +∠FDE =90°,∴∠ACD =∠FDE ,∵FK +DF =DC +DF ,∴DK =CF ,在△ACF 和△EDK 中,{AC =ED∠ACF =∠EDK CF =DK,∴△ACF≌△EDK(SAS),∴KE =AF ,∠K =∠AFC ,又∠AFC =∠KFE ,∴∠K =∠KFE∴KE=EF∴AF=EF,故AF与EF的数量关系为:AF=EF.故答案为:AF=EF;(2)仍旧成立,理由如下:延长DF到K点,并使FK=DC,连接KE,如图2所示,设BD延长线DM交AE于M点,∵△ABC≌△EBD,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠MDF,∴∠MDF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠MDF+∠FDE=90°,∴∠ACD=∠FDE,∵FK+DF=DC+DF,∴DK=CF,在△ACF和△EDK中,{AC=ED∠ACF=∠EDK CF=DK,∴△ACF≌△EDK(SAS),∴KE=AF,∠K=∠AFC,又∠AFC=∠KFE,∴∠K=∠KFE,∴KE=EF,∴AF=EF,故AF与EF的数量关系为:AF=EF.(3)如图3所示,延长DF到K点,并使FK=DC,连接KE,过点E 作EG⊥BC交CB的延长线于G,∵BA=BE,∴∠BAE=∠BEA,∵∠BAE=∠EBG,∴∠BEA=∠EBG,∴AE//CG,∴∠AEG+∠G=180°,∴∠AEG=90°,∴∠ACG=∠G=∠AEG=90°,∴四边形AEGC为矩形,∴AC=EG,且AB=BE,∴Rt△ACB≌Rt△EGB(HL),∴BG=BC=6,∠ABC=∠EBG,又∵ED=AC=EG,且EB=EB,∴Rt△EDB≌Rt△EGB(HL),∴DB=GB=6,∠EBG=∠ABE,∴∠ABC=∠ABE=∠EBG=60°,∴∠BAC =30°,∴在Rt △ABC 中,由30°所对的直角边等于斜边的一半可知:AB =2BC =12.25. (1)把点A(−1,0),C(0,3)代入y =ax 2−2ax +c 中,{a +2a +c =0c =3, 解得{a =−1c =3, ∴y =−x 2+2x +3,当x =−b 2a =1时,y =4, ∴D(1,4);(2)如图1,∵抛物线y =−x 2+2x +3,令y =0,∴x =−1,或x =3,∴B(3,0).设BC 的解析式为y =kx +b(k ≠0),将点C(0,3),B(3,0)代入,得{b =33k +b =0, 解得{k =−1b =3, ∴y =−x +3.∵EF ⊥CB .设直线EF 的解析式为y =x +b ,设点E 的坐标为(m,−m 2+2m +3), 将点E 坐标代入y =x +b 中,得b =−m 2+m +3,∴y =x −m 2+m +3{y =−x +3y =x −m 2+m +3. ∴{x =m 2−m 2y =−m 2+m+62. ∴F(m 2−m 2,−m 2+m+62).把x =m 代入y =−x +3,得y =−m +3,∴G(m,−m +3).∵BG =CF .∴BG 2=CF 2,即(m −3)2+(3−m)2=(m 2−m 2)2+(m 2−m 2)2. 解得m =2或m =−3.∵点E 是BC 上方抛物线上的点,∴m =−3,舍去.∴点E(2,3),F(1,2),G(2,1),EF =√12+12=√2FG =√12+12=√2,∴S △EFG =12×√2×√2=1;(3)如图2,过点A 作AN ⊥HB ,∵点D(1,4),B(3,0),∴y DB =−2x +6.∵点A(−1,0),点C(0,3),∴y AC =3x +3{y =x +3y =−2x +6, ∴{x =35y =245,∴H(35,245). 设y AN =12x +b ,把(−1,0)代入,得b =12,∴y =12x +12{y =12x +12y =−2x +6, ∴{x =115y =85, ∴N(115,85), ∴AN 2=(115+1)2+(85)2=(165)2+(85)2HN 2=(85)2+(165)2, ∴AN =HN .∴∠H =45°.设点p(n,−n 2+2n +3).过点P 作PR ⊥x 轴于点R ,在x 轴上作点S 使得RS =PR , ∴∠RSP =45°且点S 的坐标为(−n 2+3n +3,0). 若∠OPB =∠AHB =45°在△OPS 和△OPB 中,∠POS =∠POB ,∠OSP =∠OPB , ∴△OPS∽△OPB .∴OP OB =OS OP .∴OP 2=OB ⋅OS .∴n 2+(n +1)2(n −3)2=3⋅(−n 2+2n +3). ∴n =0或n =1±√52. ∴P 1(0,3),P 2(1+√52,5+√52),P 3(1−√52,5−√52).。
十堰中招数学试题及答案

十堰中招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. √4C. πD. 0.33333...答案:C2. 一个等腰三角形的底边长为6cm,腰长为8cm,其周长是多少?A. 22cmB. 26cmC. 30cmD. 28cm答案:B3. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个数的相反数是-5,这个数是多少?A. 5C. 0D. 10答案:A5. 下列哪个选项是完全平方数?A. 16B. 17C. 18D. 19答案:A6. 一个圆的半径是5cm,它的面积是多少?A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B7. 一个正方体的体积是27cm³,它的棱长是多少?A. 3cmB. 6cmC. 9cmD. 12cm答案:A8. 一个数的立方根是2,这个数是多少?B. 8C. 2³D. 4答案:C9. 一个二次函数的顶点坐标是(1, -4),且开口向上,它的对称轴是什么?A. x=-1B. x=1C. x=2D. x=0答案:B10. 一个等差数列的首项是3,公差是2,第5项是多少?A. 11B. 13C. 15D. 17答案:A二、填空题(每题3分,共15分)1. 一个直角三角形的两个直角边长分别是3cm和4cm,斜边长是____cm。
答案:52. 一个数的绝对值是5,这个数可以是____或____。
答案:5或-53. 一个二次函数的一般形式是y=ax²+bx+c,其中a、b、c是常数,且a≠0。
如果a>0,那么这个函数的图象开口____。
答案:向上4. 一个数的平方根是2,那么这个数的立方根是____。
答案:2³5. 一个等比数列的首项是2,公比是3,第4项是____。
2020年湖北省十堰市中考数学试卷附详细答案解析

2020年湖北省十堰市中考数学试卷一、选择题:1.(3分)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣52.(3分)如图的几何体,其左视图是()A.B.C.D.3.(3分)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°4.(3分)下列运算正确的是()A.B.C. D.5.(3分)某交警在一个路口统计的某时段来往车辆的车速情况如表:车速(km/h)48 49 50 51 52车辆数(辆) 5 4 8 2 1则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,86.(3分)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形7.(3分)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.B.C.D.8.(3分)如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.9.(3分)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.4010.(3分)如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6二、填空题11.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为.12.(3分)若a﹣b=1,则代数式2a﹣2b﹣1的值为.13.(3分)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED= .14.(3分)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为.15.(3分)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx ﹣6<ax+4<kx的解集为.16.(3分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③=;④S四边S四边形ANGD.其中正确的结论的序号是.形CGNF=三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)计算:|﹣2|+﹣(﹣1)2020.18.(6分)化简:(+)÷.19.(7分)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?20.(9分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.(7分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.22.(8分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?23.(8分)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.24.(10分)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式.25.(12分)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标;(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.2020年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题:1.(3分)(2020•十堰)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣5【分析】根据有理数的加法,可得答案.【解答】解:由题意,得﹣2+3=+(3﹣2)=1,故选:A.【点评】本题考查了有理数的加法,异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减较小的绝对值.2.(3分)(2020•十堰)如图的几何体,其左视图是()A.B.C.D.【分析】根据从左边看得到的图象是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图象是左视图.3.(3分)(2020•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°【分析】先根据平行线的性质,得到∠B=∠CDE=40°,直观化FG⊥BC,即可得出∠FGB的度数.【解答】解:∵AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.(3分)(2020•十堰)下列运算正确的是()A.B.C. D.【分析】根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=6×2=12,所以B选项错误;C、原式==2,所以C选项准确;D、原式=2,所以D选项错误.故选C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.(3分)(2020•十堰)某交警在一个路口统计的某时段来往车辆的车速情况如表:车速(km/h)48 49 50 51 52车辆数(辆) 5 4 8 2 1则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,8【分析】把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,所以中位数是50,在这组数据中出现次数最多的是50,即众数是50.故选:B.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.6.(3分)(2020•十堰)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形【分析】利用平行四边形、矩形、菱形及正方形的判定定理分别判断后即可确定正确的选项.【解答】解:A、对角线互相平分的四边形是平行四边形是正确的,不符合题意;B、对角线相等的平行四边形是矩形是正确的,不符合题意;C、一条对角线平分一组对角的四边形不一定是菱形,原来的说法错误,符合题意;D、对角线互相垂直的矩形是正方形是正确的,不符合题意.故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形、菱形及正方形的判定定理,难度不大.7.(3分)(2020•十堰)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.B.C.D.【分析】设甲每小时做x个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得,=.故选A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.8.(3分)(2020•十堰)如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3,所以AC=3,∴从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为2AC=6,故选D.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.(3分)(2020•十堰)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.40【分析】由a1=a7+3(a8+a9)+a10知要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10中不能有6,据此对于a7、a10,分别取8、10、12、14检验可得,从而得出答案.【解答】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10中不能有6,若a10=8,则a6=a9+a10=12,∴a7=14,则a4=14+2=16、a2=16+6=22、a3=6+12=18、a1=18+22=40;综上,a1的最小值为40,故选:D.【点评】本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.10.(3分)(2020•十堰)如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6【分析】过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,然后求出OA与OB的长度,即可求出∠OAB的正弦值与余弦值,再设M (x,y),从而可表示出BD与AC的长度,根据AC•BD=4列出即可求出k的值.【解答】解:过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,令x=0代入y=x﹣6,∴y=﹣6,∴B(0,﹣6),∴OB=6,令y=0代入y=x﹣6,∴x=2,∴(2,0),∴OA=2,∴勾股定理可知:AB=4,∴sin∠OAB==,cos∠OAB==设M(x,y),∴CF=﹣y,ED=x,∴sin∠OAB=,∴AC=﹣y,∵cos∠OAB=cos∠EDB=,∴BD=2x,∵AC•BD=4,∴﹣y×2x=4,∴xy=﹣3,∵M在反比例函数的图象上,∴k=xy=﹣3,故选(A)【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB的锐角三角函数值求出BD、AC,本题属于中等题型.二、填空题(2020•十堰)某颗粒物的直径是0.0000025,把0.0000025(3分)11.用科学记数法表示为 2.5×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 0的个数所决定.【解答】解:0.0000025用科学记数法表示为2.5×10﹣6,故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)(2020•十堰)若a﹣b=1,则代数式2a﹣2b﹣1的值为1 .【分析】原式前两项提取2变形后,将a﹣b=1代入计算即可求出值.【解答】解:∵a﹣b=1,∴原式=2(a﹣b)﹣1=2﹣1=1.故答案为:1.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.13.(3分)(2020•十堰)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED= 20°.【分析】由菱形的性质可知O为BD中点,所以OE为直角三角形BED 斜边上的中线,由此可得OE=OB,根据等腰三角形的性质和已知条件即可求出∠OED的度数.【解答】解:∵四边形ABCD是菱形,∴DO=OB,∵DE⊥BC于E,∴OE为直角三角形BED斜边上的中线,∴OE=BD,∴OB=OE,∴∠OBE=∠OEB,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为:20°.【点评】本题考查了菱形的性质、直角三角形斜边上中线的性质,得到OE为直角三角形BED斜边上的中线是解题的关键.14.(3分)(2020•十堰)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为8 .【分析】连接BD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.【解答】解:连接BD,∵∠ACB=90°,∴AB是⊙O的直径.∵ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴AD=BD=5.∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴AB===10.∵AC=6,∴BC===8.故答案为:8.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.(3分)(2020•十堰)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为1<x<.【分析】根据题意得由OB=4,OC=6,根据直线y=kx平行于直线y=kx ﹣6,得到===,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y轴,根据平行线分线段成比例定理得到==,得到ON=,求得D点的横坐标是,于是得到结论.【解答】解:如图,由y=kx﹣6与y=ax+4得OB=4,OC=6,∵直线y=kx平行于直线y=kx﹣6,∴===,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y轴,∴==,∵A(1,k),∴OM=1,∴MN=,∴ON=,∴D点的横坐标是,∴1<x<时,kx﹣6<ax+4<kx,故答案为:1<x<.【点评】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.16.(3分)(2020•十堰)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③=;④S四边形CGNF=S四边形ANGD.其中正确的结论的序号是①③.【分析】①易证△ABF≌△BCG,即可解题;②易证△BNF∽△BCG,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解题;④连接AG,FG,根据③中结论即可求得S四边形CGNF和S四边形ANGD,即可解题.【解答】解:①∵四边形ABCD为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF和△BCG中,,∴△ABF≌△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF和△BCG中,,∴△BNF∽△BCG,∴==,∴BN=NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF==,∵S△ABF=AF•BN=AB•BF,∴BN=,NF=BN=,∴AN=AF﹣NF=,∵E是BF中点,∴EH是△BFN的中位线,∴EH=,NH=,BN∥EH,∴AH=,=,解得:MN=,∴BM=BN﹣MN=,MG=BG﹣BM=,∴=;③正确;④连接AG,FG,根据③中结论,则NG=BG﹣BN=,∵S四边形CGNF=S△CFG+S△GNF=CG•CF+NF•NG=1+=,S四边形ANGD=S△ANG+S△ADG=AN•GN+AD•DG=+=,∴S四边形CGNF≠S四边形ANGD,④错误;故答案为①③.【点评】本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边比例相等的性质,本题中令AB=3求得AN,BN,NG,NF的值是解题的关键.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)(2020•十堰)计算:|﹣2|+﹣(﹣1)2020.【分析】原式利用绝对值的代数意义,立方根定义,以及乘方的意义计算即可得到结果.【解答】解:原式=2﹣2+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2020•十堰)化简:(+)÷.【分析】根据分式的加法和除法可以解答本题.【解答】解:(+)÷====.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.(7分)(2020•十堰)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?【分析】过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等边对等角得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AD即可.【解答】解:只要求出A到BD的最短距离是否在以A为圆心,以8海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=AD=6海里,由勾股定理得:AC==6≈10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.【点评】考查了勾股定理的应用和解直角三角形,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.20.(9分)(2020•十堰)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是抽样调查(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的 4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的 4个班征集到的作品数为:6÷=24件,平均每个班=6件,C班有10件,∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中一男一女的概率为:=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.21.(7分)(2020•十堰)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x1+x2=1﹣2k、x1•x2=k2﹣1,将其代入x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2中,解之即可得出k的值.【解答】解:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,解得:k≤,∴实数k的取值范围为k≤.(2)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴x1+x2=1﹣2k,x1•x2=k2﹣1.∵x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2,∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0,解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=﹣4k+5≥0;(2)根据根与系数的关系结合x12+x22=16+x1x2,找出关于k的一元二次方程.22.(8分)(2020•十堰)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?【分析】(1)根据价格每降低1元,平均每天多销售10箱,由每箱降价x元,多卖10x,据此可以列出函数关系式;(2)由利润=(售价﹣成本)×销售量列出函数关系式,求出最大值.【解答】解:(1)根据题意,得:y=60+10x,由36﹣x≥24得x≤12,∴1≤x≤12,且x为整数;(2)设所获利润为W,则W=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810,∴当x=3时,W取得最大值,最大值为810,答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.【点评】本题主要考查二次函数的应用,由利润=(售价﹣成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.23.(8分)(2020•十堰)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.【分析】(1)连接DO,CO,易证△CDO≌△CBO,即可解题;(2)连接AD,易证△ADF∽△BDC和△ADE∽△BDA,根据相似三角形对应边比例相等的性质即可解题.【解答】解:(1)连接DO,CO,∵BC⊥AB于B,∴∠ABC=90°,在△CDO与△CBO中,,∴△CDO≌△CBO,∴∠CDO=∠CBO=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)连接AD,∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BD C=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∵在△ADF和△BDC中,,∴△ADF∽△BDC,∴=,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∵在△ADE和△BDA中,,∴△ADE∽△BDA,∴=,∴=,即=,∵AB=BC,∴=1.【点评】本题考查了相似三角形的判定和性质,考查了全等三角形的判定和性质,本题中求证△ADF∽△BDC和△ADE∽△BDA是解题的关键.24.(10分)(2020•十堰)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC = OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是AC2+CO2=CD2;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式CO﹣CA=CD .【分析】(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC ﹣AC)2=2CD2,开方后是:OC﹣AC=CD.【解答】解:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为:OC﹣AC=CD.【点评】本题是几何变换的综合题,考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、旋转的性质、勾股定理、四点共圆的性质等知识,并运用了类比的思想解决问题,有难度,尤其是第二问,结论不成立,要注意辅助线的作法;本题的 2、3问能标准作图是关键.25.(12分)(2020•十堰)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标;(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.【分析】(1)利用待定系数法求二次函数的解析式,并配方求对称轴;(2)如图1,设E(m,m2+2m﹣3),先根据已知条件求S△ACE=10,根据不规则三角形面积等于铅直高度与水平宽度的积列式可求得m的值,并根据在对称轴左侧的抛物线上有一点E,则点E的横坐标小于﹣1,对m的值进行取舍,得到E的坐标;(3)设点P(0,y).分两种情况:①当m<0时,如图2,△POB∽△FGP,根据对应线段成比例即可求出m的取值范围;②当m>0时,如图3,△POB∽△FGP,根据对应线段成比例即可求出m的取值范围.【解答】解:(1)当m=﹣3时,B(﹣3,0),把A(1,0),B(﹣3,0)代入到抛物线y=x2+bx+c中得:,解得,∴抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)如图1,设E(m,m2+2m﹣3),由题意得:AD=1+1=2,OC=3,S△ACE=S△ACD=×AD•OC=×2×3=10,设直线AE的解析式为:y=kx+b,把A(1,0)和E(m,m2+2m﹣3)代入得,,解得:,∴直线AE的解析式为:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S△ACE=FC•(1﹣m)=10,﹣m(1﹣m)=20,m2﹣m﹣20=0,(m+4)(m﹣5)=0,m1=﹣4,m2=5(舍),∴E(﹣4,5);(3)设点P(0,y).①当m<0时,如图2,△POB∽△FGP得=∴m=y2+4y=(y+2)2﹣4∵﹣4<y<0,∴﹣4≤m<0.②当m>0时,如图3,△POB∽△FGP∴=∴=∴m=﹣y2﹣4y=﹣(y+2)2+4∴﹣4<y<0∴0<m≤4综上所述,m的取值范围是﹣4≤m≤4且m≠0.【点评】本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、配方法求对称轴、等腰直角三角形的性质和判定、三角形面积的求法,及三角形全等的判定与性质.。
十堰市中考数学试卷2023

选择题:
1. 若a:b = 3:5,且a = 9,则b的值为:
A. 12
B. 15
C. 18
D. 20
2. 若∠A + ∠B + ∠C = 180°,且∠A = 60°,∠C = 40°,则∠B 的大小为:
A. 40°
B. 50°
C. 80°
D. 90°
3. 若10x - 2 = 4x + 6,则x 的值为:
A. 1
B. 2
C. 3
D. 4
填空题:
1. 设等差数列的公差为3,前两项的和为7,则第三项的值为__。
2. 若a:b = 2:3,b:c = 4:5,则a:c 的比值为__。
3. 已知函数f(x) = 2x^2 + 5x - 3,f(2) 的值为__。
应用题:
1. 小明已经乘坐汽车行驶了250 km,他离目的地还有100 km 的路程。
若汽车的时速为80 km/h,那么他还需要多长时间才能到达目的地?
2. 一辆货车以每小时60 km的速度行驶,行驶2小时后发现前方路上出现交通堵塞,停车等待4小时后交通状况才恢复正常。
此时,离目的地还有180 km,那么货车到达目的地总共需要多长时间?
3. 矩形的长是宽的2倍,矩形的周长是24 cm,求矩形的长和宽各是多少?。
2021年中考数学试题及解析:湖北十堰-解析版

2021年湖北省十堰市中考数学试卷一、选择题:(本题有10个小题.每小题3分,共30分)1、(2021•十堰)下列实数中是无理数的是()A、B、C、D、3.14考点:无理数。
专题:存在型。
分析:根据无理数的概念对各选项进行逐一分析即可.解答:解:A、是开方开不尽的数,故是无理数,故本选项正确;B、=2,2是有理数,故本选项错误;C、是分数,分数是有理数,故本选项错误;D、3.14是小数,小数是有理数,故本选项错误.故选A.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2、(2021•十堰)函数y=中自变量x的取值范围是()A、x≥0B、x≥4C、x≤4D、x>4考点:函数自变量的取值范围。
专题:计算题。
分析:根据二次根式的性质,被开方数大于等于0,列不等式求解.解答:解:根据题意得:x﹣4≥0,解得x≥4,则自变量x的取值范围是x≥4.故选B.点评:本题主要考查函数自变量的取值范围的知识点,注意:二次根式的被开方数是非负数.3、(2021•十堰)下面几何体的主视图是()A、B、C、D、考点:简单组合体的三视图。
分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4、(2021•十堰)据统计,十堰市2021年报名参加9年级学业考试总人数为26537人,则26537用科学记数法表示为(保留两个有效数字)()A、2.6x104B、2.7x104C、2.6x105D、2.7x105考点:科学记数法与有效数字。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于26537有位,所以可以确定n=5﹣1=4.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:26537=2.6537×104≈2.7×104.故选:B.点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.5、(2021•十堰)如图,Rt△ABC中,∠ACB=90°,DE过点C,且DE∥AB,若∠ACD=50°,则∠B的度数是()A、50°B、40°C、30°D、25°考点:平行线的性质。
2023湖北中考数学试题及答案

2023湖北中考数学试题及答案2023年湖北中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y=ax^2+bx+cB. y=a^2x+bx+cC. y=ax^2+bx+c^2D. y=a^2x^2+bx+c答案:A2. 已知圆的半径为r,圆的面积为πr^2,那么圆的周长是多少?A. 2πrB. πrC. 2rD. πr^2答案:A3. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的面积是多少?A. 12cm^2B. 24cm^2C. 18cm^2D. 36cm^2答案:B4. 已知一个数列的前三项为2, 4, 8,那么这个数列的第四项是多少?A. 16B. 32C. 64D. 128答案:C5. 一个长方体的长、宽、高分别为2cm、3cm、4cm,那么这个长方体的体积是多少?A. 24cm^3B. 12cm^3C. 8cm^3D. 6cm^3答案:A6. 一个正六边形的边长为a,那么这个正六边形的面积是多少?A. 3√3/2 * a^2B. 2√3/2 * a^2C. √3/2 * a^2D. 3√3 * a^2答案:A7. 一个直角三角形的两个直角边长分别为3cm和4cm,那么这个直角三角形的斜边长是多少?A. 5cmB. 7cmC. 9cmD. 12cm答案:A8. 一个等差数列的首项为1,公差为2,那么这个数列的第10项是多少?A. 19B. 20C. 21D. 22答案:A9. 一个扇形的半径为5cm,圆心角为60°,那么这个扇形的面积是多少?A. 5πcm^2B. 10πcm^2C. 15πcm^2D. 25πcm^2答案:B10. 一个函数的解析式为y=x^2-4x+3,那么这个函数的顶点坐标是多少?A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)答案:A二、填空题(每题3分,共15分)11. 一个数的平方根是2,那么这个数是__4__。
2022年湖北省十堰市中考数学试卷及答案解析

2022年湖北省十堰市中考数学试卷一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)2的相反数是()A.﹣2B.2C.−12D.122.(3分)下列几何体中,主视图与俯视图的形状不一样的几何体是()A.B.C.D.3.(3分)下列计算正确的是()A.a6÷a3=a2B.a2+2a2=3a2C.(2a)3=6a3D.(a+1)2=a2+14.(3分)如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形两边之和大于第三边5.(3分)甲、乙两人在相同的条件下,各射击10次,经计算:甲射击成绩的平均数是8环,方差是1.1;乙射击成绩的平均数是8环,方差是1.5.下列说法中不一定正确的是()A.甲、乙的总环数相同B.甲的成绩比乙的成绩稳定C.乙的成绩比甲的成绩波动大D.甲、乙成绩的众数相同6.(3分)我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x斗,那么可列方程为()A.10x+3(5﹣x)=30B.3x+10(5﹣x)=30C.x10+30−x3=5D.x3+30−x10=57.(3分)如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为()A.0.3cm B.0.5cm C.0.7cm D.1cm8.(3分)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为()A.m(cosα﹣sinα)B.m(sinα﹣cosα)C.m(cosα﹣tanα)D.msinα−m cosα9.(3分)如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC=DB,其中一定正确的结论有()A.1个B.2个C.3个D.4个10.(3分)如图,正方形ABCD的顶点分别在反比例函数y=k1x(k1>0)和y=k2x(k2>0)的图象上.若BD∥y轴,点D的横坐标为3,则k1+k2=()A.36B.18C.12D.9二、填空题(本题有6个小题,每小题3分,共18分)11.(3分)袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为2.5亿亩.将250000000用科学记数法表示为2.5×10n,则n=.12.(3分)关于x的不等式组中的两个不等式的解集如图所示,则该不等式组的解集为.13.(3分)“美丽乡村”建设使我市农村住宅旧貌变新颜,如图所示为一农村民居侧面截图,屋坡AF,AG分别架在墙体的点B,C处,且AB=AC,侧面四边形BDEC为矩形.若测得∠FBD=55°,则∠A=°.14.(3分)如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,50节链条总长度为cm.15.(3分)如图,扇形AOB中,∠AOB=90°,OA=2,点C为OB上一点,将扇形AOB 沿AC折叠,使点B的对应点B'落在射线AO上,则图中阴影部分的面积为.16.(3分)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F 分别在BC,CD上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD =CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN=50(√3−1)m,若在M,N之间修一条直路,则路线M →N的长比路线M→A→N的长少m(结果取整数,参考数据:√3≈1.7).三、解答题(本题有9个小题,共72分) 17.(5分)计算:(13)﹣1+|2−√5|﹣(﹣1)2022.18.(5分)计算:a 2−b 2a÷(a +b 2−2aba).19.(6分)已知关于x 的一元二次方程x 2﹣2x ﹣3m 2=0. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且α+2β=5,求m 的值.20.(9分)某兴趣小组针对视力情况随机抽取本校部分学生进行调查,将调查结果进行统计分析,绘制成如下不完整的统计图表. 抽取的学生视力情况统计表 类别 调查结果 人数 A 正常 48 B 轻度近视 76 C 中度近视 60 D重度近视m请根据图表信息解答下列问题: (1)填空:m = ,n = ;(2)该校共有学生1600人,请估算该校学生中“中度近视”的人数;(3)某班有四名重度近视的学生甲、乙、丙、丁,从中随机选择两名学生参加学校组织的“爱眼护眼”座谈会,请用列表或画树状图的方法求同时选中甲和乙的概率.21.(7分)如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE=DF;(2)设ACBD=k,当k为何值时,四边形DEBF是矩形?请说明理由.22.(8分)如图,△ABC中,AB=AC,D为AC上一点,以CD为直径的⊙O与AB相切于点E,交BC于点F,FG⊥AB,垂足为G.(1)求证:FG是⊙O的切线;(2)若BG=1,BF=3,求CF的长.23.(10分)某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y(件)与销售时间x(天)之间的关系式是y={2x,0<x≤30−6x+240,30<x≤40,销售单价p(元/件)与销售时间x(天)之间的函数关系如图所示.(1)第15天的日销售量为件;(2)0<x≤30时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?24.(10分)已知∠ABN=90°,在∠ABN内部作等腰△ABC,AB=AC,∠BAC=α(0°<α≤90°).点D为射线BN上任意一点(与点B不重合),连接AD,将线段AD绕点A逆时针旋转α得到线段AE,连接EC并延长交射线BN于点F.(1)如图1,当α=90°时,线段BF与CF的数量关系是;(2)如图2,当0°<α<90°时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)若α=60°,AB=4√3,BD=m,过点E作EP⊥BN,垂足为P,请直接写出PD 的长(用含有m的式子表示).25.(12分)已知抛物线y=ax2+94x+c与x轴交于点A(1,0)和点B两点,与y轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)点P是抛物线上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.①如图1,若点P在第三象限,且∠CPD=45°,求点P的坐标;②直线PD交直线BC于点E,当点E关于直线PC的对称点E′落在y轴上时,求四边形PECE′的周长.2022年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)2的相反数是()A.﹣2B.2C.−12D.12【解答】解:2的相反数等于﹣2.故选:A.2.(3分)下列几何体中,主视图与俯视图的形状不一样的几何体是()A.B.C.D.【解答】解:A、正方体的主视图与俯视图都是正方形,故A不符合题意;B、圆柱的主视图与俯视图都是长方形,故B不符合题意;C、圆锥的主视图是等腰三角形,俯视图是一个圆和圆心,故C符合题意;D、球体的主视图与俯视图都是圆形,故D不符合题意;故选:C.3.(3分)下列计算正确的是()A.a6÷a3=a2B.a2+2a2=3a2C.(2a)3=6a3D.(a+1)2=a2+1【解答】解:A、a6÷a3=a3,故A不符合题意;B、a2+2a2=3a2,故B符合题意;C、(2a)3=8a3,故C不符合题意;D、(a+1)2=a2+2a+1,故D不符合题意;故选:B.4.(3分)如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形两边之和大于第三边【解答】解:这样做应用的数学知识是两点确定一条直线,故选:B.5.(3分)甲、乙两人在相同的条件下,各射击10次,经计算:甲射击成绩的平均数是8环,方差是1.1;乙射击成绩的平均数是8环,方差是1.5.下列说法中不一定正确的是()A.甲、乙的总环数相同B.甲的成绩比乙的成绩稳定C.乙的成绩比甲的成绩波动大D.甲、乙成绩的众数相同【解答】解:∵各射击10次,甲射击成绩的平均数是8环,乙射击成绩的平均数是8环,∴甲、乙的总环数相同,故A正确,不符合题意;∵甲射击成绩的方差是1.1;乙射击成绩的方差是1.5,∴甲的成绩比乙的成绩稳定,乙的成绩比甲的成绩波动大,故B,C都正确,不符合题意;由已知不能得到甲、乙成绩的众数相同,故D不一定正确,符合题意;故选:D.6.(3分)我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x斗,那么可列方程为()A.10x+3(5﹣x)=30B.3x+10(5﹣x)=30C.x10+30−x3=5D.x3+30−x10=5【解答】解:设清酒x斗,则醑酒(5﹣x)斗,由题意可得:10x+3(5﹣x)=30,故选:A.7.(3分)如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为()A.0.3cm B.0.5cm C.0.7cm D.1cm【解答】解:∵OA:OC=OB:OD=3,∠COD=∠AOB,∴△COD∽△AOB,∴AB:CD=3,∵CD=3cm,∴AB=9cm,∵某零件的外径为10cm,∴零件的厚度x为:(10﹣9)÷2=1÷2=0.5(cm),故选:B.8.(3分)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为()A.m(cosα﹣sinα)B.m(sinα﹣cosα)C.m(cosα﹣tanα)D.msinα−m cosα【解答】解:过点C作水平地面的平行线,交AB的延长线于D,则∠BCD=α,在Rt△BCD中,BC=m,∠BCD=α,则BD=BC•sin∠BCD=m sinα,CD=BC•cos∠BCD=m cosα,在Rt△ACD中,∠ACD=45°,则AD=CD=m cosα,∴AB=AD﹣BD=m cosα﹣m sinα=m(cosα﹣sinα),故选:A.9.(3分)如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC=DB,其中一定正确的结论有()A.1个B.2个C.3个D.4个【解答】解:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,̂=AB̂,BĈ=BĈ,∵AB∴∠ADB=∠ACB=60°,∠BDC=∠BAC=60°,∴∠ADB=∠BDC,故①正确;∵点D是弧AC上一动点,̂与CD̂不一定相等,∴AD∴DA与DC不一定相等,故②错误;当DB最长时,DB为⊙O直径,∴∠BDC=90°,∵∠BDC=60°,∴∠DBC=30°,∴DB=2DC,故③正确;在DB上取一点E,使DE=AD,如图:∵∠ADB=60°,∴△ADE是等边三角形,∴AD=AE,∠DAE=60°,∵∠BAC=60°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴BD=BE+DE=CD+AD,故④正确;∴正确的有①③④,共3个,故选:C.10.(3分)如图,正方形ABCD的顶点分别在反比例函数y=k1x(k1>0)和y=k2x(k2>0)的图象上.若BD∥y轴,点D的横坐标为3,则k1+k2=()A.36B.18C.12D.9【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=k1x(k1>0)的图象上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=k1x(k1>0)的图象上,D(3,a)在y=k2x(k2>0)的图象上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B.二、填空题(本题有6个小题,每小题3分,共18分)11.(3分)袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为2.5亿亩.将250000000用科学记数法表示为2.5×10n,则n=8.【解答】解:∵250000000=2.5×108.∴n=8,故答案为:8.12.(3分)关于x的不等式组中的两个不等式的解集如图所示,则该不等式组的解集为0≤x≤1.【解答】解:该不等式组的解集为:0≤x≤1.故答案为:0≤x≤1.13.(3分)“美丽乡村”建设使我市农村住宅旧貌变新颜,如图所示为一农村民居侧面截图,屋坡AF,AG分别架在墙体的点B,C处,且AB=AC,侧面四边形BDEC为矩形.若测得∠FBD=55°,则∠A=110°.【解答】解:∵四边形BDEC为矩形,∴∠DBC=90°,∵∠FBD=55°,∴∠ABC=180°﹣∠DBC﹣∠FBD=35°,∵AB=AC,∴∠ABC=∠ACB=35°,∴∠A=180°﹣∠ABC﹣∠ACB=110°,故答案为:110.14.(3分)如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,50节链条总长度为91cm.【解答】解:由题意得:1节链条的长度=2.8cm,2节链条的总长度=[2.8+(2.8﹣1)]cm,3节链条的总长度=[2.8+(2.8﹣1)×2]cm,...∴50节链条总长度=[2.8+(2.8﹣1)×49]=91(cm),故答案为:91.15.(3分)如图,扇形AOB中,∠AOB=90°,OA=2,点C为OB上一点,将扇形AOB 沿AC折叠,使点B的对应点B'落在射线AO上,则图中阴影部分的面积为π+4﹣4√2.【解答】解:连接AB,∵∠AOB=90°,OA=2,∴OB=OA=2,∴AB=2+22=2√2,设OC=x,则BC=B′C=2﹣x,OB′=2√2−2,则x2+(2√2−2)2=(2﹣x)2,解得x=2√2−2,∴阴影部分的面积是:90π×22360−(2√2−2)×22×2=π+4﹣4√2,故答案为:π+4﹣4√2.16.(3分)【阅读材料】如图①,四边形ABCD 中,AB =AD ,∠B +∠D =180°,点E ,F分别在BC ,CD 上,若∠BAD =2∠EAF ,则EF =BE +DF .【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知CD =CB =100m ,∠D =60°,∠ABC =120°,∠BCD =150°,道路AD ,AB 上分别有景点M ,N ,且DM =100m ,BN =50(√3−1)m ,若在M ,N 之间修一条直路,则路线M →N 的长比路线M →A →N 的长少 370 m (结果取整数,参考数据:√3≈1.7).【解答】解:解法一:如图,延长DC ,AB 交于点G ,∵∠D =60°,∠ABC =120°,∠BCD =150°,∴∠A =360°﹣60°﹣120°﹣150°=30°,∴∠G =90°,∴AD=2DG,Rt△CGB中,∠BCG=180°﹣150°=30°,∴BG=12BC=50,CG=50√3,∴DG=CD+CG=100+50√3,∴AD=2DG=200+100√3,AG=√3DG=150+100√3,∵DM=100,∴AM=AD﹣DM=200+100√3−100=100+100√3,∵BG=50,BN=50(√3−1),∴AN=AG﹣BG﹣BN=150+100√3−50﹣50(√3−1)=150+50√3,Rt△ANH中,∵∠A=30°,∴NH=12AN=75+25√3,AH=√3NH=75√3+75,由勾股定理得:MN=√NH2+MH2=√(75+25√3)2+(25√3+25)2=50(√3+1),∴AM+AN﹣MN=100+100√3+150+50√3−50(√3+1)=200+100√3≈370(m).答:路线M→N的长比路线M→A→N的长少370m.解法二:如图,延长DC,AB交于点G,连接CN,CM,则∠G=90°,∵CD=DM,∠D=60°,∴△BCM是等边三角形,∴∠DCM=60°,由解法一可知:CG=50√3,GN=BG+BN=50+50(√3−1)=50√3,∴△CGN是等腰直角三角形,∴∠GCN=45°,∴∠BCN=45°﹣30°=15°,∴∠MCN=150°﹣60°﹣15°=75°=12∠BCD,由【阅读材料】的结论得:MN=DM+BN=100+50(√3−1)=50√3+50,∵AM +AN ﹣MN =AD +AG ﹣MN =100+100√3+150+50√3−50(√3+1)=200+100√3≈370(m ).答:路线M →N 的长比路线M →A →N 的长少370m .故答案为:370.三、解答题(本题有9个小题,共72分)17.(5分)计算:(13)﹣1+|2−√5|﹣(﹣1)2022. 【解答】解:(13)﹣1+|2−√5|﹣(﹣1)2022 =3+√5−2﹣1=√5.18.(5分)计算:a 2−b 2a ÷(a +b 2−2ab a ). 【解答】解:a 2−b 2a ÷(a +b 2−2ab a) =a 2−b 2a ÷(a 2a +b 2−2ab a) =a 2−b 2a ÷a 2−2ab+b 2a= (a+b)(a−b)a•a (a−b) =a+b a−b . 19.(6分)已知关于x 的一元二次方程x 2﹣2x ﹣3m 2=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且α+2β=5,求m 的值.【解答】(1)证明:∵a =1,b =﹣2,c =﹣3m 2,∴Δ=(﹣2)2﹣4×1•(﹣3m 2)=4+12m 2>0,∴方程总有两个不相等的实数根;(2)解:由题意得:{α+β=2α+2β=5, 解得:{α=−1β=3, ∵αβ=﹣3m 2,∴﹣3m2=﹣3,∴m=±1,∴m的值为±1.20.(9分)某兴趣小组针对视力情况随机抽取本校部分学生进行调查,将调查结果进行统计分析,绘制成如下不完整的统计图表.抽取的学生视力情况统计表类别调查结果人数A正常48B轻度近视76C中度近视60D重度近视m请根据图表信息解答下列问题:(1)填空:m=16,n=108;(2)该校共有学生1600人,请估算该校学生中“中度近视”的人数;(3)某班有四名重度近视的学生甲、乙、丙、丁,从中随机选择两名学生参加学校组织的“爱眼护眼”座谈会,请用列表或画树状图的方法求同时选中甲和乙的概率.【解答】解:(1)由题意得:48÷24%=200,∴m=200﹣48﹣76﹣60=16,n°=60200×360°=108°,故答案为:16,108;(2)由题意得:1600×60200=480(人),∴该校学生中“中度近视”的人数为480人;(3)如图:总共有12种等可能结果,其中同时选中甲和乙的结果有2种,∴P(同时选中甲和乙)=212=16.21.(7分)如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE=DF;(2)设ACBD=k,当k为何值时,四边形DEBF是矩形?请说明理由.【解答】(1)证明:如图,连接DE,BF,∵四边形ABCD是平行四边形,∴BO=OD,AO=OC,∵E,F分别为AO,OC的中点,∴EO=12OA,OF=12OC,∴EO=FO,∵BO=OD,EO=FO,∴四边形BFDE是平行四边形,∴DE=BF;(2)解:当k=2时,四边形DEBF是矩形;理由如下:当BD=EF时,四边形DEBF是矩形,∴当OD=OE时,四边形DEBF是矩形,∵AE=OE,∴当k=2时,四边形DEBF是矩形.故答案为:2.22.(8分)如图,△ABC中,AB=AC,D为AC上一点,以CD为直径的⊙O与AB相切于点E,交BC于点F,FG⊥AB,垂足为G.(1)求证:FG是⊙O的切线;(2)若BG=1,BF=3,求CF的长.【解答】(1)证明:如图,连接OF,∵AB=AC,∴∠B=∠C,∵OF=OC,∴∠C=∠OFC,∴∠OFC=∠B,∴OF∥AB,∵FG⊥AB,∴FG ⊥OF ,又∵OF 是半径,∴GF 是⊙O 的切线;(2)解:如图,连接OE ,过点O 作OH ⊥CF 于H ,∵BG =1,BF =3,∠BGF =90°,∴FG =√BF 2−BG 2=√9−1=2√2,∵⊙O 与AB 相切于点E ,∴OE ⊥AB ,又∵AB ⊥GF ,OF ⊥GF ,∴四边形GFOE 是矩形,∴OE =GF =2√2,∴OF =OC =2√2,又∵OH ⊥CF ,∴CH =FH ,∵cos C =cos B =CH OC =BG BF ,∴13=2√2,∴CH =2√23,∴CF =4√23. 23.(10分)某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y (件)与销售时间x (天)之间的关系式是y ={2x ,0<x ≤30−6x +240,30<x ≤40,销售单价p (元/件)与销售时间x (天)之间的函数关系如图所示.(1)第15天的日销售量为 30 件;(2)0<x ≤30时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?【解答】解:(1)∵日销售量y (件)与销售时间x (天)之间的关系式是y ={2x ,0<x ≤30−6x +240,30<x ≤40, ∴第15天的销售量为2×15=30件,故答案为:30;(2)由销售单价p (元/件)与销售时间x (天)之间的函数图象得:p ={40(0<x ≤20)50−12x(20<x ≤40), ①当0<x ≤20时,日销售额=40×2x =80x ,∵80>0,∴日销售额随x 的增大而增大,∴当x =20时,日销售额最大,最大值为80×20=1600(元);②当20<x ≤30时,日销售额=(50−12x )×2x =﹣x 2+100x =﹣(x ﹣50)2+2500,∵﹣1<0,∴当x <50时,日销售额随x 的增大而增大,∴当x =30时,日销售额最大,最大值为2100(元),综上,当0<x ≤30时,日销售额的最大值2100元;(3)由题意得:当0<x≤30时,2x≥48,解得:24≤x≤30,当30<x≤40时,﹣6x+240≥48,解得:30<x≤32,∴当24≤x≤32时,日销售量不低于48件,∵x为整数,∴x的整数值有9个,∴“火热销售期”共有9天.24.(10分)已知∠ABN=90°,在∠ABN内部作等腰△ABC,AB=AC,∠BAC=α(0°<α≤90°).点D为射线BN上任意一点(与点B不重合),连接AD,将线段AD绕点A逆时针旋转α得到线段AE,连接EC并延长交射线BN于点F.(1)如图1,当α=90°时,线段BF与CF的数量关系是BF=CE;(2)如图2,当0°<α<90°时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)若α=60°,AB=4√3,BD=m,过点E作EP⊥BN,垂足为P,请直接写出PD 的长(用含有m的式子表示).【解答】解:(1)BF=CF;理由如下:连接AF,如图所示:根据旋转可知,∠DAE =α=90°,AE =AD ,∵∠BAC =90°,∴∠EAC +∠CAD =90°,∠BAD +∠CAD =90°,∴∠EAC =∠BAD ,在△ACE 和△ABD 中,{AE =AD ∠EAC =∠DAB AC =AB,∴△ACE ≌△ABD (SAS ),∴∠ACE =∠ABD =90°,∴∠ACF =90°,在Rt △ABF 与Rt △ACF 中,{AB =AC AF =AF, ∴Rt △ABF ≌Rt △ACF (HL ),∴BF =CF ,故答案为:BF =CF ;(2)成立,理由如下:如图2,连接AF ,根据旋转可知,∠DAE =α,AE =AD ,∵∠BAC =α,∴∠EAC ﹣∠CAD =α,∠BAD ﹣∠CAD =α,∴∠EAC =∠BAD ,在△ACE 和△ABD 中,{AE =AD ∠EAC =∠DAB AC =AB∴△ACE ≌△ABD (SAS ),∴∠ACE =∠ABD =90°,∴∠ACF =90°,在Rt △ABF 与Rt △ACF 中,{AB =AC AF =AF, ∴Rt △ABF ≌Rt △ACF (HL ),∴BF =CF ;(3)∵α=60°,AB =AC ,∴△ABC 为等边三角形,∴∠ABC =∠ACB =∠BAC =60°,AB =AC =BC =4√3,①当∠BAD <60°时,连接AF ,如图所示:∵Rt △ABF ≌Rt △ACF ,∴∠BAF =∠CAF =12∠BAC =30°,在Rt △ABF 中,BF AB =tan30°, 4√3=√33, 即CF =BF =4;根据(2)可知,△ACE ≌△ABD ,∴CE =BD =m ,∴EF=CF+CE=4+m,∠FBC=∠FCB=90°﹣60°=30°,∴∠EFP=∠FBC+∠FCB=60°,又∵∠EPF=90°,∴∠FEP=90°﹣60°=30°,∴PF=12EF=2+12m,∴BP=BF+PF=6+12m,∴PD=BP﹣BD=6−12m;②当∠BAD=60°时,AD与AC重合,如图所示:∵∠DAE=60°,AE=AD,∴△ADE为等边三角形,∴∠ADE=60°,∵∠ADB=90°﹣∠BAC=30°,∴∠ADE=90°,∴此时点P与点D重合,PD=0;③当∠BAD>60°时,连接AF,如图所示:∵Rt△ABF≌Rt△ACF,∴∠BAF=∠CAF=12∠BAC=30°,在Rt△ABF中,BFAB=tan30°,4√3=√33,即CF=BF=4;根据(2)可知,△ACE≌△ABD,∴CE=BD=m,∴EF=CF+CE=4+m,∠FBC=∠FCB=90°﹣60°=30°,∴∠EFP=∠FBC+∠FCB=60°,又∵∠EPF=90°,∴∠FEP=90°﹣60°=30°,∴PF=12EF=2+12m,∴BP=BF+PF=6+12m,∴PD=BD﹣BP=12m﹣6,综上,PD的值为6+12m或0或12m﹣6.25.(12分)已知抛物线y=ax2+94x+c与x轴交于点A(1,0)和点B两点,与y轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)点P是抛物线上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.①如图1,若点P在第三象限,且∠CPD=45°,求点P的坐标;②直线PD交直线BC于点E,当点E关于直线PC的对称点E′落在y轴上时,求四边形PECE′的周长.【解答】解:(1)由题意得, {c =−3a +94−3=0, ∴{a =34c =−3, ∴y =34x 2+94x ﹣3;(2)①如图1,设直线PC 交x 轴于E ,∵PD ∥OC ,∴∠OCE =∠CPD =45°, ∵∠COE =90°,∴∠CEO =90°﹣∠ECO =45°, ∴∠CEO =∠OCE ,∴OE =OC =3,∴点E (3,0),∴直线PC 的解析式为:y =x ﹣3, 由34x 2+94x ﹣3=x ﹣3得, ∴x 1=−53,x 2=0(舍去),当x =−53时,y =−53−3=−143, ∴P (−53,−143); ②如图2,设点P (m ,34m 2+94m ﹣3),四边形PECE ′的周长记作l , 点P 在第三象限时,作EF ⊥y 轴于F , ∵点E 与E ′关于PC 对称,∴∠ECP =∠E ′PC ,CE =CE ′, ∵PE ∥y 轴,∴∠EPC =∠PCE ′,∴∠ECP =∠EPC ,∴PE =CE ,∴PE =CE ′,∴四边形PECE ′为平行四边形, ∴▱PECE ′为菱形,∴CE =PE ,∵EF ∥OA ,∴CE BC =EF AB , ∴CE 5=−m 4, ∴CE =−54m ,∵PE =﹣(−34m −3)﹣(34m 2+94m −3)=−34m 2−3m , ∴−54m =−34m 2﹣3m , ∴m 1=0(舍去),m 2=−73, ∴CE =54×73, ∴l =4CE =4×54×73=353, 当点P 在第二象限时, 同理可得:−54m =34m 2+3m , ∴m 3=0(舍去),m 4=−173, ∴l =4×54×173=853, 综上所述:四边形PECE ′的周长为:353或853.。
2020年湖北省十堰市中考数学试卷及答案

湖北省十堰市2020年初中毕业生学业考试数 学 试 题 友情提示:Hi ,展示自己的时候到啦,你可要冷静思考、沉着答卷啊!即使遇到困难也不要放弃,要相信自己,能行!祝你取得好成绩! ⒈本试卷共8页,25个小题,满分120分,考试时间120分钟. ⒉在密封区内写明县(市、区)名、校名、姓名和考号,不要在密封区内答题.⒊答题时允许使用规定的科学计算器.一、选择题(本题共10个小题,每小题3分,共30分)下面每题给出的四个选项中,只有一个是正确的,请 把你认为正确选项的代号填在下表内1.5的倒数是A .51B .51- C .-5 D .52.下列长度的三条线段,能组成三角形的是A .1cm ,2 cm ,3cmB .2cm ,3 cm ,6 cmC .4cm ,6 cm ,8cmD .5cm ,6 cm ,12cm 3.如图,C 、D 是线段AB 上两点,若CB =4cm ,DB=7cm ,且D 是AC 的中点,则AC 的长等于A .3cmB .6cmC .11cmD .14cm4.如图,在ΔABC 中,AC=DC=DB ,∠ACD=100°,则∠B 等于 A .50° B .40° C .25° D .20° 5.把方程2133123+-=-+x x x 去分母正确的是 A .)1(318)12(218+-=-+x x x B .)1(3)12(3+-=-+x x x C .)1(18)12(18+-=-+x x x D .)1(33)12(23+-=-+x x x 6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是A .91B .61C .31D .217.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是CB第4题图DA第3题图DC BA8.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是 A .∠3=∠4 B .∠A+∠ADC=180° C .∠1=∠2 D .∠A =∠59.如图,将ΔPQR 向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是A . (-2,-4)B . (-2,4)C .(2,-3)D .(-1,-3) 10.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0x < 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限第9题图AC第8题图EE54321DB BCA二、填空题(本题共6小题,每小题3分,共18分.请将答案直接填写在该题目中的横线上)11.2020年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1514000000元人民币,这个数字用科学记数法可表示为 元人民币.12.已知,|x|=5,y=3,则=-y x . 13.计算:=---31922a a a .14.如图,直线AB 、CD 相交于点O ,AB OE ⊥,垂足为O , 如果︒=∠42EOD ,则=∠AOC .15.如图,已知矩形ABCD ,P 、R 分别是BC 和DC 上的点,E 、F 分别是PA 、PR 的中点.如果DR=3,AD=4,则EF 的长为 . 16.观察下面两行数:2, 4, 8, 16, 32, 64, … ①5, 7, 11, 19, 35, 67, … ②第14题图┌O EA BCD第15题图PRFEABCD根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果) .三、解答题(本题共3小题,每小题7分,共21分)17.(7分)计算:022)21(45sin 2)1(--︒+-- 解:022)21(45sin 2)1(--︒+--= =18.(7分)解方程组: ⎩⎨⎧=-=+. ②y x , ① y x 54219.(7分)在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)结合统计图完成下列问题:⑴扇形统计图中,表示135.12x <≤部分的百分数是 ; ⑵请把频数分布直方图补充完整,这个样本数据的中位数落在第 组;⑶哪一个图能更好地说明一半以上的汽车行驶的路程在1413x <≤之间?哪一个图能更好地说明行驶路程在135.12x <≤的汽车多于在5.1414x <≤的汽车?四、应用题(本大题2小题,共15分)20.(7分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在得分 评卷人西 东12.5≤x <1312≤x <12.513.5≤x <1413≤x <13.530%30%14≤x <14.513.3%6.7%北偏东60°方向上,航行12海里到达B点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.21.(8分)如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m2?⑵能否使所围矩形场地的面积为810m2,为什么?第21题图五、推理与计算(本大题2小题,共15分)22.(7分)如图,把一张矩形的纸ABCD 沿对角线BD 折叠,使点C 落在点E 处,BE 与AD 交于点F . ⑴求证:ΔABF ≌ΔEDF ;⑵若将折叠的图形恢复原状,点F 与BC 边上的点M 正好重合,连接DM ,试判断四边形BMDF 的形状,并说明理由.CDBAM第22题图FE23.(8分)如图,AB 、BC 、CD 分别与⊙O 切于E 、F 、G ,且AB ∥CD .连接OB 、OC ,延长CO 交⊙O 于点M ,过点M 作MN ∥OB 交CD 于N .⑴求证:MN 是⊙O 的切线;⑵当0B=6cm ,OC=8cm 时,求⊙O 的半径及MN 的长.第23题图O GCABDN MFE六、综合应用与探究(本大题2小题,共21分)24.(9分)5月12日,我国四川省汶川县等地发生强烈地震,在抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要25台,乙地需要23台;A 、B 两省获知情况后慷慨相助,分别捐赠该型号挖掘机26台和22台并将其全部调往灾区.如果从A 省调运一台挖掘机到甲地要耗资0.4万元,到乙地要耗资0.3万元;从B 省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元.设从A省调往甲地x台挖掘机,A、B两省将捐赠的挖掘机全部调往灾区共耗资y 万元.⑴请直接写出y与x之间的函数关系式及自变量x的取值范围;⑵若要使总耗资不超过15万元,有哪几种调运方案?⑶怎样设计调运方案能使总耗资最少?最少耗资是多少万元?2与x轴的一个交点为25.(12分)已知抛物线b=2ax-+y+axA(-1,0),与y轴的正半轴交于点C.⑴直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;⑵当点C在以AB为直径的⊙P上时,求抛物线的解析式;⑶坐标平面内是否存在点M,使得以点M和⑵中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.湖北省十堰市2020年初中毕业生学业考试数学试题参考答案及评分说明一、选择题(每题3分,共30分)第1~10题:A C B D A A D C A C二、填空题(每空3分,共18分)11.910514.1⨯ 12.2或-8(错一个扣1分,错两个不得分)13.31+a 14.48° 15.2.516.2051三、解答题(第17~19题,每题7分,共21分)17.解:原式=12121-⨯+ ……………………………6分 =1 …………………………………7分说明:第一步三项中,每对一项给2分.18.解:①+②,得,x 93= ∴.x 3= ………………3分把3=x 代入②,得,y 53=- ∴.y 2-= …6分∴原方程组的解是 ⎩⎨⎧-==.y ,x 23 ………………………7分说明:其它解法请参照给分.19.解:⑴20%; …………………………………………2分⑵补图略;3; …………………5分说明:频数为6,补对直方图给2分;组数填对给1分.⑶扇形统计图能很好地说明一半以上的汽车行驶的路程在1413x <≤之间;条形统计图(或直方统计图)能更好地说明行驶路程在135.12x <≤的汽车多于在5.1414x <≤的汽车. ……………7分说明:只回答“扇形统计图”;“条形统计图(或直方统计图)”也给满分.四、应用题(第20题7分,第21题8分,共15分)20.解:有触礁危险.………………………………1分理由: 过点P 作PD ⊥AC 于D .…………………2分设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°.∴BD =PD =x . ………………………………3分在Rt △PAD 中,∵∠PAD =90°-60°=30°, ∴x .x AD 330tan =︒=………………………………4分∵BD ,AB AD +=∴x .x +=123 ∴)13(61312+=-=x .………6分 ∵,<18)13(6+∴渔船不改变航线继续向东航行,有触礁危险. ………………7分说明:开头“有触礁危险”没写,但最后解答正确不扣分.21.解:⑴设所围矩形ABCD 的长AB 为x 米,则宽AD 为)80(21x -米. ………1分说明:AD 的表达式不写不扣分依题意,得 ,x x 750)80(21=-• …………………2分即,.x x 01500802=+-解此方程,得 ,x 301= .x 502= ………3分∵墙的长度不超过45m ,∴502=x 不合题意,应舍去. …4分当30=x 时,.x 25)3080(21)80(21=-⨯=- 所以,当所围矩形的长为30m 、宽为25m 时,能使矩形的面积为750m 2. ……5分 ⑵不能.因为由,x x 810)80(21=-•得 .x x 01620802=+- (6)分又∵ac b 42-=(-80)2-4×1×1620=-80<0,∴上述方程没有实数根. (7)分因此,不能使所围矩形场地的面积为810m 2……………8分说明:如果未知数的设法不同,或用二次函数的知识解答,只要过程及结果正确,请参照给分.五、推理与计算(第22题7分,第23题8分,共15分)22.解:⑴证明:由折叠可知,C .E ED ,CD ∠=∠= ……1分在矩形ABCD 中,C ,A CD ,AB ∠=∠=∴E .A ED AB ∠=∠=, ∵∠AFB =∠EFD ,∴△AFB ≌△EFD . ……………………4分⑵四边形BMDF 是菱形. ………………………5分理由:由折叠可知:BF =BM ,DF =DM . …………6分由⑴知△AFB ≌△EFD ,∴BF =DF .∴BM =BF =DF =DM .∴四边形BMDF 是菱形. …………………7分23.解:⑴证明:∵AB 、BC 、CD 分别与⊙O 切于点E 、F 、G , ∴DCB .OCB ABC ,OBC ∠=∠∠=∠2121 …………………1分 ∵AB ∥CD ,∴∠ABC +∠DCB =180°. ∴.DCB ABC OCB OBC ︒=︒⨯=∠+∠=∠+∠9018021)(21 ∴.OCB OBC -BOC ︒=︒-︒=∠+∠︒=∠9090180)(180 ……2分 ∵MN ∥OB ,∴∠NMC =∠BOC =90°.∴MN 是⊙O 的切线.……4分⑵连接OF ,则OF ⊥BC .…………………………………5分由⑴知,△BOC是Rt △,∴.OC DB BC 10862222=+=+= ∵OF ,BC OC OB S BOC ••=••=∆2121 ∴6×8=10×OF .∴0F =4.8.即⊙O 的半径为4.8cm . …………………………………6分由⑴知,∠NCM =∠BCO ,∠NMC =∠BOC =90°,∴△NMC ∽△BOC . (7)分 ∴.MN .CO CM OB MN 88.486+==即 ∴MN =9.6(cm). …………………………………8分说明:不带单位不扣分.六、综合应用与探究(第24题9分,第25题12分,共21分)24.解:⑴.x x x x y )2623(2.0)25(5.0)26(3.04.0+-+-+-+=或:.x x x x y )2522(2.0)25(5.0)26(3.04.0+-+-+-+=即:.x y 7.192.0+-= (253≤≤x ) ………3分说明:函数式正确给2分,x 的取值范围正确给1分,函数式不化简不扣分.⑵依题意,得.x 157.192.0≤+- 解之,得.x 247≥ 又∵253≤≤x ,且x 为整数, ∴.x 2524或= (5)分说明:用建立不等式组的方法求解也可,请参照给分.即,要使总耗资不超过15万元,有如下两种调运方案:方案一:从A 省往甲地调运24台,往乙地调运2台;从B 省往甲地调运1台,往乙地调运21台.方案二:从A 省往甲地调运25台,往乙地调运1台;从B 省往甲地调运0台,往乙地调运22台. (6)分⑶由⑴知:.x y 7.192.0+-= (253≤≤x )∵-0.2<0, ∴y 随x 的增大而减小.∴当25=x 时,∴.y 7.147.19252.0=+⨯-=最小值 (8)分答:设计如下调运方案:从A 省往甲地调运25台,往乙地调运1台;从B 省往甲地调运0台,往乙地调运22台,能使总耗资最少, 最少耗资为14.7万元. ……………9分25.解:⑴对称轴是直线:1=x ,点B 的坐标是(3,0). ……2分说明:每写对1个给1分,“直线”两字没写不扣分.⑵如图,连接PC ,∵点A 、B 的坐标分别是A(-1,0)、B (3,0),∴AB =4.∴.AB PC 242121=⨯== 在Rt △POC 中,∵OP =PA -OA =2-1=1, ∴.PO PC OC 3122222=-=-=∴b =.3 ………………………………3分当01=-=,y x 时,,a a 032=+-- ∴.a 33= ………………………………4分∴.x x y 3332332++-= ………………5分 ⑶存在.……………………………6分理由:如图,连接AC 、BC .设点M 的坐标为),(y x M .①当以AC 或BC 为对角线时,点M 在x 轴上方,此时CM ∥AB ,且CM =AB .由⑵知,AB =4,∴|x|=4,3==OC y .∴x =±4.∴点M 的坐标为)3,4()3,4(-或M .…9分说明:少求一个点的坐标扣1分.②当以AB 为对角线时,点M 在x 轴下方.过M 作MN ⊥AB 于N ,则∠MNB =∠AOC =90°.∵四边形AMBC 是平行四边形,∴AC =MB ,且AC ∥MB .∴∠CAO =∠MBN .∴△AOC ≌△BNM .∴BN =AO =1,MN =CO ∵OB =3,∴0N =3-1=2.∴点M 的坐标为(2,M . ……………………………12分说明:求点M 的坐标时,用解直角三角形的方法或用先求直线解析式,然后求交点M 的坐标的方法均可,请参照给分.综上所述,坐标平面内存在点M ,使得以点A 、B 、C 、M 为顶点的四边形是平行四边形.其坐标为123((2,M M M -.写,但最后解答全部正确,不扣分。
湖北省十堰市2024年中考数学试题(word版-含解析)

湖北省十堰市2024年中考数学试卷参考答案与试题解析一、选择题:(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)(2024•十堰)3的倒数是()C.3D.﹣3A.B.﹣考点:倒数.分析:依据倒数的定义可知.解答:解:3的倒数是.故选A.点评:主要考查倒数的定义,要求娴熟驾驭.须要留意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2024•十堰)如图,直线m∥n,则∠α为()A.70°B.65°C.50°D.40°考点:平行线的性质.分析:先求出∠1,再依据平行线的性质得出∠α=∠1,代入求出即可.解答:解:∠1=180°﹣130°=50°,∵m∥n,∴∠α=∠1=50°,故选C.点评:本题考查了平行线的性质的应用,留意:两直线平行,同位角相等.3.(3分)(2024•十堰)在下面的四个几何体中,左视图与主视图不相同的几何体是()A.正方体B.长方体C.球D.圆锥考点:简洁几何体的三视图分析:主视图、左视图是分别从物体正面、左面看,所得到的图形.解答:解:A、正方体的左视图与主视图都是正方形,故此选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的不一样,故此选项符合题意;C、球的左视图与主视图都是圆,故此选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故此选项不合题意;故选:B.点评:本题考查了几何体的三种视图,驾驭定义是关键.留意全部的看到的棱都应表现在三视图中.4.(3分)(2024•十堰)下列计算正确的是()A.﹣=B.=±2 C.a6÷a2=a3D.(﹣a2)3=﹣a6考点:同底数幂的除法;实数的运算;幂的乘方与积的乘方分析:依据二次根式的运算法则推断,开算术平方根,同底数幂的除法及幂的乘方运算.解答:解:A、不是同类二次根式,不能合并,故选项错误;B、=2≠±2,故选项错误;C、a6÷a2=a4≠a3,故选项错误;D、(﹣a2)3=﹣a6正确.故选:D.点评:本题主要考查了二次根式的运算法则推断,开算术平方根,同底数幂的除法及幂的乘方运算.熟记法则是解题的关键.5.(3分)(2024•十堰)为了调查某小区居民的用水状况,随机抽查了若干户家庭的月用水月用水量(吨)3 4 5 8户数 2 3 4 1A.众数是4 B.平均数是4.6C.调查了10户家庭的月用水量D.中位数是4.5考点:众数;统计表;加权平均数;中位数.分析:依据众数、中位数和平均数的定义分别对每一项进行分析即可.解答:解:A、5出现了4次,出现的次数最多,则众数是5,故本选项错误;B、这组数据的平均数是:(3×2+4×3+5×4+8×1)÷10=4.6,故本选项正确;C、调查的户数是2+3+4+1=10,故本选项正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(4+5)÷2=4.5,则中位数是4.5,故本选项正确;故选A .点评:此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.(3分)(2024•十堰)如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.7B.10 C.11 D.12考点:平行四边形的性质;线段垂直平分线的性质.分析:依据线段垂直平分线的性质可得AE=EC,再依据平行四边形的性质可得DC=AB=4,AD=BC=6,进而可以算出△CDE的周长.解答:解:∵AC的垂直平分线交AD于E,∴AE=EC,∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∴△CDE的周长为:EC+CD+ED=AD+CD=6+4=10,故选:B.点评:此题主要考查了平行四边形的性质和线段垂直平分线的性质,关键是驾驭平行四边形两组对边分别相等.7.(3分)(2024•十堰)依据如图中箭头的指向规律,从2024到2024再到2024,箭头的方向是以下图示中的()A.B.C.D.考点:规律型:数字的改变类.分析:视察不难发觉,每4个数为一个循环组依次循环,用2024除以4,依据商和余数的状况解答即可.解答:解:由图可知,每4个数为一个循环组依次循环,2024÷4=503…1,∴2024是第504个循环组的第2个数,∴从2024到2024再到2024,箭头的方向是.故选D.点评:本题是对数字改变规律的考查,细致视察图形,发觉每4个数为一个循环组依次循环是解题的关键.8.(3分)(2024•十堰)已知:a2﹣3a+1=0,则a+﹣2的值为()A.+1 B.1C.﹣1 D.﹣5考点:分式的混合运算.专题:计算题.分析:已知等式变形求出a+的值,代入原式计算即可得到结果.解答:解:∵a2﹣3a+1=0,且a≠0,∴a+=3,则原式=3﹣2=1,故选B.点评:此题考查了分式的混合运算,娴熟驾驭运算法则是解本题的关键.9.(3分)(2024•十堰)如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A.2B.C.2D.考点:勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线.分析:依据直角三角形斜边上的中线的性质可得DG=AG,依据等腰三角形的性质可得∠GAD=∠GDA,依据三角形外角的性质可得∠CGD=2∠GAD,再依据平行线的性质和等量关系可得∠ACD=∠CGD,依据等腰三角形的性质可得CD=DG,再依据勾股定理即可求解.解答:解:∵AD∥BC,DE⊥BC,∴DE⊥AD,∠CAD=∠ACB∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中,DE==2.故选:C.点评:综合考查了勾股定理,等腰三角形的判定与性质和直角三角形斜边上的中线,解题的关键是证明CD=DG=3.10.(3分)(2024•十堰)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a﹣b+c=0;②b2>4ac;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的个数有()A.4个B.3个C.2个D.1个考点:二次函数图象与系数的关系.分析:将点(﹣1,0)代入y=ax2+bx+c,即可推断①正确;将点(1,1)代入y=ax2+bx+c,得a+b+c=1,又由①得a﹣b+c=0,两式相加,得a+c=,两式相减,得b=.由b2﹣4ac=﹣4a(﹣a)=﹣2a+4a2=(2a﹣)2,当a=时,b2﹣4ac=0,即可推断②错误;③由b2﹣4ac=(2a﹣)2>0,得出抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,依据一元二次方程根与系数的关系可得﹣1•x==﹣1,即x=1﹣,再由a<0得出x>1,即可推断③正确;④依据抛物线的对称轴公式为x=﹣,将b=代入即可推断④正确.解答:解:①∵抛物线y=ax2+bx+c(a≠0)经过点(﹣1,0),∴a﹣b+c=0,故①正确;②∵抛物线y=ax2+bx+c(a≠0)经过点(1,1),∴a+b+c=1,又a﹣b+c=0,两式相加,得2(a+c)=1,a+c=,两式相减,得2b=1,b=.∵b2﹣4ac=﹣4a(﹣a)=﹣2a+4a2=(2a﹣)2,当2a﹣=0,即a=时,b2﹣4ac=0,故②错误;③当a<0时,∵b2﹣4ac=(2a﹣)2>0,∴抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,则﹣1•x===﹣1,即x=1﹣,∵a<0,∴﹣>0,∴x=1﹣>1,即抛物线与x轴必有一个交点在点(1,0)的右侧,故③正确;④抛物线的对称轴为x=﹣=﹣=﹣,故④正确.故选B.点评:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,一元二次方程根与系数的关系及二次函数的性质,不等式的性质,难度适中.二、填空题:(本题有6个小题,每小题3分,共18分)11.(3分)(2024•十堰)世界文化遗产长城总长约6700 000m,用科学记数法可表示为6.7×106m.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将6700 000m用科学记数法表示为:6.7×106m.故答案为:6.7×106m.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2024•十堰)计算:+(π﹣2)0﹣()﹣1=1.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、二次根式化简等考点.针对每个考点分别进行计算,然后依据实数的运算法则求得计算结果.解答:解:原式=2+1﹣=3﹣2=1.故答案为1.点评:本题考查实数的综合运算实力,是各地中考题中常见的计算题型.解决此类题目的关键是驾驭零指数幂、负指数幂、二次根式化简等考点的运算.13.(3分)(2024•十堰)不等式组的解集为﹣1<x≤2.考点:解一元一次不等式组.分析:先求出每个不等式的解集,依据不等式的解集找出不等式组的解集即可.解答:解:∵解不等式x<2x+1得:x>﹣1,解不等式3x﹣2(x﹣1)≤4得:x≤2,∴不等式组的解集是﹣1<x≤2,故答案为:﹣1<x≤2.点评:本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能依据不等式的解集找出不等式组的解集.14.(3分)(2024•十堰)如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD 及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是①(只填写序号).考点:菱形的判定.分析:首先利用对角线相互平分的四边形是平行四边形判定该四边形为平行四边形,然后结合菱形的判定得到答案即可.解答:解:由题意得:BD=CD,ED=FD,∴四边形EBFC是平行四边形,∵邻边相等或对角线垂直的平行四边形是菱形,∴选择BE⊥EC,故答案为:①.点评:本题考查了菱形的判定,解题的关键是了解菱形的判定定理,难度不是很大.15.(3分)(2024•十堰)如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A 处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是24海里.(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)考点:解直角三角形的应用-方向角问题.分析:作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD中,利用三角函数即可求得BC的长.解答:解:∠CBA=25°+50°=75°.作BD⊥AC于点D.则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣35°=45°.在直角△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10.在直角△BCD中,∠CBD=45°,则BC=BD=10×=10≈10×2.4=24(海里).故答案是:24.点评:本题主要考查了方向角含义,正确求得∠CBD以及∠CAB的度数是解决本题的关键.16.(3分)(2024•十堰)如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为2π﹣4.考点:扇形面积的计算;二次函数的最值;勾股定理.分析:由OC=4,点C在上,CD⊥OA,求得DC==,运用S△OCD=OD•,求得OD=2时△OCD的面积最大,运用阴影部分的面积=扇形AOC的面积﹣△OCD的面积求解.解答:解:∵OC=4,点C在上,CD⊥OA,∴DC==∴S△OCD=OD•∴=OD2•(16﹣OD2)=﹣OD4﹣4OD2=﹣(OD2﹣8)2+16∴当OD2=8,即OD=2时△OCD的面积最大,∴DC===2,∴∠COA=45°,∴阴影部分的面积=扇形AOC的面积﹣△OCD的面积=﹣×2×2=2π﹣4,故答案为:2π﹣4.点评:本题主要考查了扇形的面积,勾股定理,解题的关键是求出OD=2时△OCD的面积最大.三、解答题:(本题有9个小题,共72分)17.(6分)(2024•十堰)化简:(x2﹣2x)÷.考点:分式的混合运算.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=x(x﹣2)•=x.点评:此题考查了分式的混合运算,娴熟驾驭运算法则是解本题的关键.18.(6分)(2024•十堰)如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:∠B=∠C.考点:全等三角形的判定与性质.专题:证明题.分析:首先依据条件AB=AC,AD=AE,再加上公共角∠A=∠A可利用SAS定理证明△ABE ≌△ACD,进而得到∠B=∠C.解答:证明:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS).∴∠B=∠C.点评:本题主要考查三角形全等的判定方法和性质,关键是驾驭全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.19.(6分)(2024•十堰)甲、乙两人打算整理一批新到的图书,甲单独整理须要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书须要多少分钟完工?考点:分式方程的应用.分析:将总的工作量看作单位1,依据本工作分两段时间完成列出分式方程解之即可.解答:解:设乙单独整理x分钟完工,依据题意得:+=1,解得x=100,经检验x=100是原分式方程的解.答:乙单独整理100分钟完工.点评:本题考查了分式方程的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.20.(9分)(2024•十堰)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会竞赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并依据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你依据统计图中所供应的信息解答下列问题:(1)接受问卷调查的学生共有60名,扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;请补全条形统计图;(2)若该校共有学生900人,请依据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会竞赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”竞赛时双方每次随意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只竞赛一局,请用树状图或列表法求两人打平的概率.考点:条形统计图;用样本估计总体;扇形统计图;列表法与树状图法.专题:计算题.分析:(1)由“了解很少”的人数除以占的百分比得出学生总数,求出“基本了解”的学生占的百分比,乘以360得到结果,补全条形统计图即可;(2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到结果;(3)列表得出全部等可能的状况数,找出两人打平的状况数,即可求出所求的概率.解答:解:(1)依据题意得:30÷50%=60(名),“了解”人数为60﹣(15+30+10)=5(名),“基本了解”占的百分比为×100%=25%,占的角度为25%×360°=90°,补全条形统计图如图所示:(2)依据题意得:900×=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会竞赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;(3)列表如下:剪石布剪(剪,剪)(石,剪)(布,剪)石(剪,石)(石,石)(布,石)布(剪,布)(石,布)(布,布)全部等可能的状况有9种,其中两人打平的状况有3种,则P==.点评:此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.21.(7分)(2024•十堰)已知关于x的一元二次方程x2+2(m+1)x+m2﹣1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满意(x1﹣x2)2=16﹣x1x2,求实数m的值.考点:根的判别式;根与系数的关系.分析:(1)若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)由x1+x2=﹣2(m+1),x1x2=m2﹣1;代入(x1﹣x2)2=16﹣x1x2,建立关于m的方程,据此即可求得m的值.解答:解:(1)由题意有△=[2(m+1)]2﹣4(m2﹣1)≥0,整理得8m+8≥0,解得m≥﹣1,∴实数m的取值范围是m≥﹣1;(2)由两根关系,得x1+x2=﹣(2m+1),x1•x2=m2﹣1,(x1﹣x2)2=16﹣x1x2(x1+x2)2﹣3x1x2﹣16=0,∴[﹣2(m+1)]2﹣3(m2﹣1)﹣16=0,∴m2+8m﹣9=0,解得m=﹣9或m=1∵m≥﹣1∴m=1.点评:本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必需满意△≥0的条件.22.(8分)(2024•十堰)某市政府为了增加城镇居民抵挡大病风险的实力,主动完善城镇医疗费用范围报销比例标准不超过8000元不予报销超过8000元且不超过30000元的部分50%超过30000元且不超过50000元的部分60%超过50000元的部分70%y元.(1)干脆写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?考点:一次函数的应用;分段函数.分析:(1)首先把握x、y的意义,报销金额y分3段①当x≤8000时,②当8000<x≤30000时,③当30000<x≤50000时分别表示;(2)利用代入法,把y=20000代入第三个函数关系式即可得到x的值.解答:解:(1)由题意得:①当x≤8000时,y=0;②当8000<x≤30000时,y=(x﹣8000)×50%=0.5x﹣4000;③当30000<x≤50000时,y=(30000﹣8000)×50%+(x﹣30000)×60%=0.6x﹣7000;(2)当花费30000元时,报销钱数为:y=0.5×30000﹣4000=11000,∵20000>11000,∴他的住院医疗费用超过30000元,把y=20000代入y=0.6x﹣7000中得:20000=0.6x﹣7000,解得:x=45000.答:他住院医疗费用是45000元.点评:此题主要考查了一次函数的应用,关键是正确理解题意,找出题目中的等量关系,列出函数关系式.23.(8分)(2024•十堰)如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=﹣(x<0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.(1)求k的值;(2)求点A的坐标.考点:正方形的性质;反比例函数图象上点的坐标特征;全等三角形的判定与性质.分析:(1)把B的坐标代入求出即可;(2)设MD=a,OM=b,求出ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,证△ADM≌△BAN,推出BN=AM=3,MD=AN=a,求出a=b,求出a的值即可.解答:解:(1)∵点B(3,3)在双曲线y=上,∴k=3×3=9;(2)∵B(3,3),∴BN=ON=3,设MD=a,OM=b,∵D在双曲线y=﹣(x<0)上,∴﹣ab=﹣4,即ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,则∠DMA=∠ANB=90°,∵四边形ABCD是正方形,∴∠DAB=90°,A D=AB,∴∠MDA+∠DAM=90°,∠DAM+∠BAN=90°,∴∠ADM=∠BAN,在△ADM和△BAN中,,∴△ADM≌△BAN(AAS),∴BN=AM=3,MD=AN=a,∴0A=3﹣a,即AM=b+3﹣a=3,a=b,∵ab=4,∴a=b=2,∴OA=3﹣2=1,即点A的坐标是(1,0).点评:本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的性质和判定的应用,主要考查学生运用性质进行推理和计算的实力,题目比较好,难度适中.24.(10分)(2024•十堰)如图1,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.(1)求证:AC平分∠DAB;(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;(3)如图2,连接OD交AC于点G,若=,求sin∠E的值.考点:圆的综合题.专题:计算题.分析:(1)连结OC,如图1,依据切线的性质得OC⊥DE,而AD⊥DE,依据平行线的性质得OC∥AD,所以∠2=∠3,加上∠1=∠3,则∠1=∠2,所以AC平分∠DAB;(2)如图1,由B为OE的中点,AB为直径得到OB=BE=2,OC=2,在Rt△OCE 中,由于OE=2OC,依据含30度的直角三角形三边的关系得∠OEC=30°,则∠COE=60°,由CF⊥AB得∠OFC=90°,所以∠OCF=30°,再依据含30度的直角三角形三边的关系得OF=OC=1,CF=OF=;(3)连结OC,如图2,先证明△OCG∽△DAG,利用相像的性质得==,再证明△ECO∽△EDA,利用相像比得到==,设⊙O的半径为R,OE=x,代入求得OE=3R;最终在Rt△OCE中,依据正弦的定义求解.解答:(1)证明:连结OC,如图1,∵DE与⊙O切于点C,∴OC⊥DE,∵AD⊥DE,∴OC∥AD,∴∠2=∠3,∵OA=OC,∴∠1=∠3,∴∠1=∠2,即AC平分∠DAB;(2)解:如图1,∵直径AB=4,B为OE的中点,∴OB=BE=2,OC=2,在Rt△OCE中,OE=2OC,∴∠OEC=30°,∴∠COE=60°,∵CF⊥AB,∴∠OFC=90°,∴∠OCF=30°,∴OF=OC=1,CF=OF=;(3)解:连结OC,如图2,∵OC∥AD,∴△OCG∽△DAG,∴==,∵OC∥AD,∴△ECO∽△EDA,∴==,设⊙O的半径为R,OE=x,∴=,解得OE=3R,在Rt△OCE中,sin∠E===.点评:本题考查了圆的综合题:娴熟驾驭切线的性质、平行线的性质和锐角三角函数的定义;会依据含30度的直角三角形三边的关系和相像比进行几何计算.25.(12分)(2024•十堰)已知抛物线C1:y=a(x+1)2﹣2的顶点为A,且经过点B(﹣2,﹣1).(1)求A点的坐标和抛物线C1的解析式;(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求S△OAC:S△OAD的值;(3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相像?若存在,求出直线m的解析式;若不存在,说明理由.考点:二次函数综合题;待定系数法求一次函数解析式;待定系数法求二次函数解析式;相像三角形的判定与性质;锐角三角函数的增减性.专题:压轴题;存在型.分析:(1)由抛物线的顶点式易得顶点A坐标,把点B的坐标代入抛物线的解析式即可解决问题.(2)依据平移法则求出抛物线C2的解析式,用待定系数法求出直线AB的解析式,再通过解方程组求出抛物线C2与直线AB的交点C、D的坐标,就可以求出S△OAC:S△OAD的值.(3)设直线m与y轴交于点G,直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形形态、位置随着点G的改变而改变,故需对点G的位置进行探讨,借助于相像三角形的判定与性质、三角函数的增减性等学问求出符合条件的点G的坐标,从而求出相应的直线m的解析式.解答:解:(1)∵抛物线C1:y=a(x+1)2﹣2的顶点为A,∴点A的坐标为(﹣1,﹣2).∵抛物线C1:y=a(x+1)2﹣2经过点B(﹣2,﹣1),∴a(﹣2+1)2﹣2=﹣1.解得:a=1.∴抛物线C1的解析式为:y=(x+1)2﹣2.(2)∵抛物线C2是由抛物线C1向下平移2个单位所得,∴抛物线C2的解析式为:y=(x+1)2﹣2﹣2=(x+1)2﹣4.设直线AB的解析式为y=kx+b.∵A(﹣1,﹣2),B(﹣2,﹣1),∴解得:∴直线AB的解析式为y=﹣x﹣3.联立解得:或.∴C(﹣3,0),D(0,﹣3).∴OC=3,OD=3.过点A作AE⊥x轴,垂足为E,过点A作AF⊥y轴,垂足为F,∵A(﹣1,﹣2),∴AF=1,AE=2.∴S△OAC:S△OAD=(OC•AE):(OD•AF)=(×3×2):(×3×1)=2.∴S△OAC:S△OAD的值为2.(3)设直线m与y轴交于点G,与直线l交于点H,设点G的坐标为(0,t)当m∥l时,CG∥PQ.∴△OCG∽△OPQ.∴=.∵P(﹣4,0),Q(0,2),∴OP=4,OQ=2,∴=.∴OG=.∴t=时,直线l,m与x轴不能构成三角形.∵t=0时,直线m与x轴重合,∴直线l,m与x轴不能构成三角形.∴t≠0且t≠.①t<0时,如图2①所示.∵∠PHC>∠PQG,∠PHC>∠QGH,∴∠PHC≠∠PQG,∠PHC≠∠QGH.当∠PHC=∠GHQ时,∵∠PHC+∠GHQ=180°,∴∠PHC=∠GHQ=90°.∵∠POQ=90°,∴∠HPC=90°﹣∠PQO=∠HGQ.∴△PHC∽△GHQ.∵∠QPO=∠OGC,∴tan∠QPO=tan∠OGC.∴=.∴=.∴OG=6.∴点G的坐标为(0,﹣6)设直线m的解析式为y=mx+n,∵点C(﹣3,0),点G(0,﹣6)在直线m上,∴.解得:.∴直线m的解析式为y=﹣2x﹣6,联立,解得:或∴E(﹣1,﹣4).此时点E在顶点,符合条件.∴直线m的解析式为y=﹣2x﹣6.②O<t<时,如图2②所示,∵ta n∠GCO==<,tan∠PQO===2,∴tan∠GCO≠tan∠PQO.∴∠GCO≠∠PQO.∵∠GCO=∠PCH,∴∠PCH≠∠PQO.又∵∠HPC>∠PQO,∴△PHC与△GHQ不相像.∴符合条件的直线m不存在.③<t≤2时,如图2③所示.∵tan∠CGO==≥,tan∠QPO===.∴tan∠CGO≠tan∠QPO.∴∠CGO≠∠QPO.∵∠CGO=∠QGH,∴∠QGH≠∠QPO,又∵∠HQG>∠QPO,∴△PHC与△GHQ不相像.∴符合条件的直线m不存在.④t>2时,如图2④所示.此时点E在对称轴的右侧.∵∠PCH>∠CGO,∴∠PCH≠∠CGO.当∠QPC=∠CGO时,∵∠PHC=∠QHG,∠HPC=∠HGQ,∴△PCH∽△GQH.∴符合条件的直线m存在.∵∠QPO=∠CGO,∠POQ=∠GOC=90°,∴△POQ∽△GOC.∴=.∴=.∴OG=6.∴点G的坐标为(0,6).设直线m的解析式为y=px+q∵点C(﹣3,0)、点G(0,6)在直线m上,∴.解得:.∴直线m的解析式为y=2x+6.综上所述:存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相像,此时直线m的解析式为y=﹣2x﹣6和y=2x+6.点评:本题考查了二次函数的有关学问,考查了三角形相像的判定与性质、三角函数的定义及增减性等学问,考查了用待定系数法求二次函数及一次函数的解析式,考查了通过解方程组求两个函数图象的交点,强化了对运算实力、批判意识、分类探讨思想的考查,具有较强的综合性,有肯定的难度.。
十堰数学中考试题及答案

十堰数学中考试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 1/3答案:B2. 一个等腰三角形的底边长为6,腰长为5,那么它的周长是多少?A. 16B. 17C. 18D. 19答案:A3. 函数y=2x+3的图象经过第几象限?A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限答案:A4. 已知方程x^2 - 5x + 6 = 0,下列哪个数是方程的解?A. 1C. 3D. 4答案:C5. 计算下列表达式的结果:(3a^2 - 2ab + b^2) / (a - b)A. 3a + bB. a + 3bC. a - bD. 3a - b答案:A6. 一个圆的半径为3,那么它的面积是多少?A. 9πB. 18πC. 27πD. 36π答案:C7. 如果一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个长方体的长、宽、高分别是4、3、2,那么它的体积是多少?B. 36C. 48D. 72答案:A9. 已知函数y=x^2 - 4x + 4,当x=2时,y的值是多少?A. 0B. 4C. 8D. 12答案:A10. 计算下列表达式的结果:(2x + 3)(x - 1)A. 2x^2 - x + 3B. 2x^2 - x - 3C. 2x^2 + x - 3D. 2x^2 - 5x + 3答案:D二、填空题(本题共5小题,每小题4分,共20分)11. 一个等差数列的首项是2,公差是3,那么它的第5项是_________。
答案:1712. 一个直角三角形的两条直角边长分别是3和4,那么它的斜边长是_________。
答案:513. 一个二次函数的顶点坐标是(1, -4),且经过点(0, 3),那么它的解析式是y = _________。
答案:a(x - 1)^2 - 4(其中a为正数)14. 计算下列表达式的结果:(2x^2 - 3x + 1) / (x - 1) =_________。
2023年十堰市中考数学试题试题

2023年十堰市中考数学试题试题1. 下列说法中,错误的是哪一个?A. 有理数包括整数和分数。
B. 分数是正整数的倒数。
C. 两个数的积是它们的和的倒数。
D. 任意一个有理数都可以表示成a/b的形式,其中a和b是整数,b≠0。
正确答案:C解析:积是指两个数相乘的结果,而和是指两个数相加的结果。
两个数的积不可能等于它们的和的倒数,因此说法C是错误的。
2. 某种水果的售价为12元/斤,现购买5斤的该种水果,支付的金额是60元。
下列说法中,正确的是哪一个?A. 如果购买3斤该种水果,支付的金额是36元。
B. 如果购买8斤该种水果,支付的金额是72元。
C. 如果购买2斤该种水果,支付的金额是24元。
D. 如果购买10斤该种水果,支付的金额是100元。
正确答案:B解析:根据题意可知,该种水果的售价是12元/斤,购买5斤的总金额是60元,所以每斤的售价是12元。
根据这个规律,购买8斤的总金额是96元,不是72元,所以说法B是正确的。
3. 下列四个数中,哪一个是3的倍数?A. 25B. 36C. 47D. 58正确答案:B解析:3的倍数是指可以被3整除的数,36可以被3整除,所以36是3的倍数,其他数均不是3的倍数。
4. 某种商品的原价是200元,现在打八折促销,打折后的价格是多少?A. 180元B. 160元C. 150元D. 140元正确答案:C解析:八折是指打九折,即原价的80%,所以打八折后的价格是200元的80%,即200*0.8=160元,所以答案是C。
5. 甲、乙、丙三个数的和是36,丙的数是乙的数的一半,乙的数是甲的数的2倍,求甲的数是多少?A. 6B. 8C. 10D. 12正确答案:B解析:设甲的数为x,乙的数为2x,丙的数为x/2。
根据题意,x+2x+x/2=36,解得x=8,所以甲的数是8。
以上是2023年十堰市中考数学试题的相关试题,希本对您的复习有所帮助,祝您取得好成绩!。
2023年湖北省十堰市竹山县中考数学调研试卷(5月份)(含解析)

2023年湖北省十堰市竹山县中考数学调研试卷(5月份)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 比−1大2的数是( )A. −2B. 1C. 2D. 32.如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是( )A.B.C.D.3. 下列各运算中,正确的运算是( )A. 3+2=5B. (−2a3)2=4a6C. a6÷a2=a3D. (a−3)2=a2−94. 笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1−10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是( )A. 110B. 15C. 310D. 255.下列尺规作图,能判断AD是△ABC边上的高的依据是( )A. 垂直平分线的性质B. 角平分线的判定C. 角平分线的性质D. 垂直平分线的判定6. 《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x天,则可列出正确的方程为( )A. 900x +3=2×900x−1 B. 900x−3=2×900x +1C. 900x−1=2×900x +3D. 900x +1=2×900x−37.无盖圆柱形杯子的展开图如图所示.将一根长为20cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有( )A. 5cmB. 7cmC. 8cmD. 11cm8.如图,某数学活动小组为测量学校旗杆AB 的高度,从旗杆正前方2 3米处的点C 出发,沿斜面坡度i =1: 3的斜坡CD 前进4米到达点D ,在点D 处安置测角仪,测得旗杆顶部A 的仰角为37°,量得仪器的高DE 为1.5米.已知A 、B 、C 、D 、E 在同一平面内,AB ⊥BC ,AB //DE .旗杆AB 的高度为米( )(参考数据:sin 37°≈35,cos 37°≈45,tan 37°≈34.计算结果保留根号)A. 8.5B. 3 3+3.5C. 3 5+3.5D. 109.如图,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接EC .已知AB =8,CD =2.则CE 的长为( )A. 8B. 2 13C. 3 13D. 2 1510. 对于一个函数,当自变量x 取a 时,其函数值y 等于2a ,我们称a 为这个函数的二倍数.若二次函数y =x 2+x +c (c 为常数)有两个不相等且小于1的二倍数,则c 的取值范围是( )A. c <14B. 0<c <14C. −1<c <14D. −1<c <0二、填空题(本大题共6小题,共18.0分)11. 纳米(nm )是非常小的长度单位,1nm =0.000000001m ,将数据0.000000001用科学记数法表示为______ .12. 已知x−2y =3,那么代数式3−2x +4y 的值是______ .13.将一副三角板按图中方式叠放,则角α的度数为______.14. 下列图形中都是由同样大小的小圆圈按一定规律组成的,其中第1个图形中一共有6个小圆圈,第2个图形中一共有9个小圆圈,第3个图形中一共有12个小圆圈,…,按此规律排列,则第2023个图形中小圆圈的个数为______ .15. 如图,在菱形ABCD中,P是对角线AC上一动点,过点P作PE⊥BC于点E,PF⊥AB于点F.若菱形ABCD的周长为20,面积为24,则PE+PF的值为______.16. 如图,矩形ABCD中,AB=3,AD=4,将矩形ABCD折叠后,A点的对应点A′洛在CD边上,EF为折痕,AA′和EF交于G点,当AG+BG取最小值时,此时EF的值为______ .三、解答题(本大题共9小题,共72.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2023年十堰市中考数学试卷
摘要:
1.2023 年十堰市中考数学试卷概述
2.试卷结构与题型分析
3.试题解析及答案
正文:
【2023 年十堰市中考数学试卷概述】
2023 年十堰市中考数学试卷是针对初中毕业生的一次重要考试,旨在全面评估学生们在数学学科上的学习成果。
这份试卷由专业的命题组精心设计,包含了初中数学的全部知识点,为学生提供一个公平、公正的竞争平台。
【试卷结构与题型分析】
2023 年十堰市中考数学试卷分为选择题、填空题、解答题三个部分。
具体结构如下:
1.选择题:共12 题,每题3 分,共计36 分。
这部分试题主要考察学生对基础知识的掌握程度,以及对概念的理解能力。
2.填空题:共8 题,每题4 分,共计32 分。
这部分试题要求学生在理解知识的基础上,进行一定的计算和推理。
3.解答题:共6 题,共计50 分。
这部分试题主要考察学生的综合运用能力,需要学生运用所学知识解决实际问题。
【试题解析及答案】
由于篇幅限制,本文仅提供部分试题的解析及答案。
以选择题第3 题为
例:
题目:已知函数f(x) = 2x^3 - 3x^2 + x + 1,求f(2)。
A.17
B.19
C.21
D.23
解析:将x = 2 代入函数f(x),得到f(2) = 2*2^3 - 3*2^2 + 2 + 1 = 17。
因此,答案为A。
以上就是2023 年十堰市中考数学试卷的概述、结构与题型分析,以及部分试题的解析及答案。