用闭区间套定理证明确界原理
数分知识总结及例题
数分近一周知识点总结本周学习了第二章数列极限。
由于在数学分析中,变量的取值围是限制在实数集合,我们本章学习的重点便是实数系的基本性质和定理。
首先,经过严格的证明,引出了具有连续性的实数系,而确界存在定理就是R 连续性的表述之一——非空有上界的数集必有上确界,非空有下界的数集必有下确界,即非空有界数集的上(下)确界是唯一的。
接着,高中学习过的数列在数分课上也被进一步深化——无穷大量、无穷小量、极限等概念的引入,让我们知道数列是发散或收敛的。
数列极限有唯一性,且收敛数列必有界,而有界数列未必收敛。
由此展开的系列推论与性质,如夹逼性、保序性和四则运算定理也为我们数列运算和学习收敛准则(单调有界数列必收敛)提供了思路和工具。
数学是良好的工具。
应用极限,我们研究了兔群增长率变化情况,π、e、Euler 常数的起源,感受了极限的魅力。
接下来学习的闭区间套定理也解决了我们上一章遇到的问题——实数集是否可列。
Bolzano-Weierstrass定理是将收敛准则条件改动而得到的“稍弱的结论”,更重要的是它为我们最终证明Cauchy收敛原理提供了强有力的支持。
而Cauchy原理也说明了实数系的另一个性质——完备性。
回顾本章,我们会发现实数系的完备性等价于实数系的连续性,本章学习的5个实数基本定理也是相互等价的。
下面我们以5定理互证为例题补充:聚点有界数列的一个收敛子列的极限称为该数列的聚点,又称称极限点,因此Bolzano-Weierstrass 定理又称聚点定理。
下面我们用聚点定理代替B-W,是等效的例题:实数系完备性基本定理的循环证明摘 要:循环论证了实数系的5个基本定理,并最终形成所有完美的论证环,体现了数学论证之美.(单调有界定理) 任何单调有界数列必定收敛. (闭区间套定理) 设{[,]}n n a b 为一闭区间套: 1.11[,][,],1,2,,n n n n a b a b n ++⊃=L 2.lim()0n n n b a →∞-=则存在唯一一点[,],1,2,.n n a b n ξ∈=L(聚点定理)又称Bolzano-WEierstrass 定理 直线上的任一有界无限点集S 至少有一个聚点ξ,即在ξ的任意小邻域都含有S 中无限多个点(ξ本身可以属于S ,也可以不属于S ).或表述为:有界数列有至少一个收敛子列。
(完整word版)实数完备性基本定理的相互证明
实数完备性基本定理的相互证明(30个)一.确界原理1.确界原理证明单调有界定理证 不妨设{}n a 为有上界的单调递增数列.由确界原理,数列{}n a 有上确界,令{}n a sup a =,下面证明:lim n n a a →∞=.对任意的0ε>,由上确界的定义,存在数列{}n a 中某一项N a ,使得:N a a ε->. 由于{}n a 单调递增,故对任意的n N >,有:n N a a a ε-<<.另一方面,由于a 是{}n a 的一个上界,故对任意的正整数n 都有:n a a a ε≤<+. 所以任意的n N >,有:n a a a εε-<<+,即:n a a ε-<.由极限的定义,lim n n a a →∞=.同理可证单调递减有下界的数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理证明:设[]{},n n a b 是一个闭区间套. 令数集{}n S a =.由于任一n b 都是数列{}n a 的上界,由确界原理,数集S 有上确界,设supS ξ=. 下证ξ属于每个闭区间[](),1,2,3,n n a b n =显然,()1,2,3,n a n ξ≤=,故只需证明对任意正整数n ,都有n b ξ≤.事实上,对任意正整数n ,n b 都是S 的上界,而上确界是最小上界,故必有n b ξ≤. 所以存在实数ξ,使得[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证. 3.确界原理证明有限覆盖定理证明:欲证闭区间[],a b 的任一开覆盖H 都有有限的子覆盖. 令[]{}|,S x a x H a x b =<≤能被中有限个开区间覆盖,显然S 有上界.又H 覆盖闭区间[],a b ,所以,存在一个开区间(),H αβ∈,覆盖住了a .取(),x a β∈,则[],a x 显然能被H 中有限个开区间覆盖(1个),x S ∈,从而S 非空.由确界原理,令supS ξ=.先证明b ξ=.用反证法,若b ξ≠,则a b ξ<<.由H 覆盖闭区间[],a b ,一定存在开区间()11,H αβ∈,覆盖住了ξ.取12,x x ,使:11211,x x x S αξβ<<<<∈ ,则[]1,a x 能被H 中有限个开区间覆盖,把()11,αβ加进去,就得到[]2,a x 也能被H 中有限个开区间覆盖,即2x S ∈,这与supS ξ=矛盾,故b ξ=.最后证明b S ∈.设开区间()22,H αβ∈,覆盖住了b .由b supS =,故存在y 使得:2y b α<≤且y S ∈.则[],a y 能被H 中有限个开区间覆盖,把()22,αβ加进去,就得到[],a b 也能被H 中有限个开区间覆盖. 4.确界原理证明聚点定理证明:设S 有界无限点集,则由确界原理令inf S ξ=.若ξ是S 的一个聚点,则命题已经成立,下面设ξ不是S 的聚点.令 ){}|,T x x S ξ=⎡⎣中只包含中有限个元素.因为ξ不是S 的聚点,所以存在00ε>,使得()()000;,U ξεξεξε=-+只包含S 中有限个数,故0T ξε+∈,从而T 非空. 又S 有界,所以S 的所有上界就是T 的上界,故T 有上确界,令sup T η=. 下面证明η是S 的一个聚点.对任意的0ε>,S ηε+∉,故),ξηε+⎡⎣包含S 中无穷多个元素.由上确界的定义,存在(],ληεη∈-,使得S λ∈,故),ξλ⎡⎣中只包含S 中有限多个元素.从而我们得知)(),;U ληεηε+⊂⎡⎣中包含了S 中无穷多个元素,由聚点的定义,η是S 的一个聚点.5.确界原理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.令数集{}{}|,n n S x x x x x n =≥∀中只有有限项小于或,明显数列{}n x 的下界都属于S ,并且{}n x 的上界就是S 的上界.由确界存在定理,令sup S ξ=.对条件给定的0ε>和N ,S ξε+∉,故(),ξε-∞+包含{}n x 中无穷多项.由上确界的定义,存在(],λξεξ∈-,使得S λ∈,故(),λ-∞中只包含S 中有限多个元素.从而我们得知)()(),;,U ληεηεηεηε+⊂=-+⎡⎣中包含了S 中无穷多个元素,设()(),1,2,3,k n x U k ξε∈=则对任意正整数n N >,总存在某个k n N >,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=.从而lim n n x ξ→∞=.二.单调有界定理6.单调有界定理证明确界定理证明:我们不妨证明非空有上界的数集S必有上确界.设{}|T r r S =为数集的有理数上界.明显T 是一个可数集,所以假设:{}12,,,,n T r r r =.令{}1min n i i nx r ≤≤=.则得单调递减有下界的数列,由单调有界定理得,令lim n n x ξ→∞= 先证ξ是上界.任取s S ∈,有n n s r x ≤≤,由极限的保序性,s ξ≤.其次对于任意的0ε>,取一个有理数(),r ξεξ∈-,它明显不是S 的上界,否则lim n n x r ξξ→∞=≤<产生矛盾!故存在s S ∈,使得s ξε>-,我们证明了ξ是数集S 上确界.7.单调有界定理证明区间套定理若[]{},n n a b 是一个区间套,则{}n a 为单调递增有上界的数列,由单调有界定理, 令lim n n a ξ→∞=,并且容易得到()1,2,3,n a n ξ≤=.同理,单调递减有下界的数列{}n b 也有极限,并按区间套的条件有:()lim lim 0n n n n n n b a b a ξξ→∞→∞=+-=+=⎡⎤⎣⎦,并且容易得到()1,2,3,n b n ξ≥=.所以[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.8.单调有界定理证明有限覆盖定理设[]{}|,,T r a r H r r b =∈≤可以被的开区间有限开覆盖,且.容易得到T 中包含无穷多个元素,并且T 是一个可数集,所以假设:{}12,,,,n T r r r =.令{}1max n i i nx r ≤≤=.则得单调递增有上界的数列,由单调有界定理得,令lim n n x ξ→∞=.先证明b ξ=.用反证法,若b ξ≠,则a b ξ<<.由H 覆盖闭区间[],a b ,一定存在开区间()11,H αβ∈,覆盖住了ξ.取,i j x r y =,使:11i j x r y αξβ<=<<< ,则[]1,a x 能被H 中有限个开区间覆盖,把()11,αβ加进去,就得到[],a y 也能被H 中有限个开区间覆盖,即y S ∈,这与supS ξ=矛盾,故b ξ=.最后证明b S ∈.设开区间()22,H αβ∈,覆盖住了b .由b supS =,故存在k l x r =使得:2k l x r b α<=≤.则[],l a r 能被H 中有限个开区间覆盖,把()22,αβ加进去,就得到[],a b 也能被H 中有限个开区间覆盖. 9.单调有界定理证明聚点定理证明:设S 是一有界无限点集,在S 中选取一个单调{}n a ,下证数列{}n a 有聚点.(1)如果在{}n a 的任意一项之后,总存在最大的项,设1a 后的最大项是1n a ,1n a 后的最大项是2n a ,且显然()2121n n a a n n ≤>; 一般地,将k n a 后的最大项记为1k n a +,则有:()11,2,3,k k n n a a k +≤=.这样,就得到了{}n a 的一个单调递减子列{}k n a .(2)如果(1)不成立 则从某一项开始,任何一项都不是最大的,不妨设从第一项起,每一项都不是最大项.于是,取11n a a =,因1n a 不是最大项,所以必存在另一项()2121n n a a n n >>又因为2n a 也不是最大项,所以又有:()3232n n a a n n >> ,这样一直做下去,就得到了{}n a 的一个单调递增子列{}k n a .综上所述,总可以在S 中可以选取一个单调数列{}k n a ,利用单调有界定理,{}k n a 收敛,极限就是S 的一个聚点.10.单调有界定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.参考9的做法,可知数列{}n a 有一个单调子列{}k n a ,由单调有界定理,{}k n a 收敛,令lim k n k x ξ→∞=.则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.三.区间套定理11.区间套定理证明确界原理证明:仅证明非空有上界的数集S 必有上确界取一个闭区间[],a b ,使得[],a b 包含S 中的元素,并且b 为S 的上界.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为数集S 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦. 再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为数集S 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =并且每个闭区间[],n n a b 都包含S 中的元素,并且右端点n b 为S 的上界.由于对任意s S ∈,有n s b ≤,所有由极限的保序性,lim n n s b ξ→∞≤=,从而ξ是数集S 的上界.最后,对于任意0ε>,存在n ,使得0n n b a ε<-<.由闭区间套的选取,[],n n a b 包含了S 中某个元素s ,从而有n n s a b εξε≥>->-.故ξ是数集S 的上确界. 12. 区间套定理证明单调有界定理设{}n x 是单调有界数列,不妨设其为单调递增且有上界取一个闭区间[],a b ,使得[],a b 包含{}n x 中的项,并且b 为{}n x 的上界.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为{}n x 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦.再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为{}n x 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =并且每个闭区间[],n n a b 都包含{}n x 中的项,并且右端点n b 为{}n x 的上界.下面证明lim n n x ξ→∞=.对任意的0ε>,存在n ,使得0n n b a ε<-<.由闭区间套的选取,[],n n a b 包含了{}n x 中某一项N x ,从而有N n n x a b εξε≥>->-.由于{}n x 单调递增,故对任意的n N >,有:N n x x ξε-<<. 又n n n x b a εξε<<+<+,故有n x ξεξε-<<+,即n x ξε-<. 13. 区间套定理证明有限覆盖定理若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =.显然[],a b ξ∈,考虑H 中覆盖ξ的开区间(),αβ,取{}0min ,δξαβξ<<--.由于lim lim n n n n a b ξ→∞→∞==,所以存在N ,对一切正整数n N >,有,n n a b ξξδ--<,故此时[]()(),;,n n a b U ξδαβ⊂⊂.从而[](),n n a b n N >可以被H 中的一个开区间(),αβ覆盖,产生矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖. 14. 区间套定理证明聚点定理证明:已知点集S 是有界无限点集.设[],S a b ⊂.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,每个闭区间包含了点集S 中无穷多个元素.由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =.下证ξ是点集S 的一个聚点.因为lim lim n n n n a b ξ→∞→∞==,故对任意的0ε>,必定存在一个N ,对一切正整数n N >,有,n n a b ξξε--<,从而[]()(),;n n a b U n N ξε⊂>.又每个闭区间[],n n a b 包含了点集S 中无穷多个元素,故();U ξε包含了点集S 中无穷多个元素.由聚点的定义,ξ是点集S 的一个聚点.15. 区间套定理证明Cauchy 收敛准则 必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.取一个闭区间[],a b ,使得[],a b 包含所有{}n x 中的项.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了{}n x 中无穷多项,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了{}n x 中无穷多项,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且每个闭区间[],n n a b 都包含{}n x 中无穷多项.由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =现在取一个子列{}k n x ,满足[](),1,2,3,k n k k x a b k ∈=.因为lim lim n n n n a b ξ→∞→∞==和夹逼定理,lim kn k x ξ→∞=.则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.四.有限覆盖定理16.有限覆盖定理证明确界原理证明:不妨设S 为非空有上界的数集,我们证明S 有上确界. 设b 为S 的一个上界,下面用反证法来证明S 一定存在上确界.假设S 不存在上确界,取a S ∈.对任一[],x a b ∈,依下述方法确定一个相应的邻域(开区间)()();,x x x x U U x x x δδδ==-+.(1)若x 不是S 的上界,则至少存在一点x S '∈,使x x '>,这时取x x x δ'=-.(2)若x 是S 的上界,由假设S 不存在上确界,故有0x δ>,使得](,x x x δδ- 中不包含S 中的点.此时取(),x x x U x x δδ=-+,可知它也不包含S 中的点.于是我们得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈ 根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖.很明显(1)的开区间右端点属于S ,(2)的开区间中不包含S 中的点.显然a 所属的开区间是属于(1)的,b 所属的开区间是属于(2)的,所以至少有一个(1)中的开区间与某个(2)中的开区间相交,这是不可能的.17.有限覆盖定理证明单调有界定理证明:设{}n x 是单调有界数列,不妨设其为单调递增且有上界.任取b 为{}n x 的一个上界以及{}n x 中某项t x ,构造出闭区间[],t x b ,对任意的[],t x x b ∈,依下述方法确定一个相应的邻域(开区间)()();,x x x x U U x x x δδδ==-+.(1) 若x 不是{}n x 的上界,则{}n x 中至少存在一项i x ,使i x x >,这时取x x x δ'=-.(2) 若x 是{}n x 的上界,由假设{}n x 发散,故不会收敛到x .即有存在某个00ε>,对任何正整数N ,存在n N >,使得()()000;,n x U x x x εεε∉=-+.由于{}n x 递增,有上界x ,所以{}n x 中的所有项均不落在()()000;,U x x x εεε=-+中.此时取0x δε=.于是我们得到了[],t x b 的一个开覆盖:()[]{},|,x x x t H U x x x x b δδ==-+∈. 根据有限覆盖定理,[],t x b 可以被H 中有限个开区间{}1inx i U =覆盖.很明显(1)的开区间右端点属于{}n x ,(2)的开区间中不包含{}n x 中的项.显然t x 所属的开区间是属于(1)的,b 所属的开区间是属于(2)的,所以至少有一个(1)中的开区间与某个(2)中的开区间相交,这是不可能的.18. 有限覆盖定理证明区间套定理 证明:用反证法.假设[]{}(),1,2,3,n n a b n =没有公共点,则对任意一点[]11,x a b ∈,它都不会是[]{}(),1,2,3,nna b n =的公共点,从而存在正整数xn,使得,x x n n x a b ⎡⎤∉⎣⎦.故总存在一个开区间(),x x x U x x δδ=-+,使得:(),,xnx x n nx x a b δδ⎡⎤-+⋂=∅⎣⎦,于是我们得到了[]11,a b 的一个开覆盖:()[]{}11,|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[]11,a b 可以被H 中有限个开区间{}1i kx i U =覆盖.注意到闭区间套之间的包含关系,则所有{}1ikx i U =一定和某个最小的闭区间001,,i i k n n n n i a b a b =⎡⎤⎡⎤=⎣⎦⎣⎦无交.从而:[]{}0000001111,,,,i ik k n n x n n x n n i i a b a b U a b Ua b ==⎧⎫⎡⎤⎡⎤⎡⎤⋂⊂⋂=⋂=∅⎨⎬⎣⎦⎣⎦⎣⎦⎩⎭.产生矛盾!19. 有限覆盖定理证明聚点定理证明:设点集S 是有界无限点集.设[],S a b ⊂.用反证法,假设S 没有聚点.利用聚点定义,对任意的[],x a b ∈,存在一个领域(),x x x U x x δδ=-+,使得x U 中只包含点集S 中有限个点.这样得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖. 由于每个x U 中只包含点集S 中有限个点,所以[]1,i n x i a b U =⊂也只包含了S 中有限个点,这与S 是无限点集相矛盾!故假设不成立,即S 有聚点. 20. 有限覆盖定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:(使用反证法)现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<. 先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.假设{}[],n x a b ⊂.若{}n x 发散,则对任意的[],x a b ∈,可以找到一个(),x x x U x x δδ=-+,使得{}n x 中只有有限项落在()0;U x ε中.否则对任何0δ>,(),x x δδ-+中均包含{}n x 中无限项,则可以证明{}n x 收敛.这样得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1i nx i U =覆盖. 所以[]1,i n x i a b U =⊂也只包含了{}n x 中的有限项,矛盾!故假设不成立,{}n x 收敛.五.聚点定理21.聚点定理证明确界原理证明:仅证明非空有上界的数集S 必有上确界.取一个闭区间[],a b ,使得[],a b 包含S 中的元素,并且b 为S 的上界.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为数集S 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦. 再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为数集S 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由于{}n b 明显有界,所有它有聚点ξ.对任意0,s S ε>∈,设()();,k b U ξεξεξε∈=-+,则k s b ξε≤<+.由ε的任意性,s ξ≤,故ξ是S 的一个上界.其次,对任意0ε>,取()();,k a U ξεξεξε∈=-+,设s S ∈包含于闭区间[],k k a b ,则k s a ξε≥>-.从而我们证明了ξ是S 的一个上确界. 22.聚点定理证明单调有界定理证明:设{}n x 是单调有界数列,则它一定存在聚点ξ.下证:lim n n x ξ→∞=.对任意的0ε>,由聚点的定义,()(),,U ξεξεξε=-+中包含{}n x 中的无穷多项,设{}()(),,kn x U ξεξεξε⊂=-+.则取1N n =,对一切正整数1n N n >=,假设k n n <.利用{}n x 是单调的,nx介于1n x 与k n x 之间,所以由()1,,k n n x x U ξε∈,可知(),n x U ξε∈,从而由极限的定义,lim n n x ξ→∞=23.聚点定理证明区间套定理证明:设{}{}n n S a b =⋃,则S 是有界无限点集 由聚点定理得数集S 聚点ξ.若存在一个某个正整数0n ,使得00,n n a b ξ⎡⎤∉⎣⎦,不妨假设00n n a b ξ<<.取00n b εξ=-,则对一切0n n >,有00n n n a b b ξε<≤=-.于是()()000;,U ξεξεξε=-+中只包含S 中有限个点,这与ξ是数集S 的聚点矛盾!故[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.24.聚点定理证明有限覆盖定理证明:若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且[](),1,2,3n n a b =均不能被H 有限开覆盖显然,{}n a 是有界的,故它存在聚点ξ.明显[],a b ξ∈.考虑H 覆盖中覆盖住ξ的开区间(),αβ.取{}min ,εξαβξ<--,则在()();,U ξεξεξε=-+中包含了{}n a 中的无穷多项,设{}()();,kn a U ξεξεξε⊂=-+.又()02n n nb aba n --=→→+∞ 于是存在某个0k n ,使得0k k n n b a βξε-<--故0n a ξεα>->;()00n n b a βξεξεβξεβ<+--<++--=. 故[]00,,n n a b αβ⎡⎤⊂⎣⎦.这与[](),1,2,3n n a b =均不能被H 有限开覆盖矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖.25.聚点定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.故它存在聚点,设为ξ.对条件中的0ε>,由聚点的定义,假设{}()();,k n x U ξεξεξε⊂=-+ 则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.六.Cauchy 收敛准则26. Cauchy 收敛准则证明确界原理证明: 设S 为非空有上界数集.由实数的阿基米德性,对任何正数α,存在整数k α ,使得k ααλα=为S 的上界,而()1k ααλαα-=-不是S 的上界, 即存在S α'∈使得()1k ααα'>- 分别取()11,2,3,n n α==,则对每一个正整数n ,存在相应的n λ,使得nλ为S 的上界,而1n nλ-不是S 的上界,故存在S α'∈,使得1n nαλ'>-又对正整数m ,m λ是S 的上界,故有m λα'≥.所以1m n n λαλ'≥>-,即有1m n m λλ-<.同理有1m n nλλ-<,于是得到11min ,m n m n λλ⎧⎫-<⎨⎬⎩⎭.于是,对任意的0ε>,存在正整数N ,使得当,m n N >时有m n λλε-<. 由柯西收敛准则,数列{}n λ收敛.记lim n n λλ→∞=现在证明λ就是S 的上确界.首先,对任何S α∈和正整数n ,有n αλ≤,有极限的保序性,lim n n αλλ→∞≤=,故λ是S 的上界其次,对于任意的0δ>,存在充分的的正整数n ,使得12n δ<并且2n δλλ>-. 由于1n n λ-不是S 的上界,所以存在S α'∈,并且1n n αλ'>-.于是122n n δδαλλλδ'>->--=-.故λ就是S 的上确界. 27. Cauchy 收敛准则证明单调有界定理证明:设{}n x 是单调有界数列,不妨假设{}n x 单调递增有上界.若{}n x 发散,则又柯西收敛准则,存在00ε>,对一切正整数N ,存在m n N >>,使得0m n m n x x x x ε-=-≥.于是容易得到{}n x 的子列{}k n x ,使得10k k n n x x ε+-≥.进而()101k n n x x k ε>+-故()k n x k →+∞→∞,这与{}n x 是有界数列矛盾!所有假设不成立,即{}n x 收敛. 28. Cauchy 收敛准则证明区间套定理证明:设[]{},n n a b 为闭区间套.因为lim 0n n n a b →∞-=,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.由于{}n a 单调递增,{}n b 单调递减,由极限的保序性, 所以[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.29.Cauchy 收敛准则证明有限覆盖定理证明:若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且[](),1,2,3n n a b =均不能被H 有限开覆盖.因为lim lim02n n nn n b aa b →∞→∞--==,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.由于{}n a 单调递增,{}n b 单调递减,由极限的保序性, 所以[](),1,2,3,n n a b n ξ∈=.考虑H 覆盖中覆盖住ξ的开区间(),αβ.取{}min ,εξαβξ<--,则存在正整数N ,对一切n N >,,n n a b ξξε--<.即有[]()(),;,n n a b U ξεαβ⊂⊂.这与[](),1,2,3n n a b =均不能被H 有限开覆盖矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖.30. Cauchy 收敛准则证明聚点定理证明:已知点集S 是有界无限点集.设[],S a b ⊂.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,每个闭区间包含了点集S 中无穷多个元素. 因为lim lim02n n nn n b aa b →∞→∞--==,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.下证ξ是S 的一个聚点.对任意的0ε>,存在正整数N ,对一切n N >,,n n a b ξξε--<.即有[]()(),;,n n a b U ξεξεξε⊂=-+.故()();,U ξεξεξε=-+中包含了S 中无穷多个元素,由聚点的定义,ξ是S 的一个聚点.。
实数完备性六个定理的互相证明
0 , x S ,使得 x ,
记为 xn a ( n ) 。如果不存在实数 a,使 xn 收敛于 a,则称数列 xn 发散。
lim xn a 0 , N N , n N ,有 xn a 。
二、一些基本概念
1.有界集: 设 S 是一个非空数集,如果 M R ,使得 x S ,有 x M ,则称 M 是 S 的
一个上界;如果 m R ,使得 x S ,有 x m ,则称 m 是 S 的一个下界。当数集 S 既有上界,又有下界时,称 S 为有界集。
a1 b1 a b a b , b1 S ,则记 a2 , b2 = 1 1 , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 2 2 2 an 1 bn 1 an 1 bn 1 a b an1 , bn1 二等分为 , bn 1 ,若 n 1 n 1 , bn 1 S , an 1 , 、 2 2 2
则记 a2 , b2 =
a1 b1 a b , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 an 1 , bn 1 二等分为 2 2
an 1 bn 1 an 1 bn 1 a b , bn 1 ,若 n 1 n 1 非 s 的上界,则记 、 an 1 , 2 2 2 an 1 bn 1 a b an , bn = , bn 1 否则记 an , bn = an 1 , n 1 n 1 ;...,得到一列闭区间 2 2
上界,则记 a2 , b2 =
六大定理互相证明总结
六大定理的相互证明总结XXX 学号数学科学学院 数学与应用数学专业 班级指导老师 XXX摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明.关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理1 确界定理1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b .显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞→n n n a b ∴βα=即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1]证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界{}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y .由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,有N n y y ≥,从而n y >εβ-.也就是说:当n >N 时,有 n y -≤β0<ε 所以 β→n y 2 单调有界原理2.1 单调有界原理 单调有界数列有极限. 2.2 单调有界原理证明致密性定理在证明定理之前,我们要先证明一个引理:任意一个数列{}n x 必存在单调子数列. 证明:⑴若{}n x 中存在递增子序列{}k n x ,则引理已证明;⑵若{}n x 中无递增子序列,那么∃1n >0,使n >1n ,恒有1n x >n x .同样在{}n x (n >1n )中也无递增子序列.于是又存在2n >0,使2n >n ,恒有2n x <n x <1n x .如此无限进行下去便可得到一严格递减子序列{}k n x . 引理得证.下面证明定理:由引理知,有界数列必有有界单调子数列.又由单调有界原理知,该有界单调子数列必有极限,即该子数列是收敛的.故有界数列必有收敛子列. 2.3 单调有界原理证明区间套定理[1]由定理的条件立即知道{}n a 是单调增加有上界的数列,{}n b 是单调递减有下界的数列.根据定理,则n n a ∞→lim 存在,且极限等于{}n a 的上确界.同样,n n b ∞→lim 也存在,且极限等于{}n b 的下确界.亦即对任何正整数k ,有n n k n n k b b a a ∞→∞→≥≤lim ,lim (*)由定理的另一条件: ()0lim =-∞→n n n a b ,并且由于已知{}n a 及{}n b 的极限都存在,则有()0lim lim lim =-=-∞→∞→∞→n n n n n n n a b a b .从而证明了两个极限相等,且设ξ是它们的同一极限.于是定理前一部分的结果即已证得.剩下要证的是:ξ是所有区间的唯一公共点.由(*)的两个不等式,即有 n k b a ≤≤ξ(3,2,1=k …)也就是ξ是所有区间的一个公共点.现在要证明ξ是所有区间的唯一公共点.设除点ξ外,所设区间列还有另外一个公共点'ξ,且ξξ≠'.由于n n b a ≤≤',ξξ(3,2,1=n …),故有ξξ-≥-'n n a b (3,2,1=n …) 由数列极限的性质知道:()ξξ-≥-∞→'lim n n n a b由于()0lim =-∞→n n n a b ,故有0'≤-ξξ从而有ξξ='.到此定理的全部结果都已得证. 3 区间套定理3.1 区间套定理 设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b ,则区间的端点所成两数列{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点.3.2 区间套定理证明单调有界原理 证明:设数列{}n x 递增有上界.取闭区间[]11,b a ,使1a 不是数列{}n x 的上界,1b 是数列{}n x 的上界.显然在闭区间[]11,b a 内含有数列{}n x 的无穷多项,而在[]11,b a 外仅含有数列{}n x 的有限项. 对分[]11,b a ,取[]22,b a ,使其具有[]11,b a 的性质.故在闭区间[]22,b a 内含有数列{}n x 的无穷多项,而在[]22,b a 外仅含有数列{}n x 的有限项.以此方法,得区间列{[,n a ]n b }.由区间套定理,ξ是所有区间的唯一公共点.显然,在ξ的任何邻域内有数列{}n x 的无穷多项,即ε∀>0,∃*N N ∈,当n >N 时,有ξ-n x <ε. 所以ξ=∞→n n x lim 定理得证.3.3 区间套定理证明致密性定理[1]证明:设{}n y 为有界数列,即存在两个数b a ,,使b y a n ≤≤.等分区间[]b a ,为两个区间,则至少有一个区间含有{}n y 中的无穷个数.把这个区间记为[]11,b a ,如果两个区间都含有无穷个n y ,则任取其一作为[]11,b a .再等分区间[]11,b a 为两半,记含有无穷个n y 的区间为[]22,b a .这个分割手续可以继续不断的进行下去,则得到一个区间列{[,n a ]n b },这个区间列显然适合下面两个条件:(1)[][][]⊃⊃⊃2211,,,b a b a b a … (2)02→-=-nn n ab a b 于是由区间套定理,必存在唯一点[]b a ,∈ξ使ξξ→→n n b a ,,且[]k k b a ,∈ξ(3,2,1=k …).每一[]k k b a ,中均含有{}n y 的无穷个元素.在[]11,b a 中任取{}n y 的一项,记为1n y ,即{}n y 的第1n 项.由于[]22,b a 也含有无穷个n y ,则它必含有1n y 以后的无穷多个数,在这些数中任取其一,记为2n y ,则1n <2n .继续在每一[]k k b a ,中都这样取出一个数k n y ,即得{}n y 的一个子列{}k n y ,其中1n <2n <…<k n <…,且k n k b y a k ≤≤.令∞→k ,由于,,ξξ→→k k b a 故ξ→k n y .这就是定理所要的结果.4 致密性定理4.1 致密性定理 又称魏尔斯特拉斯定理,任一有界数列必有收敛子列. 4.2 致密性定理证明单调有界原理证明:不妨设{}n x 单调递增且有界,根据致密性定理有收敛子列{}k n x . 令a x k n k =∞→lim .于是,对ε∀>0,∃0k ,当k >0k 时,有a x k n -<ε (*) 由于{}n x 单调递增,显然恒有a x n ≤(3,2,1=n …). 由此(*)式可改成0k n x a -≤<ε (k >0k ) 取0k n N =,当n >N 时有 k n n x a x a -≤-≤0<ε 所以 a x n n =∞→lim4.3 致密性定理证明柯西收敛原理[1] 证明:首先证明条件的必要性:设a x n →,则对任意给定ε>0,有一正整数N ,当k >N 时,有 a x k -<2ε从而当n m ,>N 时,有m n m n x a a x x x -+-≤-<2ε+2ε=ε 其次证明条件的充分性:首先,证明满足条件的任何数列必有界.从所设条件,取ε=1,必有一正整数0N ,当n m ,>0N 时,有m n x x -<1特别地,当n >0N 且10+=N m 时,有 10+-N n x x <1 从而当n >0N 时,有 1100+++-≤N N n n x x x x <1+10+N x这就证明了{}n x 的有界性.由致密性定理,必有收敛子列{}k n x ,设a x k n k =∞→lim .根据子列收敛定义,对任意给定的ε>0,必有正整数K ,当k >K 时,有 a x n -<ε取一正整数()1,1m ax 0++=N K k .于是0k >K ,且11+≥≥+N n n N k o >N .因此,当n >N 时,由已知条件有0k n n x x -<ε,所以a x x x a x k k n n n n -+-≤-00<ε+ε=2ε即 a x n n =∞→lim5 柯西收敛原理5.1 柯西收敛原理 数列{}n x 有极限的必要与充分条件是:对任意给定的ε>0,有正整数N ,当m , n >N 时,有m n x x -<ε. 5.2 柯西收敛原理证明单调有界原理证明:反证法,设{}n x 为一递增且有上界M 的数列.假设其没有极限,则用柯西收敛原理表达就是ε∃>0,对*N N ∈∀,当n m ,>N 时,有 m n x x -ε≥ 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x . 又由于数列{}n x 为一递增的数列,所以1212n n n n x x x x -=-1≥ 取1=ε,必有一正整数1N ,当32,n n >1N 时,有123≥-n n x x 取1=ε,必有一正整数1N ,当43,n n >1N 时,有134≥-n n x x …………… …………… …………… 取1=ε,必有一正整数1N ,当1,+k k n n >1N 时,有11≥-+k k n n x x 将以上式子相加,得11+≥+k x k n ∞→ (∞→k ) 与数列{}n x 有上界M 矛盾,假设不成立. 即,单调有界数列有极限. 5.3 柯西收敛原理证明致密性定理证明:反证法,设{}n x 为一有上界M 的数列. 假设其没有收敛子列.由子列收敛的定义,则ε∃>0,对*N N ∈∀,当k k n n ,1+>N 时,有ε≥-+k k n n x x 1. 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x 取2=ε,必有一正整数2N ,当32,n n >2N 时,有223≥-n n x x 取3=ε,必有一正整数3N ,当43,n n >3N 时,有334≥-n n x x…………… …………… …………… 取k =ε,必有一正整数k N ,当1,+k k n n >k N 时,有k x x k k n n ≥-+1 显然与数列{}n x 有上界M 矛盾,假设不成立. 即,任一有界数列必有收敛子列. 6 有限覆盖定理6.1有限覆盖定理 若开区间所组成的区间集E 覆盖一个闭区间[a ,b ],则总可以从E 中选出有限个区间,使这有限个区间覆盖[a ,b ]. 6.2 有限覆盖定理证明确界定理证明:在这里我们只说明定理的上确界部分.设不为空集的区间E ⊂R ,∀x ∈E ,有x ≤M ,任取一点0x ∈E ,假设E 无上确界,那么∀x ∈[0x ,M ]:ⅰ)当x 为E 的上界时,必有更小的上界1x <x ,因而x 存在一开邻域∆x ,其中每一点均为E 的上界,称其为第一类区间;ⅱ)当x 不是E 的上界时,则有2x ∈E 使2x >x ,那么x 存在一开邻域∆x ,其中每点均不是E 的上界,称其为第二类区间.∴ 当x 取遍[0x ,M ]上每一点找出一个邻域∆x .显然∆x 不是第一类区间就是第二类区间.这些邻域组成闭区间[0x ,M ]的一个开覆盖,由有限覆盖定理,必存在有限子区间覆盖[0x ,M ].显然M 所在的开区间应为第一类区间,与其邻接的开区间∆x 有公共点.所以∀x ∈∆x ,x 均为E 的上界.而与∆x 相邻接的开区间∆'x 有公共点,所以∀x ∈∆'x ,x 均为E 的上界. 依此类推,0x 所在的开区间也是第一类区间,则0x 为E 的上界. 又 0x E ∈,∴E 为常数集.由此矛盾引出. 得证.同理,E 有下确界.6.3 有限覆盖定理证明致密性定理证明:设{}n x 是一有界数列,现在证明{}n x 有收敛子列.(1)如果{}n x 仅由有限个数组成,那么至少有一个数ξ要重复无限多次,即ξ===21n n x x …==kn x … 因而子列{}kn x 收敛于ξ.(2)如果{}n x 是由无穷多个数组成,由有界性知,存在闭区间[]b a ,,使对一切自然数n 都有a <n x <b在[]b a ,内至少存在一点0x ,使对于任意的正数δ,在()δδ+-00,x x 内都含有{}n x 中无穷多个数.事实上,倘若不然,就是说对于[]b a ,中每一点x ,都有x δ>0,在()x x x x δδ+-,内,仅有{}n x 中的有限个数.考虑所有这样的开区间所成之集:{=μ(,x x δ-)x x δ+},μ完全覆盖了闭区间[]b a ,,依有限覆盖定理,存在μ中的有限多个区间.()11111,x x x x δδ+-=∆,…,()n n x n x n n x x δδ+-=∆,,他们也覆盖了[]b a ,,并且在每一个i ∆(,2,1=i …,n )中都只含{}n x 中的有限多个数.因此{}n x 也最多是由有限个数组成,这与假设矛盾. 于是,对于k δ=k1(,3,2,1=k …),于()k k x x δδ+-00,内取{}n x 中无穷多个点,就得到{}n x 的子列{}k n x 满足:0x x k n -<kk 1=δ(,3,2,1=k …)从而∞→k lim 01x x n =得证.总结:六大定理可以分为两类: ① 有限覆盖定理:反映区间上的整体性质; ② 其余五个:反映函数在一点上的性质.实数的六个基本定理在理论上很有用,在之后的闭区间上的函数的性质的证明上发挥着重要的作用.本文在写作过程中得到了XXX 老师的多次精心指导,在此表示感谢.参考文献:[1] 陈传璋 金福临 朱学炎 .《数学分析(上)》.高等教育出版社.1983.7。
实数完备性的六大基本定理的相互证明
1 确界原理非空有上(下)界数集,必有上(下)确界。
2 单调有界原理 任何单调有界数列必有极限。
3 区间套定理 若]},{[n n b a 是一个区间套, 则存在唯一一点ξ,使得 ,2,1],,[=∈n b a n n ξ。
4 Heine-Borel 有限覆盖定理 设],[b a 是一个闭区间,H 为],[b a 上的一个开覆盖,则在H 中存在有限个开区间,它构成],[b a 上的一个覆盖。
5 Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。
) 直线上的有解无限点集至少有一个聚点。
6 Cauchy 收敛准则数列}{n a 收敛⇔对任给的正数ε,总存在某一个自然数N ,使得N n m >∀,时,都有ε<-||n m a a 。
一.确界原理1.确界原理证明单调有界定理证 不妨设{ a n }为有上界的递增数列.由确界原理,数列{ a n }有上确界,记a = sup{ a n }.下面证明a 就是{ a n } 的极限. 事实上,任给ε> 0, 按上确界的定 义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n }的递增性,当n ≥ N时有a - ε < a N ≤ a n .另一方面,由于a 是{ a n }的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当 n ≥ N 时有a - ε < a n < a + ε,这就证得a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理 证明:1设 [an,bn] 是一个闭区间套,即满足: 1)∀n,[an+1,bn+1]⊂[an,bn];2)bn-an =我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S有上确界,设sup S =ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2,⋯)显然an ≤ξ,(n =1,2,⋯)所以,我们只需证明对一切自然数n,都有ξ≤bn. 事实上,因为对一切自然数n,bn都是S 的上界,而上确界是上界中最小者,因此必有 ξ≤bn,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)唯一性: 假设还有另外一点R ∈'ξ且],[n n b a ∈'ξ,则||||n n b a -≤'-ξξ,0→ 即ξξ'=。
四个实数系的基本定理的完全互证
职成教苑714289877@四个实数系的基本定理的完全互证ʏ㊀常州铁道高等职业技术学校学生工作处㊀熊晗颖㊀㊀摘要:实数系的基本定理是数学分析中重要组成部分,是分析引论中极限理论的基础㊂能够反映实数连续性的定理很多,它们彼此等价,教材中以确界存在定理为基础,将这些定理进行一次循环证明就验证了它们的等价性㊂本文把确界存在定理㊁单调有界定理㊁闭区间套定理㊁Cauchy 收敛原理这四个定理的所有互推方法列了出来,旨在更加深刻地理解他们之间的关系㊂本文主要采用了构造的方法,也采用了反证法等证明方法㊂关键词:确界存在定理;单调有界定理;闭区间套定理;Cauchy 收敛原理在高等数学领域中,实数系基本定理常见的有确界存在定理㊁单调有界定理㊁闭区间套定理㊁Cauchy 收敛定理㊂这些定理是极限理论乃至整个数学分析理论的基础㊂每一个课本上都是以一个定理为基础循环证明其它定理,一是因为在教程上一一列出来没有必要,二是这些过程太复杂,有些定理证明还是相当有难度的㊂鉴于这部分内容的重要性与复杂性,本文将其所有的证明情形列出来㊂这五个定理,其实他们属于同一类型,他们都指出,在某一条件下,便有某 点 存在,这种点分别是确界(点)(确界存在定理),极限点(单调有界定理和Cauchy 收敛原理),公共点(闭区间套定理),子列的极限点㊂1㊀利用确界存在定理证明其它定理1.1㊀用确界存在定理证明单调有界定理证㊀不妨设x n {}单调递减有下界,根据确界存在定理,由x n {}构成的数集必有下确界α,满足:(1)∀n ɪN +:x n ȡα,(2)∀ε>0,∃x n 0:x n 0<α+ε㊂取N =n 0,∀n >N :α-ε<αɤx n ɤx n 0<α+ε,因而x n -α<ε,于是得到lim n ңɕx n =α㊂同理可证数列x n {}单调增加且有上界的情况㊂1.2㊀用确界存在定理证明闭区间套定理证㊀由a n +1,b n +1[]⊂a n ,b n [],n =1,2,3, 得a 1ɤ ɤa n -1ɤa n <b n ɤb n -1ɤ ɤb 1㊂由确界存在定理有:a n {}单调增加且有上确界ξ1,b n {}单调减少且有下确界ξ2,则ȵlim n ңɕb n -a n ()=0,ʑξ1=ξ2,设lim n ңɕa n =lim n ңɕb n =ξ由于ξ是a n {}的上确界,也是b n {}的下确界,于是有a n ɤξɤb n ,n =1,2,3, ,即ξ属于所有的闭区间a n ,b n []㊂若另有实数ξᶄ属于所有的闭区间a n ,b n [],则也有a n ɤξᶄɤb n ,n =1,2,3,令n ңɕ,由极限的夹逼性得ξᶄ=lim n ңɕa n =lim nңɕb n =ξ㊂1.3㊀用确界存在定理证明Cauchy 收敛原理引理:基本数列必定有界取ε0=1,因为x n {}是基本数列,所以∃N 0,∀n >N 0:x n -x N 0+1<1㊂令M =max x 1,x 2, ,x N 0,x N 0+1{},则对一切n ,成立x n ɤM ㊂证㊀必要性:设x n {}收敛于a ,按定义,∀ε>0,∃N ,∀n ,m >N :x n -a <ε2,x m -a <ε2,于是x m -x n ɤx m -a +x n -a <ε㊂充分性:由引理,基本数列x n {}必定有界㊂由确界存在定理,数列x n {}必有上确界,记ξ=supn >N x n{},则ξ为x n {}的极限㊂2㊀利用单调有界定理证明其它定理2.1㊀用单调有界定理证明确界存在定理证㊀设S 是非空有上界的实数集合,又设T 是由S 的所有上界所组成的集合,现证T 含有最小数,即S 有上确界㊂取a 1∉T ,b 1ɪT ,显然a 1<b 1㊂现按下述规则一次构造一列闭区间:a 2,b 2[]=a 1,a 1+b 12éëêêùûúú,若a 1+b 12ɪT a 1+b 12,b 1éëêêùûúú,若a 1+b 12∉T ìîíïïïï,a 3,b 3[]=a 2,a 2+b 22éëêêùûúú,若a 2+b 22ɪT a 2+b 22,b 2éëêêùûúú,若a 2+b 22∉T ìîíïïïï㊀显然a n {}单调递增有上界b 1,b n {}单调递减有下界a 1,由单调有界定理,a n {}与b n {}收敛,且lim n ңɕa n =lim n ңɕb n =ξ,现只需说明ξ是集合T 的最小数,也就是集博看网 . All Rights Reserved.714289877@ 职成教苑合S 的上确界㊂当ξ∉T ,即ξ不是集合S 的上界,则存在x ɪS ,使得ξ<x ㊂由lim n ңɕb n =ξ,可知当n 充分大时,成立b n <x ,这就与b n ɪT 发出矛盾,所以ξɪT ㊂若存在ηɪT ,使得η<ξ,则由lim n ңɕa n =ξ,可知当n 充分大时,成立η<a n ㊂由于a n ∉T ,于是存在y ɪS ,使得η<a n <y ,这与ηɪT 发生矛盾㊂从而得出ξ是集合S 的上确界㊂2.2㊀用单调有界定理证明闭区间套定理证㊀由条件①可得a 1ɤ ɤa n -1ɤa n <b n ɤb n -1ɤ ɤb 1㊂显然:a n {}单调增加有上界,b n {}单调减少有下界a 1,由单调有界定理,a n {}与b n {}都收敛㊂设lim n ңɕa n =ξ,则lim n ңɕb n =lim n ңɕb n -a n ()+a n []=lim n ңɕb n -a n ()+lim n ңɕa n =ξ,ξ的惟一性显然成立㊂2.3㊀用单调有界定理证明Cauchy 收敛原理证㊀必要性(略)㊂充分性:由引理1基本数列必有界,其次再证明基本数列x n {}的子列有极限㊂取单调减少的基本数列x n {}的子列x n k {}为例㊂令ε=1n ,则存在N n ()及n 1,n 2>N ,使得x n 1-x n 2<1n ,不妨假设对固定的x n k ,必有x n k <x n k -1,当n k -1,n k >N 时,有x n k -1-x n k <1n㊂否则,由于x n {}为无穷数列,必有当n >N时,x n ʉx n k (k =1,2,3, )为常数列,显然收敛㊂结论成立㊂又因为x n k {}⊆x n {},且x n k {}有界,由单调有界定理知,x n k {}收敛㊂记lim n ңɕx n k =a ㊂即对任意ε>0,存在N ,当k >N 时有:x n k -a <ε最后再证lim n ңɕx n =a ㊂因为x n {}是基本数列,所以∀ε>0,∃N ,∀n ,m >N :x n -x m <ε2㊂在上式中取x m =x n k ,其中k 充分大,满足n k >N ,并且令k ңɕ,于是得到x n -a ɤε2<ε,此即证明数列x n {}收敛㊂3㊀利用闭区间套定理证明其它定理3.1㊀用闭区间套定理证明确界存在定理证㊀设S 是非空有下界的实数集合,又设T 是由S 的所以下界所组成的集合,现证T 含有最小数,即S 有下确界㊂构造一列闭区间,存在唯一的实数ξ属于所有的闭区间a n ,b n [],通过反证法可得证ξ是集合T 的最大数,也就是S 的下确界㊂当ξ∉T ,即ξ不是集合S 的下界,则存在x ɪS ,使得ξ>x ㊂由lim n ңɕa n =ξ,可知当n 充分大时,成立a n >x ,这就与a n ɪT 发出矛盾,所以ξɪT ㊂若存在ηɪT ,使得η>ξ,则由lim n ңɕb n =ξ,可知当n 充分大时,成立η>b n ㊂由于b n ∉T ,于是存在y ɪS ,使得y <b n <η,这与ηɪT 发生矛盾㊂从而得出ξ是集合S 的下确界㊂3.2㊀用闭区间套定理证明单调有界定理证㊀设数列x n {}单调递增有上界,记单调递减数列M n {}是x n {}的全体上界,则x 1<x 2< <x n <M n <M n -1< <M 2<M 1,显然有x n +1,M n +1[]⊂x n ,M n [],且limn ңɕM n -x n ()=0,所以x n ,M n []{}形成了一个闭区间套㊂由闭区间套定理,存在唯一实数ξ属于所有的闭区间x n ,M n [],且lim n ңɕx n =lim n ңɕM n =ξ,同理可证单调减少有下界的情况㊂3.3㊀用闭区间套定理证明Cauchy 收敛原理证㊀必要性(略)㊂充分性:设x n {}为基本数列,且a 1ɤx n ɤb 1,n ɪN +,将a 1,b 1[]二等分,令c 1=a 1+b 12得到两个长度相同的子区间a 1,c 1[]㊁c 1,b 1[],分别记为J 1㊁J 2,据它们在实数轴上的左右位置和基本数列的定义即可发现:在左边的J 1和右边的J 2中,至少有一个子区间只含有数列x n {}中的有限项㊂这从几何上看是很直观的,若在J 1和J 2中都有数列中的无穷多项,则可以在J 1中取x n ,在J 2中取x m 使得n ,m 都可以任意大,同时满足不等式x m -x n ȡb -a2这与x n {}为基本数列的条件矛盾,所以可以从a 1,b 1[]去掉只含有数列x n {}中有限项子区间J 1和J 2(若两个子区间都是如此则任取其一)将得到的区间记为a 2,b 2[],重复上述步骤,无限进行下去,便得区间套a k ,b k []{},且满足闭区间套中的每个区间长度是前一个区间长度的12,每一个a k ,b k []中含有数列x n {}中从某项起的所有项㊂所以存在ξ是a n {},b n {}从两侧分别单调收敛于ξ㊂现只需证明基本数列x n {}收敛于ξ㊂∀ε>0,∃n ɪN ,使a n ,b n 进入点ξ的邻域,即有a n ,b n []⊂ξ-ε,ξ+ε()㊂因a k ,b k []中含有数列x n {}中从某项起的所有项,所以∃N 1,当n >N 1时成立x n -ξ<ε㊂4㊀利用Cauchy 收敛原理证明其它定理4.1㊀用Cauchy 收敛原理证明确界存在定理证㊀设S 是一个有上界的集合㊂取实数b 1,使对所有x ɪS ,都有x <b 1㊂取a 1ɪS 并考察区间a 1,b 1[]的中点a 1+b 12,若a 1+b 12是S 的上界,则令a 2=a 1,b 2=a 1+b 12;若a 1+b 12不是S 的上界,则令a 2=a 1+b 12,b 2=b 1㊂于是总可得到区间a 2,b 2[],使b 2是S 的上界㊂a 2,b 2[]中有S 点且b 2-a 2=12b 1-a 1()再对闭区间a 2,b 2[]进行同样的处理,又可得到闭区间a 3,b 3[],使得b 3是S 的上界,a 3,b 3[]中有S 的点且b 3-a 3=b 2-a 22=b 1-a 122㊂重复此步骤,可得到一个闭区间的序列a n ,b n []{},满足下列条件:博看网 . All Rights Reserved.职成教苑714289877@(1)a n +1,b n +1[]⊂a n ,b n [],n =1,2,3, ㊂(2)b n -a n =b 1-a 12n -1,n =1,2,3, ㊂(3)对每个n ɪN ,b n 是S 的上界且a n ,b n []ɘS ʂ⌀,由(1)和(2)知,当m >n 时有b m -b n =b m -b n <b n -a n=12n -1b 1-a 1(),可见b n {}为基本数列,由柯西收敛原理知b n {}收敛,设b n {}收敛于M ㊂任意x ɪS 和任意n ɪN ,均有x ɤb n ,所以x ɤM ,即M 为S 的上界㊂对∀ε>0,由于b n -a n {}的极限为0,所以有n 0使b n 0-a n 0<ε,又因为b n 0ȡM ,所以a n 0ȡb n 0-εȡM -ε由(3)知a n 0,b n 0[]中有S 的点,这表明M -ε不是S 的上界,所以S 是M 的上确界,所以(2)成立㊂4.2㊀用Cauchy 收敛原理证明单调有界定理证㊀假设x n {}单调减少且有下界,但不收敛,则∃ε0,对∀N ,∃m >n >N 使得x n -x m ȡε0,即x m -x n ɤε0㊂取N 1=1,则∃m 1>n 1>N 1使得x m 1-x n 1ɤε0;取N 2=m 1,则∃m 2>n 2>N 2使得x m 2-x n 2ɤε0; ;取N k =m k -1,则∃m k >n k >N k 使得x m k -x n k ɤε0,如此下去,得到子列x n k {},x m k {}满足:kε0ȡx m k -x n k ()+ +x m 2-x n 2()+x m 1-x n 1()ȡx m k-x m k -1()+ +x m 2-x m 1()+x m 1-x n 1()=x m k -x n 1所以x m k -x n 1ң+ɕ,k ңɕ㊂这与x n {}有界矛盾,从而x n {}收敛㊂同理可证单调增加有上界的情形㊂4.3㊀用Cauchy 收敛原理证明闭区间套定理证㊀设m >n ,有0ɤa m -a n <b n -a n ң0(n ңɕ),所以数列a n {}是一基本数列,顾lim n ңɕa n =ξ,由此得到㊀lim n ңɕb n =lim n ңɕb n -a n ()+lim n ңɕa n =ξ㊂由于数列a n {}单调增加,数列b n {}单调减少,可知ξ是属于所有闭区间a n ,b n []的唯一实数㊂参考文献[1]陈纪修.於崇华.数学分析第二版上册[M ].北京:高等教育出版社,2004.[2]包丙寅.实数基本定理的等价性证明[J ].赤峰学院学报,2010,26(07).[3]胡永生.浅谈致密性定理的不同证明方法[J ].中国校外教育下旬刊,2008,(03).[4]扶炜.实数完备性六大基本定理的等价性证明[J ].信阳农业高等专科学校学报,2012,22(02).[5]刘利刚.实数系基本定理等价性的完全互证[J ].数学的实践与认识,2008,38(24).[6]常利利.数学分析同步辅导与课后习题详解[M ].第二版.上册.长春:吉林大学出版社,2008:7.责任编辑㊀孙晓东(上接第37页)4.2㊀多方面评价,全方位发展首先,弱化评价的选拔目的,重视学生发展的过程的均衡㊂促进每一个学生的全面发展是我国基础教育的根本任务,作为评价教学效果的重要指标,基础教育的根本目的不应是选拔拔尖性人才,而是帮助每一个学生发现其学习过程中存在的问题,以获得在未来获得更好的发展㊂其次,评价标准应更加多元化㊂每个学生都有自己的性格特长和钟爱的优势领域,因而在教育评价上就不能 单以分数论英雄 ,用一把尺子衡量所有学生㊂评价标准应包含道德品质㊁学业考试成绩㊁身体素质以及综合实践能力等多项标准,并且每项标准所占权重应均等,从而彻底打破考试卷面得分在学生评价中的 垄断地位 ㊂最后,避免单独使用结果评价,应将过程评价与结果评价相结合㊂过程评价是指在学生学习过程中,经常进行的对学生知识掌握情况㊁能力发展水平的评价㊂其目的不在于打分,而在于发现问题㊂结果评价是对学生学习成果的整体评价,在基础教育阶段,通常以打分的方式出现㊂评价的根本目的在于促进学生的发展而不仅仅是评定学生学习的阶段性成果㊂发现学生在学习过程中出现的问题并给予改进建议是促进学生迅速成长的有效途径,因而评价指标应更全面㊁合理,而不是仅给学生一个单一的分数认定㊂4.3㊀明确责任主体,加强监督管理建议国家将减负政策的全面落实纳入法治管理范围㊂如果教育主管部门放任不管,拒不履行责任,就应当承担相应的法律责任;如果校领导和教师违反减负政策要求,也应接受相应处罚;如果家长擅自给学生加压,也应承担相应的后果㊂加强对校外辅导机构的监管力度,杜绝超前教学㊁课业负担过重等不利于学生成长的教学方式,从而促进中小学生的健康成长㊂参考文献[1]聂清杰.中小学生负担过重的原因及对策[J ].国家高级教育行政学院学报,2000,(05):25-26.[2]朱晓芬. 减负 不要走向极端[J ].湖北教育:政务宣传,2001,(09):8-8.[3]姚佳胜,方媛.政策工具视角下我国减负政策文本计量研究[J ].上海教育科研,2019,(02):10-15.[4]张冰,程天君.新中国成立以来学生 减负 历程的回顾与反思[J ].教育科学,2019,35(06):33-39.[5]何东昌.中华人民共和国教育史纲[M ].海南:海南出版社,2002:203.[6]陈的非. 文革 期间中,小学课程与教学改革研究[D ].长沙:湖南师范大学.[7]王硕. 减负 背景下小学生家长家教观念研究[D ].芜湖:安徽师范大学,2019.[8]新华社.中共中央办公厅㊀国务院办公厅㊀关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见[J ].河南教育(基础版),2021,(09):4-8.[9]罗秀艳.提升教学实践能力促进教师专业发展[J ].科学中国人,2015,(1X ):104.责任编辑㊀孙晓东博看网 . All Rights Reserved.。
(完整word版)闭区间套定理的推广及应用
昌吉学院论文(设计)分类号:本科毕业论文(设计) 密级:闭区间套定理的推广及应用系院数学系学科门类理学专业数学与应用数学学号XXXXXXXXX姓名XXXXX指导教师教师职称讲师二零一三年五月三日毕业论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果或作品。
本人完全意识到本声明的法律后果由本人承担.作者签名:年月日毕业论文版权使用授权书本毕业论文作者完全了解学院有关保存、使用毕业论文的规定,同意学院保留并向有关毕业论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权本学院及以上级别优秀毕业论文评选机构将本毕业论文的全部或部分内容编入有关数据库以资检索,可以采用复印、缩印或扫描等复制手段保存和汇编本毕业论文.声明人签名:导师签名:年月日年月日摘要在介绍了1R空间上闭区间套定理的基础上,通过综合应用类比法、分析法、演绎推理法将闭区间套定理进行了推广,形成了1R空间上严格半开半闭区间套定理和严格开区间套定理,增大了区间套定理的应用范围.同时给出了n R上的区域套定理,紧接着结合一般完备度量空间的性质,把区间套定理推广到一般完备度量空间,使得区间套定理的应用范围更为广泛。
最后结合一些实例分析说明区间套定理的应用,比如应用区间套定理证明Rolle中值定理、Lagrange中值定理、重要极限的存在性,同时也证明了闭区间上的连续函数性质等。
分析、讨论了闭区间套定理及其推广形式的实际应用,从实际应用中还可以看出区间套定理主要刻画了实数的完备性,说明了区间套定理不仅具有重要的理论意义,而且还有很好的应用价值。
关键词:区间套;完备性;等价;推广;应用The application and extension of the theorem of close nested intervalsAbstractBased on introducing the theorem of 1R space supra—closed nested interval, we popularize the theorem of closed nested interval through the comprehensive application of analogy method, analytic method and rationalistic method, forming the strictly theorem of half closed interval nested interval and the open nested interval in n R space, which increases the application range of nested interval theorem。
确界原理证明区间套定理
确界原理证明区间套定理区间套定理也称闭区间套定理,是实数中的一个非常重要的定理,它为实数序列的收敛性提供了一个有效的判定准则。
在证明区间套定理之前,我们首先需要了解确界原理。
确界原理(或称最大最小值定理)是关于实数集合的重要定理,它告诉我们,非空有上界的实数集合必定有上确界,也就是存在一个最小的上界,记为sup(A)。
类似地,非空有下界的实数集合必定有下确界,记为inf(A)。
确界原理是实数的一个基本性质,是我们研究实数性质的基础。
现在我们来证明区间套定理。
假设我们有一列区间[a1, b1],[a2, b2],[a3, b3],...,其中ai≤bi(i=1, 2, 3, ...)。
我们要证明存在一个实数x,它属于所有这些区间,也就是说对于任意的i,x属于区间[ai, bi]。
证明方法如下:1. 首先,我们观察到这些区间是递减的,也就是说对于任意的n,有bn≥bn+1、这是因为当n增加时,an是递增的,同时bn是递减的。
我们可以通过归纳法证明这一点:对于n=1,我们有b1≥b2,这是显然成立的。
假设对于n=k,有bk≥bk+1,那么我们可以证明对于n=k+1,有bk+1≥bk+2、根据区间的定义,bk≥ak+1,同时bk+1≥bk+1,所以bk≥bk+1、因此这个性质成立。
2. 接下来,我们证明这些区间是有界的。
由于这些区间是递减的,所以对于所有的n,有ak≤ak+1≤...≤an≤bn≤bn-1≤...≤b1、也就是说,[a1, b1]是一个紧区间,而[a1, b2],[a1, b3],...等等都是[a1,b1]的子集,所以它们也是紧区间。
根据闭区间套定理,这些区间都有交集。
3. 最后,我们要证明这些区间的交集不为空。
我们假设交集为空,也就是说对于一些i,[ai, bi]与[ai+1, bi+1]没有非空交集。
根据确界原理,这意味着bi≤ai+1,而这与条件ai≤bi相矛盾。
因此,这个假设是错误的,这些区间的交集不为空。
实数完备性的六大基本定理的相互证明
1确界原理非空有上(下)界数集,必有上(下)确界。
2单调有界原理任何单调有界数列必有极限。
3区间套定理若{[a n , b n ]}ξ∈[an , bn], n = 1,2,。
是一个区间套, 则存在唯一一点ξ,使得4Heine-Borel 有限覆盖定理设[a,b] 是一个闭区间,H为[a,b] 上的一个开覆盖,则在H 中存在有限个开区间,它构成[a,b]上的一个覆盖。
5Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。
)直线上的有解无限点集至少有一个聚点。
6Cauchy 收敛准则数列{a n }收敛⇔对任给的正数ε,总存在某一个自然数N ,使得∀m, n >N 时,都有| am -an|<ε。
一.确界原理1.确界原理证明单调有界定理证不妨设{ a n}为有上界的递增数列.由确界原理,数列{ a n }有上确界,记a = sup{ a n}.下面证明a 就是{ a n} 的极限. 事实上,任给ε> 0, 按上确界的定义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n}的递增性,当n≥ N时有a - ε < a N ≤ a n.另一方面,由于a 是{ a n}的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当n≥ N 时有a - ε < a n < a + ε,这就证得a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理证明:1设[an,bn]是一个闭区间套,即满足:1)∀n,[an+1,bn+1]⊂[an,bn];2)bn-an=我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n=1,2,⋯)存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S有上确界,设supS=ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2,⋯)显然an≤ξ,(n=1,2,⋯)所以,我们只需证明对一切自然数n,都有ξ≤bn.事实上,因为对一切自然数n,bn都是S的上界,而上确界是上界中最小者,因此必有ξ≤bn,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n=1,2,⋯)唯一性: 假设还有另外一点ξ'∈R 且ξ'∈[a n , b n ] ,则| ξ-ξ'|≤| a n -b n | → 0,即ξ=ξ'。
区间套证明确界原理
区间套证明确界原理引言:在数学中,区间套证明确界原理是一种常用的证明方法,用于证明实数集合中存在唯一的确界。
该原理可以帮助我们确定数集的上界和下界,从而更好地理解数学问题的性质和特点。
本文将详细介绍区间套证明确界原理的定义、原理和应用。
一、区间套的定义在数学中,区间是指由两个实数端点构成的集合。
设有一系列区间{[a1, b1], [a2, b2], [a3, b3], ...},满足以下条件:1. 对于任意的正整数n,区间[a_n, b_n]包含在区间[a_(n+1), b_(n+1)]中,即[a_n, b_n]⊆[a_(n+1), b_(n+1)];2. 区间的长度逐渐减小,即对于任意的正整数n,有b_n - a_n >= b_(n+1) - a_(n+1)。
二、区间套证明确界原理的原理区间套证明确界原理是基于一种递推的思想。
假设存在一个实数集合,这个集合的每个元素都是一系列区间的交集。
如果这些区间满足区间套的定义,那么这个实数集合必定存在唯一的上界和下界。
三、区间套证明确界原理的证明1. 首先,根据区间套的定义,我们可以得到以下结论:- 对于任意的正整数n,区间[a_n, b_n]包含在区间[a_(n+1),b_(n+1)]中;- 区间的长度逐渐减小。
2. 接下来,我们要证明这个实数集合存在上界和下界。
根据区间套的定义,我们可以得到以下结论:- 对于任意的正整数n,a_n <= a_(n+1),即区间的左端点逐渐增大;- 对于任意的正整数n,b_n >= b_(n+1),即区间的右端点逐渐减小。
3. 基于以上结论,我们可以得到以下两个结论:- a_n是一个递增数列,存在上界;- b_n是一个递减数列,存在下界。
4. 根据实数的完备性定理,递增数列存在上确界,递减数列存在下确界。
5. 接下来,我们要证明这个实数集合的上确界和下确界是唯一的。
假设存在两个上确界c和d,其中c < d。
实数系的基本定理
a1
an1 an bn bn1
b1 。
显然 an 单调增加而有上界 b1 , bn 单调减少而有下界 a1 ,由定理 2.4.1, an 与 bn 都收敛。 设 lim an ,则
n
lim bn lim bn an an lim bn an lim an 。
实数系的基本定理
确界存在定理
Cauchy收敛原理
单调有界数列收敛 定理
Bolzano—Weierstrass 定理 闭区间套定理
定理 2.1.1 (确界存在定理——实数系连续性定理) 非空有上界的 数集必有上确界;非空有下界的数集必有下确界。 证:
x R ,都可以表示成 x x x 1。
n, m N :
xn a
于是
2
, xm a
2
,
xm xn xm a xn a 。
再证明充分性。 先证明基本数列必定有界, 取 0 1, 因为 xn 是基本数列, 所以 N 0 ,
n N0 :
令 M max x1 , x2 ,
由此得到一个闭区间套 an , bn ,满足
an T , bn T , n 1, 2,3,
。
由闭区间套定理,存在唯一的实数 属于所有的闭区间 an , bn ,且
lim bn lim an 。现在说明 是集合 T 的最小数,也就是集合 S 的
n n
an bn , n 1,2,3,
令 n ,由极限的夹逼性得到
,
lim bn lim an ,
n n
关于实数连续性的6个基本定理的互证
< ξ1 + ε
=
2ξ1 + ξ2 3
∀ε
= ξ2 − ξ1 3
> 0,∃N2
> 0, n > N2 , bn − ξ2
< ε ,即bn
> ξ2 −ε
= ξ1 + 2ξ2 3
∀ε > 0,∃N3,当n > N3时,bn − an < ε
∴ ∃N
=
max ( N1,N2,N3 ),当n>N时,bn
−
an
的子列{an} .
②数列{an} 只有有穷多项具有性质 M,那么 ∃N ,当 n N ,有 an 不具有
性质 M,即 ∃i > n,有an < ai ,从中任取一项记为 an1 ,因为它不具有性质 M,
{ } ∴ ∃n2 > n1, 使an1 < an2 ,……,如此继续下去,我们得到一子列 ank 单调 { } 上升, ∴ 有界数列{an} 必有单调子数列,由单调有界定理,可得 ank 存
∵[ a , y ]在 E 中存在有限子覆盖,∴ [ a , x ] ⊂ [ a , y ]在 E 中存在有限子覆盖 下证 b < r.用反证法.如果不然,r ≤ b,则 r∈[ a , b ].因此,在 E 中存在有一开 区间覆盖 Eα
覆盖 r. ∃ a0 , b 0 ∈ Eα ,使 a0 < r < b0 .
∴∀n > N ,有r − ε ≤ xN ≤ xn ≤ r ,即| xn − r |< ε
2、确界定理证明区间套定理
证明:由[an+1,bn+1] ⊂ [an , bn ] ,知{an} 是单调上升有上界的实数列,{bn} 是单调下
学年论文-数学分析七大定理的相互证明
云南大学课题名称:数学分析七大定理的相互证明学院:数学与统计专信息与计算科学业:指导教师:何清海学生姓名:段飞龙学生学号20101910050目录摘要关键词 .、八、-前U言,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 结论十口V U j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j参考文献,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,摘要:数学分析中的单调有界性定理、闭区间套定理、确界存在性定理、有限覆盖定理、Weierstrass聚点定理、致密性定理以及柯西收敛准则,虽然他们的数学形式不同,但他们都描述了实数集的连续性,在数学分析中有着举足轻重的作用。
关键词:单调有界性定理闭区间套定理确界存在性定理有限覆盖定理Weierstrass聚点定理致密性定理柯西收敛准则前言:一、七大定理定理1单调有界性定理(1 )、上确界上确界的定义“上确界”的概念是数学分析中最基本的概念。
考虑一个实数集合M.如果有一个实数S,使得M中任何数都不超过S,那么就称S是M的一个上界。
在所有那些上界中如果有一个最小的上界,就称为M的上确界。
一个有界数集有无数个上界和下界,但是上确界却只有一个。
上确界的数学定义有界集合S,如果B满足以下条件①对一切x • S,有X —,即[是S的上界;②对任意存在x • S,使得x • :•,即一:又是S的最小上界,则称1为集合S的上确界,记作一:二supS (同理可知下确界的定义)在实数理论中最基本的一条公理就是所谓的确界原理:“任何有上界(下界)的非空数集必存在上确界(下确界)”。
上确界的证明(1)每一个x • X满足不等式x空m ;⑵对于任何的;-0,存在有x X ,使x' M -;则数M =sup、x f称为集合X的上确界。
(2)下确界下确界的定义“下确界”的概念是数学分析中最基本的概念。
用实数域的闭区间套定理证明确界原理
⽤实数域的闭区间套定理证明确界原理
闭区间套:
设[a n,b n]为实数域内的闭区间,n∈N+,且a n⊃a n+1
lim n→∞(a n−bn)=0
则,存在唯⼀⼀个实数ξ∈所有闭区间[a n,b n]
确界定理:设A为实数域内数集,且有上界(下界),则必有上确界(下确界)。
⽤实数域内的闭区间套定理证明确界定理在实数域内成⽴
证明:
设A的全体上界的集合为B设a_{1}\in A,b_{1}\in B因为B为A的全体上界集合,可知a_{1}<b_{1}考察区间[a_{1},b_{1}]的中点c,若c\in A,则设a_{2}=c否则,c必然属于B,设b_{2}=对[a_{2},b_{2}],重复上述步骤,得到[a_{3},b_{3}]以上步骤⼀直重复,得到闭区间套
[a_{n},b_{n}]由闭区间套定理,存在唯⼀⼀个实数\xi属于所有闭区间[a_{n},b_{n}].假设存在x\in A,有x>\xi,则可建⽴闭区间区间[\xi,x],可以将上述过程继续下去,$
Processing math: 100%。
区间套定理证明
区间套定理证明标题:区间套定理的证明引言:区间套定理是数学分析中一个重要的定理,它在实数域中的区间套序列中具有重要的性质。
本文将对区间套定理进行证明,以展示其证明过程及相关概念。
正文:区间套定理是指对于实数域中的一个区间套序列{I_n},即I_1⊃I_2⊃I_3⊃...⊃I_n⊃...,其中每个区间I_n=[a_n, b_n],存在唯一的实数c,使得c∈I_n,对任意正整数n。
证明过程如下:步骤一:首先证明区间套序列的长度有界性。
给定一个区间套序列{I_n},由于每个区间I_n=[a_n,b_n]都是一个闭区间,因此其长度为b_n-a_n,且长度不为负数。
由于区间套序列是严格递减的,所以长度序列{b_n-a_n}也是严格递减的。
根据实数域中的阿基米德性质,存在一个正整数N,使得对于任意的正实数ε,存在正整数n>N,使得b_n-a_n<ε。
因此,区间套序列的长度有界。
步骤二:证明区间套序列的交集非空性。
由于区间套序列的长度有界,根据实数域中的确界原理,存在实数c,使得c是区间套序列长度序列{b_n-a_n}的确界。
我们需要证明c∈I_n,对任意正整数n。
首先,根据确界的定义,对于任意的正实数ε,存在正整数N,使得b_N-a_N<ε。
由于区间套序列是严格递减的,所以对于任意的正整数n>N,有b_n-a_n<b_N-a_N<ε。
因此,实数c的确界性质保证了c∈I_n,对任意正整数n。
步骤三:证明区间套序列存在唯一的交点。
假设存在两个实数c_1和c_2,满足c_1∈I_n和c_2∈I_n,对任意正整数n。
由于区间套序列是严格递减的,所以对于任意正整数n,有c_1∈I_{n+1},c_2∈I_{n+1}。
然而,根据区间套序列的定义,I_{n+1}⊂I_n,因此c_1和c_2必须在同一个区间I_n中,否则不可能同时满足c_1∈I_n和c_2∈I_n。
因此,区间套序列存在唯一的交点,即证明了区间套定理。
确界原理证明零点定理
确界原理证明零点定理
证明先后采用三种方法相结合:
1、二分法
2、迭代法
3、闭区间套定理
证明过程形如夹逼原理。
二分法:取自变量取值范围的中间值,查看中间值的函数值是否为零,是则定理得证end。
如果不是,中间值的两边会有一边是原函数的形式,也就是两端的函数值是不同符号的,这一边会在上一步中得到验证,这个迭代会继续下去。
最后利用闭区间套定理使自变量经过多次二分法缩小的值域两端点的函数值的极限等于零,即两端点中间自变量的函数值的左极限和右极限都等于零,这就是函数所寻求的零值点。
证明比较繁琐,但凭直觉一眼就能看出来。
你为什么要这么麻烦呢?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用闭区间套定理证明确界原理
区间套定理证明问题就是构造区间列去套就可以。
就说一下有上界数集如何证有上确界,下界类似。
分两步,第一步套出一个数,第二步证明这个数就是上确界。
①对于数集X,如果它有上界M,就构造闭区间列U[n],U[1]=[a[1],M],a[1]是任意一个数,只要使得U[1]∩X≠∅就可以。
U[2]这样构造,如果(a[1]+M)/2到M之间有X中的数,就令U[2]=[(a[1]+M)/2,M]否则等于[a[1],(a[1]+M)/2]。
U[3]构造类似,就是再把U[2]一分为二,右半边如果有X中的数就等于右半区间,否则等于左半区间。
就这样一直构造下去,所有的U[n]都是递减区间列,根据闭区间套定理,它们必有一个公共元素m。
②要证m就是X的上确界。
下面分类讨论。
1)先说如果m就是集合X中的元素,那么假设X中还有比m大的m',上述构造方法总会到最后总会有一个集合U[i]不包含m的,和m是公共元素矛盾了。
这个比较好证明,就不写具体过程了。
这样m在X中,而且X中还没有比m更大的数,显然m是X中的最大数,自然是上确界(根据上确界定义可知)。
2)m不在X中。
先证明m任意小邻域里面有X中的数。
还是反证法,假设可以找到一个δ>0,使得[m-δ,m+δ]里面没有X中的数,那由于区间U[n]长度可以任意小,只要n足够大。
所以总能找到一个U[j]使得U[j]长度小于δ,但所有U都包含m,于是U[j]包含于[m-δ,m+δ]中,但是[m-δ,m+δ]中没有X中元素,意思是U[j]里面就没有X中元素,和一开始约定的U[n]构造规则矛盾,所以m任意邻域都有X中数。
再证X中的数不可能比m大。