用闭区间套定理证明确界原理
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用闭区间套定理证明确界原理
区间套定理证明问题就是构造区间列去套就可以。就说一下有上界数集如何证有上确界,下界类似。
分两步,第一步套出一个数,第二步证明这个数就是上确界。
①对于数集X,如果它有上界M,就构造闭区间列U[n],U[1]=[a[1],M],a[1]是任意一个数,只要使得U[1]∩X≠∅就可以。U[2]这样构造,如果(a[1]+M)/2到M之间有X中的数,就令U[2]=[(a[1]+M)/2,M]否则等于[a[1],(a[1]+M)/2]。U[3]构造类似,就是再把U[2]一分为二,右半边如果有X中的数就等于右半区间,否则等于左半区间。就这样一直构造下去,所有的U[n]都是递减区间列,根据闭区间套定理,它们必有一个公共元素m。
②要证m就是X的上确界。下面分类讨论。
1)先说如果m就是集合X中的元素,那么假设X中还有比m大的m',上述构造方法总会到最后总会有一个集合U[i]不包含m的,和m是公共元素矛盾了。这个比较好证明,就不写具体过程了。这样m在X中,而且X中还没有比m更大的数,显然m是X中的最大数,自然是上确界(根据上确界定义可知)。
2)m不在X中。先证明m任意小邻域里面有X中的数。还是反证法,假设可以找到一个δ>0,使得[m-δ,m+δ]里面没有X中的数,那由于区间U[n]长度可以任意小,只要n足够大。所以总能找到一个U[j]使得U[j]长度小于δ,但所有U都包含m,于是U[j]包含于[m-δ,m+δ]中,但是[m-δ,m+δ]中没有X中元素,意思是U[j]里面就没有X中元素,和一开始约定的U[n]构造规则矛盾,所以m任意邻域都有X中数。再证X中的数不可能比m大。