传感器知识点
传感器知识点总结
传感器知识点总结一、传感器的基本概念传感器是将感知到的信息转化为电信号或其他可识别形式的装置。
传感器可以感知物理量、化学量、生物量等,并将其转换为电信号输出。
传感器是现代科技发展中不可或缺的重要组成部分,广泛应用于工业自动化、环境监测、医疗诊断和智能家居等领域。
传感器的种类繁多,包括压力传感器、温度传感器、光学传感器、湿度传感器等。
二、传感器的分类根据传感原理的不同,传感器可以分为多种类型。
常见的传感器分类包括:1. 按照感知物理量不同分类- 压力传感器:用于测量压力的传感器,常用于工业控制和汽车行业。
- 温度传感器:用于测量温度的传感器,广泛应用于空调、冰箱、热水器等设备中。
- 湿度传感器:用于测量湿度的传感器,常用于气象观测和温室控制等场合。
- 光学传感器:用于测量光的强度和波长的传感器,广泛应用于光电设备和光学仪器中。
- 力传感器:用于测量物体受力情况的传感器,常用于机械测试和体重秤等设备中。
2. 按照传感原理不同分类- 电阻式传感器:利用电阻值的变化来感知物理量的传感器,包括压敏电阻、热敏电阻等。
- 电容式传感器:利用电容值的变化来感知物理量的传感器,包括湿度传感器和接近开关等。
- 光电式传感器:利用光电效应来感知物理量的传感器,包括光敏电阻、光电开关等。
3. 按照工作原理不同分类- 主动式传感器:需要外部能量源来激励的传感器,如光电传感器、超声波传感器等。
- 被动式传感器:不需要外部能量源来激励的传感器,如压力传感器、温度传感器等。
4. 按照测量方式不同分类- 直接测量传感器:直接测量感知物理量的传感器,如温度计、湿度计等。
- 间接测量传感器:通过其他物理量的变化间接测量感知物理量的传感器,如电磁流量计、毫米波雷达等。
三、传感器的工作原理传感器的工作原理多种多样,其中常见的包括电阻变化原理、电容变化原理、光电效应原理、霍尔效应原理等。
不同类型的传感器采用不同的工作原理来感知物理量,并将其转化为电信号输出。
传感器基础知识点整理
传感器基础知识点整理
本文档旨在梳理传感器的基础知识点,帮助读者了解传感器的工作原理和常见类型。
1. 传感器简介
传感器是一种用于检测和测量物理量的器件,可以将各种物理量(如温度、压力、力、光等)转换为可读取的电信号。
2. 传感器的工作原理
传感器工作原理根据不同的物理量而异,但通常包括以下几个步骤:
- 接收:传感器接收待测物理量的信号。
- 转换:传感器将接收到的信号转换成可读取的电信号。
- 输出:传感器将转换后的电信号输出给其他设备或系统。
3. 传感器的常见类型
3.1 温度传感器
温度传感器用于测量环境或物体的温度。
常见的温度传感器有:
- 热电偶:基于热电效应,利用两种不同金属的接触产生电势
差来测量温度。
- 热敏电阻:利用材料电阻与温度的关系来测量温度。
3.2 压力传感器
压力传感器用于测量气体或液体的压力。
常见的压力传感器有:
- 压阻式传感器:利用应变片的变形来测量压力。
- 电容式传感器:利用电容的变化来测量压力。
- 压力膜片传感器:利用薄膜片的弯曲来测量压力。
3.3 光传感器
光传感器用于检测光的存在、光的强度或光的颜色。
常见的光传感器有:
- 光敏电阻:利用光照射产生的光电效应来测量光的强度。
- 光电二极管:基于光电效应来测量光的强度。
- 光电三极管:在光电二极管的基础上增加了一个控制端口,用于增强灵敏度。
4. 总结
本文档简要介绍了传感器的基础知识点,包括传感器的工作原理和常见类型。
通过了解这些知识,读者可以更好地理解传感器的应用场景和原理。
传感器技术知识点
1-1衡量传感器静态特性的主要指标。
说明含义。
1、线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。
2、回差(滞后)—反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。
3、重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程度。
各条特性曲线越靠近,重复性越好。
4、灵敏度——传感器输出量增量与被测输入量增量之比。
5、分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。
6、阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。
7、稳定性——即传感器在相当长时间内仍保持其性能的能力。
8、漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。
9、静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。
1-2计算传感器线性度的方法,差别。
1、理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。
2、端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。
3、“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。
这种方法的拟合精度最高。
4、最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。
1-3什么是传感器的静态特性和动态特性?为什么要分静和动?(1)静态特性:表示传感器在被测输入量各个值处于稳定状态时的输出-输入关系。
动态特性:反映传感器对于随时间变化的输入量的响应特性。
(2)由于传感器可能用来检测静态量(即输入量是不随时间变化的常量)、准静态量或动态量(即输入量是随时间变化的变量),于是对应于输入信号的性质,所以传感器的特性分为静态特性和动态特性。
1—4 传感器有哪些组成部分?在检测过程中各起什么作用?答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。
高一物理传感器知识点总结
高一物理传感器知识点总结一、传感器的基本工作原理1. 传感器的基本组成传感器通常由感测元件、信号处理电路、输出电路和外壳等部分组成。
感测元件是传感器的核心部分,它根据测量的物理量不同而有所不同,如温度传感器可采用热电偶、电阻温度计、半导体热敏电阻等感测元件;压力传感器可采用压阻式、电容式、压电式等感测元件。
感测元件感知到的物理量会通过信号处理电路进行放大、滤波和线性化处理,最终输出给用户。
2. 传感器的工作原理传感器的工作原理主要遵循以下两种基本原理:(1)传感器的感测元件受到外界物理量的作用,产生相应的物理量,如电阻、电压、电流等发生变化;(2)感测元件感测到的物理量被转换为电信号,进行放大、滤波和线性化处理,最终输出为可观测的信号。
3. 传感器的分类根据测量的不同物理量,传感器可以分为温度传感器、湿度传感器、压力传感器、流量传感器、光敏传感器、声音传感器等。
根据感测元件的不同,温度传感器有热电偶、电阻温度计、热电阻、热敏电阻等;压力传感器有电容式、压阻式、压电式等;光敏传感器有光电二极管、光敏电阻等。
二、常见传感器的工作原理和应用1. 温度传感器(1)工作原理:温度传感器是一种测量温度的传感器,它们可以使用热电偶、电阻温度计、半导体热敏电阻等感测元件。
其中,热电偶是利用两种不同金属在不同温度下产生的电动势来测量温度的;电阻温度计则是根据材料的电阻随温度的变化特性来测量温度的;半导体热敏电阻利用半导体的导电性随温度的变化来测量温度。
(2)应用:温度传感器在工业生产和生活中有着广泛的应用。
在工业领域,温度传感器通常用于监测各种设备和工艺的温度,以确保生产过程的正常进行。
在生活中,温度传感器也被广泛应用于家用电器、空调、汽车等领域。
2. 湿度传感器(1)工作原理:湿度传感器是一种测量空气湿度的传感器,它们通常使用湿度敏感材料(如聚合物、电介质等)或电容式传感元件来感知空气中的湿度。
当湿度传感器暴露在潮湿的环境中时,敏感材料的导电性会发生变化,从而测量出空气的湿度。
传感器原理及应用知识点总结
传感器原理及应用知识点总结传感器是一种能够感知和测量外部环境参数的器件,根据其工作原理和应用领域的不同,可以分为多种类型。
以下是传感器原理及应用的一些常见知识点总结:1. 传感器工作原理:- 电阻传感器:利用材料电阻随环境参数变化而变化的特性,如温度传感器、湿度传感器等。
- 压阻传感器:利用材料电阻随压力变化而变化的特性,如压力传感器。
- 电容传感器:利用材料电容随环境参数变化而变化的特性,如接近传感器、触摸传感器等。
- 磁性传感器:利用材料磁性随环境参数变化而变化的特性,如磁场传感器、位置传感器等。
- 光电传感器:利用材料对光的敏感性随环境参数变化而变化的特性,如光电开关、红外传感器等。
- 声波传感器:利用材料对声音的敏感性随环境参数变化而变化的特性,如声音传感器、超声波传感器等。
2. 传感器应用领域:- 工业自动化:用于监测和控制生产过程中的环境参数,如温度传感器、压力传感器、流量传感器等。
- 汽车电子:用于检测和控制汽车各个系统的参数,如发动机温度传感器、氧气浓度传感器、轮胎压力传感器等。
- 医疗器械:用于监测和测量患者的生理参数,如心率传感器、血氧传感器、体温传感器等。
- 智能家居:用于实现家庭环境的智能化控制,如温湿度传感器、光照传感器、烟雾传感器等。
- 安防监控:用于监测和识别环境中的异常行为和事件,如人体红外感应器、摄像头、指纹传感器等。
3. 传感器的特性:- 灵敏度:指传感器对环境参数变化的反应程度,一般以输出信号的变化量表示。
- 精度:指传感器输出信号与实际环境参数之间的偏差,一般以误差大小表示。
- 响应时间:指传感器从检测到环境参数变化到输出信号发生变化的时间,一般以时间间隔表示。
- 工作范围:指传感器能够正常工作的环境参数范围,一般以最大和最小值表示。
总之,传感器是现代科技中非常重要的一部分,它们的工作原理和应用领域非常广泛,为各个领域的科研和生产提供了重要的技术支持。
对传感器的研究和应用有助于实现更多领域的自动化、智能化和安全化。
传感器知识点
传感器技术复习指南1.传感器:能感受规定的被测量并按照一定的规律将其转换成可用输出信号的器件或装置。
也叫变换器、检测器、探测器。
2.组成:敏感元件:指传感器中能直接感受(或响应)和检出被测对象的待测信息(非电量)的部分。
3.转换元件:指传感器中能将敏感元件所感受(或响应)出的信息直接转换成有用信号(一般为电信号)的部分。
4.其他辅助元件:包括信号调节与转换电路及其所需的电源。
信号调节与转换电路:能把传感元件输出的电信号转换为便于显示、记录、处理、和控制的有用电信号的电路。
5.分类:按工作原理(应变式、热电式、压电式)、被测量、敏感材料、能量的关系、其他(用途、学科、功能和输出信号的性质)分。
6.数学模型(从传感器的静态输入—输出关系和动态输入—输出关系建立)(1)静态模型:多项式(2)动态模型:微分方程和传递函数7.传感器(或测量设备)的输入—输出关系特性是传感器的基本特性。
衡量传感器静态特性的主要技术指标:线性度、测量的范围和量程、迟滞、重复性、灵敏性、分辨力和阈值、稳定性、漂移、静态误差.8.动态:阶跃响应和频率响应.9.标定:对新研制或生产的传感器进行全面的技术检定。
方法:利用标准仪器产生已知的非电量(如标准力、压力、位移等)作为输入量,输入到待标定的传感器中,然后将传感器的输出量与输入的标准量进行比较,获得一系列校准数据或曲线。
10.校准:将传感器在使用中或储存后进行的性能复测。
11.提高传感器性能的方法:非线性校正、温度补偿、零位法、微差法、闭环技术、平均技术、差动技术,以及采用屏蔽、隔离与抑制干扰措施等。
12.精确度:随机误差和系统误差都小;精密度:随机误差小;准确度:系统误差小。
储备知识:(1) 精确度:是精密度与准确度两者的总和,精确度高表示精密度和准确度都比较高。
在最简单的情况下,可取两者的代数和。
机器的常以测量误差的相对值表示。
与精确度有关指标:精密度、准确度和精确度(精度)(2)精密度:说明测量传感器输出值的分散性,即对某一稳定的被测量,由同一个测量者,用同一个传感器,在相当短的时间内连续重复测量多次,其测量结果的分散程度。
传感器考试知识点总括
传感器知识要点要点回顾第二章常用传感器基本概念:1--有关传感器的定义、基本组成涵盖框图;2--传感器的基本特性(灵敏度、线性度、重复性、精确度、稳定性、动态特性、环境参数)3--传感器的分类方法和种类,何谓能量控制型传感器(电阻、电容、电感)也称无源型传感器、何谓能量转换型传感器(压电、磁电、热电、光电)也称有源传感器。
4—电阻型传感器要求掌握公式,见书第6页,三个相关参数,对于电阻应变式:电阻应变片的电阻相对变化率是与应变成正比的。
掌握应变选择原则:当测量较小应变时,应选用压阻效应工作的应变片,而测量大应变时,应选用应变效应工作的应变片。
5---对于金属丝应变片在测量被测物体的应变时,电阻的相对变化主要由哪个参数决定的(丝的几何尺寸)来决定的。
6—对于电容式传感器,请掌握其测量原理,相关公式,对应的三个参数的含义,要求掌握变极距有关灵敏度的计算公式:见书第14页2.27,其灵敏度显然是非线性的,其使用时有条件的。
7—对于电感式传感器要掌握测量原理,计算公式,掌握自感式、互感式、差动式结构的特点,请注意实际工程应用的接法。
见书第21页。
图2.23b.反向串联。
掌握电涡流基本原理。
利用涡电流传感器测量物体位移时,如果被测物体是塑料材料,此时可否进行位移测量,如果不能,应采取什么措施才能测量。
8--- 有关压电传感器,要掌握压电效应,何谓正压电效应,何谓逆压电效应,压电效应的等效电路,压电传感器对测量电路的要求,见书第26-27。
压电式传感器可以采用多片压电晶片串联或并联,一般并联接法适宜于测量缓变信号,串联接法适宜于测量高频信号。
为了使输出电压几乎不受电缆长度变化的影响,其前置放大器应采用电荷放大器。
为什么说压电式传感器一般适合动态测量而不适合静态测量?9---对于磁电式传感器,要求掌握测量原理,基本公式,请看书第28页,恒磁通动圈式传感器,输出感应电势与线圈运动的速度成正比,如在测量电路中接入积分电路和微分电路,则可用来测量位移和加速度。
传感器主要知识点
1.传感器定义传感器是一种以一定的精确度把被测量转化为与之有确定对应关系的、便于精确处理和应用的另一种量的测量装置或系统。
静态特性指传感器在输入量的各个值处于稳定状态时的输出与输入的关系,即当输入量是常量或变化极慢时,输出和输入的关系。
动态特性输入量随时间动态变化时,传感器的输出也随之变化的回应特性。
扩展一阶环节微分方程为a1dtdy +a0y=b0x 令τ=a1/a0为时间常数,K=b0/a0为静态灵敏度即(τs+1)y=Kx 频率特性y (j ω)/x (j ω)=K /(j ωτ+1).课后习题1-10 2.金属的电阻应变效应:导体或半导体在受到外力的作用下,会产生机械形变,从而导致其电阻值发生变化的现象。
应变式电阻传感器主要由电阻应变计、弹性元件和测量转换电路三部分构成;被测量作用在弹性元件上,弹性元件作为敏感元件,感知由外界物理量(力、压力、力矩等)产生相应的应变。
3.实际应用中对应变计进行温度补偿的原因,补偿方法及其优缺点原因:由于环境温度所引起的附加的电阻变化与试件受应变所造成的电阻变化几乎在相同的数量级上,从而产生很大的测量误差。
补偿方法:A 自补偿法a 单丝自补偿法优点是结构简单,制造使用方便,成本低,缺点是只适用于特定的试件材料,温度补偿范围也狭窄。
b 组合式补偿法优点是能达到较高精度的补偿,缺点是只适用于特定的试件材料。
B 线路补偿法a 电桥补偿法优点是结构简单,方便,可对各种试件材料在较大温度范围内进行补偿。
缺点是在低温变化梯度较大的情况下会影响补偿效果。
b 热敏电阻补偿法补偿良好。
C 串联二极管补偿法可补偿应变计的温度误差。
4.变隙式电感传感器的结构、工作原理、输出特性及其差动变隙式传感器的优点由线圈、铁芯和衔铁构成;在线圈中放入圆柱形衔铁当衔铁上下移动时,自感量将相应变化,构成了电感式传感器输出函数为L=ω2μ0S0/2δ 其中μ0为空气的磁导率,S0为截面积,δ为气隙厚度。
传感器知识点
2-6电阻应变片的灵敏系数K恒小于电阻丝的灵敏系数Ko,其原因:(粘结层传递变形失真)(横向效应)。
2-7 (零漂):粘贴在试件上的应变片,在温度保持恒定没有机械应变的情况下,电阻值随时间变化的特性称为应变片的零漂。
1-4传感器的标定 :通过实验确立传感器的输入量与输出量之间的关系。
含义:1确定传感器的饿性能指标;2明确性能指标所适用的环境。
1)静态标定:目的是确定传感器的静态特性指标,如线性度、灵敏度、滞后和重复性等。2)动态标定:目的是确定传感器的动态特性参数,如频率响应、时间常数、固有频率和阻尼比等。
金属箔式应变片;
金属薄膜式应变片;
2-3当金属丝在外力作用下发生机械变形时,其电阻值将发生变化,这种现象称为(金属的电阻应变效应)。
2-4(灵敏系数):应变片安装在试件表面,在其轴线方向的单向应力作用下,应变片阻值相对变化与试件表面安装应变片区域的轴向应变之比。
4-5设计要点:1.采用差动结构,减小环境温度湿度的影响,提高灵敏度,减小非线性,减小寄生电容的影响。2.消除和减小边缘效应:①减小极距②电极做得薄③等位环。3.减小和消除寄生电容的影响:①增加传感器原始电容值:采用减小极板或极筒间的间距,增大工作面积来增大原始电容量。使与其并联的寄生电容的影响可忽略。②接地和屏蔽:将传感器动极板与屏蔽壳同地,动极板与屏蔽壳间的电容为常量。③集成化:将传感器与测量电路做在一个壳体内。④采用驱动电缆技术.
热电动势是由(接触电动势)和(温差电动式)组成的。
(1)若金属A的自由电子浓度大于金属B的,则在同一瞬间由A扩散到B的电子将比由B扩散到A的电子多,因而A对于B因失去电子而带正电,B获得电子而带负电,在接触处便产生电场。A、B之间便产生了一定的(接触电动势)。接触电动势的大小与(两种金属的材料、接点的温度)有关,与导体的直径、长度及几何形状无关。(2)温差电动势:高温端因失去电子而带正电,低温端得到电子而带负电。
(完整版)传感器期末复习重点知识点总结必过.doc
国家标准对传感器定义是:
能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置
以上定义表明传感器有以下含义:
1、它是由敏感元件和转换元件构成的检测装置;
2、能按一定规律将被测量转换成电信号输出;
3、传感器的输出与输入之间存在确定的关系;
按使用的场合不同又称为:变换器、换能器、探测器
1.1.2传感器的组成
传感器由敏感元件、转换元件、基本电路三部分组成:
图示 :被测量---敏感原件-----转换原件----基本电路-------电量输出
电容式压力传感器-------------------压电式加速度传感器----------------------电位器式压力传感器
1.1.3传感器的分类
第一章传感器概述
人的体力和脑力劳动通过感觉器官接收外界信号, 将这些信号传送给大脑, 大脑把这些信号分析处理传递给肌体。
如果用机器完成这一过程, 计算机相当人的大脑, 执行机构相当人的肌体, 传感器相当于人的五官和皮肤。
1.1.1传感器的定义
广义: 传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号的输出器件和装置。
1) 按传感器检测的范畴分类:生物量传感器、化学量传感器、物理量传感器、
2)按输入量分类:速度、位移、角速度、力、力矩、压力、流速、液面、温度、湿度
3)按传感器的输出信号分类:模拟传感器数字传感器
4)按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器
5)按传感器的功能分类:智能传感器、多功能传感器、单功能传感器
差!
入信号按正弦 化 ,分析 特性的相位、振幅、
率, 称 率响 ;
高中物理传感器知识点
高中物理传感器知识点传感器是一种能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。
传感器也是高中物理选修中的知识点。
以下是店铺为你整理的高中物理传感器知识点,希望能帮到你。
高中物理传感器知识点一:传感器的及其工作原理1、有一些元件它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断。
我们把这种元件叫做传感器。
它的优点是:把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。
2、光敏电阻在光照射下电阻变化的原因:有些物质,例如硫化镉,是一种半导体材料,无光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性变好。
光照越强,光敏电阻阻值越小。
3、金属导体的电阻随温度的升高而增大,热敏电阻的阻值随温度的升高而减小,且阻值随温度变化非常明显。
金属热电阻与热敏电阻都能够把温度这个热学量转换为电阻这个电学量,金属热电阻的化学稳定性好,测温范围大,但灵敏度较差。
高中物理传感器知识点二1.光敏电阻2.热敏电阻和金属热电阻3.电容式位移传感器4.力传感器————将力信号转化为电流信号的元件。
5.霍尔元件霍尔元件是将电磁感应这个磁学量转化为电压这个电学量的元件。
外部磁场使运动的载流子受到洛伦兹力,在导体板的一侧聚集,在导体板的另一侧会出现多余的另一种电荷,从而形成横向电场;横向电场对电子施加与洛伦兹力方向相反的静电力,当静电力与洛伦兹力达到平衡时,导体板左右两例会形成稳定的电压,被称为霍尔电势差或霍尔电压高中物理传感器知识点三:传感器的应用1、光控开关2、温度报警器传感器应用:力传感器的应用——电子秤声传感器的应用——话筒温度传感器的应用——电熨斗、电饭锅、测温仪光传感器的应用——鼠标器、火灾报警器。
高二传感器知识点总结
高二传感器知识点总结一、传感器的基本概念传感器是一种能够感知周围环境并将感知到的信息转化为电信号或其他形式信号的器件。
传感器在工业自动化、智能家居、医疗设备、汽车工业等领域都有广泛的应用,对于提高生产效率、改善生活质量有着重要的作用。
二、传感器的分类1. 按照测量物理量分类传感器根据其测量的物理量不同可以分为温度传感器、压力传感器、光敏传感器、湿度传感器、力传感器、位移传感器等多种类型。
2. 按照传感原理分类传感器还可以按照其传感原理不同进行分类,常见的传感原理包括电阻传感器、电容传感器、电感传感器、霍尔传感器、红外线传感器、激光传感器等。
3. 按照传感器的工作原理分类按照传感器的工作原理可以分为接触式传感器和非接触式传感器两种。
接触式传感器需要直接接触被测物体,而非接触式传感器可以通过无线、光学或者声波等方式进行测量。
三、传感器的特点1. 灵敏度高传感器能够感知到微小的变化,具有高的灵敏度。
2. 可靠性高传感器具有良好的稳定性和可靠性,能够长时间稳定工作。
3. 多功能性强传感器可以感知多种物理量,具有多功能性。
4. 体积小、重量轻传感器通常体积小、重量轻,便于安装和携带。
5. 自动化程度高传感器可以实现自动检测和自动控制,有助于提高生产效率。
四、传感器的应用1. 工业自动化传感器在工业自动化领域有着广泛的应用,可以用于测量温度、压力、液位、流量等参数,实现设备的自动化控制。
2. 智能家居在智能家居领域,传感器可以应用于智能灯光控制、温湿度监测、门窗开关检测等方面,提高生活的便利性和舒适性。
3. 医疗设备在医疗设备领域,传感器可以用于心率监测、血压监测、血糖监测等,为医疗人员提供重要的生理参数。
4. 汽车工业在汽车工业中,传感器可以用于车速测量、车重检测、发动机温度检测等,提高车辆的性能和安全性。
五、传感器的未来发展趋势1. 多功能集成传感器未来发展趋势是实现多功能集成,将多种传感功能整合在一个器件中,提高传感器的智能化和多功能性。
传感器知识点
1▲传感器的定义传感器是一种能把感受到的外界信息(物理、化学、生物量)按一定规律转换成所需要的有用信息的器件和装置。
能按一定规律将被测量转换成电信号输出。
▲传感器由敏感元件、转换元件、转换电路三部分组成敏感元件感受被测量,是传感器的核心部件;用来感知外界信息和转换成有用信息的元件。
转换元件将响应的被测量转换成电参量;转换电路把电参量接入转换电路转换成电量输出;▲按传感器的构成原理分类:结构型、物性型▲按传感器检测的工作机理分类:物理量传感器、化学量传感器、生物量传感器▲按传感器的能量转换分类:能量控制型传感器、能量转换型传感器▲按传感器的物理原理分类:电参量式传感器(电阻式、电容式、电感式)、磁电式传感器、压电式传感器、光电式传感器、气电式传感器、热电式传感器、波式传感器(超声波、微波)、射线式传感器、半导体式传感器、其他原理的传感器2▲测量方法的分类,根据获取测量结果的方法:直接测量、间接测量、组合测量▲测量系统是传感器与测量仪表、变换装置等的有机结合。
▲测量误差就是测量值与真实值之间的差值。
反映测量质量的好坏。
▲测量误差的表示方法:绝对误差、相对误差、引用误差、基本误差、附加误差▲根据误差的性质对误差进行分类:系统误差、随机误差、粗大误差。
▲精密度:描述测量仪表指示值不一致程度的量。
▲准确度:描述仪表指示值有规律地偏离真实值的程度。
准确度是系统误差产生的,它是指服从某一特定规律(如,定值、线性、多项式、周期性等函数规律)的误差。
▲静态特性技术指标:线性度、灵敏度、迟滞、重复性。
▲线性度:实际曲线与拟合曲线之间的偏差称为传感器的非线性误差或称线性度。
▲灵敏度:在稳定条件下输出变化对输入变化的比值,用K表示。
▲对线性传感器,灵敏度是直线的斜率:S = ΔY/ΔX ,为常数。
对非线性传感器灵敏度为一变量:S = dy/dx ▲迟滞:传感器在正、反行程期间输入、输出曲线不重合的现象称迟滞。
▲产生迟滞误差的原因:由于敏感元件材料的物理性质缺陷造成的。
传感器的主要知识点
绪论一、传感器的定义、组成、分类、发展趋势能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件构成。
如果传感器信号经信号调理后,输出信号为规定的标准信号(0~10mA,4~20mA;0~2V,1~5V;…),通常称为变送器,分类:按照工作原理分,可分为:物理型、化学型与生物型三大类。
物理型传感器又可分为物性型传感器和结构型传感器。
按照输入量信息:按照应用范围:传感器技术: 是关于传感器的研究、设计、试制、生产、检测和应用的综合技术.发展趋势: 一是开展基础研究,探索新理论,发现新现象,开发传感器的新材料和新工艺;二是实现传感器的集成化、多功能化与智能化。
1.发现新现象;2.发明新材料;3.采用微细加工技术;4.智能传感器;5.多功能传感器;6.仿生传感器。
二、信息技术的三大支柱现在信息科学(技术)的三大支柱是信息的采集、传输与处理技术,即传感器技术、通信技术和计算机技术。
课后习题1、什么叫传感器,它由哪几部分组成?它们的作用与相互关系?传感器(transducer/sensor):能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置(国标GB7665—2005)。
通常由敏感元件和转换元件组成。
敏感元件:指传感器中能直接感受或响应被测量并输出与被测量成确定关系的其他量(一般为非电量)部分。
转换元件:指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的可用输出信号(一般为电信号)部分。
信号调理电路(Transduction circuit) :由于传感器输出电信号一般较微弱,而且存在非线性和各种误差,为了便于信号处理,需配以适当的信号调理电路,将传感器输出电信号转换成便于传输、处理、显示、记录和控制的有用信号。
第一章传感器的一般特性1.传感器的基本特性动态特性静态特性2.衡量传感器静态特性的性能指标(1)测量范围、量程(2)线性度%100max⨯∆±=⋅SF L y δ 传感器静态特性曲线及其获得的方法传感器的静态特性曲线是在静态标准条件下进行校准的。
传感器知识点
传感器知识点传感器是一种能够将物理量转化为电信号的设备,广泛应用于各个领域。
本文将介绍传感器的概念、分类、工作原理以及应用,并对未来的发展进行展望。
一、概念传感器是一种用于检测、测量和感知环境中各种物理量的装置,它能够将检测到的物理量转化为可用的电信号或其他形式的输出信号。
传感器可以监测温度、湿度、压力、光线强度、位置等多种物理量。
传感器的产生使得我们能够更好地了解和控制我们所处的环境。
二、分类传感器根据其工作原理和应用领域的不同,可以分为多种类型。
下面我们将介绍几种常见的传感器分类。
1. 温度传感器温度传感器用于测量物体或环境的温度。
常见的温度传感器有热敏电阻、热电偶和双金属温度计等。
它们根据温度的变化而改变其电阻、电压或电流的特性,从而实现温度的测量。
2. 压力传感器压力传感器用于测量物体或介质的压力。
常见的压力传感器有压阻式传感器、压电传感器和毫微量压力传感器等。
它们通过检测压力对传感器的影响来测量压力大小。
3. 光电传感器光电传感器是一种能够检测光线强度和光照条件的传感器。
常见的光电传感器有光敏电阻、光敏二极管和光电管等。
它们能够根据光线的强弱和频率变化来检测光照的条件。
4. 位置传感器位置传感器用于检测物体的位置和位置变化。
常见的位置传感器有旋转编码器、位移传感器和霍尔传感器等。
它们可以通过测量物体相对于某个基准点的移动来实现位置的检测。
三、工作原理传感器的工作原理根据不同的类型而有所不同。
下面我们将介绍几种常见传感器的工作原理。
1. 热敏电阻热敏电阻是一种温度敏感的电阻。
当温度发生变化时,电阻的值也会发生变化。
通过测量电阻的变化,可以计算出温度的大小。
2. 压阻式传感器压阻式传感器是一种基于电阻变化的传感器。
当外部压力作用于传感器时,电阻的值会发生变化。
通过测量电阻的变化,可以得知压力的大小。
3. 光敏二极管光敏二极管是一种具有光电效应的器件。
当光线照射到光敏二极管上时,会产生电流。
传感器知识点
传感器知识点一、什么是传感器?传感器是一种可以将环境中的物理量或化学量转换为电信号的装置。
它通过感受、测量和探测环境中的各种物理量,如温度、湿度、压力、流量等,并将其转化为可供电子设备处理的电信号。
二、传感器的分类1. 根据测量的物理量分类:- 温度传感器:用于测量环境或物体的温度。
- 压力传感器:用于测量气体或液体的压力。
- 湿度传感器:用于测量空气中的湿度水分含量。
- 光照传感器:用于检测环境中的光照强度。
- 加速度传感器:用于测量物体的加速度。
- 位置传感器:用于测量物体在空间中的位置。
2. 根据测量原理分类:- 电阻型传感器:利用物体电阻值与物理量之间的关系进行测量。
- 电容型传感器:利用物体电容值与物理量之间的关系进行测量。
- 压阻型传感器:利用物体阻值与物理量之间的关系进行测量。
- 磁阻型传感器:利用物体磁阻值与物理量之间的关系进行测量。
- 光电传感器:利用物体与光之间的相互作用进行测量。
三、传感器的应用1. 工业自动化领域:- 温度传感器被广泛用于测量工业过程中的温度,以控制物体的加热或冷却过程。
- 压力传感器用于测量管道中的液体或气体压力,以确保工业过程的正常运行。
- 光照传感器可用于在工业生产线上检测产品的正确定位和识别。
2. 环境监测领域:- PM2.5传感器用于测量空气中的颗粒物含量,以实时监测空气质量。
- 湿度传感器可用于测量土壤湿度,以帮助农民进行精确灌溉。
3. 医疗设备领域:- 心率传感器用于监测患者的心率情况。
- 血糖传感器可用于测量患者的血糖水平。
4. 智能家居领域:- 温度传感器和湿度传感器用于控制智能家居设备,如空调、加湿器等。
- 光照传感器可用于智能家居自动调节照明亮度。
四、未来发展趋势随着物联网技术的发展,传感器在各个领域的应用将越来越广泛。
传感器将更小、更智能化,能够实现更多的功能。
同时,传感器的精度和稳定性也将不断提高,使得测量结果更加准确可靠。
总结:传感器是现代科技发展中不可或缺的重要组成部分。
传感器简答题DOC
第一章简答题第一节:机电一体化系统常用传感器知识点一:传感器的定义、组成和功能。
(第一节)1、简述传感器的定义。
2、传感器一般由哪几部分组成?试说明各部分的作用。
(1-1)3、画出传感器组成原理框图。
知识点二:传感器的分类。
(第一节及表1-1 )4、什么是物性型传感器?什么是结构型传感器?试举例说明。
5、按传感器输出信号的性质可将传感器分为哪几类?6、能量转换型传感器和能量控制型传感器有何不同?试举例说明。
第三节:传感器与检测系统基本特性的评价指标与选用原则7、什么是传感器的特性?如何分类。
8、什么是传感器的静态特性?试举出三个表征静态特性的指标。
(200625)9、传感器检测系统主要有哪些静态评价指标?(套110422)10、什么是传感器的动态特性?举例说明表征动特性的主要性能指标?11、选用传感器的主要性能要求有哪些?12、什么是传感器的测量范围、量程及过载能力?13、什么是传感器的灵敏度?如何表示?14 什么是传感器的线性度?如何计算(200825)?15、生么是传感器的重复性?如何衡量?16、一般情况下,如何表示传感器的稳定性?(200725 )17、选用传感器时要考虑哪些环境参数?(200525)第四节:传感器的标定与校准18、什么是传感器的标定?什么是传感器的校准?20、什么是传感器的静态标定?标定指标有哪些?21、什么是传感器的动态标定?标定指标有哪些?第五节:传感器与检测技术的发展方向22、简要说明传感器与检测技术的发展方向?(1325)23、现有数字电压表、放大器、信号发生器、功率放大器、振动台、标准传感器、被标定的传感器等。
请设计一个用比较法对被标定传感器进行动态标定的系统,并简要说明标定原理。
(200425)24、现有数字电压表(两个)、测力机、高精度稳压电源、精密电阻箱、数字电压表、应变式侧力传感器等。
请设计一个对传感器进行静态标定的系统,并简要说明标定原理。
第二章简答题1、选用位移传感器应注意哪些问题?答无论选用任何传感器,应注意的问题有其共同点。
传感器高中物理知识点总结
传感器高中物理知识点总结一、传感器的原理传感器的原理是利用物理效应来检测环境中的物理量。
根据不同的物理效应,传感器可以分为多种类型,例如光电传感器、压力传感器、温度传感器、湿度传感器等。
其中,光电传感器利用光电效应将光信号转化为电信号,压力传感器利用压阻效应将压力信号转化为电信号,温度传感器利用热敏效应将温度信号转化为电信号,湿度传感器利用湿敏效应将湿度信号转化为电信号。
二、传感器的分类根据传感器的工作原理和测量物理量的不同,传感器可以分为几类:1. 按测量物理量分类:包括光学传感器、压力传感器、温度传感器、湿度传感器、位移传感器等。
2. 按工作原理分类:包括电阻式传感器、电容式传感器、电磁式传感器、光电式传感器、热敏式传感器等。
3. 按输出信号类型分类:包括模拟传感器和数字传感器。
模拟传感器输出模拟信号,数字传感器输出数字信号。
4. 按应用领域分类:包括工业传感器、农业传感器、医疗传感器、环境传感器等。
三、传感器的工作原理传感器的工作原理主要包括三个过程:传感、转换和输出。
传感阶段是指传感器感知环境中的物理量;转换阶段是指传感器将感知到的物理量转化为电信号或其他形式的信号;输出阶段是指传感器将转换后的信号输出给监测系统或控制系统。
以温度传感器为例,它的工作原理是利用热敏效应。
当环境温度发生变化时,传感器内部的热敏材料也会发生相应的温度变化,从而改变材料的电阻值。
通过测量传感器的电阻值,可以得到环境温度的信息。
类似地,其他类型的传感器也有各自的工作原理。
四、传感器的应用传感器在各个领域都有广泛的应用。
在工业领域,传感器被用于监测生产过程中的各种物理量,以保证生产的质量和效率;在农业领域,传感器被用于监测土壤湿度、气象等信息,从而帮助农民科学地种植作物;在医疗领域,传感器被用于监测患者的生命体征和病情,以帮助医生进行诊断和治疗;在交通领域,传感器被用于监测交通状况和行车安全等。
五、传感器的发展趋势随着科学技术的不断进步,传感器也在不断发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器与自动检测技术第一章1、检测的定义:检测是利用各种物理、化学反应、选择合适的方法与装置,将生产、科研、生活等各方面的有关信息通过检查与测量的方法赋予定性或者定量结果的过程。
能够自动的完成整个检测处理过程的技术成为自动检测与转换技术。
2检测系统的一般构成框图:1)传感器是检测系统的第一环节,设计时要充分考虑被测量和被测对象的特点,在了解被测对象和各种传感器的特性的基础上,根据被测量精度的要求、被测量变化范围、被测量所处的环境条件、传感器的体积以及整个检测系统的性能要求等限制,合理地选择传感器。
2)信号调理电路是对传感器的传输电信号做进一步的加工处理,多数是进行信号之间的转换,包括对信号的转换、放大滤波等。
3)纪录、显示仪器是将所测的信号变成一种能成为人们所理解的形式,以供人们观察和分析。
4)信号分析处理用来对测试所得的实验数据今夕处理、运算、逻辑判断、线性变换,对动态测试结果做频谱分析(幅值谱分析、功率谱分析)、相关分析等,完成这些工作必须采用计算机技术。
数据处理结果通常送到显示器和执行机构去。
所谓的执行机构通常指各种继电器、电磁铁、电磁阀门、电磁调节阀、伺服电动机等,他们在电路中是起通断、控制、调节、保护等作用的电气设备。
3、传感器的定义:能够感受(或响应)规定的被测量,并按照一定规律转换成可用输出信号的期间或装置,通常由敏感元件和转换元件组成。
4、传感器一般由敏感元件、转换元件和其他辅助元件组成。
1)敏感元件——感受被测量,并输出与被测量成确定关系的其他量的元件。
2)转换元件——又称传感元件,是传感器的重要组成元件。
5、信号调理与转换电路——能把传感元件输出的电信号转换成便于显示、纪录和控制点有用信号的电路。
传感器组成框图:6、通常用来描述静态响应特性的指标有测量范围、灵敏度、非线性度、回程误差等。
7、精确度(精度)指标有三个:精密度、正确度和精确度。
1)精密度:说明结果的分散性。
越小说明结果越精密(对应随机误差)。
2)正确度:说明测量结果偏离真实值大小的程度(对应系统误差)。
3) 精确度:含有精密度和正确度两者之和的意思,即测量的综合优良程度。
7、系统的动态响应特性一般通过描述系统的微分方程、传递函数、频率响应函数、单位脉冲响应函数等数学模型来进行研究。
8、要实现不是真检测,检测系统的幅频特性应为常数,相频特性应为线性。
A(ω)=|G(jω)|≠A(常数)引起的失真称为幅值失真,Φ(ω)与ω之间不满足线性关系引起的失真称为相位失真。
第二章1、真值:指一定的时间及空间条件下,被测量客观存在的实际值。
2、标称值:计量或测量器具上标注的量值。
3、示值:由测量仪器给出或提供的量值,也称测量值。
4、测量结果的精密度:反映测量结果与真值接近程度的量。
它与误差大小对应,即:误差大,精度低;误差小,精度高。
可细分为:一、准确度(反应测量中系统误差的大小,即测量结果偏离真值的程度);二、精密度(反应测量中随机误差的大小,即测量结果的分散程度);三、精确度(反应测量中系统误差与随机误差综合影响的程度)。
其中,精密度与准确度的区别由图2.1可知,曲线1表示准确却不精密(δ小,σ大)的测量,曲线2表示精密却不准确(δ小,σ大)的测量。
要同时兼顾准确度和精密度,才能成为精确的测量5测量误差分为系统误差、随机误差和粗大误差三大类。
(1)系统误差——在相同条下,对同一被测量进行多次重复测量时,出现某种保持恒定或按一定规律变化着的误差称为系统误差。
凡误差的数值固定或按一定规律变化者,均属于系统误差。
2)随机误差——在相同条件下,对同一被测量进行多次重复测量时,受偶然因素影响而出现误差的绝对值和符号以不可预知的方式变化着,则此类误差称为随机误差。
随机误差不可能修正6.系统误差的判别:a)大体上正负相间无显著变化规律——不存在系差;(b)有规律地向一个方向成比例变化——有线性系差存在;(c)有规律地重复交替呈周期性变化——周期性系差存在;(d)呈周期性与线性复合变化——复杂系差存在。
7.通常,用绝对误差来评价相同被测量测量精度的高低,相对误差可用于评价不同被测量测量精度的高低。
为了减少仪器表引用误差,一般应在满量程2/3范围以上进行测量。
第三章1、半导体应变片是用半导体材料,采用与丝式应变片相同方法制成的半导体应变片。
2、电阻式传感器的测量电路常用桥式测量电路。
3、电容式传感器是利用将非电量的变化转化为电容量的变化来实现对物理量的测量。
可分为变极距型、变极板面积型、变介质型三种类型。
4、电感式传感器是利用电磁感应原理将被测的非电量的变化转换成线圈的自感系数L或者互感系数M的变化的装置。
可分为自感系数变化型和互感系数变化型。
5、可变磁阻型自感式传感器又分为气隙厚度变化型、气隙面积变化型和螺管型三种类型。
6、电感传感器所采用的测量电路一般为交流电桥。
7、互感式传感器则是把被测量的变化转换为变压器的互感变化。
由于变压器的二次线圈常接成差动形式,故又称为差动变压器式传感器。
差动变压器式传感器的应用非常广泛,凡是与位移有关的物理量均可经过它转换成电量输出。
常用于测量振动、厚度、应变、压力、加速度等各种物理量。
8、根据电涡流效应制成的传感器叫做电涡流式传感器。
可分为高频反射型和低频投射型两类。
9、用于电涡流式传感器的测量电路主要有调频式、调幅式电路两种。
10、压电式传感器是以具有压电效应的元件作为转换元件的有源传感器。
11、压电效应:当某些物质沿其一定方向施加压力或者拉力时,会产生形变,此时这种材料的两个表面将产生符号相反的电荷。
12、压电材料可分为:压电晶体和压电陶瓷。
常见的压电晶体有天然和人造石英晶体压电陶瓷是人造多晶体系压电材料。
常用的有钛酸钡、锆钛酸铅、铌酸盐系压电陶瓷。
13、压电传感器可用来测量力、压力、加速度、位移等物理量。
14、磁电式传感器是通过磁电作用将被测量(如振动、位移、转速等)转换成电信号的一种传感器,也成电磁感应传感器。
根据结构方式不同,磁电感应式传感器通常有两种:动圈式和磁阻式。
15、热电式传感器是将温度变化转换为电量变化的装置。
16、将两种不同材料的导体A 和B 串接成一个闭合回路,当两个接点温度不同时,在回路中就会产生热电势,形成电流,此现象称为热电效应或赛贝克效应。
17、热电偶的热电势由接触电势和温差电势两部分组成。
18、实践证明,在热电偶回路中起主要作用的是两个结点的接触电势,因而将单一导体的温差电动式忽略不计。
则19、热电偶定律:1)中间导体定律:在热电偶测温回路内,接入第三种导体时,只要第三种导体的两端温度相同,则对回路的总热电势没有影响。
()()()()000T T E T E T E T T E AB AB AB ABC ,=,=-2)中间温度定律:在热电偶测温回路中,T m 为热电极上某一点的温度,热电偶AB 在接点温度为(T ,T 0)时的热电势EAB (T ,T 0)等于热电偶AB 在接点温度(T ,T m )和(T m ,T 0)时的热电势EAB (T ,T m)和EAB (T m ,T 0)的代数和。
()()()00T T E T T E T T E m AB m AB AB ,,,+=20、热电阻传感器:利用导体或半导体的电阻值随温度变化而变化的原理(热阻效应)制成的传感器。
热电阻传感器分为:金属热电阻和半导体热电阻。
金属热电阻:热电阻;半导体热电阻:热敏电阻。
21、热电阻材料主要是铂、铜、镍、钅因、锰等。
用得最多的是是铂、铜。
镍和铁的电阻温度系数大,电阻率高,可用于制成体积大、灵敏度高的热电阻。
但由于容易氧化,化化学稳定性差,不易提纯,重复性和线性度差,目前应用还不多。
22、按半导体电阻-温度特性,热敏电阻可分为三类:(1)负温度系数的热敏电阻(NTC )(2)正温度系数的热敏电阻(PTC )(3)临界温度系数的热敏电阻(CTR )23、最常见的热敏电阻是由金属氧化物组成的,如锰、钴、铁、镍、铜等多种氧化物烧结而成。
24、光电式传感器是将光信号转换为电信号的光电器件,可用于检测直接引起光强变化的非电量,也可用来检测能转换成光量变化的其他非电量。
25、光电式传感器的基础是光电转换元件的光电效应。
光电效应可分为两类:外光电效应和内光电效应。
1) 外光电效应:在光线作用下,物体内的电子逸出物体表面向外发射的现象称为外光电效应。
2) 内光电效应:在光线作用下,物体的导电性能发生变化或产生光生电动势的效应称为内光电效应。
内光电效应又可分为光电导效应和光伏特效应。
光伏特效应:在光照条件下,半导体材料吸收光能后,引起PN 结两端产生电动势现象称为光伏特效应。
26、基于光电导效应工作原理制成的光电器件有光敏电阻。
光敏电阻又称光导管,几乎都用半导体材料制成的光电。
27、基于光生伏特效应原理制成的光电器件有光电二极管、光电三极管和光电池。
28、电荷耦合器件(Charge Couple Device, 缩写为CCD )是一种大规模金属氧化物半导体(MOS )集成电路光电器件。
电荷耦合器件以电荷为信号, 具有光电信号转换、 存储、 转移并读出信号电荷的功能。
29、霍尔传感器是基于霍尔效应的一种磁敏式传感器。
30、光纤传感器(FOS)是基于光纤纤维的新型传感器。
31、振动频率20KHz以上的机械波成为超声波。
32、微波是指波长为1mm~1m的电磁波。
33、微波传感器可以分成反射式和遮断式。
34、微波传感器的优点:1)可以实现非接触测量,因而可以进行活体检测,大部分测量不需要采样。
2)检测速度快、灵敏度高可以进行动态检测和实时处理,便于自动控制。
3)可以在恶劣环境条件下进行检测,如在高温、高压、有毒、有放射线环境条件下工作。
4)输出信号可以方便地调制在载波信号上进行发射与接收,便于实现遥测与遥控。
35、微波传感器存在的问题:主要问题是零点漂移和标定问题,这些问题尚未得到很好的解决。
另外,是用微波传感器的时候外界的因素影响比较多,如温度、气压、采样位置等。
36、红外线:比红光波长更长的光叫红外线。
是一种不可见光,由于位于可见光中红外线以外的光,故称红外线。
37、核辐射传感器是根据被测物质对射线的吸收,反、散射或射线对被测物质的电离激发作用而进行工作的。
它是利用放射性同位素来进行测量的。
38、数字传感器:就是把被测模拟量直接转换成数字量输出的传感器。
39、数字传感器的特点:1)具有高抗干扰能力和高性噪比,有利于杂恶劣的环境下是用。
通常免于噪声和外来信号的干扰。
特别是用于远距离传输。
2)数据可以高速远距离传输,而不会引入动态滞后。
3)能同时做到高测量精度和大测量范围。
4)易于与计算机接口,便于信号处理和实现自动控制,可以进行大量数据的高速处理,如压缩、调制和解调、显示、存储和反复阅读及调用。