高中化学计算方法总结:十字交叉法
高中化学解题方法——十字交叉法
在化学反应速率问题中,十字交叉法可以用来确定反应速率常数与反应物浓度之 间的关系,从而理解反应速率的变化规律。
03
CATALOGUE
十字交叉法的解题步骤
确定问题类型
01
02
03
混合物计算
当题目涉及混合物时,可 以通过十字交叉法计算混 合物的组成和比例。
平均量计算
当需要计算平均量时,如 平均相对分子质量、平均 摩尔质量等,可以使用十 字交叉法。
高中化学解题方法—— 十字交叉法
汇报人:
202X-01-01
CATALOGUE
目 录
• 十字交叉法的原理 • 十字交叉法的应用 • 十字交叉法的解题步骤 • 十字交叉法的注意事项 • 实例解析
01
CATALOGUE
十字交叉法的原理
原理概述
十字交叉法是一种用于解决混合 物计算问题的化学解题方法。
它通过将混合物的两个组分的质 量或体积进行交叉相乘,来找出 两组分在混合物中的质量比或体
积比。
这种方法适用于解决涉及两种组 分混合的问题,如气体混合、溶
液混合等。
原理的数学表达
则A组分在混合物中 的质量分数为:XA = (m1/M)。
两组分的交叉相乘关
系为:m1XA
=
m2XB。
B组分在混合物中的 质量分数为:XB = (m2/M)。
溶液配制与稀释
总结词
适用于溶液配制和稀释的计算,特别是当涉及溶液的平均量和两个不同浓度的 溶液时。
详细描述
在溶液配制和稀释过程中,十字交叉法可以用来计算两个不同浓度的溶液混合 后的平均浓度,或者确定某一浓度的溶液稀释到另一浓度的比例。
化学反应速率
总结词
高中化学计算题的常用解题技巧(13)---十字交叉法
高中化学计算题的常用解题技巧(13)---十字交叉法
十字交叉法:十字交叉法是专门用来计算溶液浓缩及稀释,混合气体的平均组成,混合溶液中某种离子浓度,混合物中某种成分的质量分数等的一种常用方法,其使用方法为:
组分A的物理量a差量c-b
平均物理量c(质量,浓度,体积,质量分数等)
组分B的物理量b差量a-c
则混合物中所含A和B的比值为(c-b):(a-c),至于浓缩,可看作是原溶液A中减少了质量分数为0%的水B,而稀释则是增加了质量分数为100%的溶质B,得到质量分数为c的溶液.
[例15]有A克15%的NaNO3溶液,欲使其质量分数变为30%,可采用的方法是
A.蒸发溶剂的1/2
B.蒸发掉A/2克的溶剂
C.加入3A/14克NaNO3
D.加入3A/20克NaNO3
根据十字交叉法,溶液由15%变为30%差量为15%,增大溶液质量分数可有两个方法:(1)加入溶质,要使100%的NaNO3变为30%,差量为70%,所以加入的质量与原溶液质量之比为15:70,即要3A/14克.(2)蒸发减少溶剂,要使0%的溶剂变为30%,差量为30%,所以蒸发的溶剂的质量与原溶液质量之比为15%:30%,即要蒸发A/2克.如果设未知数来求解本题,需要做两次计算题,则所花时间要多得多。
”十字交叉法“的原理和应用
化学计算中“十字交叉法”的数学原理和应用一. “十字交叉法”简介“十字交叉法”是二元混合物(或组成)计算中的一种特殊方法,若已知两组分量和这两个量的平均值,求这两个量的比例关系等,多可运用“十字交叉法”计算。
十字交叉法在化学计算中是一种常用的方法,在很多习题中采用十字交叉法可以简化计算过程,提高计算效率。
下面先从一道简单的例题来介绍何为十字交叉法。
例1、50克10%的硫酸溶液和150克30%的硫酸溶液混合后,所得硫酸溶液的质量分数是多少?采用十字交叉法计算的格式如下:设混合后溶液的质量分数为x%,则可列出如下十字交叉形式所得的等式:10%的溶液 10 30 — xX30%的溶液 30 x — 1050g(10%的溶液质量) 150(30%的溶液质量)由此可得出x = 25,即混合后溶液的质量分数为25%。
以上习题的计算过程中有一个十字交叉的形式,因此通常将这种方法叫做“十字交叉法”。
然而怎样的计算习题可以采用这种方法?且在用“十字交叉法”时,会涉及到最后差值的比等于什么的问题,即交叉后所得的差值之比是实际中的质量之比还是物质的量之比?这些问题如果不明确,计算中便会得出错误的结论。
针对以上问题,在以前的教学中,可能往往让学生从具体的习题类型死记差值之比的实际意义。
由于十字交叉法常用于:①核素“丰度”与元素相对原子质量的计算;②混合气体不同组分体积之比和混合气体平均相对分子质量的计算;③不同浓度的同种溶液混合后质量分数与组分溶液质量之比的计算等类型的习题中。
因此可以简单记忆为前两种类型中,差值之比为物质的量之比,第三种类型差值之比为质量之比。
这种记忆方法束缚了学生的思维,同时也限制了“十字交叉法”的使用范围。
实质上“十字交叉法”的运用范围很广,绝不仅仅只能在以上三种类型的习题中才可运用。
然而不同情况下,交叉后所得的差值之比的实际意义是什么?该怎样确定其实际意义?是我们应该探讨和明了的问题。
要解决此问题,就要明了“十字交叉法”的数学原理,然后再从原理的角度去分析,便能确定差值之比在何时为组分的质量之比,何时为组分的物质的量之比。
十字交叉(附例题)
一、十字交叉相乘法这是利用化合价书写物质化学式的方法,它适用于两种元素或两种基团组成的化合物。
其根据的原理是化合价法则:正价总数与负价总数的代数和为0或正价总数与负价总数的绝对值相等。
现以下例看其操作步骤。
二、十字交叉相比法我们常说的十字交叉法实际上是十字交叉相比法,它是一种图示方法。
十字交叉图示法实际上是代替求和公式的一种简捷算法,它特别适合于两总量、两关系的混合物的计算(即2—2型混合物计算),用来计算混合物中两种组成成分的比值。
三、十字交叉消去法十字交叉消去法简称为十字消去法,它是一类离子推断题的解法,采用“十字消去”可缩小未知物质的范围,以便于利用题给条件确定物质,找出正确答案。
其实十字交叉法就是解二元一次方程的简便形式如果实在不习惯就可以例方程解但我还是给你说说嘛像A的密度为10 B的密度为8 它们的混合物密度为9 你就可以把9放在中间把10 和8 写在左边标上AB 然后分别减去9 可得右边为1 1 此时之比这1:1 了这个例子比较简单但难的也是一样你自己好好体会一下嘛这个方法其实很好节约时间特别是考理综的时候其实十字交叉法就是解二元一次方程的简便形式如果实在不习惯就可以例方程解但我还是给你说说嘛像A的密度为10 B的密度为8 它们的混合物密度为9 你就可以把9放在中间把10 和8 写在左边标上AB 然后分别减去9 可得右边为1 1 此时之比这1:1 了这个例子比较简单但难的也是一样你自己好好体会一下嘛这个方法其实很好节约时间特别是考理综的时候(一)混和气体计算中的十字交叉法【例题】在常温下,将1体积乙烯和一定量的某气态未知烃混和,测得混和气体对氢气的相对密度为12,求这种烃所占的体积。
【分析】根据相对密度计算可得混和气体的平均式量为24,乙烯的式量是28,那么未知烃的式量肯定小于24,式量小于24的烃只有甲烷,利用十字交叉法可求得甲烷是0.5体积(二)同位素原子百分含量计算的十字叉法【例题】溴有两种同位素,在自然界中这两种同位素大约各占一半,已知溴的原子序数是35,原子量是80,则溴的两种同位素的中子数分别等于。
高中化学常见计算方法及练习:十字交叉法
十字交叉法凡能列出一个二元一次方程组来求解的命题,即二组分的平均值,均可用十字交叉法,此法把乘除运算转化为加减运算,给计算带来很大的方便。
十字交叉法的表达式推导如下:设A 、B 表示十字交叉的两个分量,AB ——表示两个分量合成的平均量,x A 、x B 分别表示A 和B 占平均量的百分数,且x A +x B =1,则有: A ·x A +B ·x B =AB ——(x A +x B ) 化简得:x x AB B A ABA B =--———— 若把AB ——放在十字交叉的中心,用A 、B 与其交叉相减,用二者差的绝对值相比即可得到上式。
十字交叉法应用非常广,但不是万能的,其适用范围如表4—2:含 化学义 量类型A 、B AB —— x A 、x B 1 溶液中溶质质量分数混合溶液中溶质质量质量分数 质量分数 x x AB B A AB A B =--———— 2 物质中某元素质量分数混合物中某 元素质量分数 质量分数 3 同位素相对原子质量 元素相对 原子质量 同位素原子百分组成正确使用十字交叉法解题的关键在于:(1)正确选择两个分量和平均量;(2)明确所得比为谁与谁之比;(3)两种物质以什么为单位在比。
尤其要注意在知道质量平均值求体积或物质的量的比时,用此法并不简单。
1. 现有50g 5%的CuSO4溶液,把其浓度增大一倍,可采用的方法有:(1)可将原溶液蒸发掉g水;(2)可向原溶液中加入12.5% CuSO4溶液g;(3)可向原溶液中加入胆矾g;(4)可向原溶液中加入CuSO4白色粉末g。
2 . 今有NH4NO3和CO(NH2)2混合化肥,现测得含氮质量分数为40%,则混合物中NH4NO3和CO(NH2)2的物质的量之比为()(A)4∶3 (B)1∶1 (C)3∶4 (D)2∶33. (1)已知溶质质量分数分别为19x%和x%的两硫酸溶液,若将它们等体积混和,则所得混和液的溶质质量分数与10x的大小关系如何?(2)已知溶质质量分数为a%的氨水物质的量浓度是b mol·L-1,则a2%的氨水物质的量浓度与b2mol·L-1的大小关系如何?4. 将金属钠在空气中燃烧,生成Na2O与Na2O2的混合物。
高中化学十字交叉法
十字交叉一、适用范围:“十字交叉法”适用于两组分混合物(或多组分混合物,但其中若干种有确定的物质的量比,因而可以看做两组分的混合物),求算混合物中关于组分的某个化学量(微粒数、质量、气体体积等)的比值或百分含量。
例1:实验测得乙烯与氧气的混合气体的密度是氢气的14.5倍。
可知其中乙烯的质量分数为( )A.25.0%B.27.6%C.72.4%D.75.0%解析:要求混合气中乙烯的质量分数可通过十字交叉法先求出乙烯与氧气的物质的量之比(当然也可以求两组分的质量比,但较繁,不可取),再进一步求出质量分数。
这样,乙烯的质量分数是: ω(C 2H 4)=321283283⨯+⨯⨯×100 %=72.4% 答案:C 。
例2:把CaCO 3和MgCO 3组成的混合物充分加热到质量不再减少时,称得残留物的质量是原混合物质量的一半。
则残留物中钙和镁两元素原子的物质的量之比是A.1:4B.1:3C.1:1D.1:2答案:B三、十字交叉法的应用与例析:1.两组分混合物中已知组分及混合体系的摩尔质量(或式量),求组分的物质的量之比(或组分气体的体积比、组分物质的微粒数之比):解答这类问题,需设计的平均化学量a 、b 、c 就直接用摩尔质量(g /mol )。
而用十字交叉法交叉相减后所得差值之比是组分的物质的量之比(或微粒数之比),或依阿伏加德罗定律,也等于(相同状态下)气态混合体系中组分气体的体积比。
例3.硼的平均相对原子质量为10.8,硼在自然界中有种同位素:105B 与115B ,则这两种同位素105B 、115B 在自然界中的原子个数比为A. 1∶2B.1∶4C.1∶6D.1∶8解析:相对原子质量与原子的摩尔质量数值上相等,故元素或原子的相对原子质量可看做十字交叉法中的平均化学量,量纲为g •mol -1,交叉相减后所得差值之比为两同位素的物质的量(即原子数)之比。
C 2H 4 O 2 29 3 1答案:B3.两可燃物组成的混合体系,已知其组分及混合物的燃烧热,求组分的物质的量之比或百分含量。
建平中学化学:化学计算方法——十字交叉法
13
所以: M(FeO):m(FeBr2)=13:15
的物质的量之比是多少?
解析:此题涉及反应:
CO2 NaOH NaHCO3
CO2 2 NaOH Na2 CO3 H2 O
(1)若以与 1 mol NaOH反应为前提,NaOH即为基准物质。与1 mol NaOH
反应生成NaHCO3 需CO2 1 mol;与1 mol NaOH反应生成Na2 CO3 需CO2 05 . mol; 与1 mol NaOH反应生成混合物消耗CO2 08 . mol,则有:
从含碳数分析:为1∶3,其它组计算相同.
有机烃分子碳或氢原子个数十字交叉→ 物质的量之比
三、用两种不同浓度溶液的质量分数与混合溶液 的质量分数作十字交叉,求两种溶液的质量比
将50%的盐酸溶液与10%盐酸溶液混合成40%的盐酸溶液, 求所取两种溶液的质量比。 解析:
50% 盐酸 50
40 10% 盐酸 10 10
2.物理量必须具有简单的加和性,才可用十 字交叉求得比值。如混合溶液质量等于混合 前两溶液质量之和,等温等压时混合气体体 积等于混合前气体体积之和。而溶液混合时 体积不具有加和性,所以一般不可用物质的 量浓度(mol/L)交叉求两溶液的体积比, 只有稀溶液混合时近似处理忽略体积变化才 可用十字叉法求解。
基准 物质
谁的比、 什么比
某物 二种 质 物质
某可 物质 燃物 的量 某物 质
之比
1mol混合物中含 某物 某一元素原子或离 质 子的物质的量
1mol某物质 与其它物质 反应所耗其 它物质的物 质的量或质 量数 某化合物中 含1mol某元 素的原子或 离子的质量
1mol混合物 与其它物质 反应所耗其 它物质的物 质的量或质 量数 混合物中含 1mol某元素 的原子或离 子的质量
高中化学十字交叉法
被忘记的十字交错法山东临清一中高泽岭十字交错法是进新式两组混杂物均匀量与组重量计算的一种简便方法。
可是因为两种量交错出来后的比简单混杂,或许不知道是什么之比,在最近几年的高中化学教课中,一般老师都在回避这类方法,而改用列方程组法。
其实,假如我们掌握好,十字交错法依旧是我们解题的一把利器。
凡可按a1X + a 2Y = a ( X +Y )关系式的习题,均可用十字交错法计算,此中 a 为 a1和 a2的均匀量。
在计算过程中按照守恒的原则。
一、相关质量分数的计算二、相关物质的量浓度的计算三、相关均匀分子量的计算四、相关相对均匀原子质量的计算五、相关反响热的计算六、相关混杂物反响的计算现举比以下:一、相关质量分数的计算例 1.实验室用 98%的浓硫酸(密度为 1.84g/cm3)与 15%的稀硫酸(密度为 1. 1g/cm3)混和,配制 59%的硫酸溶液(密度为 1.4g/cm3),取浓、稀硫酸的体积比最靠近的值是()A. 1∶2B. 2∶1C.3∶2D.2∶3[ 剖析 ] 用硫酸的质量分数作十字交错:依据溶质质量守恒 , 知足此式的是: 98%X + 15% Y = 59%(X+Y ),X 和 Y 之比是溶液质量比,故十字交错得出的溶液质量比为:44 ∶39 。
换算成体积比:(44/1.84)∶( 39/1.1)≈2∶3,答案为 D。
二、相关物质的量浓度的计算例 2.物质的量浓度分别为 6mol/L 和 1mol/L 的硫酸溶液,按如何的体积比才能配成 4mol/L 的硫酸溶液 ?[ 剖析 ]用物质的量浓度作十字交错:依据溶质物质的量守恒,知足此式的是6X+Y=4(X+Y) , X和Y 之比是溶液体积比,故十字交错得出的体积比为3∶2 ,答案: 6mol/L , 1mol/L 的硫酸溶液按 3∶ 2 的体积比才能配成4mol/L 的硫酸溶液。
三、相关均匀分子量的计算例 3.实验测得,同样条件下乙烯与氧气混杂气体的密度是氢气密度的14.5 倍,可知此中乙烯的质量分数为()A.25.0%B.27.6%C.72.4%D.75.0%[ 剖析 ]乙烯与氧气混杂气体的相对均匀分子质量为29。
化学计算方法之十字交叉法
2.同一溶质的不同质量分数“交叉” ——求溶液的质量比 CuSO4 〘变式练习〙取100克胆矾,需加入多少克水才能配成溶 质质量分数为40%的CuSO4溶液? 〖解析〗以100克溶液为基准:
100% CuSO4 0% 水
100 40 0
40 60
100g4)∶m(水)=40∶60 , 故m(水)=150g 即m(CuSO
4
c-b c a-c
其实(1)式也可写为c=(Aa+Bb)/(A+B)。可 见,c实际是一个加权平均数(简称平均数), 它不同于算术平均数,a和b是合成这个平均数 的两个分量。所以… 十字交叉法一般步骤是:
先确定交叉点上的平均数, 再写出合成平均数的两个分量, 最后按斜线作差取绝对值,得出相应物质的 配比关系。
8
[例1]10元钱能买9千克苹果,能买3千克香蕉。 现用10元钱买两种水果共6千克,那么钱应该怎样 分配?买苹果和香蕉各多少千克?
〖解析2〗以1千克水果为基准:10/9元、10/3元、10/6 元的单价分别是两个分量和平均数。 苹果 10/9 10/6 10/6 香蕉 10/3 10/18
(10/6)∶(10/18)=3∶1,比值为基准的量(质量)之 比,即买苹果和香蕉的质量比为 3∶1。 从以上两种解法不难看出:不同的基准所得苹 果与香蕉之比的物理量也不同,前者是买两种水果 9 需钱的分配比,后者是能买两种水果的质量比。
即 Na2CO3 与NaHCO3中C的物质的量之比为1∶3,则 CO32-和HCO3-物质的量浓度之比为1∶3。
十字交叉法(二). 以1mol Na中含C的物质的量为基准 Na2CO3 1/2 2/10 4/5 NaHCO3 1 3/10
即 Na2CO3 与NaHCO3中 Na的物质的量之比为2∶3,则
十字交叉法写化学式
十字交叉法写化学式
利用化合价写化学式
根据化合价写化学式的依据:
化合物中各元素正负化合价的代数和为零
常见的方法:最小公倍数法和十字交叉法
1、最小公倍数法写化学式
最小公倍数法———“一写、二求、三标、四验”
一写:一般把正价元素的符号(或根)写在左边,负价元素的符号(或根)写在右边,并把化合价写在元素符号(或根)的正上方
二求:求两种元素(或根)的最小公倍数,然后求出每种元素(或根)的原子个数。
即原子个数=最小公倍数÷∣化合价∣
三标:将原子个数写在相应元素符号(或根)的右下角
四验:检验各种元素正负化合价的代数和是否为零,确定化学式的正确性
2、十字交叉法写化学式
十字交叉法———“一排、二标、三交、四约、五查”
一排:元素符号(或根)一般按正价左,负价右顺序排列
二标:标出各元素的化合价,如果有根只需标出根的化合价
三交:将元素化合价(或根)的绝对值交叉写在另一元素符号(或根)的右下角
四约:将各元素(或根)的原子数约成最简整数比
五查:检查正负化合价代数和是否为零,确定化学式的正确性
这种方法也可以简单记忆为“正左负右标价数,十字交叉写个数”
说明:
①、只有确切知道某物质存在才能根据化合价书写化学式
②、一般把正价写在左边,负价写在右边。
但也有例外。
如NH3
③、如果标明根的个数时,应把根加上括号,再把数字写在右下角
1 / 11 / 1。
高中化学解题方法——十字交叉法
3 .十字交叉法十字交叉法又名混合规则法、杠杆原理等,它在化学计算中具有能简洁和迅速求解的特点。
1、十字交叉法的数学原理:凡能列出一个二元一次方程组来求解的命题,均可用十字交叉法。
如: 1211221x x a x a x a +=⎧⎨+=⎩平12a a a -平a平21a a a -平结论:2121a a x x a a -=-平平十字交叉法立足于二元一次方程的求解过程,并把该过程抽象为十字交叉的形式,所以凡能列出一个二元一次方程来求解的命题均可用此法。
2、使用范围列表如下:⎧⎪⎨⎪⎩溶液度混合十字交叉法平均化式量(原子量)平均耗氧量3、注意事项(1)适用于十字交叉法的量必须是具有加权平均意义的量,具体说是一些分数,如:质量分时、体积分数、物质的量分数或者是一些具有复合单位的量,如:摩尔质量、密度、燃烧热等。
(2)物理量必须具有简单的加和性。
如溶液质量等,而溶液混合时的体积不具有加和性,所以一般不可用物质的量浓度交叉求两溶液的体积比,只有稀溶液混合时近似处理忽略体积........变化..才可用十字交叉法求解。
(3)比的问题:什么比——基准物质以什么物理量为前提进行分量和平均量的确定得出的比,以物质的量为前提得出的是基准物质的物质的量之比;以一定质量为前提得出的是基准物质的质量之比。
练习1、质量百分比浓度溶液的混合如用的98%浓硫酸与7%的稀硫酸混合配成20%的硫酸溶液,则需浓硫酸与稀硫酸以质量比为混合恰好配成20%的硫酸。
2、物质的量浓度溶液的混合如用18mol/L的浓硫酸与2mol/L的稀硫酸混合成6mol/L的硫酸,则浓硫酸与稀硫酸的体积比是。
3、相对原子量的求算铜有两种天然同位素6529Cu和6329Cu,已知通的相对原子质量为63.5,估算6529Cu的百分含量(丰度)约为A、5%B、25%C、50%D、75%4、平均相对分子质量的计算甲烷和氧气混合后,其平均相对分子质量为24,则混合气体中甲烷与氧气的体积比为。
”十字交叉法“的原理和应用
”十字交叉法“的原理和应用化学计算中“十字交叉法”的数学原理和应用一. “十字交叉法”简介“十字交叉法”是二元混合物(或组成)计算中的一种特殊方法,若已知两组分量和这两个量的平均值,求这两个量的比例关系等,多可运用“十字交叉法”计算。
十字交叉法在化学计算中是一种常用的方法,在很多习题中采用十字交叉法可以简化计算过程,提高计算效率。
下面先从一道简单的例题来介绍何为十字交叉法。
例1、50克10%的硫酸溶液和150克30%的硫酸溶液混合后,所得硫酸溶液的质量分数是多少?采用十字交叉法计算的格式如下:设混合后溶液的质量分数为x%,则可列出如下十字交叉形式所得的等式:10%的溶液 10 30 — xX =30%的溶液 30 x — 10由此可得出 x = 25,即混合后溶液的质量分数为25%。
以上习题的计算过程中有一个十字交叉的形式,因此通常将这种方法叫做“十字交叉法”。
然而怎样的计算习题可以采用这种方法?且在用“十字交叉法”时,会涉及到最后差值的比等于什么的问题,即交叉后所得的差值之比是实际中的质量之比还是物质的量之比?这些问题如果不明确,计算中便会得出错误的结论。
针对以上问题,在以前的教学中,可能往往让学生从具体的习题类型死记差值之比的实际意义。
由于十字交叉法常用于:①核素“丰度”与元素相对原子质量的计算;②混合气体不同组分体积之比和混合气体平均相对分子质量的计算;③不同浓度的同种溶液混合后质量分数与组分溶液质量之比的计算等类型的习题中。
因此可以简单记忆为前两种类型中,差值之比为物质的量之比,第三种类型差值之比为质量之比。
这种记忆方法束缚了学生的思维,同时也限制了“十字交叉法”的使用范围。
实质上“十字交叉法”的运用范围很广,绝不仅仅只能在以上三种类型的习题中才可运用。
然而不同情况下,交叉后所得的差值之比的实际意义是什么?该怎样确定其实际意义?是我们应该探讨和明了的问题。
要解决此问题,就要明了“十字交叉法”的数学原理,然后再从原理的角度去分析,便能确定差值之比在何时为组分的质量之比,何时为组分的物质的量之比。
”十字交叉法“的原理和应用
化学计算中“十字交叉法”的数学原理和应用一. “十字交叉法”简介“十字交叉法”是二元混合物(或组成)计算中的一种特殊方法,若已知两组分量和这两个量的平均值,求这两个量的比例关系等,多可运用“十字交叉法”计算。
十字交叉法在化学计算中是一种常用的方法,在很多习题中采用十字交叉法可以简化计算过程,提高计算效率。
下面先从一道简单的例题来介绍何为十字交叉法。
例1、50克10%的硫酸溶液和150克30%的硫酸溶液混合后,所得硫酸溶液的质量分数是多少?采用十字交叉法计算的格式如下:设混合后溶液的质量分数为x%,则可列出如下十字交叉形式所得的等式:10%的溶液 10 30 — xX =30%的溶液 30 x — 10由此可得出 x = 25,即混合后溶液的质量分数为25%。
以上习题的计算过程中有一个十字交叉的形式,因此通常将这种方法叫做“十字交叉法”。
然而怎样的计算习题可以采用这种方法?且在用“十字交叉法”时,会涉及到最后差值的比等于什么的问题,即交叉后所得的差值之比是实际中的质量之比还是物质的量之比?这些问题如果不明确,计算中便会得出错误的结论。
针对以上问题,在以前的教学中,可能往往让学生从具体的习题类型死记差值之比的实际意义。
由于十字交叉法常用于:①核素“丰度”与元素相对原子质量的计算;②混合气体不同组分体积之比和混合气体平均相对分子质量的计算;③不同浓度的同种溶液混合后质量分数与组分溶液质量之比的计算等类型的习题中。
因此可以简单记忆为前两种类型中,差值之比为物质的量之比,第三种类型差值之比为质量之比。
这种记忆方法束缚了学生的思维,同时也限制了“十字交叉法”的使用范围。
实质上“十字交叉法”的运用范围很广,绝不仅仅只能在以上三种类型的习题中才可运用。
然而不同情况下,交叉后所得的差值之比的实际意义是什么?该怎样确定其实际意义?是我们应该探讨和明了的问题。
要解决此问题,就要明了“十字交叉法”的数学原理,然后再从原理的角度去分析,便能确定差值之比在何时为组分的质量之比,何时为组分的物质的量之比。
高中化学十字交叉法
十字交叉法一、适用范围:“十字交叉法”适用于两组分混合物(或多组分混合物,但其中若干种有确定的物质的量比,因而可以看做两组分的混合物),求算混合物中关于组分的某个化学量(微粒数、质量、气体体积等)的比值或百分含量。
例题:实验测得乙烯与氧气的混合气体的密度是氢气的14.5倍。
可知其中乙烯的质量分数为( )A.25.0%B.27.6%C.72.4%D.75.0% 解析:要求混合气中乙烯的质量分数可通过十字交叉法先求出乙烯与氧气的物质的量之比。
这样,乙烯的质量分数是: ω(C 2H 4)=321283283⨯+⨯⨯×100 %=72.4%答案:C 二、十字交叉法的应用与例析:1、把CaCO 3和MgCO 3组成的混合物充分加热到质量不再减少时,称得残留物的质量是原混合物质量的一半。
则残留物中钙和镁两元素原子的物质的量之比是A.1:4B.1:3C.1:1D.1:2解析:上述问题是计算两组分混合物中某两个化学量之比,可用十字交叉法解题。
解题时先设计混合物的平均化学量c ,该题中要求钙和镁两元素原子的物质的量之比(即原子个数比),而平均量中分母(即上述化学量y(组分2))与题给条件相差甚远,故以一摩尔组分质量为分母,一摩尔物质分解后残留物质量为分子而得如下的几个平均量:a=56g÷100g ;b=40g÷84g; c=1/2应用于十字交叉法:即: 所以,原混合物中两组分CaCO 3和MgCO 3物质的量之比(即残留物中Ca 和Mg 的物质的量之比为:n(Ca)∶n(Mg) = (1/42)g ÷100g/mol ∶(3/50) g÷84 g/mol = 1∶3答案:B2、硼的平均相对原子质量为10.8,硼在自然界中有种同位素:105B 与115B ,则这两种同位素105B 、115B 在自然界中的原子个数比为A. 1∶2B.1∶4C.1∶6D.1∶8解析:相对原子质量与原子的摩尔质量数值上相等,故元素或原子的相对原子质量可看做十字交叉法中的平均化学量,量纲为g •mol -1(即原子数)之比。
高中化学计算方法总结:十字交叉法
高中化学计算方法总结:十字交叉法十字交叉法十字交叉法是进行二组分混合物平均量与组分计算的一种简便方法。
凡可按M1n1+M2n2=Mn2+n2计算的问题,均可按十字交叉法计算。
式中,M表示混合物的某平均量,M1、M2则表示两组分对应的量。
如M表示平均相对分子质量,M1、M2则表示两组分各自的相对分子质量,n1、n2表示两组分在混合物中所占的份额,n1:n2在大多数情况下表示两组分的物质的量之比,有时也可以是两组分的质量之比,判断时关键看n1、n2表示混合物中什么物理量的份额,如物质的量、物质的量分数、体积分数,则n1:n2表示两组分的物质的量之比;如质量、质量分数、元素质量百分含量,则n1:n2表示两组分的质量之比。
十字交叉法常用于求算:(1)有关质量分数的计算;(2)有关平均相对分子质量的计算;十字交叉法计算的式子如下:(3)有关平均相对原子质量的计算;n1:M1M2-M(4)有关平均分子式的计算;M(5)有关反应热的计算;n2:M2M-M1(6)有关混合物反应的计算。
n1/n2=M2-M/M-M1一.有关质量分数的计算1.359%的硫酸溶液,取浓、稀硫酸的体积比最接近的值是A.1:2B.2:1C.3:2D.2:32.在苯和苯酚组成的混合物中,碳元素的质量分数为90%,则该混合物中氧元素的质量分数是A.25%B.5%C.65%D.75%二.有关平均相对分子质量的计算3.标准状况下,在容积为1L的干燥烧瓶中用向下排空气法充入NH3后,测得烧瓶中的气体对H2的相对密度为97,若将此气体进行喷泉实验,当喷泉停止后所得溶液体积为_____L。
4.Li2CO3和BaCO3的混合物与盐酸反应所消耗盐酸的量同等质量的CaCO3和同浓度的盐酸反应所消耗盐酸的量相等,则混合物中Li2CO3和BaCO3的质量之比为A.3:5B.5:3C.7:5D.5:7三.有关平均相等原子质量的计算5.晶体硼由10B和11B两种同位素构成,2反应全部转化为乙硼烷(B2H6)气体,,则晶体硼中为A.1:1B.1:3C.1:4D.1:26.已知C的平均相对原子质量为355。
高中化学解题方法 十字交叉法
方法引入
已知N2、O2混合气体的平均摩尔质量为31g/mol,求 混合气体中N2、O2的物质的量之比?
解:设N2的物质的量为x mol,O2的物质的量为y mol。 N2 (x) 28 O2 (y) 32 x 1 y= 3
31
32-31 =1 31-28 =3
1 答:混合气体中N2、O2的物质的量之比为 3 。
方法小结 “十字交叉法”适用于以下几种情况:
通过“平均相对分子质量”求两混合气体的体积比; 通过“混合物燃烧热”求物质的量之比; 利用“质量分数”求个溶液的质量比;
通过“溶液物质的量浓度”求两溶液混合时的体积比等。
典例讲解
1
现有20%和5%的两种盐酸溶液,若要配制15%的盐
酸溶液,两种盐酸溶液的质量比为多少?
n(CO2)∶n(H2) = 75.7∶75.7 = 1∶1
答:物质的量浓度分别为6mol/L和1mol/L的硫酸溶液按 照体积比3∶2混合才能配成4mol/L的溶液。
已知下列热化学方程式:
C(s) +O2(g) = CO2(g) ΔH=-393.2kJ/mol 2H2(g) + O2(g) = 2H2O(g) ΔH=-483.6kJ/mol
学以致用
现有0.2mol的炭粉和氢气组成的悬浮气、固混合物在氧气中完全
解题方法——十字交叉法
方法概述
十字交叉法是进行二组混合物平均量与组分计算的一 种简便方法。凡可按A1· b1 + A2· b 2 =A · (b1+b2)计算的问 题,均可按十字交叉法计算。 b1 A-A2 整理得: b =
2
A1-A
b 可改成图示: 1 b2
A1 A2
A
A-A2 A1-A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法总论十字交叉法高三化学组十字交叉法是进行二组分混合物平均量与组分计算的一种简便方法。
凡可按M1n1+M2n2=M(n2+n2)计算的问题,均可按十字交叉法计算。
式中,M表示混合物的某平均量,M1、M2则表示两组分对应的量。
如M表示平均相对分子质量,M1、M2则表示两组分各自的相对分子质量,n1、n2表示两组分在混合物中所占的份额,n1:n2在大多数情况下表示两组分的物质的量之比,有时也可以是两组分的质量之比,判断时关键看n1、n2表示混合物中什么物理量的份额,如物质的量、物质的量分数、体积分数,则n1:n2表示两组分的物质的量之比;如质量、质量分数、元素质量百分含量,则n1:n2表示两组分的质量之比。
十字交叉法常用于求算:(1)有关质量分数的计算;(2)有关平均相对分子质量的计算;十字交叉法计算的式子如下:(3)有关平均相对原子质量的计算; n1:M1 M2-M(4)有关平均分子式的计算; M(5)有关反应热的计算; n2:M2 M-M1(6)有关混合物反应的计算。
n1/n2=(M2-M)/(M-M1)一.有关质量分数的计算1.实验室用密度为1.84 g/cm398%的浓硫酸与密度为1.1 g/cm315%的稀硫酸混合配制密度为1.4 g/cm3 59%的硫酸溶液,取浓、稀硫酸的体积比最接近的值是A.1:2 B.2:1 C.3:2 D.2:32.在苯和苯酚组成的混合物中,碳元素的质量分数为90%,则该混合物中氧元素的质量分数是A.2.5% B.5% C.6.5% D.7.5%二.有关平均相对分子质量的计算3.标准状况下,在容积为1 L的干燥烧瓶中用向下排空气法充入NH3后,测得烧瓶中的气体对H2的相对密度为9.7,若将此气体进行喷泉实验,当喷泉停止后所得溶液体积为_____L。
4/5 L。
4.Li2CO3和BaCO3的混合物与盐酸反应所消耗盐酸的量同等质量的CaCO3和同浓度的盐酸反应所消耗盐酸的量相等,则混合物中Li2CO3和BaCO3的质量之比为A.3:5 B.5:3 C.7:5 D.5:7三.有关平均相等原子质量的计算5.晶体硼由10B和11B两种同位素构成,已知5.4 g晶体硼与H2反应全部转化为乙硼烷(B2H6)气体,可得标准状况下5.6 L,则晶体硼中10B和11B两种同位素原子个数比为A.1:1 B.1:3 C.1:4 D.1:26.已知Cl的平均相对原子质量为35.5。
则由23Na和35Cl、37Cl微粒组成的NaCl晶体29.25 g中含37Cl的质量是_____g。
4.625 g。
四.有关平均分子式的计算7.在1.01×105 Pa和120℃下,1 L A、B两种烷烃组成的混合气体在足量的O2充分燃烧后得到同温同压下2.5 L CO2和3.5 L H2O,且A分子中比B分子中少2个碳原子,试确定A和B的分子式和体积比(A、B两种烷烃在常温下为气态)。
1:3,3:1。
8.常温下,一种烷烃A和一种单烯烃B组成混合气体,A或B分子最多只含4个碳原子,且B分子的碳原子数比A分子多。
(1)将1 L该混合气体充分燃烧,在同温同压下得到2.5 L CO2气体。
试推断原混合气体中A和B所有可能的组合及其体积比。
1:3,1:1,1:1,3:1。
(2)120℃时取1 L该混合气体跟9 L氧气混合,充分燃烧后,当恢复到120℃和燃烧前的压强时,体积增大6.25%,试通过计算确定A和B的分子式。
C2H6和C4H8。
五.有关反应热的计算9.已知下列两个热化学方程式:2H2(g)+O2(g)−→2H2O(l)+571.6 kJ/mol,C3H8(g)+5O2(g)−→3CO2(g)+4H2O(l)+2220 kJ/mol,实验测得氢气和丙烷的混合气体共5 mol,完全燃烧时放热3847 kJ,则混合气体中氢气和丙烷的体积之比是A.1:3 B.3:1 C.1:4 D.1:1六.有关混合物反应的计算10.把NaCl和NaBr的混合物0.5 g溶于水后加入足量的AgNO3溶液,把所得沉淀过滤、洗涤、干燥,最后得到卤化银1.10 g,则原混合物中NaCl的质量分数是_____%。
6011.已知白磷和氧气可发生如下反应:P4+3O2−→P4O6,P4+5O2−→P4O10。
在某一密闭容器中加入62 g白磷和50.4 L氧气(标况),使之恰好完全反应,所得到的P4O10与P4O6的物质的量之比为A.1:3 B.3:1 C.3:2 D.1:1七.巧练12.把100 g Na2CO3与NaHCO3的混合物跟足量的HCl作用,放出22.4 L(标况)CO2,则原混合物中Na2CO3的质量分数是_____%。
77.1%。
13.电解水和重水的混合物18.5 g,放出气体33.6 L(标况),所生成的气体中D和H原子数之比是_____。
1:3。
14.乙烯和乙炔混合气体共x mL,使其在空气中燃烧,共用去O2y mL(相同条件下),则混合气体中乙烯与乙炔的体积比是A.(2x-y)/(3x-y) B.(2x-y)/(y-x) C.(2y-5x)/(6x-2y) D.(y-2x)/(x-2y) 15.某烯烃和烷烃组成的混合气体对H2的相对密度为12,则该混合气体中烯烃的体积百分含量x与烯烃分子碳原子数n的关系是A.n=4(1+2x)/7x B.n=4(1-2x)/7x C.x=4/(7n-8) D.无法确定十字交叉法巧解一.有关质量分数的计算1.设取用98%的浓硫酸X g,取用15%的稀硫酸Y g。
根据溶质质量守恒可得:98%X+15%Y=59%(X+Y),X和Y之比是溶液质量之比。
由十字交叉法可得:X/Y=44/39;再换算成体积比为:44/1.84:39/1.1=2/3。
2.M(C6H6)=78,其中碳质量分数为:C%=72/78=92.3%;M(C6H6O)=94,其中碳的质量分数为:C%=72/94=76.6%。
依据碳元素质量守恒和十字交叉法可得混合物中苯酚的质量分数,再进一步求出氧的质量分数。
m(C6H6O)/m(C6H6)=2.3/13.4;O%=(2.3×16/92)/(2.3+13.4)=2.5%。
(O%=1-90%×13/12)二.有关平均相对分子质量的计算3.M=2×9.7=19.4 > 17,说明混有空气;根据质量守恒和十字交叉法可得:n(NH3)/n(空气)=9.6/2.4=4/1;所以烧瓶内含NH3体积为4/5 L;空气不溶于水,当喷泉停止后,则烧瓶内的溶液为4/5 L。
4.74x+197y=100(x+y),由十字交叉法可得:x/y=97/26;所以质量比为:m(Li2CO3)/m(BaCO3)=(97×74)/(26×197)=7/5。
三.有关平均相对原子质量的计算5.n(B2H6)=5.6/22.4=0.25 mol,n(B)=0.25×2=0.5 mol;M(B)=5.4/0.5=10.8 g/mol,n(10B)/n(11B)=0.2/0.8=1/4。
6.n(NaCl)=29.25/58.5=0.5 mol,n(37Cl)/n(35Cl)=0.5/1.5=1/3;m(37Cl)=0.5×1/4×37=4.625 g。
四.有关平均分子式的计算7.由C和H的原子守恒以及十字交叉法可得平均分子式为M=C2.5H7;V(CH4)/V(C3H8)=1/3,V(C2H6)/V(C4H10)=3/1。
8.(1)由C原子守恒和十字交叉法可得平均分子式为M=C2.5H y;依据题意有如下结果:V(CH4)/V(C3H6)=1/3,V(CH4)/V(C4H8)=1/1,V(C2H6)/V(C3H6)=1/1,V(C2H6)/V(C4H8)=3/1。
(2)y=6.5,得平均分子式为M=C2.5H6.5;依据题意有如下结果:A是C2H6,B 是C4H8。
五.有关反应热的计算9.已知:Q氢气=571.6/2=285.8 kJ/mol,Q混合=3847/5=769.4 kJ/mol,Q丙烷=2220 kJ/mol;由十字交叉法可得:V氢气/V丙烷=Q氢气/Q丙烷=1450.6/483.6=3/1。
六.有关混合物反应的计算10.若皆为NaCl可得沉淀1.227 g,若皆为NaBr可得沉淀0.913 g;由十字交叉法可得:m NaCl/m NaBr=0.187/0.127,故NaCl%=0.187/(0.187+0.127)=60%。
11.生成1 mol P4O10耗氧5 mol,生成1 mol P4O6耗氧3 mol,n(O2)=50.4/22.4=2.25 mol;5x+3y=4.5(x+y),由十字交叉法可得:x/y=1.5/0.5=3/1。
七.巧练12.n(CO2)=22.4/22.4=1 mol,由十字交叉法可得:n(Na2CO3)/n(NaHCO3)=16/6=8/3;Na2CO3%=8×106/(8×106+3×84)=77.1%。
13.M=18.5,由十字交叉法可得:n(H2O)/n(D2O)=1.5/0.5=3/1,则n(D)/n(H)=3/1。
14.混合气体每mL耗O2y/x mL,乙烯每mL耗O23 mL,乙炔每mL耗O22.5 mL;由十字交叉法可得:n(C2H4)/n(C2H2)=V(C2H4)/V(C2H2)=(y/x-2.5)/(3-y/x)=(2y -5x)/(6x-2y).15.M=24,则必有CH4,由十字交叉法可得:n(CH4)/n(C2n H2n)=(14n-24)/8;x=8/(14n-24+8)=4/(7n-8),则n=(4/x+8)/7=4(1+2x)/7x。