数学线性规划试题答案及解析
高中数学简单线性规划复习题及答案(最全面)
简单线性规划复习题及答案(1)1、设,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥-020202y x y x y x ,则22y x ++的最大值为 452、设变量,x y 满足⎪⎩⎪⎨⎧≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为答案:13、若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则13++=x y z 的取值范围是]7,43[.4、设y x z +=,其中y x ,满足⎪⎩⎪⎨⎧≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为5、已知x 、y 满足以下条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则22z x y =+的取值范围是 4[,13]56、已知实数,x y 满足约束条件1010310x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则22(1)(1)x y -+-的最小值为 127、已知,x y 满足约束条件1000x x y x y m -≥⎧⎪-≤⎨⎪+-≤⎩,若1y x +的最大值为2,则m 的值为 58、表示如图中阴影部分所示平面区域的不等式组是⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x9、若曲线y = x 2上存在点(x ,y )满足约束条件20,220,x y x y x m +-≤⎧⎪--≤⎨⎪>⎩,则实数m 的取值范围是 (,1)-∞10、已知实数y ,x 满足10103x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则3z x y =+的最小值为 -311、若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则x y的最小值为 13. 12、已知110220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩,则22(2)(1)x y ++-的最小值为___10_13、已知,x y 满足不等式0303x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则函数3z x y =+取得最大值是 1214、已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z =2x +4y 的最小值是-615、以原点为圆心的圆全部在区域⎪⎩⎪⎨⎧≥++≤-+≥+-0943042063y x y x y x 内,则圆面积的最大值为 π51616、已知y x z k y x x y x z y x 42,0305,,+=⎪⎩⎪⎨⎧≥++≤≥+-且满足的最小值为-6,则常数k = 0 . 17、已知,x y 满足约束条件,03440x x y y ≥⎧⎪+≥⎨⎪≥⎩则222x y x ++的最小值是 118、在平面直角坐标系中,不等式组0,0,,x y x y x a +≥⎧⎪-≥⎨⎪≤⎩(a 为常数),表示的平面区域的面积是8,则2x y +的最小值 14-19、已知集合22{(,)1}A x y x y =+=,{(,)2}B x y kx y =-≤,其中,x y R ∈.若A B ⊆,则实数k 的取值范围是⎡⎣20、若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为 12-21、若实数x ,y 满足不等式组201020x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩,目标函数2t x y =-的最大值为2,则实数a 的值是 222、已知点(,)P x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩,若3z x y =+的最大值为8,则实数k = 6- .23、设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- 23.24、已知实数y x , 22222)(y x y y x +++的取值范围为 ⎥⎦⎤⎢⎣⎡+221,35.简单线性规划复习题及答案(2)1、设实数x,y 满足⎪⎩⎪⎨⎧≤-≥-+≤--0205202y y x y x 则y x x y z +=的取值范围是 10[2,]3由于yx表示可行域内的点()x y ,与原点(00),的连线的斜 率,如图2,求出可行域的顶点坐标(31)(12)A B ,,,, (42)C ,,则11232OA OB OC k k k ===,,,可见123y x ⎡⎤∈⎢⎥⎣⎦,,结合双勾函数的图象,得1023z ⎡⎤∈⎢⎥⎣⎦,,2、若实数,x y 满足不等式组22000x y x y m y ++≥⎧⎪++≤⎨⎪≥⎩,且2z y x =-的最小值等于2-,则实数m 的值等于 1-3、设实数x 、y 满足26260,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则{}max 231,22z x y x y =+-++的取值范围是 [2,9]【解析】作出可行域如图,当平行直线系231x y z +-=在直线BC 与点A 间运动时,23122x y x y +-≥++,此时[]2315,9z x y =+-∈,平行直线线22x y Z ++=在点 O 与BC 之间运动时,23122x y x y +-≤++,此时,[]222,8z x y =++∈. ∴[]2,9z ∈图23 A yxOcB 634、佛山某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配。
线性规划题及答案
线性规划题及答案一、问题描述某公司生产两种产品A和B,每一个产品的生产需要消耗不同的资源,并且每一个产品的销售利润也不同。
公司希翼通过线性规划来确定生产计划,以最大化利润。
已知产品A每一个单位的生产需要消耗2个资源1和3个资源2,每一个单位的销售利润为10元;产品B每一个单位的生产需要消耗4个资源1和1个资源2,每一个单位的销售利润为15元。
公司目前有10个资源1和12个资源2可供使用。
二、数学建模1. 假设生产产品A的数量为x,生产产品B的数量为y。
2. 根据资源的消耗情况,可以得到以下约束条件:2x + 4y ≤ 10 (资源1的消耗)3x + y ≤ 12 (资源2的消耗)x ≥ 0, y ≥ 0 (生产数量为非负数)3. 目标是最大化利润,即最大化销售收入减去生产成本:最大化 Z = 10x + 15y三、线性规划求解1. 将目标函数和约束条件转化为标准形式:目标函数:最大化 Z = 10x + 15y约束条件:2x + 4y ≤ 103x + y ≤ 12x ≥ 0, y ≥ 02. 通过图形法求解线性规划问题:a. 绘制约束条件的图形:画出2x + 4y = 10和3x + y = 12的直线,并标出可行域。
b. 确定可行域内的顶点:可行域的顶点为(0, 0),(0, 2.5),(4, 0),(2, 3)。
c. 计算目标函数在每一个顶点处的值:分别计算Z = 10x + 15y在(0, 0),(0, 2.5),(4, 0),(2, 3)四个顶点处的值。
Z(0, 0) = 0Z(0, 2.5) = 37.5Z(4, 0) = 40Z(2, 3) = 80d. 比较所有顶点处的目标函数值,确定最优解:最优解为Z = 80,即在生产2个单位的产品A和3个单位的产品B时,可以获得最大利润80元。
四、结论根据线性规划的结果,公司在资源充足的情况下,应该生产2个单位的产品A和3个单位的产品B,以最大化利润。
高三数学线性规划试题答案及解析
高三数学线性规划试题答案及解析1.,满足约束条件,若取得最大值的最优解不唯一,则实数的值为()A.或B.或C.或D.或【答案】D.【解析】如图,画出线性约束条件所表示的可行域,坐出直线,因此要使线性目标函数取得最大值的最优解不唯一,直线的斜率,要与直线或的斜率相等,∴或.【考点】线性规划.2.已知最小值是5,则z的最大值是()A.10B.12C.14D.15【答案】A【解析】首先作出不等式组所表示的平面区域,如图中黄色区域,则直线-2x+y+c=0必过点B(2,-1),从而c=5,进而就可作出不等式组所表示的平面区域,如图部的蓝色区域:故知只有当直线经过点C(3,1)时,z取最大值为:,故选A.【考点】线性规划.3.执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.【答案】C【解析】该程序执行以下运算:已知,求的最大值.作出表示的区域如图所示,由图可知,当时,最大,最大值为.选C.【考点】程序框图与线性规划.4.执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.【答案】C【解析】该程序执行以下运算:已知,求的最大值.作出表示的区域如图所示,由图可知,当时,最大,最大值为.选C.【考点】程序框图与线性规划.5.设变量满足约束条件则目标函数的最小值为()A.2B.3C.4D.5【答案】B【解析】作出可行域:oyxA(1,1)由图可知,当直线过点时,目标函数取最小值为3,选B.【考点】线性规划6.已知x,y满足条件,则目标函数的最大值为 .【答案】【解析】画出可行域,如下图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,故将直线向上平移到过点C时,目标函数取到最大值,,得,故.【考点】线性规划.7.若变量满足约束条件,则的最大值为_________.【答案】【解析】作出不等式组表示的区域如下,则根据线性规划的知识可得目标函数在点处取得最大值,故填.【考点】线性规划8.设x,y满足约束条件,则z=(x+1)2+y2的最大值为()A.80B.4C.25D.【答案】A【解析】作出不等式组表示的平面区域,如图中阴影部分所示.(x+1)2+y2可看作点(x,y)到点P(-1,0)的距离的平方,由图可知可行域内的点A到点P(-1,0)的距离最大.解方程=(3+1)2+82=80.组,得A点的坐标为(3,8),代入z=(x+1)2+y2,得zmax9.已知实数满足,则目标函数的取值范围是.【答案】【解析】可行域表示一个三角形ABC,其中当直线过点A时取最大值4,过点B时取最小值2,因此的取值范围是.【考点】线性规划求取值范围10.设变量满足,则的最大值和最小值分别为()A.1,-1B.2,-2C.1,-2D.2,-1【答案】B【解析】由约束条件,作出可行域如图,设,则,平移直线,当经过点时,取得最大值,当经过点时,取得最小值,故选.【考点】线性规划.11.(2011•浙江)设实数x、y满足不等式组,若x、y为整数,则3x+4y的最小值是()A.14B.16C.17D.19【答案】B【解析】依题意作出可行性区域如图,目标函数z=3x+4y在点(4,1)处取到最小值z=16.故选B.12.若点(x,y)位于曲线y = |x|与y = 2所围成的封闭区域, 则2x-y的最小值为A.-6B.-2C.0D.2【答案】A【解析】的图像围成一个三角形区域,3个顶点的坐标分别是 (0,0),(-2,2),(2,2). 且当取点(-2,2)时,2x – y =" -" 6取最小值。
线性规划期末试题及答案
线性规划期末试题及答案一、选择题1. 在线性规划中,以下哪个是目标函数?(A) 约束条件(B) 决策变量(C) 目标变量(D) 限制条件答案:(C) 目标变量2. 在线性规划模型中,以下哪个是限制条件?(A) 目标函数(B) 决策变量(C) 目标变量(D) 约束条件答案:(D) 约束条件3. 在线性规划中,如果目标函数系数有变动,但其它条件保持不变,对最优解的影响是:(A) 没有影响(B) 无法确定(C) 会改变最优解(D) 不确定,需要重新求解线性规划模型答案:(A) 没有影响4. 在线性规划中,如果某个约束条件右侧的常数项发生变动,但其它条件保持不变,对最优解的影响是:(A) 没有影响(B) 无法确定(C) 会改变最优解(D) 不确定,需要重新求解线性规划模型答案:(C) 会改变最优解5. 在线性规划中,以下哪个方法可以确定解的有界性?(A) 单纯形法(B) 对偶法(C) 整数规划(D) 罚函数法答案:(A) 单纯形法二、简答题1. 什么是线性规划?请简要描述线性规划的基本思想和应用领域。
答:线性规划是一种数学优化方法,用于解决在一定约束条件下,目标函数为线性的最优化问题。
其基本思想是通过线性规划模型的建立,将实际问题转化为数学问题,并利用数学方法求解最优解。
线性规划的应用领域非常广泛,包括生产调度、资源分配、投资组合、运输问题等。
2. 简述线性规划模型的一般形式,并解释模型中各要素的含义。
答:线性规划模型的一般形式如下:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z为目标函数的值,c₁, c₂, ..., cₙ为目标函数的系数;x₁, x₂, ..., xₙ为决策变量;a₁₁, a₁₂, ..., aₙₙ为约束条件的系数;b₁,b₂, ..., bₙ为约束条件的常数项。
线性规划题及答案
线性规划题及答案引言概述:线性规划是运筹学中的一种数学方法,用于寻觅最优解决方案。
在实际生活和工作中,线性规划问题时常浮现,通过对问题进行建模和求解,可以得到最优的决策方案。
本文将介绍一些常见的线性规划题目,并给出详细的答案解析。
一、生产规划问题1.1 生产规划问题描述:某工厂生产两种产品A和B,产品A每单位利润为100元,产品B每单位利润为150元。
每天工厂有8小时的生产时间,产品A每单位需要2小时,产品B每单位需要3小时。
问工厂每天应该生产多少单位的产品A 和产品B,才干使利润最大化?1.2 生产规划问题答案:设产品A的生产单位为x,产品B的生产单位为y,则目标函数为Max Z=100x+150y,约束条件为2x+3y≤8,x≥0,y≥0。
通过线性规划方法求解,得出最优解为x=2,y=2,最大利润为400元。
二、资源分配问题2.1 资源分配问题描述:某公司有两个项目需要投资,项目A每万元投资可获得利润2万元,项目B每万元投资可获得利润3万元。
公司总共有100万元的投资额度,问如何分配投资额度才干使利润最大化?2.2 资源分配问题答案:设投资项目A的金额为x万元,投资项目B的金额为y万元,则目标函数为Max Z=2x+3y,约束条件为x+y≤100,x≥0,y≥0。
通过线性规划方法求解,得出最优解为x=40,y=60,最大利润为240万元。
三、运输问题3.1 运输问题描述:某公司有两个仓库和三个销售点,每一个销售点的需求量分别为100、150、200,每一个仓库的库存量分别为80、120。
仓库到销售点的运输成本如下表所示,问如何安排运输方案使得总成本最小?3.2 运输问题答案:设从仓库i到销售点j的运输量为xij,则目标函数为Min Z=∑(i,j) cij*xij,约束条件为每一个销售点的需求量得到满足,每一个仓库的库存量不超出。
通过线性规划方法求解,得出最优的运输方案,使得总成本最小。
四、投资组合问题4.1 投资组合问题描述:某投资者有三种投资标的可选择,预期收益率和风险如下表所示。
高三数学线性规划试题
高三数学线性规划试题1.若变量、满足约束条件,则的最大值等于()A.B.C.D.【答案】C【解析】作出不等式组所表示的可行域如下图所示,直线交直线于点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即,故选C.【考点】本题考查线性规划中线性目标函数的最值,属于中等题.2.满足约束条件,若取得最大值的最优解不唯一,则实数的值为()A.B.C.2或1D.【答案】D【解析】题中的约束条件表示的区域如下图,将化成斜截式为,要使其取得最大值的最优解不唯一,则在平移的过程中与重合或与重合,所以或.【考点】1.线性规划求参数的值.3.若变量满足约束条件且的最大值为,最小值为b,则的值是( ) A.10B.20C.4D.12【答案】C【解析】变量满足约束条件,如图所示,目标函数过点A时z最小,目标函数过点B时z取最大.所以.故选C.【考点】1.线性规划.2.数形结合.4.若,则点必在()A.直线的左下方B.直线的右上方C.直线的右上方D.直线的左下方【答案】A【解析】由基本不等式得,即,因此有,因此点在直线的左下方,故选A.【考点】1.基本不等式;2.线性规划5.已知向量,是平面区域内的动点,是坐标原点,则的最小值是 .【答案】【解析】设,则,所以.令.画出点所在的平面区域及目标函数线如图所示:平移目标函数线使之经过可行域,当目标函数线经过点时,取得最小值为.【考点】1平面向量数量积公式;2线性规划.6. [2014·德州模拟]在平面直角坐标系中,若不等式组 (a为常数)所表示的平面区域的面积等于2,则a的值为()A.-5B.1C.2D.3【答案】D【解析】由题意知不等式组所表示的平面区域为一个三角形区域,设为△ABC,其中A(1,0),=2,所以×(1+a)×1=2,解得a=3.B(0,1),C(1,1+a)且a>-1,因为S△ABC7.(5分)(2011•陕西)如图,点(x,y)在四边形ABCD内部和边界上运动,那么2x﹣y的最小值为.【答案】1【解析】由已知中点(x,y)在四边形ABCD内部和边界上运动,那么2x﹣y取最小值时,点(x,y)一定落在A、B、C、D四个点的某一个点上,我们将四个点的坐标依次代入目标函数的解析式,比较分析后,即可得到答案.解:结合已知的四边形ABCD的图形,我们将四边形的各个顶点坐标依次代入可得:当x=1,y=1时,2x﹣y=1当x=,y=时,2x﹣y=当x=,y=1时,2x﹣y=2﹣1>1当x=1,y=0时,2x﹣y=2>1故2x﹣y的最小值为 1故答案为:1点评:本题考查的知识点是简单线性规划,其中利用角点法是解答线性规划问题的最优解问题是解答线性规划问题最常用,最快捷,最有效的方法,希望大家熟练掌握.8.(3分)(2011•重庆)设m,k为整数,方程mx2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k的最小值为()A.﹣8B.8C.12D.13【答案】D【解析】将一元二次方程的根的分布转化为确定相应的二次函数的图象来处理,根据图象可得到关于m和k的不等式组,此时不妨考虑利用不等式所表示的平面区域来解决,但须注意这不是线性规划问题,同时注意取整点.解:设f(x)=mx2﹣kx+2,由f(0)=2,易知f(x)的图象恒过定点(0,2),因此要使已知方程在区间(0,1)内两个不同的根,即f(x)的图象在区间(0,1)内与x轴有两个不同的交点即由题意可以得到:必有,即,在直角坐标系mok中作出满足不等式平面区域,如图所示,设z=m+k,则直线m+k﹣z=0经过图中的阴影中的整点(6,7)时,z=m+k取得最小值,即z=13.min故选D.点评:此题考查了二次函数与二次方程之间的联系,解答要注意几个关键点:(1)将一元二次方程根的分布转化一元二次函数的图象与x轴的交点来处理;(2)将根据不等式组求两个变量的最值问题处理为规划问题;(3)作出不等式表示的平面区域时注意各个不等式表示的公共区域;(4)不可忽视求得最优解是整点.9.已知,若恒成立, 则的取值范围是 .【答案】【解析】要使不等式成立,则有,即,设,则.作出不等式组对应的平面区域如图,平移直线,由图象可知当直线经过点B时,直线的截距最小,此时最大,由,解得,代入得,所以要使恒成立,则的取值范围是,即,【考点】线性规划.10.设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为( )A.11B.10C.9D.8.5【答案】B【解析】作出不等式组表示的可行域,如图阴影部分所示.又z=2x+3y+1可化为y=-x+-,结合图形可知z=2x+3y+1在点A处取得最大值.由得,故A(3,1).此时z=2×3+3×1+1=10.11.若实数、满足条件,则的最大值为_______.【答案】.【解析】作出不等式组所表示的平面区域如下图所示,直线与直线交于点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,此时直线在轴上的截距最大,取最大值,即.【考点】线性规划12.设z=kx+y,其中实数x、y满足,若z的最大值为12,则实数k= .【答案】2【解析】由得.作出不等式组表示的区域如图所示.由图可知,若,则当或时最大,且最大值不超过4. 若,则当时最大,由得.【考点】线性规划.13.已知实数满足,则的最小值是.【答案】4【解析】因为实数满足,如图所示,令=k,所以.由于当k<0时抛物线的开口向下,所以不合条件.所以k>0,有两种情况当k取最小值即抛物线过点.所以的最小值是.当抛物线与直线相切的情况,,即的最小值是4.【考点】1.线性规划问题.2.抛物线的问题.3.分类归纳的思想.4.构建数形结合解题的思想.14.已知点、,直线与线段相交,则的最小值为( )A.B.C.D.【答案】B【解析】由已知有,作出可行域,令,则的最小值为点到直线的距离,此时,所以的最小值为,选B.【考点】线性规划.15.若目标函数在约束条件下仅在点处取得最小值,则实数的取值范围是 .【答案】【解析】约束条件表示一个三角形及其内部.因此直线的斜率在内,即【考点】线性规划16.设变量x,y满足约束条件,则目标函数的最小值为。
高三数学线性规划试题
高三数学线性规划试题1.在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为()A.2B.1C.D.【答案】C【解析】不等式组为如图所表示的阴影区域.由图可知当M与C重合时,直线OM 斜率最小.解不等式组得C(3,-1),∴直线OM斜率的最小值为2.已知点满足,则的最小值是.【答案】【解析】根据线性规划的知识画出不等式的可行域如图所示,则目标函数在交点处取得最小值为,故填.【考点】线性规划3.设实数满足则的最大值等于________.【答案】2 【解析】实数满足所以x,y 的可行域如图所示.的最大值即为目标函数在y 轴的截距最小.即过点A (2,0),所以的最大值为2. 【考点】1.线性规划.2.截距最大对应的目标函数的最小值. 4. 已知满足不等式设,则的最大值与最小值的差为( )A .4B .3C .2D .1【答案】A【解析】作出不等式组所表示的区域,,由图可知,在点取得最小值,在点取得最大值,故的最大值与最小值的差为.【考点】线性规划.5. 已知实数x ,y 满足若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为__________. 【答案】[-1,1]【解析】作出可行域如图中阴影部分所示,则z 在点A 处取得最大值,在点C 处取得最小值.又k BC =-1,k AB =1,∴-1≤-a≤1,即-1≤a≤1.6. 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1kg 、B 原料2kg ;生产乙产品1桶需耗A 原料2kg ,B 原料1kg.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12kg.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少? 【答案】2800元【解析】设公司每天生产甲种产品x 桶,乙种产品y 桶,公司共可获得利润为z 元/天,则由已知,得z=300x+400y,且画可行域如图所示,目标函数z=300x+400y可变形为y=-x+,这是随z变化的一簇平行直线,解方程组∴即A(4,4),∴z=1200+1600=2800(元).max故公司每天生产甲产品4桶、生产乙产品4桶时,可获得最大利润为2800元.7.设变量x.y满足约束条件则目标函数的最大值和最小值分别为()A.3,一11B.-3,一11C.11,—3D.11,3【答案】A【解析】线性约束条件表示三角形及其内部,当目标函数经过点时,取最小值,经过点时取最大值.【考点】线性规划求最值8.若关于的不等式组表示的平面区域是一个三角形,则的取值范围是.【答案】.【解析】当时,,因此根据图象可知,要使得不等式组所表示的平面区域是一个三角形,那么的取值范围是.【考点】线性规划.9.已知x,y满足则z=2x+4y的最小值为().A.5B.-5C.6D.-6【答案】D【解析】画出线性约束条件下的平面区域.由,得点P(3,-3).此时z=2x+4y达到最小值,最小值为-6.10.已知实数满足约束条件,则的最小值是____________.【答案】【解析】因为实数满足约束条件,x,y的可行域如图为三角形ABC围成的区域.又因为目标函数.所以要求z的最小值即为求出的最小值,即过原点直线的斜率的最小值.通过图形可知过点A的最小,由题意得A(3,1).所以z的最小值为.故填.【考点】1.线性规划问题.2.构造的思想.3数形结合的思想.11.已知O是坐标原点,点M的坐标为(2,1),若点N(x,y)为平面区域上的一个动点,则的最大值是________.【答案】3【解析】=2x+y,设z=2x+y,则y=-2x+z,不等式组对应的区域为BCD.平移直线y=-2x+z,由图可知当直线y=-2x+z经过点C时,直线y=-2x+z的截距最大,此时z最大,由,解得,即C(1,1),代入z=2x+y得z=2x+y=3,所以的最大值为3. 12.已知实数,满足约束条件则的最大值为.【答案】【解析】解线性规划问题,不仅要正确确定可行域,本题是直角三角形及其内部,而且要挖出目标函数的几何意义,本题中可理解为坐标原点到可行域中点的距离的平方.要求目标函数最大值,就是求的最小值,即坐标原点到直线的距离的平方,为.【考点】线性规划求最值13.若变量满足线性约束条件,则的最大值为________.【答案】5【解析】由约束条件,得如下图所示的三角形区域,由得直线过点时,取得最大值为5.【考点】线性规划.14.已知变量x,y满足约束条件则z=4x·2y的最大值为。
高一数学线性规划试题答案及解析
高一数学线性规划试题答案及解析1.若实数、满足约束条件则的最大值是_________【答案】3【解析】画出可行域如下图所示,为目标函数在轴上的截距,画出的图像如图中虚线部分,平移直线过点时有最大值3.故答案为3.【考点】线性规划的应用.2.在直角坐标系中,已知点,,,点在三边围成的区域(含边界)上,且.(Ⅰ)若,求;(Ⅱ)用表示,并求的最小值.【答案】(1),(2)的最小值-1.【解析】(1)向量的坐标运算主要是利用加、减、数乘运算法则进行的.若已知有向线段两端点的的坐标,则应先求出向量的坐标,解题过程中要注意方程的思想的运用及运算法则的正确使用;(2)利用线性规划求目标函数的最值一般步骤:一画、二移、三求,其关键是准确的作出可行域,理解目标函数的意义;(3)在线性约束条件下,线性目标函数只有在可行域的顶点或者边界上取得最值.在解答选择题和填空题时可以根据可行域的顶点直接进行检验.试题解析:解(Ⅰ),∴....................5分由,,,8分设,直线过点时,取得最小值-1,即的最小值-1【考点】(1)向量的坐标表示;(2)线性目标函数的最值.3.已知点(3,1)和(- 4,6)在直线3x-2y+a=0的两侧,则a的取值范围是()A.a<-7或 a>24B.a="7" 或 a=24C.-7<a<24D.-24<a<7【答案】C【解析】由线性规划相关知识:两点位于直线的两侧,则一侧使得直线方程大于零,一侧使得直线方程小于零.即有,故选C.【考点】线性规划.4.实数满足,如果目标函数的最小值为,则实数b的值为_____ .【答案】8【解析】绘制平面区域可得:要使由最小值-2,则直线,在轴上有最大截距为2,且经过点B,由,又因B也在上,故有.【考点】线性规划.5.已知变量满足约束条件,若的最大值为,则实数.【答案】-1或.【解析】作出约束条件所对应的可行域:,由于的最大值为,所以直线必过点A(-2,3)或点B(4,3),因此有解得或,故应填入:-1或.【考点】线性规划.6.设动点满足,则的最大值是.【答案】100【解析】先画出可行域,根据目标函数可知最优解为C(20,0),带入目标函数得最大者为100【考点】线性规划问题7.已知变量,满足约束条件,则的最小值为()A.B.C.D.【答案】B.【解析】依题意可画出不等式组所表示的的可行域,可知直线与的交点,作出直线:,平移直线,则可知当,时,的最小值为.【考点】线性规划.8.设变量、满足约束条件,则z=2x+3y的最大值为【答案】18【解析】变量x,y满足约束条件,表示的可行域为如图,所以z=2x+3y的最大值就是经过M即的交点(3,4)时,所以最大值为:3×2+4×3=18.故答案为:18.【考点】线性规划的应用.9.不等式组表示的平面区域的面积为 .【答案】9【解析】由题意得:平面区域为一个三角形及其内部,其中因此面积为【考点】线性规划求面积10.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.求该公司从每天生产的甲、乙两种产品中,可获得的最大利润.【答案】该公司从每天生产的甲、乙两种产品中,可获得的最大利润为2800元.【解析】设公司每天生产甲种产品x桶,乙种产品y桶,公司共可获得利润为z元/天,则由已知,得z=300x+400y.且画可行域如图所示,目标函数z=300x+400y可变形为解方程组得,即A(4,4).所以,Z=1200+1600=2800.所以,该公司从每天生产的甲、乙两种产品中,可获得的最大利润为2800元. 9分【考点】简单线性规划的应用点评:中档题,作为应用问题,解简单线性规划问题,要遵循“审清题意,设出变量,布列不等式组,画,移,解,答”等步骤。
(完整)高中数学含参数的线性规划题目及答案.doc
线性含参经典小题x 1,2x y 的最小值为 1,则 a1.已知 a 0 , x, y 满足约束条件,x y 3, 若 z ()ya x 3 .A.1B.1C.1D.242x 2 y 3 0,2.已知变量 x, y 满足约束条件, x 3y3 0, 若目标函数 z yax 仅在点 3,0 处取得最y 10.大值,则实数 a 的取值范围为( ) A. (3 ,5)B.( 1 ,)C.(-1,2)D.( 1 ,23 1 )x y 1,ax 2 y 仅在点(1,0)处取得最小值,则 a 的取值范围是( )3.若 x, y 满足 x y1, 且 z2xy 2.A. (-1,2)B.(-2,4)C.(-4,0)D.( -4,2)若直线 y 2x 上存在 x, y 满足约束条件 x y 3 0,)x 2 y 3 0, 则实数 m 的最大值为(4.x m.A.-1B.1C.3 D.22x y 05.若不等式组 2x y 2 表示的平面区域是一个三角形,则 a 的取值范围是( )y 0x y a4B. 0 a 14 4 A. aC.1 aD. 0 a 1或 a333x 2 0,2 y 的最大值为 2,则实数 a若实数x, y 满足不等式组,y 1 0, 目标函数 t x 6.x 2y a 0.的值是( ) A.-2B.0C.1D.2y x设 m 1,在约束条件 ymx 下,目标函数 z x my 的最大值小于 2,则 m 的取值 7.x y 1范围为()A. 1,1 2B. 12,C.(1,3)D. 3,8.已知 x, y 满足约束条件x y 1 0,当目标函数 zax by(a 0, b0) 在该约束条件下2x y 3 0,取到最小值 2 5 时, a 2 b 2 的最小值为( )A 、5B 、4C 、 5D 、2x y2 09. x, y 满足约束条件 x 2 y 2 0 ,若 z y ax 取得最大值的最优解不唯一, 则实数 a 的2x y 2 0值为A, 1或 1B. 2或1C.2 或 1D. 2或 122x 2 y 40,10、当实数 x , y 满足 x y 1 0, 时, 1 ax y 4 恒成立,则实数 a 的取值范围是x 1.________.11.已知 a>0,x,y 满足约束条件 错误 !未找到引用源。
简单的线性规划问题(附答案)
简单的线性规划问题[学习目标]1。
了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念。
2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.知识点一线性规划中的基本概念名称意义约束条件关于变量x,y的一次不等式(组)线性约束条件关于x,y的一次不等式(组)目标函数欲求最大值或最小值的关于变量x,y的函数解析式线性目标函数关于变量x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域由所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题知识点二线性规划问题1.目标函数的最值线性目标函数z=ax+by (b≠0)对应的斜截式直线方程是y=-错误!x+错误!,在y轴上的截距是错误!,当z变化时,方程表示一组互相平行的直线.当b〉0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b〈0,截距最大时,z取得最小值,截距最小时,z取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一求线性目标函数的最值例1已知变量x,y满足约束条件错误!则z=3x+y的最大值为()A.12 B.11C.3 D.-1答案 B解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z经过点A时,z取得最大值.由错误!⇒错误!此时z=3x+y=11。
2024高考全国卷及各省数学线性规划真题整理-免费(附答案)
2024高考全国卷及自主招生数学高考真题线性规划专题真题整理(附答案解析)1.(17全国卷I ,文数7)设x ,y 满意约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为( )A .0B .1C .2D .3 答案:D解析:如图,由图易知当目标函数z x y =+经过 直线33x y +=和0y =(即x 轴)的交点(3,0)A 时,z 能取到最大值,把(3,0)A 代入z =x +y 可得max 303z =+=,故选D.2.(17全国卷I,理数14题)设x ,y 满意约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 答案:5-解析:不等式组21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩表示的平面区域如图所示。
由32z x y =-变形得322z y x =-。
要求z 的最小值, 即求直线322z y x =-的纵截距的最大值。
由右图,易知 当直线322z y x =-过图中点A 时,纵截距最大。
联立方程组2121x y x y +=-⎧⎨+=⎩,解得A 点坐标为(1,1)-,此时3(1)215z =⨯--⨯=-。
故32z x y =-的最小值是-5.3.(17全国卷Ⅱ,文数7、理数5)设x 、y 满意约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩ .则2z x y =+ 的最小值是( )A. -15B.-9C. 1 D 9答案:A解析:不等式组2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩表示的可行域如图所示,易知当直线2z x y =+过到213y x =+与3y =-交点()63--,时,目标函数2z x y =+取到最小值,此时有()()min 26315z =⨯-+-=-,故所求z 最小值为15-.4.(17全国卷Ⅲ,文数5)设x ,y 满意约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z =x -y 的取值范围是( )A.[-3,0]B.[-3,2]C.[0,2]D.[0,3] 答案:B解析:绘制不等式组表示的可行域,结合目标函数 的几何意义可得目标函数z =x -y 在直线3260x y +-=与 直线0x =(即x 轴)的交点()0,3A 处取得最小值, 此时min 033z =-=-。
高一数学线性规划试题
高一数学线性规划试题1.若,满足约束条件,则的最大值是( ).A.B.C.D.【答案】C【解析】作出可行域和目标函数基准线(如图),将化为;当直线向右下方平移时,直线在轴上的截距减小,即增大;当直线过点B时,取到最大值;联立,得,此时.【考点】简单的线性规划.2.已知点在不等式组表示的平面区域上运动,则的取值范围是()A.B.C.D.【答案】B【解析】作出不等式组表示的平面区域,得到如图的及其内部,其中.设,将直线进行平移,观察轴上的截距变换,可得当经过点时,达到最小值;当经过点时,达到最大值.∴,,即的取值范围是.【考点】1、简单线性规划;2、二元一次不等式组表示的平面区域.3.设实数满足约束条件,则的最大值为()A.10B.8C.3D.2【答案】B.【解析】作出不等式组所表示的平面区域,即可行域,则直线与直线的交点.,作直线:,平移直线,则可知,当,时,【考点】线性规划.4.设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为_____________.【答案】4【解析】作出可行域(如图),,当目标直线过点A时 ,目标函数取得最大值,联立,得即;则(当且仅当,即时取等号).【考点】线性规划、基本不等式.5.目标函数,变量满足,则有()A.B.无最小值C.D.既无最大值,也无最小值【答案】C【解析】由题意知线性区域为:,当目标函数经过点时,有最小值;当目标函数经过点时,有最大值为.【考点】线性规划问题.6.若点在直线的下方,则的取值范围是_____________.【答案】.【解析】∵点在直线的下方,∴,∴的取值范围是.【考点】二元一次不等式与平面区域.7.已知,求的取值范围【答案】【解析】设,则,,又①②则①+②,故答案为【考点】简单的线性规划8.已知x,y满足约束条件,则的最小值为______________.【答案】—12.5【解析】作出不等式组表示的平面区域,得到如图的三角形及其内部,由,联立得A(-2.5,2.5),设z=F(x,y)=4x-y,将直线l:进行平移,可得当l经过点A时,目标函数z达到最小值∴z=F(-2.5,2.5)=—12.5.故答案为:—最小值12.5.【考点】二元一次不等式组表示的平面区域;简单的线性规划等知识.9.设=(1,1),=(3,1),O为坐标原点,动点P(x,y)满足0≤·≤1,0≤·≤1,则的最大值是()A.B.0C.D.1【答案】B【解析】,,,即,画出可行域如图平移目标函数线,使之经过可行域当过时纵截距最小此时最大为0。
高三数学线性规划试题
高三数学线性规划试题1.若点满足线性约束条件,则的取值范围是.【答案】【解析】作出不等式组所表示的平面区域,如图:作出直线x-y=0,对该直线进行平移,可以发现当直线经过点(0,0)时,Z取得最大值0,当直线经过点(-2,0)时,Z取得最小值-2,所以Z的取值范围为[-2,0).故答案为:[-2,0).【考点】简单线性规划.2.已知点、的坐标满足不等式组,若,则的取值范围是()A.B.C.D.【答案】D【解析】作出不等式组所表示的可行域如下图所示,假设点为上的一点,过点作直线的垂线,需使得垂线与与可行域有公共点,结合图象知,当点,时,在方向上的投影最大,此时,且取最大值,此时;同理当点,,此时,此时取最小值,,故的取值范围是,故选D.【考点】线性规划3.已知变数满足约束条件目标函数仅在点处取得最大值,则的取值范围为_____________.【答案】【解析】由题意知满足条件的线性区域如图所示:,点,而目标函数仅在点处取得最大值,【考点】线性规划、最值问题.4.已知实数满足:,,则的取值范围是( )A.B.C.D.【答案】C【解析】画出约束条件限定的可行域为如图阴影区域,令,则,先画出直线,再平移直线,当经过点,时,代入,可知,∴,故选.【考点】线性规划.5.设是定义在上的增函数,且对于任意的都有恒成立.如果实数满足不等式,那么的取值范围是【答案】(9,49)【解析】是定义在上的增函数,且对于任意的都有恒成立.所以可得函数为奇函数.由可得,..满足m,n如图所示.令.所以的取值范围表示以原点O为圆心,半径平方的范围,即过点A,B两点分别为最小值,最大值,即9和49.【考点】1.线性规划的问题.2.函数的单调性.3.函数的奇偶性.4.恒成立的问题.6.已知实数满足,则的取值范围是【答案】【解析】由不等式,得,在平面直角坐标系中用虚线画出圆,再作出虚线,则的可行域是由虚线与此虚线的右半圆围成的区域(不包括边界),又目标函数可化为,则当直线过可行域的上顶点时,有,当直线与半圆相切于点时,目标函数有最大值,将目标函数化为,则此时有,解得,如图所示,所以正确答案为.【考点】直线与圆、线性规划.7.已知点满足约束条件,为坐标原点,则的最大值为_______________.【答案】5【解析】作出可行域,得到当位于时,最大,其值为5.【考点】线性规划.8.设实数x、y满足,则的取值范围是( ) A.B.C.D.【答案】B【解析】作出可行域如图,当平行直线系在直线BC与点A间运动时,,此时,平行直线线在点O与BC之间运动时,,此时,. .选B【考点】线性规划9.不等式组所表示的平面区域的面积是________.【答案】25【解析】直线x-y+4=0与直线x+y=0的交点为A(-2,2),直线x-y+4=0与直线x=3的交点为B(3,7),直线x+y=0与直线x=3的交点为C(3,-3),则不等式组表示的平面区域是=×5×10=25.一个以点A(-2,2)、B(3,7)、C(3,-3)为顶点的三角形,所以其面积为S△ABC10.已知点A(a,b)与点B(1,0)在直线3x-4y+10=0的两侧,给出下列说法:①3a-4b+10>0;②当a>0时,a+b有最小值,无最大值;③>2;④当a>0且a≠1,b>0时,的取值范围为∪.其中正确的个数是( )A.1B.2C.3D.4【答案】B【解析】因为点A(a,b),B(1,0)在直线3x-4y+10=0的两侧,所以(3a-4b+10)(3-0+10)<0,即3a-4b+10<0,故①错误;因为a>0时,点(a,b)对应的平面区域如图(不含边界),所以a+b既没有最小值,也没有最大值,故②错误;因为原点到直线3x-4y+10=0的距离为=2,而点(a,b)在直线3x-4y+10=0的左上方,所以>2,故③正确;的几何意义是点(a,b)与(1,0)的连线的斜率,由图可知,取值范围是∪,故④正确.11.若x,y满足条件当且仅当x=y=3时,z=ax-y取最小值,则实数a的取值范围是________.【答案】【解析】画出可行域,如图所示,得到最优解(3,3).把z=ax-y变为y=ax-z,即研究-z的最大值.当a∈时,y=ax -z均过(3,3)时截距-z最大.12.若满足,则的最小值为 .【答案】3【解析】由已知不等式得出区域如图所示,目标函数在点处取得最小值,且最小值为3.【考点】线性规划.13.设实数满足约束条件,若目标函数的最大值为9,则的最小值为__ ___.【答案】【解析】有可行域与目标函数形式可知,只能在点取得最大值,即,整理得:,所以,故.【考点】1、线性规划, 2、基本不等式.14.若,满足约束条件,则的最大值是.【答案】1【解析】根据题意,作出,满足约束条件的平面区域,那么结合三角形区域可知当过点(1,1)点时,则目标函数平移过程中截距最小,此时函数值最大,故答案为1.【考点】线性规划知识点评:本题主要考查了利用线性规划知识的简单应用,属于基础试题,解题的关键是明确目标函数的几何意义15.已知变量x、y,满足的最大值为【答案】3【解析】由复合对数函数的性质,欲使函数最大,即最大。
高二数学线性规划试题
高二数学线性规划试题1.若实数满足则的最大值为;【答案】9【解析】先在平面直角坐标系中画出实数的可行解范围,将目标函数化为,在直角坐标系中作出函数的图像,考虑到前的符号是“”,所以将函数的图像向上平移至可行解范围的最上顶点,此时函数的图像在轴上的截距为所求的最大值(另解:可将可行解范围的最上顶点的坐标代入目标函数可得解).如下图所示.【考点】简单线性规划问题.2.设变量满足约束条件,则目标函数的取值范围是()A.B.C.D.【答案】A【解析】由约束条件在直角坐标系中画出目标函数的可行域,如图所包围的阴影部分(包括边界):因为,所以,故选A.【考点】简单线性规划问题(用平面区域表示二元一次不等式组)3.已知实数x,y满足条件,则z=x+3y的最小值是()A.B.C.12D.-12【答案】B【解析】画出不等式表示的平面区域,作直线,将平移过点时取得最小值.【考点】线性规划求最值.4.已知平面区域如图,,,,在平面区域内取得最大值时的最优解有无数多个,则.【答案】.【解析】由得,故是直线的纵截距,因此当直线向上平移时增加,要使得最优解有无数个,从图可知必有直线平移到与直线AC重合,因此,.【考点】线性规划.5.设,满足若目标函数的最大值为14,则()A.1B.2C.23D.【答案】B【解析】根据题意作出可行域如图所示,目标函数z=ax+y(a>0)最大值为14,即目标函数z=ax+y(a>0)在3x-y-6≤0与x-y+2≥0的交点M(4,6)处,目标函数z最大值为14,所以4a+6=14,所以a=2.故选B【考点】本试题主要是考查了线性规划区域的最优解的问题。
研究二元一次目标函数的最大值问题。
点评:解决这类问题的核心就是准确作图,表示出目标区域,并利用直线的截距的平移得到过哪个点时,得到最优解的问题。
6.设满足则()A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值【答案】B【解析】作出不等式表示的可行域可知当直线z=x+y经过直线2x+y=4与直线x-2y=2的交点(2,0)时,z取得最小值2.无最大值.7.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?【答案】投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8 万元的前提下,使可能的盈利最大【解析】先设投资人分别用x万元、y万元投资甲、乙两个项目得到x,y满足的约束条件为,目标函数,再作出不等式组表示的可行域,找出最优解,求出z的最大值.解:设投资人分别用x万元、y万元投资甲、乙两个项目,由题意:,目标函数,上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域.作直线,并作平行于直线的一组直线,与可行域相交,其中有一条直线经过可行域上的点M,且与直线的距离最大,其中M点是直线和直线的交点,解方程组得,此时(万元),,当时,最得最大值.答:投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8 万元的前提下,使可能的盈利最大.8.已知, 则的最大值是 .【答案】10【解析】作出不等组表示的可行域,当直线经过直线x+y=3与直线x-y=1的交点(2,1)时,z取得最大值10.9.某工厂计划生产A.B两种涂料,生产A种涂料1t需要甲种原料1t.乙种原料2t,可获利润3千元;生产B种涂料1t需要甲种原料2t,乙种原料1t,可获利润2千元,又知该工厂甲种原料的用量不超过400t,乙种原料的用量不超过500t,问如何安排生产才能获得最大利润?(注:t表示重量单位“吨”)【答案】应分别生产A、B两种涂料各200t、100t才能获得最大利润【解析】本试题主要是考查了线性规划的最优解问题在实际生活中的运用。
高二数学线性规划试题答案及解析
高二数学线性规划试题答案及解析1.已知满足不等式组,使目标函数取得最小值的解(x,y)有无穷多个,则m的值是A.2B.-2C.D.【答案】D【解析】画出可行域,目标函数z=mx+y,取得最小值的最优解有无数个知取得最优解必在边界上而不是在顶点上,目标函数中系数必为负,最小值应在边界3x-2y+1=0上取到,即mx+y=0应与直线3x-2y+1=0平行,进而计算可得m值.【考点】线性规划2.若x,y满足则的最大值是.【答案】 10【解析】根据线性约束条件划出可行域,由目标函数得,即只需求直线在轴上的最大值即可。
【考点】线性规划求最值问题。
3.在平面直角坐标系中,若不等式组(a为常数)所表示的平面区域的面积等于2,则实数a的值为.【答案】3【解析】由题意得:不等式组(a为常数)所表示的平面区域必须为一个封闭图形.直线恒过定点所以平面区域为三角形,面积为【考点】线性规划4.已知实数满足条件,则的最大值为.【答案】10【解析】作出满足约束条件下的平面区域,如图所示.由图可知点目标函数经过点时取得最大值,且最大值为.【考点】简单的线性规划.5.若实数满足,则的取值范围是( )A.B.C.D.【答案】A【解析】表示单位圆,表示单位圆上的点与点形成的直线的斜率.显然当与圆相切时,如图所示,可知 .【考点】线性规划求最值.6.不等式组所围成的平面区域的面积是 .【答案】2【解析】根据题意作出不等式组所表示的平面区域(如下图)直线的斜率都为,而直线的斜率都为1,所以该区域为正方形区域,其中该正方形的边长为,所以该平面区域的面积为.【考点】1.二元一次不等式表示的平面区域问题;2.两直线垂直的判定.7.设变量满足则目标函数的最小值为( )A.2B.4C.6D.以上均不对【解析】因为变量满足,符合的x,y的可行域如图所示的阴影部分,目标函数. 其中的最小值即为直线CD在y轴的截距最小.所以通过移动直线CD可知过点B是符合题意.又因为B(1,0).所以.故选A.【考点】1.线性规划问题.2.作图的能力.3.对比归纳的思想.4.复杂问题简单化的转化过程.8.已知实数满足,且目标函数的最大值为6,最小值为1, 其中的值为( )A.1B.2C.3D.4【答案】B【解析】本题为线性规划含有带参数直线问题.需要对含参直线的斜率以及b进行讨论.另外借助选项,观察4个选项都是正数,所以.这样可以减少讨论情况 .利用现行约束条件作出可行域.当讨论(ⅰ):若无论我们都可以作图,若则表示虚线下方无最大值不合题意.所以建立方程组和分别代入目标函数可以得出.(ⅱ):同理当时,结合图像仍然会得如上的方程组.所以.所以答案为D.【考点】线性规划、分类讨论思.9.下列坐标对应的点中,落在不等式表示的平面区域内的是A.(0,0)B.(2,4)C.(-1,4)D.(1,8)【答案】A【解析】把选项中的点的坐标代入不等式检验,得点(0,0)符合题意,故选A【考点】本题考查了二元一次不等式表示平面区域点评:只需在这条直线的某一侧取一个特殊点(x0,y0) ,以Ax0+By0+C的正负情况便可判断Ax+by+C>0 表示这一直线哪一侧的平面区域,特殊地,当C≠0 时,常把原点作为此特殊点.10.已知实数x,y满足,若取得最大值时的最优解有无数个,则a的值为()A.0B.2C.-1D.【解析】先画出可行域,该可行域是一个三角形,因为取得最大值时的最优解有无数个,根据图象可知应该与边界平行,所以【考点】本小题主要考查简单线性规划.点评:目标函数的最优解有无数多个,处理方法一般是:①将目标函数的解析式进行变形,化成斜截式②分析Z与截距的关系,是符号相同,还是相反③根据分析结果,结合图形做出结论④根据斜率相等求出参数.11.(本题满分12分)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按40个工时计算)生产空调器、彩电、冰箱共120台,且冰箱至少生产20台.已知生产这些家电产品每台所需工时和每台产值如下表:432【答案】【解析】设每周生产空调台、彩电台、则生产冰箱台,产值(千元). (2分)目标函数为(6分)所以题目中包含的限制条件为即: 可行域如图.(10分)解方程组得点的坐标为所以(千元) (12分)【考点】线性规划的最优解运用点评:解决该试题的关键是能根据题意抽象出不等式,同时结合二元一次不等式组表示的区域,平移法得到最值,属于基础题。
线性规划题及答案
线性规划题及答案一、题目描述假设有一家创造公司,该公司生产两种产品:产品A和产品B。
公司有限的资源包括劳动力和原材料。
产品A每一个单位需要2个小时的劳动力和3个单位的原材料,产品B每一个单位需要4个小时的劳动力和1个单位的原材料。
公司每天有8个小时的劳动力和10个单位的原材料可用。
产品A的售价为每一个单位10美元,产品B的售价为每一个单位8美元。
创造一台产品A的成本为每一个单位6美元,创造一台产品B的成本为每一个单位4美元。
问题:如何确定每种产品的生产数量,以最大化公司的利润?二、线性规划模型假设产品A的生产数量为x,产品B的生产数量为y。
则可以建立如下的线性规划模型:目标函数:最大化利润Maximize Z = 10x + 8y约束条件:1. 劳动力约束:2x + 4y ≤ 8(劳动力总共有8个小时)2. 原材料约束:3x + y ≤ 10(原材料总共有10个单位)3. 非负约束:x ≥ 0, y ≥ 0三、求解线性规划问题为了求解上述线性规划问题,可以使用各种数学软件或者线性规划求解器。
下面给出一个可能的求解过程和结果。
1. 使用线性规划求解器输入模型和约束条件。
2. 求解器计算出最优解,即最大化的利润。
3. 解读结果。
四、求解结果经过计算,最优解如下:最大利润为:$64产品A的生产数量:2个单位产品B的生产数量:2个单位五、结果解释根据最优解,公司应该生产2个单位的产品A和2个单位的产品B,以最大化公司的利润。
此时,公司的最大利润为64美元。
六、敏感性分析敏感性分析用于确定模型的解对于参数变化的稳定性。
下面进行一些敏感性分析。
1. 劳动力的变化:假设劳动力增加到10个小时,重新计算模型。
结果如下:最大利润为:$76产品A的生产数量:2个单位产品B的生产数量:2个单位2. 原材料的变化:假设原材料增加到12个单位,重新计算模型。
结果如下:最大利润为:$76产品A的生产数量:2个单位产品B的生产数量:2个单位通过敏感性分析可以得出,当劳动力和原材料的供应增加时,最优解保持不变。
高中线性规划练习(含详细解答),成才系列
7 3
3 7
( C)
4 3 x 0,
(D)
3
高
4
18.( 2008 年高考 ・ 浙江卷
理 17)若 a
0, b
0 ,且当 x
y y
0, 时,恒有 ax 1
by
1 ,则以 a ,b 为坐标
点 P ( a, b) 所形成的平面区域的面积等于
__________ .
5. “ 求约束条件中的参数 ” 型考题
X
且
2Y Y 0 0
12 12
,画可行域如图所示,
2X X Y
目标函数 Z=300X+400Y 可变形为 Y=
3 4
x 2x x
z 400 y 2y 12 12
,
这是随 Z 变化的一族平行直线,解方程组
x y
4 4
,即 A ( 4,4 )
y 11 y 3 9
0 0 0
表示的平面区域为 D,若指数函数 y= a 的
x
3x
5x 3 y
图像上存在区域 A (1 , 3] D 上的点,则 a 的取值范围是 B [2 , 3] C (1 , 2]
D
[ 3,
]
x 2y 5 0
23. ( 2007 年高考 ・ 浙江卷 理 17)设
m 为实数, 若 { ( x, y )
答案解析
通常转化为求直线在
ax
by ( a, b
R) 的线性目标函数的最值问题,
y轴
上的截距的取值 . 结合图形易知,目标函数的最值一般在可行域的顶点处取得
. 掌握此规律可以有效避免因
B 【解析】约束条件对应
5 3 ABC 内的区域 ( 含边界 ) ,其中 A (2, 2), B (3, 2), C ( , ) 画出可行域, 2 2 z 3x y [8,11]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学线性规划试题答案及解析
1.在平面直角坐标系中,为不等式组所表示的区域上一动点,则直线斜
率的最小值为 .
【答案】
【解析】不等式组表示的区域如图,当取得点时,直线斜率取得最小,最小值为.故选C.
2.若实数满足其中,若使得取得最小值的解有无穷多个,则
等于.
【答案】2.
【解析】表达式可看成是定点与动点连线斜率(点在所给不等式组表示的平面区域内),如图,动直线过定点,为使满足题意的点有无穷多个,此时直
线应过,从而
【考点】本题考查含参数的二元一次不等式组表示平面区域等知识,意在考查画图、用图及计算能力.
3.设实数满足条件,则的最大值是()
A.B.C.D.
【答案】A
【解析】画出可行域,如图所示,目标函数变形为,直线经过可行域,尽可能地向下平移经过点时取到最大值,即的最大值为.
【考点】本题考查线性规划等基础知识,意在考查学生数形结合思想的运用能力和基本运算能力.4.已知实数满足:,则的最小值为 .
【答案】
【解析】画出可行域及直线..,如图所示.
平移直线,当经过点时,直线的纵截距最大,所以,
.
【考点】本题考查简单线性规划的应用等知识,意在考查作图、识图、用图的能力及数形结合思想.
5.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6
吨的乙型卡车.某天需送往A地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的
每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运
送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z= () A.4 650元B.4 700元C.4 900元D.5 000元
【答案】C
【解析】设派用甲型卡车x辆,乙型卡车y辆,则,目标函数z=450x+350y,画
出可行域如图,当目标函数经过A(7,5)时,利润z最大,为4 900元
6.若x,y满足约束条件则z=3x-y的最小值为________.
【答案】-1
【解析】本小题主要考查线性规划最优解的应用,解题的突破口是正确作出可行域和平移目标函数曲线.
利用不等式组,作出可行域,则目标函数直线过(0,1)时,z取最小值-1.
7.已知变量满足约束条件,若的最大值为,则实数 .
【答案】或(对1个得3分,对2个得5分)
【解析】利用线性规划的知识画出不等式组表示的可行域如下图所示:
其中点,根据线性规划的知识可得目标函数的最优解在只能是,当目标函数在点A处取得最优解时,有符合题意,当目标函数在点B处取得最优解时, 符合题意,当目标函数在C点取得最优解时, 无解,所以或,故填或.
8.已知点满足约束条件,为坐标原点,则的最大值为.
【答案】5
【解析】作出可行域,得到当位于时,最大,其值为5.
9.浙江理)设,其中实数满足,若的最大值为12,则实数
________。
【答案】
【解析】此题是线性规划的逆向求解问题,其解法画出不等式组所表示的平面区域后,对目标函数中的进行讨论。
此不等式表示的平面区域如下图所示:,
当时,直线平移到A点时目标函数取最大值,即;当时,直线平移到A或B点时目标函数取最大值,可知k取值是大于零,所以不满足,所以,所以填2;
【考点】此题考查线性规划知识点,把不等式组所表示的平面区域表示出来,然后对k进行分类
讨论即可解决;
10.天津理)设变量x, y满足约束条件则目标函数z = y-2x的最小值为()
A.-7B.-4
C.1D.2
【答案】A
【解析】画出原不等式组表示的平面区域如图所示阴影部分,
由题意知,当目标函数表示的直线经过点A(5,3)时,取得最小值,所以的最小值为,故选A.
【考点】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式
出现,是高考的重点内容之一,几乎年年必考.
11.陕西理)若点(x, y)位于曲线与y=2所围成的封闭区域, 则2x-y的最小值为 .
【答案】-4。
【解析】作出曲线与所表示的区域,令,即,作直线,在封
闭区域内平行移动直线,当经过点时,取到最小值,此时最小值为.解题的关键
在于画出曲线围成的封闭区域,并把求的最小值转化为求所表示的直线截距的最大值,通过平移直线即可求解.
【考点】本题主要考查了线性规划的最值问题,考查画图和转化能力,属于中等题。
12.山东理)在平面直角坐标系中,为不等式组,所表示的区域上一动点,则
直线斜率的最小值为
A.B.C.D.
【答案】C
【解析】画出可行域得该区域为点形成的三角形,因此的最小值为
【考点】本题考查线性规划下的斜率运算,确定可行域是关键,通过绕旋转来确定最小值
点.
13.若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是( )
A.B.C.D.
【答案】A
【解析】不等式表示的平面区域如图所示阴影部分△ABC
由得A(1,1),又B(0,4),C(0,)
∴
=,设与的
△ABC
交点为D,则由知,∴
∴选A。
14.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨。
销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可获得最大利润是( )
A.12万元B.20万元C.25万元D.27万元
【答案】D
【解析】设甲、乙种两种产品各需生产、吨,可使利润最大,故本题即
已知约束条件,求目标函数的最大值,可求出最优解为,故
,故选择D。
15.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表
(单位:亩)分别为
A、50,0
B、30.0
C、20,30
D、0,50
【答案】B
【解析】本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力.设黄瓜和韭菜的种植面积分别为x,y亩,总利润为z万元,则目标函数为
.线性约束条件为即作出不等式组表示的可行域,易求得点.
平移直线,可知当直线经过点,即时,z取得最大值,且(万元).故选B.
【点评】解答线性规划应用题的一般步骤可归纳为:
(1)审题——仔细阅读,明确有哪些限制条件,目标函数是什么?
(2)转化——设元.写出约束条件和目标函数;
(3)求解——关键是明确目标函数所表示的直线与可行域边界直线斜率间的关系;
(4)作答——就应用题提出的问题作出回答.
体现考纲中要求会从实际问题中抽象出二元线性规划.来年需要注意简单的线性规划求最值问题.
16.若实数满足,若使得取得最小值.
【答案】
【解析】如图,作出表示的可行域,则直线过定点,故使得
取得最小值为.
【命题意图】本题考查含参数的二元一次不等式组表示平面区域等知识,意在考查画图、用图及计算能力.
17.设满足约束条件,若的最小值为,则()
A.1B.2C. 3D. 4
【答案】B
【解析】画出可行域,设,变形为,当取到最小值时,直线的纵截距最小,所以B是最优解,代入目标函数得,解得
.
【命题意图】本题考查线性规划等基础知识,意在考查数形结合思想的运用能力.
18.已知满足约束条件则的最大值是;
【答案】6
【解析】解:作出不等式组表示的平面区域(如图),
把目标函数
化为
令,作直线,把直线平移经过可行域内点时,的值最小,经过可行域内点时,的值最大.由得,由得,此时.
【命题意图】本题考查线性规划,要求可行域要画准确,还需特别注意目标函数的斜率与边界直
线的斜率的大小关系,即要注意目标函数与边界直线的倾斜程度,意在考查数形结合的应用能力
和计算能力.
19.设变量满足约束条件:,则的取值范围为()
A.B.C.D.
【答案】A
【解析】如图,作出约束条件确定的可行域,
因为,设,则当直线过点时,取得最小值,当直线
过点时,取得最大值.
由解得;由解得.
所以的最小值为;最大值为.故,所以的取值范围为.故选A.
【命题意图】本题主要考查线性规划中的最值问题以及数形结合的数学思想等.
20.若实数x,y满足且的最大值为,则的值为()
A.B.C.D.
【答案】A.
【解析】目标函数,其中表示可行域内点与点连线
的斜率.当时,画出可行域为如图1所示的阴影区域(包括边
界).
解得;当时,可行域如
图2所示的阴影区域(包括边界),此时与题意的最大值为不符;当时,可行域如图3所示的阴影区域(包括边界),此时也有与题意
也不符.综上所述,,故选A.
【命题意图】本题考查线性规划基础知识,意在考查学生数形结合思想的运用能力和基本运算能力.。