《绝对值》教案(优秀10篇)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【《绝对值》的课标要求】《绝对值》教案(优秀10
篇)
绝对值教案篇一
绝对值
教学目标:通过数轴,使学生理解绝对值的概念及表示方法
1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算
2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法
3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力
教学重点:理解绝对值的概念、意义,会求一个数的绝对值
教学难点:绝对值的概念、意义及应用教学方法:探索自主发现法,启发引导法设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。教学过程:
一、创设情境,复习导入。今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。(用多媒体出示引例)星期天张老师从学校出发,开车去游玩,她先向东行千米,到了游乐园,下午她又向西行千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升?①千米,千米;②()×升。在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了。你还能举出其他类似的例子吗?。小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈。教师巡视,偶尔参加其中一组的讨论,但不直接肯定或否定学生的问题,而是引导鼓励学生思考、交流,请各小组派代表汇报讨论结果。我们小组举的例子是:我爸爸喜欢炒股,一天他支出元购买股票,同一天他又抛出股票收入元,规定支出为负,那么爸爸两次的交易额用有理数如何表示?如果交易所每次交易按总额的千分之一收费,那么爸爸的这两次交易需交多少交易费?。在实际生活中存在不关注相反意义的例子,刚才我们所举例子中的计算,都不必考虑它们的正、负性,看来我们的确很有必要给上面涉及的量取一个名字。我们把这个量叫做有理数的绝对值。
二、合作交流、探索新知。绝对值的概念⑴如图,在数轴上,+和-虽然符号不同,但表示这两个数的点到原点的距离都是,我们把这个距离叫做+和- 的绝对值。+的绝对值就是数轴上表示+的点到原点的距离,+的绝对值是,记作:?3= -的绝对值就是数轴上表示-的点到原点的距离, -的绝对值是,记作:?3= ⑵一个数的绝对值是数轴上表示数的点到原点的距离,数的绝对值,记作:a 。探索绝对值意义⑴学生探索:求,-,11,-,,-的绝对值22小组讨论:互为相反数的两个数的绝对值有什么关系。规律总结:互为相反数的两个数的绝对值相等⑵学生抢答: 15?53.2?3.2212?22 11?5?5?3.2?3.2?22?220?0 学生小组讨论得出:一个正数的绝对值是它的本身。即:若>,则a= 一个负数的绝对值是它的相反数。即:若<,则a=- 的绝对值是。即:若,则a= ()学生活动:在数轴上自己标出五个数,让同桌指出它们的绝对值,引导学生观察,讨论得出:任何一个数的绝对值都是非负数(正数和)。a≥ ?a(a?0)?a(a?0)? a=?0(a?0)a=??a(a?0)a(a?0)? 三、举一反三,灵活应用 11例。求下列各数的绝对值:-,-2,,+,+4 解:?4?4; 1?11?122; 1?314?34. 0?0; ?2?2; 注:通过此题,复习巩固绝对值的概念,表示法,意义例,计算①?5??3.4?0??1.9 ②53?23622 解:原式=--+ 解:原式=3?56?32 = = 注:通过此题,复习巩固绝对值的意义例。求出绝对值是7的有理数解: ①∵?12?12?12?12 ∴绝对值是的有理数是±②∵444?7??7?747 444绝对值是7的有理数是±7 ③∵0?0 ∴绝对值是的有理数是小结:绝对值等于一个正数的数有两个,它们互为相反数;绝对值等于的数有一个,是;没有绝对值等于负数的数,绝对值是个非负数。a≥ 四、达标反馈 1. 填空 (1) 数轴上离开原点个单位长的点所表示的数是___ (2) 数轴上到原点的距离等于的点所表示的数是 (3) 正数的
绝对值是,负数的绝对值是,零的绝对值是(4) 从数轴上看,一个数的绝对值就是表示这个数离开原点的 (5) 是的相反数,它是的绝对值 (6) 如果一个数的绝对值等于1,那么这个数是3(7) 绝对值小于的整数有___,它们的和为___ (8) 若a?a,则。选择题⑴-?a是一个。正数。负数。正数或零。负数或零⑵如果一个数的绝对值是,那么这个数是。。一。或。以上都不对⑶任何有理数的绝对值都是。正数。负数。有理数。正数或零⑷一个数的绝对值是它本身,那么这个数是。正数。正数或零。零。有理数五、学习小结:
1、绝对值的概念、意义①数轴上的点到原点的距离叫做这个点表示的有理数的绝对值②正数的绝对值是它的本身负数的绝对值是它的相反数的绝对值是 ?a(a?0)?a(a?0)?③ a=?0(a?0)a=? ??a(a?0)??a(a?0)?④绝对值是非负数a≥ ⑤有理数可理解为由性质符号和绝对值组成⑥互为相反数的两个数可理解为符号相反、绝对值相同的两个数
2、学会发现、探索、合作交流,体会数形结合,分类讨论等数学思想方法六、设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。学习是一件增长知识的工作,在茫茫的学海中,或许我们困苦过,在艰难的竞争中,或许我们疲劳过,在失败的阴影中,或许我们失望过。但我们发现自己的知识在慢