统计学 第 6 章 抽样与参数估计
统计学原理-第六章 抽样调查(复旦大学第六版)
![统计学原理-第六章 抽样调查(复旦大学第六版)](https://img.taocdn.com/s3/m/668f8ac27f1922791688e8b5.png)
2.样本总体:简称样本,是从全及总体中随机
抽取出来,代表全及总体部分单 位的集合体。单位数用n表示。
5
二.全及指标和抽样指标
(一)全及指标
X 总体平均数: X N 总体成数:P
2
XF 或X F Q=
2 2
N1 N N
(X-X) 总体方差: = 总体标准差:= (X-X)
(一)考虑顺序的不重复抽样数目
N! A N ( N 1)(N 2) ( N n 1) ( N n)! 4 3 2 1 2 例如A4 12 2 1
n N
(二)考虑顺序的重复抽样数目
B N
n N 2 4
n 2
例如 B 4 16
10
(三)不考虑顺序的不重复抽样数目
Ex X
28
2、一致性 当抽样单位数充分大时,抽样指标和未知 的总体指标之间的绝对离差为任意小的可能性 也趋于必然性。
x X 任意小
3、有效性
即用抽样指标估计总体指标,要求作为优良估 计量方差应该比其他估计量的方差小。
2
x X f
2
f
2
x X f
x
x E ( x)
2
18
说明:根据数理统计理论,在重复抽样条件下, 抽样平均误差与全及总体的标准差成正比例关系。 与抽样总体单位平方根成反比关系。
19
在不重复抽样情况下,抽样平均误差计算公式如下:
x x
N n 250 4-2 ( )= ( ) =9.13(件) n N 1 2 4-1
2
N
X X F 或 F X X F 或 F
《医学统计学》第六章+参数估计与假设检验
![《医学统计学》第六章+参数估计与假设检验](https://img.taocdn.com/s3/m/b89039f06e1aff00bed5b9f3f90f76c661374cfc.png)
2、该地所有人收缩压的均数可能在什么范围?
医学统计学(第7版)
三、总体均数的区间估计
(一)σ 已知
➢ 如果变量 X 服从均数为 μ、标准差为 的正态分布,则: z
服从标准正态分布。则:
P X 1.96
X 1.96
0.95
(二)σ 未知
1. t 分布
➢ 事实上,总体标准差 通常是未知的,这时我们可以用其估计量S代替 ,但
在这种情况下,( X ) / ( S /
n)
已不再服从标准正态分布,而是服从著名的 t 分布。
William Gosset
不同自由度的t分布图
医学统计学(第7版)
2. 可信区间的计算
S12 S22
n1 n2
2 ,v
医学统计学(第7版)
例题
➢ 例6-4 评价复方缬沙坦胶囊与缬沙坦胶囊对照治疗轻中度高血压的有效性,将102名患
者随机分为两组,其中试验组和对照组分别为54例和48例。经六周治疗后测量收缩压,
试验组平均下降15.77mmHg,标准差为13.17mmHg;对照组平均下降9.53mmHg,标准
样本率的标准差称为率的标准误(standard error of rate),可用来描述样
本率抽样误差的大小。率的标准误越小,则率的抽样误差越小,率的标
准误越大,则率的抽样误差越大。公式为:
p
(1 )
n
2. 率的标准误的估计
在一般情况下,总体率 π 往往是未知的,此时可用样本率 P 来估计总体
标准差与标准误的比较
标 准 差
标 准 误
统计学第六章 抽样法
![统计学第六章 抽样法](https://img.taocdn.com/s3/m/8d2b855031b765ce05081466.png)
第六章 抽样法
序号
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16 合计
样本变量x
40、40 40、50 40、70 40、80
50、40 50、50 50、70 50、80
70、40 70、50 70、70 70、80
80、40 80、50 80、70 80、80
-
x
x E(x)
总体
研究如何利用 样本数据来 推断总体特 征。
内容包括:参 数估计和假 设检验。
目的:对总体
特征作出推
样 本
断。
这是推断统计学研 究的问题
5
第六章 抽样法
描述统计与推断统计的关系
反映客观 现象的数
据
概率论
(包括分布理论、大 数定律和中心极限定
理等)
样本数
描述统计
推断统计
据
总体数 据
(统计数据的搜集 、整理、显示和分
13
第六章 抽样法
第二节 有关抽样的基本概念(2)
(二)抽样总体
也称子样,样本或样本总体,它是从全 及总体中随机抽取出来的,代表全及总体的 那部分单位的集合体。抽样总体的单位数称 为样本容量,用n表示,对于N来说,n是很 小的。
总体
样 本
14
第六章 抽样法
第二节 有关抽样的基本概念(3)
• 二 全及指标和抽样指标p.249 (一) 全及指标
研究总体中 的品质标志
总体成数 P N1
N
总体成数标准差 P
P1 P
17
第六章 抽样法
第二节 有关抽样的基本概念(5)
(二)抽样指标
抽样指标是由样本总体各单位标志值 或标志特征计算的综合指标,也称统计量。 与全及指标相对应有:样本平均数,样本 标准差;样本成数,样本成数的标准差。
统计学第六章抽样和抽样分布
![统计学第六章抽样和抽样分布](https://img.taocdn.com/s3/m/4b03b1bb58fafab069dc02f7.png)
2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布
《国民经济统计学概论》_第六章_抽样推断
![《国民经济统计学概论》_第六章_抽样推断](https://img.taocdn.com/s3/m/f44183095022aaea988f0fc3.png)
总体分组: 2 (X X )2 F F
总体成数的方差为 P(1 - P)
2.统计量,又称样本指标,反映样本特 征的统计指标
(1)样本平均数( x ),样本各 单位数量标志值的平均数
未分组: x x
n
分组: x xf f
(2)样本成数(p) 是指样本中具有某一相同标志表现的单
要有四个:
(1)总体平均数( X )
总体各单位数量标志值的平均数
X
总体未分组情况下:X N
总体分组情况下:
XF
X
F
(2)总体成数(P)
是指总体中具有某一相同标志表现的单 位数占全部总体单位数的比重
多为交替指标
总体中具有相同标志表现的单位数用N1 表示
P N1 N
(3)总体方差和标准差 总体方差(σ2)
特点: 1.抽样方式组织简便,便于实施 2.在已知总体某些有关信息的情况下,
采用等距抽样能保证样本单位在总体中 均匀的分布,从而提高了样本对总体的 代表性,有利于降低抽样误差。
无关标志排队 有关标志排队
(三)类型抽样 首先把总体按某一标志分成若干个类型
组,使各组组内标志值比较接近,然后 分别在各组内按随机原则抽取样本单位。 特点:在于把分组法和随机抽样原则结 合起来。
i2ni
n
抽样成数的平均误差:
重置抽样:
p
P(1 P) n
不重置抽样:
第四节 抽样的组织形式及抽样方 案设计
一、抽样的组织形式 (一)简单随机抽样 从总体全部单位中直接按随机原则抽取
样本单位,使每个总体单位都有同等机 会被抽中
最基本形式
(1)直接抽选法 直接从调查对象中随机抽选。
应用统计学第6章参数估计(置信区间)ppt课件
![应用统计学第6章参数估计(置信区间)ppt课件](https://img.taocdn.com/s3/m/e5124998a26925c52dc5bf96.png)
P{(n1)S2 2(n1)S2 }1
22(n1)
(n1) 2
p1 p t精选版2
20
于是 所求置信区间为:
(n1)S2 (n1)S2
[2
, 2(n1)
2 1
] 2(n 的 95% 置
信解区:间由。例1,S2 =196.52,n =10,
(1)实用中应在保证足够可靠的前提 下,尽量使得区间的长度短一些 .
(2)增大样本容量n,可在保证足够可 靠的前提下,提高估计的精度.
n
n
L 2 z /2
n
ppt精选版
31
估计均值μ时的样本容量n确定
1.指定估计的精度:
dX dL2z/2
n
2.指定估计的可靠度1-α;
3.确定σ:
(1)由历史资料确定;
对给定的置信水平1,
查正态分布表得 z 2 ,
使 P{|Xn|z2}1
ppt精选版
6
从中解得:
P{X nz2
Xnz2}
1
于是所求的 置信区间为
[X nz2, X nz2]
也可简记为
X n z 2
ppt精选版
7
求置信区间的一般步骤(1-2):
给定置信水平1:
1. 寻找参数的一个良好的点估计
T (X1,X2,…Xn)
实用中应在保证足够可靠的前提下,尽
量使得区间的长度短一些 .
ppt精选版
28
置信度与置信区间长度的关系
考虑单个正态总体μ的置信区间: 当σ已知时,
Z X n
~N(0, 1)
例如,由 P(-1.96≤U≤1.96)=0.95
我们得到 均值 的置信水平为 1 的
生物统计学答案 第六章 参数估计
![生物统计学答案 第六章 参数估计](https://img.taocdn.com/s3/m/c7665ae94afe04a1b071de35.png)
第六章参数估计6.1以每天每千克体重52 μmol 5-羟色胺处理家兔14天后,对血液中血清素含量的影响如下表[9]:y/(μg · L-1)s/(μg · L-1)n对照组 4.20 0.35 125-羟色胺处理组8.49 0.37 9建立对照组和5-羟色胺处理组平均数差的0.95置信限。
答:程序如下:options nodate;data common;alpha=0.05;input n1 m1 s1 n2 m2 s2;dfa=n1-1; dfb=n2-1;vara=s1**2; varb=s2**2;if vara>varb then F=vara/varb;else F=varb/vara;if vara>varb then Futailp=1-probf(F,dfa,dfb);else Futailp=1-probf(F,dfb,dfa);df=n1+n2-2;t=tinv(1-alpha/2,df);d=abs(m1-m2);lcldmseq=d-t*sqrt(((dfa*vara+dfb*varb)/(dfa+dfb))*(1/n1+1/n2));ucldmseq=d+t*sqrt(((dfa*vara+dfb*varb)/(dfa+dfb))*(1/n1+1/n2));k=vara/n1/(vara/n1+varb/n2);df0=1/(k**2/dfa+(1-K)**2/dfb);t0=tinv(1-alpha/2,df0);lcldmsun=d-t0*sqrt(vara/n1+varb/n2);ucldmsun=d+t0*sqrt(vara/n1+varb/n2);cards;12 4.20 0.35 9 8.49 0.37;proc print;id f;var Futailp alpha lcldmseq ucldmseq lcldmsun ucldmsun;title1 'Confidence Limits on the Difference of Means';title2 'for Non-Primal Data';run;结果见下表:Confidence Limits on the Difference of Meansfor Non-Primal DataF FUTAILP ALPHA LCLDMSEQ UCLDMSEQ LCLDMSUN UCLDMSUN1.11755 0.42066 0.05 3.95907 4.62093 3.95336 4.62664首先,方差是具齐性的。
统计学 第6章 练习题
![统计学 第6章 练习题](https://img.taocdn.com/s3/m/beb415d0b9f3f90f76c61bbc.png)
一、 填空题 1. 抽样调查可以是 抽样,也可以是 抽样,但作为抽样推断 抽样。 基础的必须是 2. 抽样推断运用 的方法对总体的数量特征进行估计。 3. 在 组 织 抽 样 时 , 以 清 单 、 名 册 、 图 表 等 形 式 来 界 定 总 体 的 范 围 , 称 为 。 。 4. 样本成数的方差是 5. 重复抽样有 个可能的样本,而不重复抽样则有 个可能 的样本。 6. 抽样误差是由于抽样的 而产生的误差,这种误差不可避免,但可 以 。 。 7. 样本平均数的平均数等于 8. 抽样误差与抽样平均误差之比称为 。 9 优良估计的三个标准是 、 和 。 10. 在 实 际 的 抽 样 推 断 中 , 常 用 的 抽 样 组 织 形 式 有 、 、 、 和 等。 二、 单项选择题 1. 抽样推断的目的是( ) A、以样本指标推断总体指标 B、取得样本指标 C、以总体指标估计样本指标 D、以样本的某一指标推断另一指标 2. 在抽样推断中,可以计算和控制的误差是( ) A、抽样实际误差 B、抽样标准误差 C、非随机误差 D、系统性误差 3. 总体参数是( ) A、唯一且已知 B、唯一但已知 C、非唯一但可知 D、非唯一且不可知 4. 样本容量也称( ) A、样本个数 B、样本单位数 C、样本可能数目 D、样本指标数 5. 从总体的 N 个单位中随机抽取 n 个单位, 用不重复抽样方法一共可抽取 ( ) 个样本。 A、 PN B、 p C、 N D、 C N n 1
n
n
ቤተ መጻሕፍቲ ባይዱ
n
n
6. 在重复抽样条件下,平均数的抽样平均误差计算公式是(
)
2
n
)
A、 n B、 n C、 n D、
7. 不重复抽样的抽样标准误公式比重复抽样多了一个系数(
统计学第6章习题答案
![统计学第6章习题答案](https://img.taocdn.com/s3/m/010a50deb9f3f90f76c61b13.png)
一、选择题1、在用样本的估计量估计总体参数时,评价估计量的标准之一是使它与总体参数的离差越小越好。
这种评价标准称为(B)A、无偏性B、有效性C、一致性D、充分性2、根据一个具体的样本求出的总体均值95%的置信区间(D)A、以95%的概率包含总体均值B、有5%的可能性包含总体均值C、绝对包含总体均值D、绝对包含总体均值或绝对不包含总体均值3、估计量的无偏性是指(B)A、样本估计量的值恰好等于待估的总体参数B、所有可能样本估计值的期望值等于待估总体参数C、估计量与总体参数之间的误差最小D、样本量足够大时估计量等于总体参数4、下面的陈述中正确的是(C)A、95%的置信区间将以95%的概率包含总体参数B、当样本量不变时,置信水平越大得到的置信区间就越窄C、当置信水平不变时,样本量越大得到的置信区间就越窄D、当置信水平不变时,样本量越大得到的置信区间就越宽5、总体均值的置信区间等于样本均值加减估计误差,其中的估计误差等于所求置信水平的临界值乘以(A)A、样本均值的标准误差B、样本标准差C、样本方差D、总体标准差6、95%的置信水平是指(B)A、总体参数落在一个特定的样本所构造的区间内的概率为95%B、用同样的方法构造的总体参数的多个区间中,包含总体参数的区间的比例为95%C、总体参数落在一个特定的样本所构造的区间内的概率为5%D、用同样的方法构造的总体参数的多个区间中,包含总体参数的区间的比例为5%7、一个估计量的有效性是指(D)A、该估计量的期望值等于被估计的总体参数B、该估计量的一个具体数值等于被估计的总体参数C、该估计量的方差比其他估计量大D、该估计量的方差比其他估计量小8、一个估计量的一致性是指(C)A、该估计量的期望指等于被估计的总体参数B、该估计量的方差比其他估计量小C、随着样本量的增大该估计量的值越来越接近被估计的总体参数D、该估计量的方差比其他估计量大9、支出下面的说法哪一个是正确的(A)A、一个大样本给出的估计量比一个小样本给出的估计量更接近总体参数B、一个小样本给出的估计量比一个大样本给出的估计量更接近总体参数C 、一个大样本给出的总体参数的估计区间一定包含总体参数D 、一个小样本给出的总体参数的估计区间一定不包含总体参数10、用样本估计量的值直接作为总体参数的估计值,这一估计方法称为(A )A 、点估计B 、区间估计C 、无偏估计D 、有效估计11、将构造置信区间的步骤重复多次,其中包含总体参数真值的次数所占的比例称为(C )A 、置信区间B 、显著性水平C 、置信水平D 、临界值12、在总体均值和总体比例的区间估计中,估计误差由(C )A 、置信水平确定B 、统计量的抽样标准差确定C 、置信水平和统计量的抽样标准差确定D 、统计量的抽样方差确定13、在置信水平不变的条件下,要缩小置信区间,则(A )A 、需要增加样本量B 、需要减少样本量C 、需要保持样本量不变D 、需要改变统计量的抽样标准差14、估计一个正态总体的方差使用的分布是(C )A 、正态分布B 、t 分布C 、卡方分布D 、F 分布15、当正态总体的方差未知,且为小样本条件下,估计总体均值使用的分布是(B )A 、正态分布B 、t 分布C 、卡方分布D 、F 分布16、当正态总体的方差未知,在大样本条件下,估计总体均值使用的分布是(A )A 、正态分布B 、t 分布C 、卡方分布D 、F 分布17、在其他条件不变的条件下,要使估计时所需的样本量小,则应该(A )A 、提高置信水平B 、降低置信水平C 、使置信水平不变D 、使置信水平等于118、使用t 分布估计一个总体均值时,要求(D )A 、总体为正态分布且方差已知B 、总体为非正态分布C 、总体为非正态分布但方差已知D 、正态总体方差未知,且为小样本19、在大样本条件下,总体均值在(1-α)置信水平下的置信区间可以些为(C )A 、n t x σα2±B 、n s t x 2α±C 、n s z x 2α±D 、n s z x 22α±20、正态总体方差已知时,在小样本条件下,总体均值在α-1置信水平下的置信区间可以写为(C )A 、n z x 22σα±B 、n s t x 2α±C 、n z x σα2±D 、n t x σα2±21、正态总体方差未知时,在小样本条件下,总体均值在α-1置信水平下的置信区间可以写为(B )A 、n s z x 2α±B 、n s t x 2α±C 、n z x σα2±D 、n s z x 22α±22、指出下面的说法哪一个是正确的(A )A 、样本量越大,样本均值的抽样标准差就越小B 、样本量越大,样本均值的抽样标准差就越大C 、样本量越小,样本均值的抽样标准差就越小D 、样本均值的抽样标准差与样本量无关23、抽取一个样本量为100的随机样本,其均值为81=x ,标准差12=s 。
统计学复习(抽样分布、参数估计、假设检验)
![统计学复习(抽样分布、参数估计、假设检验)](https://img.taocdn.com/s3/m/b0762126ccbff121dd3683d6.png)
两个样本均值之差的抽样分布 (1)如: ) 抽样
X1 − N(µ1,σ12 ), X2 − N(µ2 ,σ2 ),
2
则 x1 − x2 ) ~ N(µ1 − µ2 , (
σ12 σ22
n1 + n2
)
抽样
σ12 N1 − n1 σ22 N2 − n2 (x1 − x2 ) ~ N[(µ1 − µ2 , ( )+ ( )] n1 N1 −1 n2 N2 −1
对于无限总体, 对于无限总体, 一个估计 如果对任意 量如能完 ε>ˆ 0 满足条件 全地包含 LimP(|θn −θ |≥ ε ) = 0 未知参数 n→∞ 信息, 信息,即 则称 θˆ 是 θ 为充分量 的一致估计。 的一致估计。
点估计
常用的求点估计量的方法
用样本的数字特征 1.数字特征法: 1.数字特征法:当样本容量增大时 ,用样本的数字特征 数字特征法 去估计总体的数字特征。 去估计总体的数字特征。 例如,我们可以用样本平均数(或成数 和样本方差来估 例如,我们可以用样本平均数 或成数)和样本方差来估 或成数 计总体的均值(或比率 和方差。 或比率)和方差 计总体的均值 或比率 和方差。
样本均值的抽样分布(简称均值的分布) 样本均值的抽样分布(简称均值的分布) 抽样
均值µ=∑Xi/N 均值
均值 X = Σxi
n
样本均值是样本的函数, 故样本均值是一个统计量, 样本均值是样本的函数, 故样本均值是一个统计量, 统计量 统计量是一个随机变量 随机变量, 统计量是一个随机变量, 样本均值的概率分布称为 样本均值的抽样分布。 样本均值的抽样分布。
2
n
总体均值 (µ) )
X ± tα
2
( n −1 )
统计学,刘照德06-1第六章 参数估计
![统计学,刘照德06-1第六章 参数估计](https://img.taocdn.com/s3/m/9618b804a300a6c30c229f8c.png)
第一节 点估计
点估计的求解方法主要有 : • 矩估计法 • 最大似然估计法
第一节 点估计
一 、矩估计法
• 矩估计法是一种常用的估计方法,其基本 思想是,用样本原点矩作为总体原点矩的 估计。
第一节 点估计
• 设k个参数 ( , , ),求 k个参数 ˆ (ˆ ,ˆ ,ˆ ) 矩估计 需要建立k个方程,方法是:设总体 的一个样本观测值是 (x , x ,, x ) ,其l阶原点 1 A x 矩 ,总体观测量X的l阶原点矩 n ml E( X l ) ml ( ) ,用样本原点矩Al作为总体 原点矩ml的估计,得出k个方程Al =ml(θ )(l =1,…,k),解此方程组得出的 即为参数 的矩 估计。
对于给定的抽样方法 ,不同的抽样,就有不同的 ˆ , ˆ) 估计区间 ( 1 2
在用同样方法构造的总体参数的多个估计区间 中,包含总体参数真值的区间所占的比例称为 置信水平,表示为 (1 - 。 2.为是未包含总体参数的区间所占的比例。 •
3. 常用的置信水平值有 99%, 95%, 90%
第一节点估计??????????222221???xexdxemxem??????2221??????aa??????21221??aaa????????????????niiniixxnxxnx12122211?????二最大似然估计法?最大似然方法的基本思想是固定样本观测值在可能的取值中挑选使似然函数达到最大从而概率p达到最大的作为参数的估计
1 2
ˆ) P(
ˆ 的抽样分布 1
B A
ˆ2 的抽样分布
ˆ
第一节 点估计
• 3.一致性 依 设 为 的一个估计量,若当 n 时, ,则称 为 的一致估计量。此即 概率收敛于 随着样本容量n的增大,点估计量 越来越接近 被估总体参数 。
第六章 抽样分布及总体平均数的估计
![第六章 抽样分布及总体平均数的估计](https://img.taocdn.com/s3/m/d303b31d6bd97f192279e914.png)
• 对总体参数的一种看法 总体参数包括总体均值、比例、方差等 分析之前必需陈述
三 假设检验的基本原理
2、什么是假设检验?
1)概念 事先对总体参数或分布形式作出某种假设, 然后利用样本 信息来判断原假设是否成立。 2) 类型 参数假设检验 非参数假设检验 3)特点 采用逻辑上的反证法 依据统计上的小概率原理
二 总体平均数的估计
(3)区间估计(interval estimation)
根据估计量以一定可靠程度推断总体参数所在的区间 范围,用数轴上一段距离表示未知参数可能落入的范围, 虽不具体指出总体参数等于什么,但能指出未知总体参数 落入某一区间的概率有多大。
(4)置信区间(confidence interval)
一 抽样分布与平均数抽样分布
3、样本平均数与总体平均数离差的形态
(2)总体方差未知 总体正态,样本平均数与总体平均数的离差统 计量呈 t 分布; 总体非正态,但满足n>30这一条件,样本平均 数与总体平均数的离差统计量 近似t 分布。
t分布
t 分布(t-distribution)是统计分析中应用较多 的一种随机变量函数的分布,是统计学者高赛特 1908年以笔名“Student”发表的论文中推导出来 的一种分布,又叫学生氏分布。这种分布是一种 左右对称,峰态比较高狭,分布形状随样本容量 n-1的变化而变化的一组分布。
二 总体平均数的估计
4 总体方差σ2未知时,总体平均数μ的估计 用样本的无偏方差作为总体方差的估计值,样本 平均数的分布为t分布,应查t值表,包括以下两 种情况:
(1)总体的分布为正态时,可不管n值大小。 (2)总体分布为非正态,只有n>30,才能用概率对其样本 分布进行解释。
统计学 第6章 统计推断(1、2节)
![统计学 第6章 统计推断(1、2节)](https://img.taocdn.com/s3/m/44aa9312964bcf84b9d57bf4.png)
即,我们有95%的把握认为,该外资 企业员工平均每周加班时间为52.3小时 至57.7小时之间。
第六章 统计推断
总体成数(比例)
1、假定条件
的区间估计
对于试验结果只有两种情况的总体(二项 总体),且为大样本,即满足
np 5和n(1 - p) 5
2、使用正态分布 z 统计量
第六章 统计推断
第六章 统计推断
设 是总体 的一个参数, 是参数 2的 1 和 X 两个统计量,且 ,对给定的常 1 2 数 ,及任意的 1) , 有 , (0 则称随机区间 ) 1 P( 1 2 是臵信度(臵信水平)为 的臵信区间 1 1 , 2 (区间估计)。其中 分别为臵信下限和 1 和 2 臵信上限。
(比例)为: 225 因为是大样本,故得: p 500 45% p (1 p ) p (1 p ) p z 2 , p z 2 n n
即,我们有95%的把握认为,19岁以下的青少年上网比例 在40.64%至49.36%之间。
第六章 统计推断
在简单随机抽样条件下,样本均值和样本 比例的抽样误差: 样本均值的抽样误差
重复抽样:
x
n
2
不重复抽样:
x
当总体方差 未知时,可用样本方差 代替。
第六章 统计推断
N n ( ) n N 1
2
s
2
样本比例的抽样误差
重复抽样: 不重复抽样:
p
1
n
p
2
第六章 统计推断
、1
2
方式一
统计学第六章 参数估计和假设检验
![统计学第六章 参数估计和假设检验](https://img.taocdn.com/s3/m/2174facfe53a580216fcfebd.png)
n
2
2
x
26
【例】为估计市场上某产品的平均日销售额, 计划进行一次抽样调查。历史资料反映该产 品日销售额的标准差为20万元。如果要求这 次估计的可靠性为95%,估计允许的误差为5 万元。应抽取多少天的销售额进行调查?
nZ /22 22 1.962 5 2 202 61.46 x
因为n为整数,为保证目的调查天数应为62。
n
100
结论:统计量的值落在接受域内,所以不能 认为合格率不足98%。
49
用Excel进行参数估计
• Excel提供了抽样极限误差的计算方法。根 据抽样极限误差,可以自己定义函数求出 置信区间
50
样本均值服从正态分布情况
• Excel中的“CONFIDENCE”函数可以计算 样本均值服从正态分布条件下的抽样极限 误差
30
小概率事件原理
➢在一次试验中,小概率事件是不可能发生 的
➢显著性水平α:即小概率的大小界定。
31
原假设和备择假设
• 在参数检验中,首先要对某一总体参数提 出一个假设,然后通过抽样调查来验证其 可信与否。这一假设被称为原假设(零假 设、无效假设),记为H0。如果抽样调查 的结果拒绝了原假设,就必须接受另一个 假设——备择假设,记为H1。
样本
部分—整体 随机原则
总体
统计量
总体参数
4
参数估计的优良标准
1.无偏性。估计统计量的数学期望等于被估计参 数的真值。
2.一致性。当样本单位数充分大时,样本指标充 分靠近总体指标。
3.有效性。估计的方差比其他估计量小
5
点估计
➢也叫定值估计,就是根据总体指标的结构 形式设计样本指标,并直接以一个样本统 计量实现值来估计总体参数。
抽样与参数估计统计学实验报告
![抽样与参数估计统计学实验报告](https://img.taocdn.com/s3/m/dca3004e9a6648d7c1c708a1284ac850ad0204cc.png)
抽样与参数估计统计学实验报告抽样与参数估计统计学实验报告概述本实验以抽样与参数估计统计学为主题,研究了参数估计、抽样方法、统计识别等内容。
实验目的1. 熟悉参数估计和统计分析的基本原理和方法;2. 掌握抽样的基本原理,熟悉抽样方法的运用;3. 掌握统计模型识别的方法,进行统计分析和决策;实验介绍1. 参数估计:参数估计是统计分析过程中重要的一步,它是识别某个实际系统的一个重要参数,以此据估计出实际系统的精确参数,估计准确的参数是统计模型的建立的前提。
2. 抽样方法:抽样方法就是从一个总体中取样,所取样的水平表现出一定的代表性,从而能推算出总体的概况,抽样方法有分层抽样、系统抽样、整群抽样等多种。
3. 统计模型识别:是用统计技术进行模型识别,它是利用概率模型来分析数据,建立有效的模型,从而进行有效的分析。
数据分析1. 针对参数估计,我们使用假设检验,通过比较估计值和真实值,进行检验,从而得出参数的准确度。
2. 针对抽样方法,我们使用分层抽样,将总体划分成不同的层,可以更好地表征总体,进行有效抽样。
3. 针对统计模型识别,我们使用多种模型进行比较,根据其检验概率和显著性水平,选择出最有效的模型进行识别。
结论1. 通过假设检验,得出了参数估计的准确度;2. 通过分层抽样得出了较好的抽样结果;3. 通过多种模型进行比较,选择出最有效的模型进行识别。
建议在下次实验中,为了提高参数估计的精度,应该进行更加精细的假设检验;为了增加抽样的可靠性,应该采用更为严谨的抽样方法;此外,要多尝试不同的统计模型,以期得到更好的结果。
统计学第六章抽样调查
![统计学第六章抽样调查](https://img.taocdn.com/s3/m/ef5f600f7cd184254b35354c.png)
标 差 总 标 差 、 本 准 s 准 : 体 准 σ 样 标 差
总体参数和样本统计量符号
总体指标符号 总体容量: N 总体平均数: µ 总体成数: P 总体方差: σ2 总体标准差: σ 样本指标符号 样本容量: n 样本平均数: x 样本成数: p 样本方差: S2 样本标准差: S
抽样组织形式
抽样估计效果好坏,关键是抽样平均误差的 抽样估计效果好坏,关键是抽样平均误差的 抽样平均误差 控制。抽样平均误差小, 控制。抽样平均误差小,抽样效果从整体上 看就是好的;否则,抽样效果就不理想。 看就是好的;否则,抽样效果就不理想。 抽样平均误差受以下几方面的因素影响: 抽样平均误差受以下几方面的因素影响:
抽样调查的基本概念 抽样调查的基本概念 重复抽样和不重复抽样
重复抽样:又称有放回的抽样 有放回的抽样,从总体中 重复抽样 有放回的抽样 抽取样本时,每次被抽中的单位都再被 放回总体中参与下一次抽样。 不重复抽样:又称无放回的抽样 无放回的抽样,总体中 不重复抽样 无放回的抽样 随机抽选的单位经观察后不放回到总体 中,即不再参加下次抽样。
µ ( p) =
P (1 − P ) n
不重复抽样条件下: 不重复抽样条件下: 条件下
µ ( p) =
P (1 − P ) n (1 − ) n N
抽样极限误差
样本平均数的抽样极限误差: 样本平均数的抽样极限误差:以绝对值形式 表示的样本平均数的抽样误差的可能范围, 表示的样本平均数的抽样误差的可能范围, 用符号表示为: 用符号表示为:
样本成数
从成数总体中抽取样本容量为n的样本 从成数总体中抽取样本容量为 的样本 样本中具有此种特征的单位占全部样本单位 数的比例称为样本成数,记作p 数的比例称为样本成数,记作p p=n1/n
应用统计学第6章 抽样分布与参数估计
![应用统计学第6章 抽样分布与参数估计](https://img.taocdn.com/s3/m/faf66ca770fe910ef12d2af90242a8956becaa95.png)
μx
6. 3抽样分布
多大是足够的大?
6. 3抽样分布
例子
假设总体的平均数μ = 8 且标准差σ = 3. 假 设选中容量n = 36随机样本。
样本平均数介于7.8和8.2之间的概率是多少?
第6章 6. 3抽样分布
例子
(续)
结论:
即使总体非正态分布, 中心极限定理可以应用 (n > 30)
6.2 抽样误差
样本统计量和对应的总体参数之间的差异,称之为抽 样误差。
抽样误差的产生是由于抽样的非全面性和随机性所引 起的,是偶然性误差。
非抽样误差
抽样框误差 系统性误差 测量误差 登记误差
6. 3抽样分布
6. 3抽样分布
6.3.1 样本均值的抽样分布
6. 3抽样分布
1.样本均值的均值
样)
6. 3抽样分布
p的抽样分布
近乎正态分布分布,如果:
n 5
P( ps)
抽样分布
.3
且
.2
.1
n(1 ) 5
0 0 . 2 .4 .6
p
81
μ 其中 p
π
且
π(1 π)
σp
n
(其中 π = 总体比例)
6. 3抽样分布
比例的Z值
使用公式将p标准化为Z值:
p
Z
σp
p (1 )
n
在判断样本中,我们得到预先选好的专家就主题 发表的意见。
6.1 抽样理由和抽样方法
样本类型:概率样本
在概率样本中, 样本中条目的选择基于已知的概率。
概率样本
简单 随机样本
系统样本
分层样本 群样本
6.1 抽样理由和抽样方法
《卫生统计学》第六章 参数估计基础
![《卫生统计学》第六章 参数估计基础](https://img.taocdn.com/s3/m/d65c473576eeaeaad0f33082.png)
二、总体概率可信区间的计算
1.查表法:n≤50,特别是p接近0或100%时,可查 附表6(P478-480),二项分布概率的置信区间表, 例6-4。
注意:附表6中X值只列出了X≤n/2部分,当X>n/2 时,应以n - X值查表,然后用100减去查得的数 值,即为所求的区间。
2.正态近似法**:当n较大且np和n(1-p)均大于5 时,二项分布接近正态分布,则总体率的双侧 (1-α)可信区间为: P ± Ζα/2· Sp
f(t)
0.4
υ=∞
υ=5
0.3
υ=1
0.2
0.1
0.0
t
-5 -4 -3 -2 -1 0 1 2 3 4 5
图6-4 自由度为1、5、∞的t分布
.
t分布的特征:只有一个参数ν 以0为中心,左右对称的单峰分布; t分布是一簇曲线,形态变化与n(即自由度)大
小有关。自由度ν越小,t分布曲线越低平;自 由度ν越大,t分布曲线越接近标准正态分布 (Ζ分布)曲线。 t分布峰部较矮,尾部翘得较高,说明远侧的t值 的个数相对较多,即尾部面积(概率P)较大。 自由度ν越小这种情况越明显,ν渐大时,t分 布渐逼近标准正态分布;当ν=∞时,t分布就成 为标准正态分布了。 附表2,t界值表P467
.
均数的抽样误差——指由抽样而造成的样本均数 与总体均数之间的差异。
x 称标准误,它说明均数抽样误差的大小。
x / n
n越大,标准误越小,样本均数的抽样误差亦越小 实际工作中,σ常未知,而是用样本标准差s来估
计,则有 sx s/ n
常用来说明均数的抽样误差的大小。
.
即使从偏态总体抽样,当n足够大时, 样本均数也近似正态分布(见实验6-2, 观察图6-1及图6-2的变化)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。
4个个体分别为xl=l、x2=2、x3=3、x4=4。
总体的均值、方差及分布如下均值和方差样本均值的抽样分布(例题分析)现从总体中抽取n=2的简单随机样本,在重复抽样条件下,共有42=16个样本。
所有样本的结果为样本均值的抽样分布(例题分析)计算岀各样本的均值,如下表。
并给出样本均值的抽样分布样本均值的分布与总体分布的比较(例题分析)=2.502=1.25总体分布抽样分布-样本平均数的分布某班组5个工人的口工资为34、38、42、46、50元。
=422=32现用重置抽样的方法从5人中随机抽2个构成样本。
共有52=25个样本。
如右图。
验证了以下两个结论:抽样平均数的标准差反映所有的样本平均数与总体平均数的平均误差,称为抽样平均误差,用表示。
抽样分布—样本平均数的分布样本均值的抽样分布与中心极限定理当总体服从正态分布N〜(u,o2)时,来自该总体的所有容量为n的样本的均值X也服从正态分布,X的数学期望为U,方差为02/no即X〜N@,o2/n)中心极限定理(centrallmiittheorem)中心极限定理:设从均值为,方差为2的一个任意总体中抽取容量为n的样本,当n充分犬时,样本均值的抽样分布近似服从均值为u、方差为c2/n的正态分布中心极限定理(centrallimittheorem)非正态总体的均值的抽样分布趋于正态分布的过程补充:大数定理大数定理当样本容量n充分大时,可以用样本平均估计总体平均。
当试验次数n充分大时,可以用频率代替概率。
人数定理的意义:个别现象受偶然因素影响,但是,对总体的人量观察后进行平均,就能使偶然因素的影响相互抵消,从而使总体平均数稳定下来,反映出爭物变化的一般规律,这就是大数定理的意义。
极限定理:包扌舌大数定理与中心极限定理两类人数定理:体现偶然性与必然性的辨证关系,偶然性是必然性的表现形式.频率稳定于概率,均值稳定于数学期望.中心极限定理:研究在什么条件下,随机变量的和的分布可以近似正态分布.极限定理是我们作人量社会调查具有科学性之所在,它从理论上表明了抽样调查的科学性,也为抽样调查的定量分析奠定了基础.抽样分布与总体分布的关系样本均值的数学期望样本均值的方差重复抽样不重复抽样PI10说明样本均值的抽样分布的特征pl09(数学期望与方差)样本均值的抽样分布的特征(数学期望与方差)比较及结论:1.样本均值的均值(数学期塑)等于总体均值2.样本均值的方差等于总体方差的1/n样本比例的抽样分布总体(或样本)中具有某种属性的单位与全部单位总数之比不同性别的人与全部人数之比合格品(或不合格品)与全部产品总数之比总体比例可表示为样本比例可表示为比例(piopoilion)容量相同的所有可能样本的样本比例的概率分布当样本容量很大时,样本比例的抽样分布可用正态分布近似一种理论概率分布推断总体总体比例的理论基础样本比例的抽样分布样本比例的数学期塑样本比例的方差重复抽样不重复抽样样本比例的抽样分布的特征(数学期望与方差)6.2参数估计的基本方法估计量与估计值点估计与区间估计评价估计量的标准估计量与估计值估计量:用于估计总体参数的随机变量如样本均值,样本比例、样本方差等例如:样本均值就是总体均值的一个估计量参数用表示,估计量用表示估计值:估计参数时计算出来的统计量的具体值如果样本均值x=80,则80就是总体参数的估计值估计量与估计值pill(estimator&estimatedvalue)点估计与区间估计参数估计的方法估计方法点估计区间估计一个总体参数的估计点估计(pointestimate)用样本的估计屋直接作为总体参数的估计值例如:用样本均值直接作为总体均值的估计例如:用两个样本均值之差直接作为总体均值之差的估计2.没有给出估计值接近总体参数程度的信息.实际中一次抽样,不可能指望样本估计屋恰好等于总体参数的值.区间估计(intervalestimate)在点估计的基础上,给出总体参数估计的一个区间范闱,该区间由样本统计量加减抽样误差而得到的根据样本统计屋的抽样分布能够对样本统计量与总体参数的接近程度给出一个概率度屋比如,某班级平均分数在75〜85之间,置信水平是95%评价估计量的标准无偏性(unbiasedness)无偏性:估计量抽样分布的数学期望等于被估计的总体参数有效性(efficiency)有效性:对同一总体参数的两个无偏点估计量,有更小标准差的估计量更有效一致性(consistency)一致性:随着样本容量的增大,估计量的值越来越接近被估计的总体参数6.3总体均值的区间估计区间估计的基本原理正态总体或人样本的估计正态总体小样本的估计区间估计的基本原理区间估计的图示将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的比例称为置信水平表示为(1-为是总体参数未在区间内的比例常用的置信水平值有99%,95%,90%相应的为0.01,0.05,0.10置信水平由样本统计量所构造的总体参数的估计区间称为置信区间统计学家在某种程度上确信这个区间会包含真正的总体参数,所以给它取名为置信区间置信区间(confidencemteival)置信区河与置信水平均值的抽样分布(1-)%区间包含了%的区间未包含用一个具体的样本所构造的区间是一个特定的区间,我们无法知道这个样本所产生的区间是否包含总体参数的真值我们只能是希塑这个区间是人量包含总体参数真值的区间中的一个,但它也可能是少数几个不包含参数真值的区间中的一个参数区间估计参数区间估计的含义:估计总体参数的区间范闱,并给出区间估计成立的概率值。
其中:l-a(O<a<l)称为置信度:a是区间估计的显著性水平,其取值人小由实际问题确定,经常取1%、5%和10%o如何理解:例如抽取了1000个样本,根据每一个样本均构造了一个置信区间,,这样,由1000个样本构造的总体参数的1000个置信区间中,有95%的区间包含了总体参数的真值,而5%的置信区间则没有包含。
这里,95%这个值被称为置信水平(或置信度)。
一般地,将构造置区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的比例称为置信水平。
我们用95%的置信水平得到某班学生考试成绩的置信区间为60-80分,如何理解?错误的理解:60-80区间以95%的概率包含全班同学平均成绩的真值;或以95%的概率保证全班同学平均成绩的真值落在60-80分之间。
正确的理解:如果做了多次抽样(如100次),大概有95次找到的区间包含真值,有5次找到的区间不包枯真值。
真值只有一个,一个特定的区间“总是包含”或“绝对不包含”该真值。
但是,用概率可以知道在多次抽样得到的区间中大概有多少个区间包含了参数的真值。
如呆人家还是不能理解,那你们最好这样回答有关区间估计的结呆:该班同学平均成绩的置信区间是60-80分,置信度为95%。
区间估计估计未知参数所在的町能的区间。
评价准则随机区河置信度精确度随机区河包含(即可靠程度)越大越好。
的概率的平均长度(误差范围)越小越好一般形式或总体参数估计值误差范围A:一定倍数的抽样误差例如:抽样误差一定时,越大,概率(可靠性)大;随之增大,精确度就差。
总体均值的区间估计(正态总体、2已知,或非正态总体、大样本)总体均值的区间估计假定条件总体服从正态分布,方差(2)已知如果不是正态分布,可由正态分布来近似(n30)总体均值在1-置信水平下的置信区间为总体均值的区间估计(例题分析)【例】某种零件的长度服从正态分布,从某天生产一批零件中按重复抽样方法随机抽取9个,测得其平均长度为21.4cm。