测井的原理和应用

合集下载

测井方法与原理

测井方法与原理

测井方法与原理测井是一种在石油勘探和开发中广泛应用的技术手段,其主要目的是通过测量地下岩石的物理性质,以评估地下地层中的油气储层并确定井孔的产能。

本文将介绍几种常用的测井方法及其原理。

一、电测井方法电测井是通过测量井眼周围地层的电阻率来评估石油储层的方法。

它的原理是通过向井眼中注入电流,然后测量所产生的电位差,从而计算出地层的电阻率。

电测井方法有许多具体的技术实现,如侧向电测井、正向电测井和声波电阻率测井等。

这些方法在实际应用中能够提供丰富的地下岩石信息,帮助确定储层的类型和含油气性质。

二、声波测井方法声波测井是通过测量地下岩石对声波的传播速度和衰减程度来评估石油储层的方法。

它的原理是利用井壁的物理特性和波的传播规律,通过发送声波信号并接收回波信号,从而推断出地层中的可用信息。

声波测井方法常用的技术包括声波传输率测井、声波振幅测井和声波时差测井等。

这些方法能够提供有关地下岩石的密度、孔隙度和饱和度等关键参数,对于油气勘探与开发具有重要意义。

三、核子测井方法核子测井是通过测量地下岩石散射或吸收射线的能量来评估石油储层的方法。

它的原理是使用放射性同位素或射线源,通过测量射线经过地层后的射线强度变化,从而反推出地层的性质和组成。

核子测井方法包括伽马射线测井、中子测井和密度测井等。

这些方法可以提供地下岩石的密度、孔隙度、含水饱和度以及岩石组成的定量信息,对于评估储层的含油气性能十分重要。

四、导电测井方法导电测井是通过测量地下岩石对电磁波的响应来评估石油储层的方法。

它的原理是利用电磁波在地下岩石中传播时的电磁感应效应,通过测量反射波的幅度和相位变化,推导出地层的导电性能。

导电测井方法包括感应测井和电阻率测井等。

这些方法可以提供有关地下岩石的电导率、水饱和度、渗透率和孔隙度等信息,对于确定储层的含油气性质具有重要的意义。

总结:测井方法是石油勘探与开发中不可或缺的技术手段,通过测量地下岩石的物理性质,能够评估地层的含油气性能、类型和产能等关键参数。

测井原理及各种曲线的应用

测井原理及各种曲线的应用

一、SP(自然电位)曲线和GR(自然伽马)曲线测井基本原理用淡水泥浆钻井时,由于地层水矿化度小于泥浆滤液矿化度而在砂岩段形成扩散电位——在井眼内砂岩段靠近井壁的地方负电荷富集,地层内砂岩段靠近井壁的地方正电荷富集,导致砂层段井眼泥浆的电势低于砂层电势,正象一个平行于地层且正极指向地层的“电池”(第一个)。

在泥岩段,因为泥浆滤液与地层水之间存在矿化度差及选择性吸附作用形成吸附电位——在井眼内泥岩段靠近井壁的地方正电荷富集,地层中泥岩段负电荷富集,导致泥岩段井眼泥浆的电势高于地层电势,正象一个平行于地层且正极指向井眼的“电池”(第二个)。

又因为泥浆和地层各具导电性,正象两条导线把以上两个“电池”串联了起来而形成回路,这样在地层中电流从砂岩段(第一个电池正极)流向泥岩段(第二个电池负极);在井眼中电流从泥岩段(第二个电池正极)流向砂岩段(第一个电池负极)。

在此回路中,地层也充当电阻的作用,总电动势等于扩散电动势和吸附电动势之和。

用M电极在井眼中测的自然电流在泥浆中产生的电位降即得自然电位曲线。

其值在正常情况下与对应地层中泥质含量关系密切,砂岩中泥质含量增加,则电位降下降,异常幅度减小;砂岩中泥质含量下降,则电位降上升,异常幅度增大。

另外,当泥浆柱与地层流体间存在压力差时发生过滤作用形成过滤电动势——动电学电位。

沉积岩的放射形取决于岩石中放射性元素的含量,放射性元素的含量主要取决于粘土和泥质的含量,粘土和泥质含量越高放射性越强。

GR曲线主要测量地层的放射性。

1、曲线幅度反映沉积时水动力能量的强弱;2、曲线形态反映物源供给的变化和沉积时水动力条件的变化;3、顶、底部形态的变化反映沉积初、末期水动力能量和物源供给的变化速度;4、曲线的光滑程度水动力对沉积物改造所持续时间的长短;5、曲线的齿中线组合方式反映沉积物加积特点;6、曲线包络形态反映在大层段内垂向层序特征和多层砂在沉积过程中能量的变化。

影响自然电位曲线异常幅度的因素:(1)岩性、地层水与泥浆含盐度比值的影响。

测井基础概述(全文)

测井基础概述(全文)

测井概述1、测井的概念:测井,也叫地球物理测井或矿场地球物理,简称测井,是利用岩层的电化学特性、导电特性、声学特性、放射性等地球物理特性,测量地球物理参数的方法,属于应用地球物理方法(包括重、磁、电、震、核)之一。

简而言之,测井就是测量地层岩石的物理参数,就如同用温度计测量温度是同样的道理;石油钻井时,在钻到设计井深深度后都必须进行测井,以获得各种石油地质及工程技术资料,作为完井和开发油田的原始资料。

这种测井习惯上称为裸眼测井。

而在油井下完套管后所进行的二系列测井,习惯上称为生产测井或开发测井。

其发展大体经历了模拟测井、数字测井、数控测井、成像测井四个阶段。

2、测井的原理任何物质组成的基本单位是分子或原子,原子又包括原子核和电子。

岩石可以导电的。

我们可以通过向地层发射电流来测量电阻率,通过向地层发射高能粒子轰击地层的原子来测量中子孔隙度和密度。

地层含有放射性物质,具有放射性(伽马);地层作为一种介质,声波可以在其中传播,测量声波在地层里传播速度的快慢(声波时差)。

地层里的地层水里面含有离子,它们会和井眼中泥浆中的离子发生移动,形成电流,我们可以测量到电位的高低(自然电位)。

3、测井的方法1)电缆测井是用电缆将测井仪器下放至井底,再上提,上提的过程中进行测量记录。

常规的测井曲线有9条;2)随钻测井(LWD-log while drilling)是将测井仪器连接在钻具上,在钻井的过程中进行测井的方式。

边钻边测,为实时测井(realtime),井眼打好之后起钻进行测井为(tipe log);4、测井的参数1.GR-自然伽马GR是测量地层里面的放射性含量,岩石里粘土含放射性物质最多。

通常,泥岩GR高,砂岩GR低。

2.SP-自然电位地层流体中除油气的地层水中的离子和井眼中泥浆的离子的浓度是不一样的,由于浓度差,高浓度的离子会向低浓度的离子发生转移,于是就形成电流。

自然电位就是测量电位的高低,以分辨砂岩还是泥岩。

测井原理及方法

测井原理及方法
产生自然电场的主要原因: • 地层水溶液离子浓度与泥浆滤液的离子浓度不同,产生
离子扩散;-扩散电动势 • 岩石颗粒表面对离子有吸附作用;-吸附电动势 • 泥浆滤液向地层中渗透作用。-过滤电动势
自然电位测井
自然电位的测量
自然电位SP的理论计算
自然电流: 测量的自然电位异常幅度值Usp:自然电流流过井内泥浆 柱电阻上的电位降:
1、 常规测井资料原理及应用
1. )电阻率测井电阻率测井 2. )自然电位测井 3. )声波测井 4. )伽马和密度测井 5. )补偿中子测井
电阻率测井
电法测井是地球物理测井中三大测井方法之一,它根据岩层电学性 质的差别,测量地层的电阻率、电导率或介电常数等电学参数,用来研 究地质剖面,判断岩性,划分油气水层,和其它方法一起研究储集层的 含油性、渗透性和孔隙性等性质。
a.主要类型
(2)微侧向(MLL): 微电极测井中泥饼分流作用太大,测RXO不准确,采用聚焦原理,形 成微侧向测井。
(3)微球形聚焦(MSFL): 微侧向MLL探测浅,受泥饼影响大。MSFL方法探测浅,又基本不受泥饼影 响,是目前最好的RXO测量方法。
(4)八侧向(LL8): 以上均为贴井壁测量,LL8是不贴井壁测量Rxo的方法。它是在七侧 向电极系下方附近设屏流回路电极B1,在上方较远处设回路电极B2。
• 厚层可以用“半幅点” 确定地层界面。
地层电阻率的影响
• 含油气饱和度比较高的储集层,其电阻率比它完全含水时rsd明显升 高,SP略有下降。一般油气层的SP幅度略小于相邻的水层。Rt/Rm 增大,曲线幅度减小。
• 围岩电阻率Rs增大,则rsh增大,使自然电位异常幅度减小。
泥浆侵入带、井径的影响
b.电极系分类: 通常供电和测量共4个电极,一个在地面,井下三个组成电极系。 梯度:单电极到相邻成对电极的距离大于成对电极间的距离。 电位:单电极到相邻成对电极的距离小于成对电极间的距离。 梯度电极系进一步分为:底部(正装)梯度、顶部(倒装)梯度。

测井方法原理与应用 ppt课件

测井方法原理与应用  ppt课件

PPT课件
27
三、测井综合解释方法
(三)测井评价储层要点 (砂泥岩剖面)
1、岩性解释 测井解释时首先用GR去找 砂岩;再在砂岩里用SP、ML 去找渗透层;然后参考CAL及 其他曲线来综合分析岩性的 纯杂程度。
PPT课件
28
三、测井综合解释方法
(三)测井评价储层要点 (砂泥岩剖面)
1、岩性解释
砂岩–GR低值,SP负异常,DEN中 低值(小于2.65g/cm3),CN中 高值。
地质应用——油气藏精细描述
PPT课件
7
ECL-3700数控测井仪
PPT课件
8
第四阶段:1990年以后,成像测井
地面系统——成像测井仪
测量方式——多参数阵列组合

输—— 双向可控数据传输(500kbps)
井下仪器——电 阻 率-全井眼微电成像、方位电成像
电 导 率-阵列感应成像 声 速-偶极声波成像 声 幅-超声成像 中 子-加速器中子源孔隙度 密 度-岩性密度能谱 地层测试-模块化地层测试 介 电-多频多探头电磁波测井 核 磁-核磁共震测井成像
地质应用——油气藏评价
PPT课件
9
ECLIPS-5700成像测井仪
PPT课件
10
快速平台测井系统——1996年问世
1、将深、中、浅三探测电阻率和中子、密度、声波三 孔隙度常规测井高度组合集成。(高效、实用,在大 多数井内满足地质家需要)
2、挂接各种成像测井仪器。(先进直观,解决特殊地 质疑难问题)
二多井测井资料进行地层对比3应用实例1边城构造多井测井资料地层对比二多井测井资料进行地层对比二多井测井资料进行地层对比3应用实例2储家楼构造多井测井资料地层对比1011121111101212工区地层自下而上为泰州组e下第三系以断陷为主北东向张性断裂活动控制上第三系以拗陷为主断裂活动减弱转向拗陷发展阶段

测井原理与综合解释

测井原理与综合解释

测井原理与综合解释测井原理是指利用地球物理仪器和技术,对地下岩石层进行实时监测和测量的过程。

通过测井原理,可以获得有关地下岩石层中所含矿物、岩性、含水性、温度、压力等参数的信息,从而帮助地质学家和工程师进行油气勘探和开发。

测井原理主要依赖于以下几种物理现象和原理:1. 电性测井原理:利用地层中的电性差异,通过测量电阻率、电导率等指标来判断地层的性质。

例如,导电层岩石通常具有良好的含油性能。

2. 密度测井原理:根据地下岩石的密度差异,通过测量岩石的密度来判断地层的性质。

例如,含有矿物质量高的岩石通常具有较高的密度。

3. 声波测井原理:利用地层中声波的传播速度来判断地层的性质。

不同类型的岩石对声波的传播速度有不同的影响。

4. 核磁共振测井原理:利用地层中核磁共振现象,通过测量核磁共振信号来判断地层的性质。

不同类型的岩石对核磁共振信号有不同的响应。

综合解释是指通过将不同类型的测井数据进行综合分析和解释,得出地下岩石层的具体性质和分布。

综合解释的过程包括以下几个步骤:1. 数据校正和质量评估:初步检查测井数据的准确性和有效性,排除可能的误差和异常点。

2. 数据融合:将来自不同类型测井仪器的数据进行融合,形成一个统一的数据集。

3. 数据解释:根据测井原理和地质知识,对数据进行解释,得出地层的特征和性质。

可以使用图表、剖面图等方式展示解释结果。

4. 建模和预测:根据解释结果,建立地下岩石层的模型,并利用模型进行预测和评估。

这可以帮助决策者进行油气资源勘探和开发的决策。

综合解释需要综合考虑不同类型的测井数据,以及地质知识和经验。

准确地解释地下岩石层的性质和分布,对于油气勘探和开发具有重要意义。

生产测井原理与应用

生产测井原理与应用

生产测井原理与应用1. 引言生产测井是石油工程领域中一项重要的技术,用于评估油井的产量和储量情况。

通过对井深的测量、流体采样和物性分析,可以获取到关键的生产参数,为油田开发和管理提供重要的参考数据。

本文将介绍生产测井的基本原理和应用。

2. 生产测井原理2.1 测量井深生产测井的第一步是准确测量井深。

传统的方法是使用测深设备,通过测量线的长度来获取井深信息。

现代的生产测井技术使用更先进的测井仪器,如激光测深仪和电容式测深仪,能够提供更高精度和更快速的井深测量。

2.2 流体采样生产测井中非常重要的一项工作是对井中的流体进行采样。

通过分析流体的组成和性质,可以判断油井的产能和储量。

传统的流体采样方法是使用采样器将流体样品收集起来,然后送回实验室进行化学分析。

现代的生产测井技术还包括了原位分析仪器,可以在井下对流体样品进行实时分析。

2.3 物性分析对采集到的流体样品进行物性分析也是生产测井中一个重要的步骤。

常见的物性分析包括测定流体的密度、黏度、含油率等。

这些物性参数可以帮助评估油井的产能和储量情况。

3. 生产测井应用生产测井技术广泛应用于石油工程的各个方面,以下是一些常见的应用场景:3.1 井下流体分析通过在井下进行流体采样和分析,可以实时监测油井的产能情况。

根据实时的数据,可以优化油井的生产操作,提高产能和效益。

3.2 油井储量评估生产测井技术可以帮助评估油田的储量。

通过对井下的流体和岩石进行采样和分析,可以推断出油井的储量大小和分布情况。

3.3 油田开发规划基于生产测井的数据,可以制定油田的开发规划。

根据油井的产能和储量,可以确定合理的开发方式和开采方案。

3.4 油井防砂措施确定通过测量油井的井壁压力和温度等参数,可以判断井筒周围岩石的稳定性情况。

根据这些数据,可以确定合理的防砂措施,保证油井的正常生产。

4. 结论生产测井是石油工程领域中重要的技术手段之一,通过测井仪器的使用和流体采样分析,可以获取到关键的生产参数,为油田开发和管理提供重要的参考数据。

测井原理与解释

测井原理与解释

测井原理与解释
测井是一种勘探地下介质的物理和化学性质的方法,主要通过测量井眼周围的压强、温度、压力、化学成分和流量等参数来确定地下介质的类型、孔隙结构、类型和含水量等信息。

测井原理主要有以下几种:
1. 地震测井:利用井壁上的地震波的传播规律和反射特性,通过地震仪记录地震波的反射和回波时间等信息来计算压强和温度。

2. 热测井:利用井底温度和地下介质的热传递特性,通过热仪记录井底和地下介质的温度,通过温度变化来计算孔隙度和含水量。

3. 声波测井:利用声波在地下介质中的传播速度和衰减特性,通过声波仪记录声波的传播时间和频率等信息来计算压强、温度和化学成分。

4. 射电测井:利用射电电场和电磁波在地下介质中的传播规律,通过射电仪记录电磁波的传播时间和衰减特性来计算压强、温度、含水量和岩石类型等。

以上这些方法都具有一定的准确度和局限性,根据不同的地质情况和目的,可以选择不同的方法进行测井。

同时,在测井过程中还需要考虑到井壁稳定、井口振动、地震波传播方向等因素。

测井方法原理及应用分类

测井方法原理及应用分类

测井方法原理及应用分类测井是指利用测井工具对地下井眼和岩石进行物理学、地球物理学和工程学参数的测量和记录的技术。

它是地质勘探和油气开发中的重要手段,广泛应用于石油勘探、岩石力学研究、水文地质、土壤调查、地下水动力学、环境地质等领域。

本文将详细介绍测井方法的原理及其应用分类。

一、测井方法的原理:1.伽马射线测井:利用自然伽马射线在地层中的吸收和散射特性,测量地层中放射性元素的含量。

通过测量伽马射线强度的变化,可以确定地层的岩性,判别储层类型。

2.电阻率测井:利用地层差异的电导率和介电常数,测量地层的电阻率。

通过测量电阻率的变化,可以确定地层的岩性、含水饱和度、孔隙度等。

3.自然电位测井:利用地层中的自然电位差,测量地层电位差的变化,以确定地层中的含水层位置和厚度。

4.声波测井:利用地层中声波的传播速度和衰减特性,测量地层的声阻抗和声波传播时间。

通过测量声波的变化,可以确定地层的岩性、孔隙度、裂缝情况等。

5.压力测井:利用钻井液的压力变化,测量地层的孔隙压力和地层压力系数。

通过测量压力的变化,可以确定地层的岩性、压力梯度等。

6.密度测井:利用地层密度的差异,测量地层的密度。

通过测量密度的变化,可以确定地层的岩性、孔隙度、含油饱和度等。

二、测井方法的应用分类:1.岩性测井:包括伽马射线测井、电阻率测井和声波测井。

它们可以对地层的岩性、构造性质、同位素组成等进行识别和判别,用于确定地层的储集能力、孔隙度、脆性指数等参数。

2.储层测井:包括电阻率测井、声波测井、密度测井和孔隙度测井。

它们可以确定地层的孔隙度、渗透率、含水饱和度等参数,用于评价储层的质量和储量。

3.含油气层测井:包括电阻率测井、伽马射线测井、密度测井和压力测井。

它们可以确定地层的含油气饱和度、储量、压力梯度等参数,用于评价油气层的勘探和开发潜力。

4.地层压力测井:主要包括压力测井和电阻率测井。

它们可以确定地层的孔隙压力、裂缝压力、渗透能力等参数,用于评价地层的压力梯度、岩石力学性质等。

阵列感应测井原理

阵列感应测井原理

阵列感应测井原理阵列感应测井(Array Induction Logging)是一种用于获取地下水文和岩性信息的测井方法。

其原理是基于电磁感应,利用工具中的多个感应线圈和测量电磁场的变化来研究地层的性质和含水情况。

本文将详细介绍阵列感应测井的原理及其应用。

一、阵列感应测井的原理阵列感应测井通过感应线圈测量地下电磁场的变化来分析地层的性质和含水情况。

其原理是基于法拉第定律和麦克斯韦方程组的电磁感应现象。

当工具经过地下时,感应线圈感应到的电磁场的变化反映了地层的电导率和磁导率的变化,从而获得地层的相关信息。

阵列感应测井工具通常由多个线圈组成,分别位于测井仪内部和侧向。

内部线圈用于感应地层中电流的分布情况,而侧向线圈则用于测量地层中电流的方向。

通过对这些电磁数据的处理和解释,可以获得地下地层的电导率和磁导率等信息。

二、阵列感应测井的应用阵列感应测井广泛应用于地下水文和岩性信息的研究。

其主要应用有以下几个方面:1. 地层电导率的研究地层的电导率是阵列感应测井的主要目标。

电导率反映了地层中的含水量和盐度等参数。

通过测量电磁场的变化,可以推断地下含水层和非含水层的位置,进而判断地下水的分布情况。

2. 岩性分析阵列感应测井还可以用于岩性分析。

不同的岩石有着不同的电导率和磁导率,因此可以通过测量电磁场的变化来判断地下岩石的类型和性质。

这对于油田勘探和开发具有重要意义。

3. 水文地质研究阵列感应测井能够提供水文地质研究中的许多重要参数,如含水层的渗透率、饱和度和盐度等。

这对于地下水资源的评估和管理非常关键。

4. 油气勘探阵列感应测井在油气勘探中也有重要的应用。

通过测量地下油气层中电磁场的变化,可以推断油气层的位置、厚度和含量等信息。

这对于油气勘探和储量评估非常重要。

总之,阵列感应测井是一种重要的地球物理勘探方法,可以提供地下水文和岩性的信息。

通过测量电磁场的变化,可以研究地层的电导率和磁导率等参数,为地下水资源评估、油气勘探和岩性分析等提供有力的支持。

测井方法原理

测井方法原理

测井方法原理测井是油气勘探和开发过程中非常重要的工具,它通过测量井孔中的岩石、流体和地层性质,提供了油气储层详细的信息。

本文将介绍测井方法的原理,包括电测井、声波测井和核磁共振测井。

一、电测井方法原理电测井是一种利用电性质来测量地层信息的方法。

它通过在井孔中放置测井电极,通过电流和电阻的测量来判断地层性质。

电测井的原理基于地层的电导率差异,不同类型的岩石和流体具有不同的电导率。

在电测井过程中,测井工具中的电极通过井孔中的电缆与地面上的测井装置相连。

测井装置通过传递电流至井孔中的电极,测量地层中的电阻。

电阻的大小取决于地层的电导率和电极之间的距离。

利用电测井方法可以获取地层的电阻率、自然电位和电极化,从而推断地层中的岩性、含水饱和度和孔隙度。

不同类型的岩石和流体具有不同的电导率,通过测量地层的电阻可以识别不同岩性。

二、声波测井方法原理声波测井是一种利用声波传播特性来测量地层信息的方法。

它通过在井孔中放置发射器和接收器,测量声波在岩石中的传播速度和衰减特性,来推断地层的岩性和孔隙度。

在声波测井中,发射器产生声波信号并将其传播至地层中。

当声波通过不同类型的岩石和流体时,会发生折射、反射和散射等现象。

接收器会接收到传播后的声波信号,并将其转化为电信号传输至地面上的测井装置。

通过测量声波在地层中传播的速度和衰减特性,可以判断地层的岩性和孔隙度。

不同类型的岩石和流体对声波的传播速度和衰减特性有不同的影响,通过对声波信号的分析,可以识别不同的地层。

三、核磁共振测井方法原理核磁共振测井是一种利用核磁共振原理来测量地层信息的方法。

它通过测量地层中核自旋共振现象,得出地层的孔隙度、含水饱和度和流体类型等信息。

在核磁共振测井中,测井工具通过发射射频脉冲产生磁场,使地层中的核自旋进入共振状态。

共振时核自旋可以吸收和发射射频信号,测井工具则接收这些信号,并根据其特征参数来推断地层性质。

通过核磁共振测井方法可以获取地层的孔隙度、含水饱和度和流体类型等信息。

井径测井原理、计算方法、主要应用、仪器刻度、质量控制

井径测井原理、计算方法、主要应用、仪器刻度、质量控制

井径测井原理、计算方法、主要应用、仪器刻度、质量控制井径测井是一种地球物理测井方法,主要用于测量井孔直径的变化,了解地层的岩性、物性和含水性等信息。

以下是关于井径测井的原理、计算方法、主要应用、仪器刻度以及质量控制等方面的详细介绍。

一、井径测井原理井径测井的原理基于井孔直径的变化与地层的岩性、物性和含水性等因素之间的关系。

当地层性质一定时,井孔直径的变化主要受井孔形状的影响。

因此,通过测量井孔直径的变化,可以了解地层的岩性、物性和含水性等信息。

二、井径测井计算方法井径测井的计算方法主要是通过测量井孔直径的变化,计算出地层的岩性、物性和含水性等信息。

具体来说,可以通过以下步骤进行计算:1.测量井孔直径的变化;2.根据测量结果,计算出地层的岩性、物性和含水性等信息;3.将计算得到的信息与实验室分析结果进行对比,以验证计算结果的准确性。

三、井径测井的主要应用井径测井的主要应用包括以下几个方面:1.确定地层的岩性、物性和含水性等信息;2.评价地层的渗透性;3.确定地层的厚度和埋深;4.预测地层的产水量;5.监测地下水的开采情况。

四、仪器刻度井径测井的仪器刻度是保证测量准确性的重要环节。

一般来说,井径测井的仪器刻度需要考虑以下几个方面:1.刻度标准:需要建立一套标准的刻度体系,以保证测量结果的准确性;2.刻度环境:需要在特定的环境下进行刻度,以保证刻度结果的可靠性;3.刻度周期:需要定期进行刻度,以保证测量结果的准确性。

五、质量控制为了保证井径测井的测量结果准确性,需要进行严格的质量控制。

具体来说,需要做到以下几点:1.保证仪器的精度和稳定性;2.保证测量环境的稳定性和可靠性;3.保证测量人员的专业素质和技术水平;4.对测量结果进行多次重复测量,以保证测量结果的准确性;5.将测量结果与实验室分析结果进行对比,以验证测量结果的准确性。

六、总结井径测井是一种重要的地球物理测井方法,可以用于了解地层的岩性、物性和含水性等信息。

测井的三大基本方法

测井的三大基本方法

测井的三大基本方法测井的三大基本方法测井是石油勘探开发中不可或缺的一项技术,其主要作用是通过对地下岩石的物理、化学性质进行测量,从而了解油气藏的储层性质、含油气性能等信息。

目前,测井技术已经发展出了多种方法,其中最常见的有电测井、声波测井和核子测井三种基本方法。

下面将详细介绍这三种方法的原理、应用以及注意事项。

一、电测井1. 原理电测井是利用地层中不同岩石对电流的导电性能差异来识别和分析油气藏储层的一种方法。

具体来说,当钻杆上带有电极时,钻杆与地层之间形成一个回路。

当向钻杆上加入直流或交流电源时,由于地层中不同岩石对电流导电性能不同,因此在钻孔内产生了一系列复杂的电场分布和信号变化。

通过对这些信号进行处理和解释,可以得到地层中水含量、孔隙度、渗透率等重要参数。

2. 应用电测井主要用于识别和评价含水层、油气储层的孔隙度、渗透率等参数。

在石油勘探开发中,电测井可以用来确定油气藏的位置、厚度和含油气性质,为后续的钻井和开发提供重要依据。

3. 注意事项在进行电测井之前,需要对钻杆和测量仪器进行彻底检查,确保其正常工作。

此外,在进行数据处理和解释时,需要考虑地层中不同岩石对电流导电性能的影响因素,并且对数据进行合理校正。

二、声波测井1. 原理声波测井是利用地层中不同岩石对声波传播速度和衰减程度的差异来识别和分析油气藏储层的一种方法。

具体来说,在进行声波测井时,向钻孔内发射一定频率的声波信号,并通过接收器记录下信号经过地层后返回到接收器所需的时间。

通过计算这些时间差以及信号频率等参数,可以得到地层中不同岩石的密度、弹性模量等物理参数。

2. 应用探开发中,声波测井可以用来识别和定位油气储层、判断储层中的含油气性质以及评价钻井效果等。

3. 注意事项在进行声波测井之前,需要对测量仪器进行校准和测试,确保其正常工作。

此外,在进行数据处理和解释时,需要考虑地层中不同岩石对声波传播速度和衰减程度的影响因素,并且对数据进行合理校正。

感应测井原理及运用

感应测井原理及运用

含水饱和度测量
总结词
感应测井通过测量地层的导电性能和介 电常数,能够估算地层的含水饱和度。
VS
详细描述
含水饱和度是地层中含水与总孔隙体积之 比。感应测井通过测量地层的导电性能和 介电常数,结合已知的含水饱和度与电导 率和介电常数之间的关系,可以估算出地 层的含水饱和度。
04 感应测井的优缺点
优点
感应测井具有测量范围广、受井眼和套管影响小、测量下限低等优点,广泛应用于 石油、天然气等矿产资源的勘探和开发。
电磁感应原理
电磁感应是物理学中的一个基本原理,当一个 导体线圈中的电流发生变化时,会在导体线圈 中产生感应电动势。
在感应测井中,发射线圈向地层发射交变电流, 产生变化的磁场,这个磁场会在地层中产生感 应电流。
感应测井原理及运用
目录
• 感应测井原理 • 感应测井的种类与技术 • 感应测井的应用 • 感应测井的优缺点 • 感应测井的发展趋势与展望
01 感应测井原理
感应测井概述
感应测井是一种电法测井方法,利用电磁感应原理测量地层电导率的一种测井技术。
它通过向地层发射高频交变电流,在电流穿过地层时,由于地层的电导率差异,引 起电磁场的变化,通过测量这个电磁场的变化来推算地层的电导率。
高测深度
感应测井具有较高的探测深度 ,能够获取地层深处的电阻率 信息,有助于准确评估地层电
阻率分布。
抗干扰能力强
感应测井技术对电磁干扰的抗 干扰能力较强,能够在复杂的 环境中获取准确的测量数据。
测量精度高
感应测井的测量精度较高,能 够提供更为准确的电阻率数据 ,有助于提高地层评价的准确 性。
测量速度快
应用范围
用于确定地层电阻率的各向异性、划分裂缝发育带等。

测井原理及各种曲线的应用

测井原理及各种曲线的应用

一、SP曲线和GR曲线测井基本原理用淡水泥浆钻井时,由于地层水矿化度小于泥浆滤液矿化度而在砂岩段形成扩散电位——在井眼内砂岩段靠近井壁的地方负电荷富集,地层内砂岩段靠近井壁的地方正电荷富集,导致砂层段井眼泥浆的电势低于砂层电势,正象一个平行于地层且正极指向地层的“电池”(第一个)。

在泥岩段,因为泥浆滤液与地层水之间存在矿化度差及选择性吸附作用形成吸附电位——在井眼内泥岩段靠近井壁的地方正电荷富集,地层中泥岩段负电荷富集,导致泥岩段井眼泥浆的电势高于地层电势,正象一个平行于地层且正极指向井眼的“电池”(第二个)。

又因为泥浆和地层各具导电性,正象两条导线把以上两个“电池”串联了起来而形成回路,这样在地层中电流从砂岩段(第一个电池正极)流向泥岩段(第二个电池负极);在井眼中电流从泥岩段(第二个电池正极)流向砂岩段(第一个电池负极)。

在此回路中,地层也充当电阻的作用,总电动势等于扩散电动势和吸附电动势之和。

用M电极在井眼中测的自然电流在泥浆中产生的电位降即得自然电位曲线。

其值在正常情况下与对应地层中泥质含量关系密切,砂岩中泥质含量增加,则电位降下降,异常幅度减小;砂岩中泥质含量下降,则电位降上升,异常幅度增大。

另外,当泥浆柱与地层流体间存在压力差时发生过滤作用形成过滤电动势——动电学电位。

沉积岩的放射形取决于岩石中放射性元素的含量,放射性元素的含量主要取决于粘土和泥质的含量,粘土和泥质含量越高放射性越强。

GR曲线主要测量地层的放射性。

1、曲线幅度反映沉积时水动力能量的强弱;2、曲线形态反映物源供给的变化和沉积时水动力条件的变化;3、顶、底部形态的变化反映沉积初、末期水动力能量和物源供给的变化速度;4、曲线的光滑程度水动力对沉积物改造所持续时间的长短;5、曲线的齿中线组合方式反映沉积物加积特点;6、曲线包络形态反映在大层段内垂向层序特征和多层砂在沉积过程中能量的变化。

影响自然电位曲线异常幅度的因素:(1)岩性、地层水与泥浆含盐度比值的影响。

地球物理测井方法与原理

地球物理测井方法与原理

地球物理测井方法与原理地球物理测井是一种对地下储层进行测量、分析和评价的方法。

通过测井工具的下井进行物理量的测定,可以获取地下储层的岩性、地层厚度、孔隙度、渗透率等信息,对油气田勘探开发及油层工程有着重要的意义。

本文将介绍地球物理测井的基本原理和常用方法。

一、测井原理地球物理测井的基本原理是利用测井工具发射相应的能量,将能量通过地层传播后,接收到的反射波或散射波作为信息来获取地下储层的特性。

根据测井工具使用的能量类型和测量的物理量,可将地球物理测井方法分为以下几类。

1. 电测井方法电测井方法是利用测井仪器对地层中的电阻率进行测量,以反映岩层的含油、含水性质。

常用的电测井方法有直流电阻率测井、交流电阻率测井和自然电位测井等。

2. 声测井方法声测井方法是利用声波在地下储层中的传播特性,推断出地层的弹性参数和岩性。

主要包括测井声波、声波速度测井、声阻抗测井和共振测井等。

3. 密度测井方法密度测井方法是通过测量地下储层中的密度,来推断岩层的孔隙度、饱和度等。

常见的密度测井方法有伽马射线测井、中子测井和密度测井等。

4. 核磁共振测井方法核磁共振测井方法是利用核磁共振现象对地下储层进行测量,推断岩层的孔隙度、饱和度和渗透率。

核磁共振测井方法在近年来逐渐兴起,具有高分辨率、无辐射等优点。

二、常用测井方法1. 伽马射线测井伽马射线测井是通过测量地下储层中伽马射线的强度,来判断岩石的密度和放射性元素的含量。

根据伽马射线的特性,可以获得地层的层位、岩性和饱和度等信息。

2. 电阻率测井电阻率测井是通过测量地层中的电阻率,来判断岩石的导电性质和饱和度。

不同的岩石具有不同的电阻率特性,通过电阻率测井可以判断地层的岩性变化和油气的分布情况。

3. 声波速度测井声波速度测井是通过测量地层中声波的传播速度,来判断岩石的弹性参数和孔隙度。

声波在不同岩石中的传播速度不同,通过声波速度测井可以获得地层的岩性、渗透率和孔隙度等信息。

4. 中子测井中子测井是通过测量地层中中子的散射和吸收情况,来推断岩石的孔隙度和饱和度。

水平井生产测井技术

水平井生产测井技术

水平井生产测井技术引言水平井是一种在地下开采油、气等能源资源的常用技术。

在水平井的生产过程中,测井技术被广泛应用于评估井筒中的地层性质、确定井底油层产能及优化采收方案。

本文将详细介绍水平井生产测井技术的原理、方法以及其在油田开发中的应用。

水平井的特点水平井是一种沿水平方向延伸的井筒,与传统的垂直井相比,具有如下特点:1. 增加了地层暴露面积,提高了油、气的产能; 2. 压裂压力分布均匀,能够有效刺激油、气分布; 3. 横向排采对比垂直排采有更高的产量。

水平井测井技术的原理水平井生产测井技术的原理是通过测量井筒中的物理参数,判断地层状况并评估产能。

常用的水平井测井技术包括测井工具测量、井底气体采收及注入、井内压力监测等。

测井工具测量测井工具是用于测量地层性质、孔隙度、饱和度等参数的设备。

在水平井中,测井工具通常是通过井筒下放,然后绕曲率补偿器通过井筒弯曲段进入水平段。

测井工具的测量数据将用于判断油、气分布情况,并确定进一步开采和压裂的方案。

井底气体采收及注入井底气体采收和注入技术能够通过收集井底的气体样品,以确定地层中的气体类型和含量。

采收和注入过程通常是通过在井筒中设置气体收集器或注入器,配合相应的气体分析设备完成的。

通过分析收集的气体样品,可以有效评估地层中的气体资源潜力,为后续的生产和压裂决策提供依据。

井内压力监测井内压力监测是水平井生产测井中的重要环节。

通过在井筒中布置压力传感器,并定期测量和记录井内压力变化情况,可以获得井底和井口的压力数据。

井内压力数据的分析和监测可以帮助评估地层性质、油、气产能以及压裂效果,为生产操作提供参考。

水平井测井技术的应用水平井测井技术在油田开发中有着广泛的应用。

以下是一些常见的应用场景:地层评估和优化水平井测井技术可以提供地层性质的详细数据,包括孔隙度、饱和度、渗透率等,从而更准确地评估地层的产能潜力。

根据测井数据,可以调整井下水平段的位置和长度,优化开采方案,提高产量。

测井方法原理应用分类总结

测井方法原理应用分类总结

测井方法原理应用分类总结测井是油气勘探开发中的一项重要技术和手段,通过测井可以获取井内地层的地质、物理与工程参数,为油气田开发提供了实时准确的地层信息。

测井方法广泛应用于油气勘探开发、井下作业、油井管理与监测等领域。

测井方法按照测量物理量的不同可以分为电测井、声测井、渗透率测井、核子测井等。

电测井方法是利用电性质测井工具测量地层电性质参数的方法。

主要包括电阻率测井、自然电位测井、正反应测井等。

电阻率测井是利用电极流过地层产生的电阻测量电阻率。

自然电位测井是通过测量井内的自然电位差来获得地层参数的方法。

正反应测井是通过产生探测电场,测量地层电流形成的电荷与原电场之差,来计算地层参数的方法。

声测井方法是利用声波在地层中传播特性的差异测量地层声波参数的方法。

主要包括声波传播时间测井、声波幅度测井、剪切波测井等。

声波传播时间测井是通过测定声波传播经过几米以上地层花费的时间来推算地层速度的方法。

声波幅度测井是研究声波在地层中衰减程度、判断地层流体性质及最大气差的方法。

剪切波测井是利用剪切波在地层中传播特性的差异来推算地层剪切波速度和剪切模量的方法。

渗透率测井方法是利用测井资料间的关联关系推算地层流体渗透性的方法。

主要包括射孔压力测试、产能测井、注水试验等。

射孔压力测试是通过在地层中射入流体并观测流体压力变化来计算地层渗透率的方法。

产能测井是通过测量地层流体在井筒中的流动速度和压力来计算地层渗透率的方法。

注水试验是通过外加压力,注入一定量的水,并观测井底流量来计算地层渗透率的方法。

核子测井方法是利用射线经过地层后的吸收、散射等特性来获得地层参数的方法。

主要包括伽马射线测井、中子测井等。

伽马射线测井是利用测量地层伽马射线强度来判断地层岩性和含矿性的方法。

中子测井是利用测量地层中子流量的变化来推算地层含水量和含油气量的方法。

测井的应用范围广泛,常用于勘探开发、油井管理与监测等领域。

在勘探开发中,测井可以提供地层参数数据,帮助评估油气资源量、优化井位选择、判断油气藏类型等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测井的原理和应用
1. 测井的概述
测井是石油工程中的一项重要技术,通过下井仪器的测量,以获得井内地层的
物性参数,从而评估石油和天然气储层的含油气性质和储量。

测井技术在石油勘探、开发和生产中起到了至关重要的作用。

2. 测井的原理
测井的原理是基于下井仪器通过测量井壁周围的物理量,利用物理和地质的关
联关系来推断井内地层性质的一种技术。

下面将介绍几种常用的测井技术及其原理。

2.1 电测井
电测井是一种通过测量井壁周围的电性参数来推断地层性质的技术。

它利用地
层的电导率差异,通过测量电阻率来判断地层的类型和特征。

2.2 声波测井
声波测井是一种通过测量地层对声波的传播速度来推断地层性质的技术。

它利
用地层的声波传播速度差异,通过测量声波传播时间来判断地层的类型和充实度。

2.3 核磁共振测井
核磁共振测井是一种通过测量地层中核磁共振信号来推断地层性质的技术。


利用地层中的核磁共振信号,通过测量共振频率和幅度来反演地层的物性参数。

3. 测井的应用
测井技术在石油勘探、开发和生产中有着广泛的应用。

下面将介绍几个常见的
应用领域。

3.1 储层评价
测井技术可以提供储层的物性参数,如孔隙度、渗透率、饱和度等,从而评价
储层的质量和产能。

3.2 油气井完井设计
测井技术可以提供地层的性质参数,帮助优化油气井的完井设计,提高油气井
的产能。

3.3 水驱和聚驱监测
测井技术可以提供油层和水层的界面位置和分布,帮助监测水驱和聚驱过程中
的流体移动和驱替效果。

3.4 储层模型建立
测井技术可以提供地层的性质参数,用于建立储层模型,从而进行油气资源评
估和储量计算。

3.5 井眼修复和沉积环境研究
测井技术可以提供井眼的形态和修复情况,帮助判断沉积环境和地层演化过程。

4. 测井的发展趋势
随着科技的不断进步,测井技术也在不断发展。

以下是测井技术的一些发展趋势。

4.1 多物性测井技术
随着对复杂储层的勘探和开发需求增加,多物性测井技术被广泛关注。

通过融
合多种测井技术,可以获得更加全面准确的地层信息。

4.2 高分辨率测井技术
高分辨率测井技术可以提供更加详细的地层信息,对于储层的描述和评价有着
重要的意义。

随着测井仪器的不断升级,高分辨率测井技术将会得到更大的突破。

4.3 数据集成和智能化分析
随着测井数据的不断积累,数据集成和智能化分析成为测井技术的一个重要发
展方向。

通过数据挖掘和机器学习等方法,可以对海量的测井数据进行分析,提取有用的信息。

5. 总结
测井技术作为石油工程中的一项重要技术,在石油勘探、开发和生产中发挥着
重要的作用。

通过测井技术,可以获得地层的物性参数,评估储层的质量和产能。

随着科技的不断进步,测井技术也在不断发展,多物性测井和高分辨率测井技术成为发展的趋势。

数据集成和智能化分析也将在测井技术中发挥重要作用。

相关文档
最新文档