沥青红外光谱仪波数
通用级沥青基碳纤维的碳化研究
通⽤级沥青基碳纤维的碳化研究沥青基碳材料本⽂来源:化⼯新型材料精彩⽂章现在开始作者:冉晨旭陕西师范⼤学化⼯新型材料通⽤级沥青基碳纤维的碳化研究摘要借助于红外光谱分析、热重分析和X射线衍射分析等表征⼿段,对通⽤级沥青基碳纤维碳化过程进⾏了研究。
探讨了碳化⼯艺参数对通⽤级沥青基碳纤维⼒学性能的影响,确定了通⽤级沥青基碳纤维的最佳碳化处理条件。
不熔化纤维在惰性⽓氛保护下进⾏碳化或⽯墨化的过程对提⾼通⽤级沥青基纤维最终的⼒学性能⾄关重要。
碳化⼯艺条件包括:碳化终温、升温速率、恒温时间等。
如何确定碳化⼯艺参数始终是⼀个研究热点。
张和等研究了中间相沥青基预氧化丝碳化过程中结构的变化;阮湘泉等川研究了⽯油裂化渣油制取的中间相沥青纤维氧化及碳化的过程;路忠跃等州研究了碳化温度对中间相沥青基碳纤维性能的影响。
Ogalc等研究了中间相沥青基碳纤维在碳化、⽯墨化过程中纤维的结构取向及尺⼨的变化规律。
本研究以实验室⾃制的通⽤级沥青基不熔化纤维为原料,对其进⾏碳化处理研究。
通过改变碳化过程中的碳化温度、升温速率等⼯艺参数,探讨各⼯艺参数对通⽤级沥青基碳纤维⼒学性能的影响,确定了通⽤级沥青基碳纤维的碳化处理的最佳⼯艺条件。
1实验部分1.1原料实验所⽤的原料沥青为实验室精制的可纺沥青,其基本性质如表1所⽰。
1.2不熔化纤维的制备⽤纺丝机将精制的可纺沥青在纺丝温度3000C、压⼒0.0l MPa、纺丝转速1000r/min下进⾏熔融纺丝,然后在3.78 X 10-2 m/s、空⽓流量下,以0.3℃ /min的升温速率升⾄320℃,保持恒温90min进⾏不熔化处理。
1.3不熔化纤维的碳化将⼀定质量经过不熔化处理的预氧化丝放到碳化炉中,将炉管密封、抽真空,⽤氮⽓置换后改为常压,继续通⼊氮⽓,然后设定升温程序,进⾏碳化处理。
具体碳化条件为:碳化升温速率为2~5℃ /min,碳化温度在900-1200℃之间,恒温时间在0-120min范围内。
第三章红外光谱IR
烷烃吸收峰
正己烷的红外光谱图
2,2,4-三甲基戊烷的红外光谱图
2、不饱和烃
• 烯烃 • 炔烃 • 芳香烃
2、1 烯烃 烯烃双键的特征吸收
影响双键碳碳伸缩振动吸收的因素
• 对称性:对称性越高,吸收强度越低。 • 与吸电子基团相连,振动波数下降,吸
收强度增加。 • 取代基的质量效应:双键上的氢被氘取
代后,波数下降10-20厘米-1。质量效应 • 共轭效应:使波数下降约30厘米-1 。
1-己烯的红外光谱图
~3060cm-1: 烯烃C—H伸缩振动;~1820:910cm-1倍频; ~1650cm-1: C=C伸缩振动;~995,905cm-1: C=CH2 非平面摇摆振动
顺式和反式2,2,5,5-四甲基己烯红外光谱 a 顺式 b 反式
v~
=
1
——
K
2C M
M = m1 m2 m1 + m2
双原子分子红外吸收的频率决定于折合质量和键力常数。
C-H C-C C-O C-Cl C-Br C-I
-1 cm
3000
1200 1100
800
550
500
v cm-1
力常数/g.s-2
CC 2200~2100
12~18105
C=C 1680~1620
C-H面外弯曲振动吸收峰位置(cm-1) 670
770-730,710-690 770-735
810-750,710-690 833-810
780-760,745-705 885-870,825-805 865-810,730-675
810-800 850-840 870-855
870
各类取代苯的倍频吸收和面外弯曲振动吸收
《沥青红外光谱法相似度识别与SBS含量试验检测规程》
沥青红外光谱法相似度识别与SBS含量试验检测规程1 范围本文件规定了红外光谱法识别沥青相似度与SBS含量试验检测的仪器设备和材料、沥青相似度识别、SBS含量测试、数据处理和结果判定、检测记录和报告等要求。
本文件适用于傅里叶变换红外光谱法识别沥青相似度与测定改性沥青中SBS含量。
2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T21186 傅里叶变换红外光谱仪JTG E20 公路工程沥青及沥青混合料试验规程JTG F40 公路沥青路面施工技术规范3 术语和定义下列术语和定义适用于本文件。
3.1苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)styrene-butadiene-styrene copolymer一种高分子聚合物,可用作沥青改性剂。
3.2沥青相似度检测基准样品reference sample for asphalt similarity identification用于评价沥青相似度的基准道路石油沥青或SBS改性沥青样品。
注:基准样品是指供需双方共同认可的沥青样品。
3.3SBS改性沥青基准样品reference sample of SBS modified asphalt按照供应厂家生产工艺制备的SBS改性剂含量已知的SBS改性沥青样品。
3.4ATR附件attenuated total reflectance accessory用A TR(衰减全反射)技术进行红外光谱试验的晶体。
3.5基准光谱reference spectra for sample对沥青相似度基准样品进行红外光谱检测获得的红外光谱母本。
4 仪器设备和材料4.1 一般规定4.1.1 傅里叶变换红外光谱仪作业环境温度应为15℃~35℃、相对湿度不大于65%。
4.1.2 傅里叶变换红外光谱仪等仪具应经法定计量部门检校合格并在有效期内。
基于红外光谱对沥青的研究
基于红外光谱对沥青的研究发表时间:2019-09-21T23:21:20.093Z 来源:《基层建设》2019年第19期作者:高宾[导读] 摘要:近年来,随着公路工程的迅速发展,沥青供应市场也愈发的混杂,需要对沥青质量沥青进行进一步地质量控制。
山东建筑大学 250101摘要:近年来,随着公路工程的迅速发展,沥青供应市场也愈发的混杂,需要对沥青质量沥青进行进一步地质量控制。
对于基质沥青,文章通过建立基质沥青的谱图库根据相似度的大小来准确地严格控制基质沥青的品牌,建立基质沥青的老化模型实现了对基质沥青老化程度的辨别。
对于改性沥青建立了标准曲线实现了对改性剂掺量的真实检测。
文章基于红外试验对沥青在微观上实现了严格控制。
关键词:基质沥青;改性沥青;相似度;标准曲线;质量控制目前,沥青供应市场混乱,进入山东省沥青市场的厂家(品牌)较多,炼制沥青油源多样,沥青代理商众多,存在鱼目混珠、以次充好(以B级沥青代替A级沥青、对达不到规范要求的沥青进行弱改性后作为基质沥青使用、以国内沥青充当进口沥青使用、运输过程随意调换沥青品牌和混兑)等诸多问题,给公路建设的质量和安全带来了诸多隐患[1]。
造成公路沥青路面早期损害的同时,增加了后期养护费用。
因此,控制好沥青质量具有重要意义。
传统试验依赖试验人员的专业水平和仪器设备的准确性,耗时较长,稳定性较差[3]。
如今,道路工作者发现无论是基质沥青还是SBS 改性沥青三大指标都满足规范要求,但是越来越接近规范控制下限,沥青在日后的抗老化性能中表现较差,短时间内即出现老化、开裂、坑槽、车辙等病害,严重影响了行车的安全性和舒适性。
不同物质对红外辐射吸收频率不同,形成的谱带位置也不同,因此,不同的官能团,都具有特征红外吸收峰,称为指纹区[4]。
通过对比所测未知沥青样品的谱图和品牌沥青样品吸收峰的重合度,判定沥青是否有异常。
鉴于此,本课题开展基于红外光谱法的沥青质量控制方法,对沥青质量控制提出迅速、有效的试验手段,以建立一套系统完整的沥青质量快速控制方法和体系,提高我省公路路面施工质量,延长路面使用寿命。
红外光谱使用说明
一.红外光谱基本原理红外光谱(Infrared Spectrometry,IR)又称为振动转动光谱,是一种分子吸收光谱。
当分子受到红外光的辐射,产生振动能级(同时伴随转动能级)的跃迁,在振动(转动)时伴有偶极矩改变者就吸收红外光子,形成红外吸收光谱。
用红外光谱法可进行物质的定性和定量分析(以定性分析为主),从分子的特征吸收可以鉴定化合物的分子结构。
傅里叶变换红外光谱仪(简称FTIR)和其它类型红外光谱仪一样,都是用来获得物质的红外吸收光谱,但测定原理有所不同。
在色散型红外光谱仪中,光源发出的光先照射试样,而后再经分光器(光栅或棱镜)分成单色光,由检测器检测后获得吸收光谱。
但在傅里叶变换红外光谱仪中,首先是把光源发出的光经迈克尔逊干涉仪变成干涉光,再让干涉光照射样品,经检测器获得干涉图,由计算机把干涉图进行傅里叶变换而得到吸收光谱。
红外光谱根据不同的波数范围分为近红外区(13330—4000 cm-1)、中红外区(4000-650 cm-1)和远红外区(650-10 cm-1)。
VECTOR22 VECTOR22 FTIR光谱仪提供中红外区的分测试。
二.试样的制备1. 对试样的要求(1)试样应是单一组分的纯物质(2)试样中不应含有游离水(3)试样的浓度或测试厚度应合适2.制样方法(1) 气态试样使用气体池,先将池内空气抽走,然后吸入待测气体试样。
(2) 液体试样常用的方法有液膜法和液体池法。
液膜法:沸点较高的试样,可直接滴在两片KBr盐片之间形成液膜进行测试。
取两片KBr盐片,用丙酮棉花清洗其表面并晾干。
在一盐片上滴1滴试样,另一盐片压于其上,装入到可拆式液体样品测试架中进行测定。
扫描完毕,取出盐片,用丙酮棉花清洁干净后,放回保干器内保存。
粘度大的试样可直接涂在一片盐片上测定。
也可以用KBr粉末压制成锭片来替代盐片。
注意盐片易吸水,取盐片时需戴上指套。
盐片装入液体样品测试架后,螺丝不宜拧得过紧,以免压碎盐片。
DB33T989-2015改性沥青中SBS含量的测定红外光谱法
DB33/T 989—2015 5.1.1 傅里叶变换红外光谱仪工作环境为温度 25 ℃± 3 ℃、湿度≤65%。 5.1.2 傅里叶变换红外光谱仪、天平、温度计等仪具应经国家计量部门标定合格并在有效期内。 5.2 仪具及技术要求 5.2.1 傅里叶变换红外光谱仪:分辨率不低于 0.5 cm-1,波数范围 4000 cm-1~400 cm-1。 5.2.2 高速剪切设备: 不锈钢工作头, 转速可任意调节, 最大转速不小于 10000 r/min, 处理能力 0.5 L~ 5 L。 5.2.3 恒温烘箱:工作温度为室温~250 ℃,控温精度为± 2 ℃。 5.2.4 盛样容器:可加热的、密封带盖的广口金属容器(如罐、桶等),容量 100 mL、1000 mL,各 不少于 5 个。 5.2.5 天平:最大称量 200 g、精度 0.0001 g,1 台;最大称量 1000 g、精度 0.1 g,1 台。 5.2.6 水银温度计:测温范围 0 ℃~200 ℃或 0 ℃~300 ℃、分度值 1 ℃。 5.2.7 其它仪具:红外干燥灯、电热套、量筒等。 5.3 材料及要求 5.3.1 四氯化碳:分析纯。 5.3.2 溴化钾:晶体片。 6 方法与步骤 6.1 改性沥青标样制作与测定 6.1.1 标样的原料采集 依据附录A要求采集制作标样的原料,标样中基质沥青、SBS改性剂及其他添加剂应与送检改性沥 青试样一致。 6.1.2 标样制作 标样制作应按下列要求: a) 标样中 SBS 含量按式(1)计算:
6.2.2 试样红外光谱检测 用溴化钾作为红外透光窗片,按照GB/T 6040 中固体薄膜法制备试样薄膜。分别测量吸收峰966 cm 、1377 cm-1的峰面积S966、S1377,按式(2)计算A值。
-1
6.2.3 平均 A 值计算 平均A值计算应按下列要求: a) 按式(4)计算 Am。
改性沥青SBS含量的红外光谱分析
改性沥青SBS含量的红外光谱分析摘要:沥青是由多种化合物组成的混合物, 主要由碳、氢两种化学元素组成, 称碳氢化合物。
苯乙烯一丁二烯一苯乙烯三嵌段共聚物(SBS)或废旧轮胎胶粉等橡胶材料大量用于改善高等级沥青路面性能,为保证工程质量,准确测定改性沥青中橡胶的含量十分必要。
利用衰减全反射傅里叶变换红外光谱分析法(ATR—FTIR)对基质沥青、SBS改性沥青、胶粉改性沥青及其SBS/胶粉复合改性沥青进行分析,建立了改性沥青中SBS、胶粉含量的特征吸收峰强度的标准曲线,进而得到改性沥青中橡胶的含量。
结果表明,该方法可用于SBS、SBS/胶粉复合改性沥青中橡胶含量的测定。
关键词:SBS改性沥青;红外光谱法;SBS;胶粉引言SBS能显著改善沥青路面的抗车辙、抗开裂、抗老化性能,其中SBS的用量对沥青各方面的性能影响很大。
[1]利用透射红外光谱法,采用标准曲线法测定改性沥青中SBS的含量,即先对一系列已知SBS含量的改性沥青标准样品进行测试,建立标准曲线,在相同条件下,根据吸收峰面积,测定未知试样的SBS含量。
但该法受试样用量、样品涂抹的厚度、涂抹的均匀程度及溶剂的挥发程度影响,易造成试验误差。
利用ATR—FTIR,分别研究了改性沥青中SBS、胶粉、沥青基质的特征吸收峰,建立特征峰面积与含量的标准曲线,探索了一种测定改性沥青中SBS含量的方法。
1 试验1.1原材料。
牌号LG501,S/B质量比31/69。
胶粉:该公司耐磨胶粉材料,卡车轮胎全胎胶粉(30目)。
经热重分析胶粉成分:操作油10.4%、橡胶烃51.8%、炭黑30.1%、无机残留物7.7%。
沥青:70#基质沥青。
1.2 改性沥青的制备SBS改性沥青:称取一定量的基质沥青,快速升温到180℃、剪切30min,剪切的同时加人对应量的SBS,然后加入稳定剂搅拌发育,制得SBS改性沥青样品。
胶粉改性沥青:称取一定量的基质沥青,快速升温到190℃、剪切30 min,剪切的同时加入对应量的胶粉,然后加入稳定剂搅拌发育,制得胶粉改性沥青样品。
红外光谱仪操作说明书
红外光谱仪操作说明书I. 概述红外光谱仪是一种用于分析和识别样品中红外光谱信号的仪器。
本操作说明书将介绍红外光谱仪的正确操作方法,以确保准确和可靠的实验结果。
II. 仪器安装1. 首先,确保工作环境安全并符合红外光谱仪要求,包括通风良好、无尘等。
2. 将红外光谱仪放置在水平平台上,并保持稳定。
3. 检查并连接电源线,确保电源电压与设备要求一致。
4. 根据需要,连接样品室或样品盒,确保连接紧固。
III. 仪器调试1. 打开电源开关,待红外光谱仪系统初始化完成。
2. 检查光源和探测器是否正常工作,如有异常请及时联系专业技术人员进行检修。
3. 调整红外光谱仪的波数和带宽设置,以适应不同的实验要求。
4. 进行零点和背景校准,确保信号准确。
IV. 样品准备1. 准备样品并将其放入样品盒或样品室中。
注意选择适当的样品盒或样品室,以避免对红外光谱仪的损坏。
2. 确保样品完整且不受其他杂质污染。
3. 根据实验需求,选择合适的样品量,并将其均匀堆放在样品盒中。
V. 仪器操作1. 打开红外光谱仪软件,并根据实验要求选择相应的测量模式。
2. 在软件界面上设置并调整红外光谱仪的参数,如波数范围、扫描速度等。
3. 点击开始按钮,启动红外光谱仪的测量过程。
VI. 结果分析1. 测量完成后,红外光谱仪将生成光谱图。
2. 使用相应分析软件对光谱图进行处理和分析,以获得所需的实验结果。
3. 根据实验要求,比较和解释不同样品之间的光谱差异。
VII. 清洁与维护1. 每次使用红外光谱仪后,应关闭电源开关。
2. 用软布轻轻擦拭红外光谱仪的外壳,确保仪器清洁。
3. 定期检查红外光谱仪的光源和探测器,如有损坏或异常,请联系专业维修人员进行检修。
4. 注意保持红外光谱仪通风良好,确保其正常工作。
请根据以上操作说明书,正确使用红外光谱仪,确保实验的准确性和可靠性。
如有任何问题或疑问,请随时联系技术支持人员获取帮助。
红外吸收光谱法(IR)
• 3、红外吸收光谱与分子结构的关系 一、基团的特征峰与相关峰 1、特征峰与相关峰 特征峰——具有能代表某基团存在并有较高强 度的特征频率的吸收峰。可用以鉴定官能团。 相关峰——某基团的一组特征峰构成该基团的 相关峰。 2、红外光谱的分区 常见有机物基团在4000~670cm-1有特征基团频 率。红外光谱划分为6个区域:
有些因素使红外吸收峰增多 (1)倍频和组合频的出现 (2)振动耦合 (3)费米(Fermi)共振 振动耦合——当两个基团位置相邻,且振动频率相近,有一个 公用原子连接,相应的特征峰发生分裂形成两个峰。 费米共振——泛频峰与基频峰的耦合 影响吸收峰强弱的因素:分子在振动能级之间的跃迁概率和振 动过程中的偶极矩的变化。 A、分子由基态振动能级(0=0)向第一激发态(1=0)跃迁的 概率较大,因此基频峰较强,倍频峰较弱或很弱。 B、极性基团(O-H、C=O、N-H 等)振动时,偶极矩变化 较大,有较强的吸收峰; 非极性基团(C-C、C=C等)的吸收峰较弱;分子越对称, 吸收峰越弱。
偶极矩() =分子所带电量(q)正负电荷中心距离(d) 非极性双原子分子(N2、O2、H2): 分子完全对称(d=0),无红外吸收。 极性分子( 0): 由于分子中的振动使d的瞬时值不断变化,从而不 断变化,有一个固定的变化频率。当照射的红外光 的频率与分子的偶极矩的变化频率相匹配时,分子 的振动(红外活性振动)与红外光发生振动偶合而 增加振动能,振幅加大,即分子由振动基态跃迁到 激发态。——吸收红外光
• (2).傅里叶变换红外吸收光谱仪(FTIR)简介 原理:检测器得到一个干涉强度对光程差和红外光频率的函 数图,经过电子计算机进行复杂的傅立叶变换,得到普通的 吸光度或透光率随波数变化的红外光谱图。
(2)傅里叶变换红外光谱仪 (FTIR)
红外光谱法定量分析SBS改性沥青的方法研究
红外光谱法定量分析SBS改性沥青的方法研究李智;邵申申【摘要】SBS掺量是控制改性沥青质量、保证改性沥青路面路用性能的关键指标,现阶段迫切需要形成一种快速、高精度的量化检测方法.文中通过对基质沥青、SBS改性剂和SBS改性沥青红外光谱图的分析,得出966 cm-1是SBS结构中反式丁二烯的特征峰,可作为SBS定量检测的特征参数;1 377 cm-1是基质沥青特有的吸收峰,可作为标准使用;利用朗伯-比尔定律测量SBS改性沥青光谱图的特征峰,建立了A966/A1377评价指标,通过5种不同SBS掺量试验结果的线性回归分析,形成了SBS含量的检测方法,精度分析显示其相对误差较小,精确度可达1%以上.【期刊名称】《公路与汽运》【年(卷),期】2015(000)006【总页数】5页(P77-81)【关键词】公路;红外光谱;SBS改性沥青;吸光度比【作者】李智;邵申申【作者单位】华南理工大学土木与交通学院,广东广州 510640;华南理工大学土木与交通学院,广东广州 510640【正文语种】中文【中图分类】U416.217SBS改性沥青是基质沥青中加入聚合物改性剂SBS混合而成,因具有良好的高低温性能、耐久性、抗老化性能,在沥青路面中得到广泛应用。
相关研究表明,SBS改性沥青路面使用性能主要由SBS剂量决定。
因此,确保SBS改性沥青的质量,SBS用量控制是关键。
为测试SBS改性沥青中的SBS含量,BahiaH.U.、SoheeKim等以溶解-过滤方法来分析改性沥青的含量,但这仅适用于特定的改性沥青,不能普及;LoucksD.A.采用凝胶渗透色谱技术GPC分析了SBS含量,但是制备沥青方法的不同会导致测试结果的不同。
目前,国内外对红外光谱的研究基本触及物质分析和应用化学的各个领域。
为了获得一种快速、简单、精度相对较高的能满足工程质量控制的改性沥青剂量检测方法,该文运用红外光谱法,通过分析基质沥青、SBS和SBS改性沥青的红外光谱图,研究特征峰的吸光度与SBS改性剂量之间的关系,建立基于傅里叶变换红外光谱(FTIR)技术的SBS掺量检测方法。
红外光谱在沥青分析中的应用及其发展趋势
程,因此叫做沥青的指纹识别。 李晓民等氏]开发了沥青指纹识别系统,该
系统包含指纹识别仪、识别软件,可以在3 mm 内确定沥青的品牌。邓长忠等使用沥青红外
中改性剂的含量仍存在不足,若采用核磁共振技 术,对改性沥青中不同环境H原子的丰度进行 测定,可对改性剂的嵌段比及结构进行更可靠的 分析,进一步提高改性剂含量检测的准确度。
模型,并对未知沥青样品的性能进行预测,取得 了一定效果。叶彦斐等炉]建立了 150余组样本
沥青生产厂家工艺参数的调整及时更新数据库, 的沥青红外光谱数据库,开发了红外分析与拓扑
确保沥青标准库来源的准确性,避免出现误判。
学建模相结合的沥青针入度快速检测方法。
2.2沥青中改性剂含量的测定 改性剂可以提高沥青的抗疲劳性能、温度敏
描未知沥青样品,并将其谱图与数据库中已知牌 嵌段比不同,在测试别未知沥青的产地、牌号等信息,从而达到快速
966 cm"吸收峰的情况;此外,一些不法厂家可 能会掺入一定量含有该特征基团的物质,企图蒙
识别沥青的目的。由于此过程类似于指纹识别过 混过关。所以,仅利用红外光谱来测定改性沥青
Uc=c,卩C = N 'c-H
1 675 - 1 500 1 475 - 1 300
UC-0,PC-N
1 300 ~ 1 000 1 000 〜650
红外光谱仪与沥青指纹识别快速检测技术分析 兰亚军
红外光谱仪与沥青指纹识别快速检测技术分析兰亚军摘要:随着科技的发展,红外光谱仪已经成为鉴别物质和分析物质结构的有效手段之一,指纹识别快速检测软件是其核心软件。
用于非有机化合物和无机化合物的定性及定量分析,它具有优良的特性,完善的功能,广泛的应用范围,以及不俗的发展前景等优点。
然后就沥青产品领域进行重点介绍,旨在进行红外光谱的制样与图谱分析。
关键词:红外光谱仪;指纹识别快速检测软件;优点一、红外光谱分析的简介红外光谱学是光谱学中研究电磁光谱红外部分的分支。
它包括了好多技术,到目前为止最常用的是吸收光谱学。
同所有分光镜技术一样,它可以被用来鉴别一种化合物和研究样品的成分。
对物质自发发射或受激发射的红外射线进行分光,可得到红外发射光谱,物质的红外发射光谱主要决定于物质的温度和化学组成;对物质所吸收的红外射线进行分光,可得到红外吸收光谱。
每种分子都有由其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。
分子的红外吸收光谱属于带状光谱。
原子也有红外发射和吸收光谱,但都是线状光谱。
红外光谱具有高度的特征性,不但可以用来研究分子的结构和化学键,而且广泛的用于表征和鉴别各种化学物质。
二、红外光谱仪的工作原理红外光谱分析技术引入到沥青鉴定中,分子中某个振动频率与红外光的某一频率的光相同时(振= 红外光),分子就吸收此频率光发生振动能级跃迁产生红外吸收光谱,根据红外谱图的红外特征吸收峰的位置、数目、相对强度和形状等参数,可以推断沥青的组成和各组成的含量。
红外吸收峰在波谱中的位置往往取决于各化学键的振动频率,键的振动频率与组成化学键的原子的质量和化学键的性质有关。
组成化学键的原子质量越小,键能越高,键长越短,振动所需能量越大,吸收峰所在的波数就越高。
三、沥青质量快速检测系统沥青指纹识别快速检测系统,由红外光谱仪、沥青指纹识别快速检测软件、系统服务器和数据库四部分组成。
在施工现场,红外光谱仪采集的数据经过软件分析后,数据和分析结果通过网络实时传输到系统服务器,可在网站上直接对沥青进行分析监控,若某项目沥青测结果异常,通过数据库比对,立刻反馈出结果以便对沥青分析和处理。
沥青老化机理分析
的老化样 和 改性沥 青 的老化样进 行对 比,两个样
在 老 化 相 同 的 时 间 后 ,S S老 化 样 在 波 数 为 B 342 5 m 处 并 没有 出现 特 征 峰 值 ,并 且 在 6 . 1c
波数 为 1 3 .4 c 的 地方 也 没 有 出现 太 明显 40 m 0 的峰值 ,从这 两个 地方可 以看 出 ,沥青 经过 改性 以后 的抗 热氧老 化 能力得 到提高 ,聚合物 的加 人 在老 化过 程阻止 了羰基 和 亚砜 基 的生成 。
有关 键 性 的意义 。
R O O H越来 越 多 ,它 会分 解成 新 的游离 基 参
与 反应 ,发 生所 谓 的支 化 反应 :
R O O H R O・+H ・ O () 3
沥 青 的老化 是一 个缓 慢 的 自氧化 过程 ,它 属 于游 离基 链式 反应 ,沥青 在 温度或 光 的作用 下 沥 青分 子 中活性 基 团裂解 产 生 自由基 ,该 活性 自由
2 O H— R O
R ・+R 0 ・+H 0 O O 2
() 4
基与 氧反 应进 一 步转化 成 氢 过 氧 化物 中间体 ( R
一
试验 证 明反应 ( ) ( ) 的活 化 能很低 ,很 1 2
0—0一H) 。一方 面氢 过 氧 化 物 中 间体 不 稳定
容 易进行 ,但 是过 氢化 物分 解反 应 ( ) ( ) 的 3 4 活化 能较 高 ,所 以沥青 的氧 化老 化氧 化 的速度 由 他们决 定 。 ( ) ( ) 式 中 的 R ・,H ・ 3 4 O O 以及
1 2 试 样 制备 .
度 和形状 等 参数 ,可 推断试 样 物质 中存在 哪些 基 团 ,确定 其分 子结 构 。将 以上 各试样 分别 溶 于二
石墨烯红外光谱波数范围选择
石墨烯红外光谱波数范围选择
石墨烯红外光谱波数范围的选择需要考虑多个因素。
首先,石墨烯是一种具有特殊结构的单层碳材料,它的光学特性与普通材料略有差异。
因此,在选择红外光谱的波数范围时,需要综合考虑石墨烯的特殊性质和实验要求。
石墨烯的红外光谱主要集中在高波数区域,一般在500 cm⁻¹到4000 cm⁻¹之间。
在这个波数范围内,可以观察到石墨烯的特征峰和各种振动模式。
例如,石墨烯的C-C键振动模式在1500 cm⁻¹左右,C-H键振动模式在2900 cm⁻¹附近。
选择适当的
波数范围可以更好地研究石墨烯的红外光谱特性。
另外,在选择红外光谱波数范围时,还需考虑实验装置和仪器的限制。
不同的光谱仪器对波数范围的覆盖有所不同,需要根据实验仪器的工作范围进行调整。
同时,实验中还需要充分考虑信噪比、分辨率以及所需数据的准确性与精度。
此外,石墨烯的红外光谱波数范围选择还需要根据具体实验目的和研究领域来确定。
不同的研究目标可能需关注不同波数区域的振动模式和特征峰,因此需要
根据具体实验需要进行选择。
例如,若研究石墨烯的官能团修饰,需要选取适当的波数范围以观察官能团引起的振动与吸收变化。
总结而言,选择石墨烯红外光谱的波数范围需考虑石墨烯的特殊结构和光学特性、实验装置的限制以及具体研究目的。
综合考虑这些因素,并根据实验要求进
行合适的波数范围选择,可以更好地进行石墨烯红外光谱的研究和分析。
改性沥青中SBS含量的测定红外光谱法标准》宣贯
5) 自然冷却至室温。
警告——如果剪切速度变化,可能会产生高温液体溅射现象,危害人身安全。
c) 标样数量
不同SBS含量的标样应不少于5个。
35
6 方法与步骤
6.1.3 标样测定 标样测定应按下列要求: a) 标样处理 1)将标样在恒温烘箱中加热至140 ℃~160 ℃,标样呈均 匀流动、粘稠液体状时,称取约2.0 g(称准至0.1 g)置 于100 mL盛样容器中; 2)待标样温度降至低于40 ℃后,加入量取的四氯化碳20 mL~30 mL;玻璃棒搅拌至没有块状物,密封,室温放 置2 h~3 h。
征吸收峰面积(S966和S1377),计算两峰面积的比值(A),
以比值(A)与SBS含量建立线性标准曲线。通过对待测改性沥
青试样进行红外光谱检测、两特征峰面积测量以及比值(A)的
计算,对照标准曲线,确定试样中SBS的含量。
21
原理说明
基质沥青 SBS
SBS改性沥青
22
5 仪具与材料要求
5.1 一般规定 ➢ 5.1.1 傅里叶变换红外光谱仪工作环境为温度25 ℃±3 ℃、湿 度≤65%。 ➢ 5.1.2 傅里叶变换红外光谱仪、天平、温度计等仪具应经国家 计量部门标定合格并在有效期内。
公路,一级公路,以及重型车比例大、超载较多的主干 线公路; ✓ 再次,SBS改性沥青加工工艺简单,成本低,来源广泛。
SBS改性沥青是目前公路工程中用量最大的改性沥青品种
3
SBS改性沥青介绍
2%SBS 含量的SBS 改性沥 青荧光显微镜图
6%SBS 含量的SBS 改性沥
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沥青红外光谱仪波数
沥青红外光谱仪波数
沥青是一种重要的道路材料,其物理性质和化学组成对道路的性能有
着至关重要的影响。
为了分析沥青的成分和结构,采用了一种叫做红
外光谱分析的方法。
而沥青红外光谱仪波数则是这种方法中的一个重
要指标。
红外光谱仪是试验室中常用的分析仪器,主要用于分析物质的结构和
成分。
可见光谱的波段不足以覆盖分子转动和振动的范围,而红外光
谱则可以检测到这些分子振动和转动的信号,因此红外光谱仪被广泛
应用于沥青成分和结构分析。
沥青红外光谱仪波数又叫做红外吸收峰,是指沥青吸收红外光谱时能
量转移所引起的振动能量。
不同成分的沥青在红外光谱上会有不同的
吸收峰,因此可以根据吸收峰的位置和强度来判断沥青的成分和结构。
以下是沥青红外光谱仪波数的一些常见指标:
1. 饱和烃:2900-2850 cm^-1
2. 烯烃:3080-3020 cm^-1
3. 芳香族化合物:3050-3000 cm^-1
4. 羧基:1720-1680 cm^-1
5. 羟基:3650-3200 cm^-1
6. 硫醇基:2550-2350 cm^-1
7. 硫化物:730-540 cm^-1
通过沥青红外光谱仪波数的分析,可以确定沥青的成分和结构,并进一步了解其在路面性能方面的表现。
同时,这些波数也可以帮助道路材料工程师做出更准确的优化设计,以提高道路的耐久性和平稳性。