2021高考数学 复数历年来高考习题荟萃(2020-2021)(含解析)(1)
高考数学压轴专题2020-2021备战高考《复数》解析含答案
【最新】数学《复数》期末复习知识要点一、选择题1.已知z C ∈,2z i z i ++-=,则z 对应的点Z 的轨迹为( ) A .椭圆 B .双曲线 C .抛物线 D .线段 【答案】D【解析】【分析】由复数模的几何意义,结合三角不等式可得出点Z 的轨迹.【详解】 2z i z i ++-=的几何意义为复数z 对应的点Z 到点()0,1A -和点()0,1B 的距离之和为2,即ZA ZB AB +=,另一方面,由三角不等式得ZA ZB AB +≥.当且仅当点Z 在线段AB 上时,等号成立.因此,点Z 的轨迹为线段.故选:D.【点睛】本题考查复数模的几何意义,将问题转化为距离之和并结合三角不等式求解是解题的关键,考查分析问题和解决问题的能力,属于中等题.2.已知复数z 的模为2,则z i -的最大值为:( )A .1B .2C .5D .3【答案】D【解析】因为z i -213z i ≤+-=+= ,所以最大值为3,选D.3.若复数z 满足232,z z i +=-其中i 为虚数单位,则z=A .1+2iB .1-2iC .12i -+D .12i --【答案】B【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.4.设i 是虚数单位,则()()3211i i -+等于( ) A .1i -B .1i -+C .1i +D .1i --【答案】B【解析】【分析】化简复数得到答案.【详解】 ()()3221(1)(1)2(1)1221i i i i i i i ii -----===-++ 故答案选B【点睛】本题考查了复数的计算,意在考查学生的计算能力.5.若1+是关于x 的实系数方程20x bx c ++=的一个复数根,则( ) A .2,3b c ==B .2,1b c ==-C .2,1b c =-=-D .2,3b c =-=【答案】D【解析】【分析】由题意,将根代入实系数方程x 2+bx +c =0整理后根据得数相等的充要条件得到关于实数a ,b的方程组100b c -++=⎧⎪⎨=⎪⎩,解方程得出a ,b 的值即可选出正确选项 【详解】由题意1是关于x 的实系数方程x 2+bx +c =0∴﹣2+b bi +c =0,即()10b c i -+++=∴100b c -++=⎧⎪⎨=⎪⎩,解得b =﹣2,c =3 故选:D .【点睛】本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题6.已知i 是虚数单位,则31i i +-=( ) A .1-2iB .2-iC .2+iD .1+2i 【答案】D【解析】 试题分析:根据题意,由于33124121112i i i i i i i i ++++=⨯==+--+,故可知选D. 考点:复数的运算点评:主要是考查了复数的除法运算,属于基础题.7.复数z 满足(2)36z i i +=-(i 为虚数单位),则复数z 的虚部为( )A .3B .3i -C .3iD .3- 【答案】D【解析】【分析】首先化简复数z ,然后结合复数的定义确定其虚部即可.【详解】 由题意可得:()()()()362361151322255i i i i z i i i i -----====--++-, 据此可知,复数z 的虚部为3-.本题选择D 选项.【点睛】复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.8.已知m 为实数,i 为虚数单位,若()24m m +- 0i >,则222m i i +=-( ) A .iB .1C .- iD .1- 【答案】A【解析】因为2(4)0m m i +->,所以2(4)m m i +-是实数,且20{240m m m >⇒=-=,故22(1)222(1)m i i i i i ++==--,应选答案A .9.若复数()234sin12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( ) A .6π B .3π C .23π D .3π或23π 【答案】B【解析】分析:由题意得到关于sin ,cos θθ的方程组,求解方程组结合题意即可求得三角函数值,由三角函数值即可确定角的大小.详解:若复数()23412z sin cos i θθ=-++为纯虚数,则: 234sin 012cos 0θθ⎧-=⎨+≠⎩,即:23sin 41cos 2θθ⎧=⎪⎪⎨⎪≠-⎪⎩, 结合()0,θπ∈,可知:sin 21cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,故3πθ=. 本题选择B 选项.点睛:本题主要考查纯虚数的概率,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.10.设3i z i +=,i 是虚数单位,则z 的虚部为( ) A .1B .-1C .3D .-3 【答案】D【解析】因为z=3i i+13i =-∴z 的虚部为-3,选D.11.复数z 满足(2)1i z i -=+,那么||z =( )A.5 B .15 C .25 D.5【答案】D【解析】【分析】 化简得到1355z i =+,再计算复数模得到答案. 【详解】 (2)1i z i -=+,∴1(1)(2)13255i i i i z i ++++===-,∴1355z i =+,∴||5z =. 故选:D .【点睛】本题考查了复数的运算,复数模,意在考查学生的计算能力.12.已知复数z 满足21zi z i +=-,则z =A .12i +B .12i -C .1i +D .1i -【答案】C【解析】【分析】设出复数z ,根据复数相等求得结果.【详解】设(),z a bi a b R =+∈,则z a bi =-, 故()()()()22221zi z a bi i a bi b a a b i i +=++-=-++-=-,故2121b a a b -+=⎧⎨-=-⎩,解得11a b =⎧⎨=⎩. 所以1z i =+.故选:C .【点睛】本题考查复数的运算,共轭复数的求解,属综合基础题.13.在复平面内,复数21i z i =+ (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】分析:首先求得复数z ,然后求解其共轭复数即可. 详解:由复数的运算法则有:()()()()2121211112i i i i i z i i i i --====+++-, 则1z i =-,其对应的点()1,1-位于第四象限.本题选择D 选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.14.若复数1a i z i +=-,且3·0z i >,则实数a 的值等于( ) A .1B .-1C .12D .12- 【答案】A【解析】【分析】由3·0z i >可判定3·z i 为实数,利用复数代数形式的乘除运算化简复数z ,再由实部为0,且虚部不为0列式求解即可.【详解】()()()()()i 1i 11i i 1i 1i 1i 2a a a a z ++-+++===--+Q , 所以3·z i =()()()()341i 1i 1i 122a a a a -++--++=,因为3·0z i >,所以3·z i 为实数,102a --= 可得1a =,1a =时3,?10z i =>,符合题意,故选A. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.15.复数1122i i ++的虚部为( ) A .110 B .110- C .310 D .310- 【答案】A【解析】【分析】 化简复数111122510i i i +=++,结合复数的概念,即可求解复数的虚部,得到答案,. 【详解】 由题意,复数()()1121112212122510i i i i i i i -+=+=+++-, 所以复数1122i i ++的虚部为110. 故选:A.【点睛】本题主要考查了复数的运算法则,以及复数的概念,其中解答中熟记复数的运算法则,准确化简是解答的关键,着重考查了推理与计算能力,属于基础题.16.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( )A .1B .iC .1-D .i -【答案】A()12i z i +=22(1)112i i i z i i -⇒===++,所以z 的虚部是1,选A. 17.在复平面内,复数z 满足()112z i i +=-,则z 对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】 ∵()112z i i +=-,∴()()()()221211212213131111222i i i i i i i z i i i i i -----+--=====--++--,∴1322z i =-+,故对应的点在第二象限.故选B .18.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v ( )A .-16B .0C .16D .32【答案】B【解析】【分析】 先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点. 由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r ,∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r .故选B【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.已知方程()()2440x i x ai a R ++++=∈有实根b ,且z a bi =+,则复数z 等于( )A .22i -B .22i +C .22i -+D .22i --【答案】A【详解】由b 是方程()()2440x i x ai a R ++++=∈的根可得()2440b i b ai ++++=, 整理可得:()()2440b a i b b ++++=, 所以20440b a b b +=⎧⎨++=⎩,解得22a b =⎧⎨=-⎩,所以22z i =-,故选A .20.复数321i i -(i 为虚数单位)的共轭复数是 ( ) A .2155i -+ B .2133i + C .2155i -- D .2133i - 【答案】C【解析】 试题分析:由题;3(21)22121(21)(21)555i i i i i i i i -+-===-+--+-,则共轭复数为:2155i --. 考点:复数的运算及共轭复数的概念.。
高考数学压轴专题2020-2021备战高考《复数》真题汇编及答案解析
【最新】数学《复数》试卷含答案(1)一、选择题1.已知复数z 满足121iz i i+⋅=--(其中z 为z 的共轭复数),则z 的值为( )A .1B .2C D 【答案】D 【解析】 【分析】按照复数的运算法则先求出z ,再写出z ,进而求出z . 【详解】21(1)21(1)(1)2i i i i i i i ++===--+Q , 1222(2)121i iz i i z i z i i i i i+-∴⋅=-⇒⋅=-⇒==--=---,12||z i z ∴=-+⇒==故选:D 【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.2.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅= A .25- B .25C .7-D .7【答案】A 【解析】 【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可 【详解】Q 复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A 【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题3.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( )A .2B .3C .2D .3【答案】A 【解析】()11z i i i =-=+,故2z =,故选A.4.已知复数(2)z i i =-,其中i 是虚数单位,则z 的模z = ( ) A .3 B .5C .3D .5【答案】B 【解析】22(2)22(1)5z i i i i =-=-=+-=,故选B .5.在复平面内复数83i +、45i -+对应的点分别为A 、B ,若复数z 对应的点C 为线段AB 的中点,z 为复数z 的共轭复数,则z z ⋅的值为( ) A .61 B .13 C .20 D .10【答案】C 【解析】由题意知点、的坐标为、,则点的坐标为,则,从而,选C.6.设i 是虚数单位,则()()3211i i -+等于()A .1i -B .1i -+C .1i +D .1i --【答案】B 【解析】 【分析】 化简复数得到答案. 【详解】()()3221(1)(1)2(1)1221i i i i i i i ii -----===-++故答案选B 【点睛】本题考查了复数的计算,意在考查学生的计算能力.7.若1z i =+,则31izz =+( )A .i -B .iC .1-D .1【答案】B 【解析】因为1z i =+,所以1z i =- ,()()3112,1izz i i i zz =+-==+,故选B.8.若1+是关于x 的实系数方程20x bx c ++=的一个复数根,则( ) A .2,3b c == B .2,1b c ==-C .2,1b c =-=-D .2,3b c =-=【答案】D 【解析】 【分析】由题意,将根代入实系数方程x 2+bx +c =0整理后根据得数相等的充要条件得到关于实数a ,b的方程组10b c -++=⎧⎪⎨=⎪⎩,解方程得出a ,b 的值即可选出正确选项【详解】由题意1是关于x 的实系数方程x 2+bx +c =0∴﹣2+b bi +c =0,即()10b c i -+++=∴10b c -++=⎧⎪⎨=⎪⎩,解得b =﹣2,c =3 故选:D . 【点睛】本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题9.已知复数z,则|z |=( ) A .14 B .12C .1D .2【答案】B 【解析】 【分析】 【详解】 解:因为===,因此|z |=1210.已知i 是虚数单位,则复数242iz i-=+的共轭复数在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】先将复数化为代数形式,再根据共轭复数的概念确定对应点,最后根据对应点坐标确定象限. 【详解】解:∵()()()()242232424242105i i i z i i i i ---===-++-, ∴32105z i =+, ∴复数z 的共轭复数在复平面内对应的点的坐标为(32105,),所在的象限为第一象限. 故选:A .点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi11.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将2i e π表示的复数记为z ,则(12)z i +的值为( ) A .2i -+ B .2i -- C .2i + D .2i -【答案】A 【解析】 【分析】根据欧拉公式求出2cos sin22iz e i i πππ==+=,再计算(12)z i +的值.【详解】∵2cossin22iz e i i πππ==+=,∴(12)(12)2z i i i i +=+=-+. 故选:A. 【点睛】此题考查复数的基本运算,关键在于根据题意求出z .12.若复数z 满足1(120)z i -=,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】化简复数,求得24z i =+,得到复数在复平面对应点的坐标,即可求解. 【详解】由题意,复数z 满足1(120)z i -=,可得()()()10121024121212i z i i i i +===+--+, 所以复数z 在复平面内对应点的坐标为(2,4)位于第一象限 故选:A. 【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.13.如果复数z 满足336z i z i ++-=,那么1z i ++的最小值是( )A .1 BC .2D 【答案】A 【解析】分析:先根据已知336z i z i ++-=找到复数z 对应的点Z 的轨迹,再利用数形结合求1z i ++的最小值.详解:设复数z 对应的点Z(x,y),6=,它表示点Z 到A (0,-3)和B (0,3)的距离和为6, 所以点Z 的轨迹为线段AB,因为1z i ++Z 到点C (-1,-1)的距离, 所以当点Z 在点D(0,-1)时,它和点C (-1,-1)的距离最小,且这个最小距离为1. 故答案为:A点睛:(1)本题主要考查复数的几何意义,意在考查学生对这些知识的掌握水平和数形结合的思想方法.(2)z a bi ++表示复数z 对应的点到(-a,-b )的距离,类似这样的结论还有一些,大家要结合直角坐标理解它的几何意义,并做到能利用它解题.14.已知2a ib i i+=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1B .1C .2D .3【解析】 【分析】利用复数除法运算法则化简原式可得2ai b i -=+,再利用复数相等列方程求出,a b 的值,从而可得结果. 【详解】因为22222a i ai i ai b i i i+--==-=+- ,,a b ∈R , 所以2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b =,故选B.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.15.已知复数z 满足(1)2i z i -=,i 为虚数单位,则z 等于 A .1i - B .1i +C .1122i - D .1122i + 【答案】B 【解析】 【分析】 由题意可得21z i=-,根据复数的除法运算即可. 【详解】由()12i z i -=,可得22(1)112i z i i +===+-, 故选B. 【点睛】本题主要考查了复数的除法运算,复数的模,属于中档题.16.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.复数321i i -(i 为虚数单位)的共轭复数是 ( )A .2155i -+ B .2133i + C .2155i -- D .2133i - 【答案】C 【解析】试题分析:由题;3(21)22121(21)(21)555i i i i i i i i -+-===-+--+-,则共轭复数为:2155i --. 考点:复数的运算及共轭复数的概念.18.复数z 满足|||3|z i z i -=+,则||z ( ) A .恒等于1B .最大值为1,无最小值C .最小值为1,无最大值D .无最大值,也无最小值【答案】C 【解析】 【分析】设复数z x yi =+,其中x ,y R ∈,由题意求出1y =-,再计算||z 的值. 【详解】解:设复数z x yi =+,其中x ,y R ∈, 由|||3|z i z i -=+,得|(1)||(3)|x y i x y i +-=++,2222(1)(3)x y x y ∴+-=++, 解得1y =-;||1z ∴=,即||z 有最小值为1,没有最大值.【点睛】本题考查了复数的概念与应用问题,是基础题.19.已知复数为纯虚数(为虚数单位),则实数( )A .-1B .1C .0D .2【答案】B 【解析】 【分析】 化简得到,根据纯虚数概念计算得到答案. 【详解】为纯虚数,故且,即.故选:. 【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.20.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z=( ) A .i B .i -C .2iD .2i -【答案】A 【解析】因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-.。
高中数学《复数》高考真题汇总(详解)——精品文档
高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。
高考数学压轴专题2020-2021备战高考《复数》单元汇编附答案
数学《复数》高考复习知识点一、选择题1.已知复数z 满足11212i i z+=+(i 为虚数单位),则z 的虚部为( ) A .4 B .4i C .4- D .4i -【答案】C 【解析】112i 11420i 34i 12i 5z ++-===-+ ,所以z 的虚部为4-,选C. 2.若1z i =+,则31i zz =+( ) A .i -B .iC .1-D .1 【答案】B【解析】因为1z i =+,所以1z i =- ,()()3112,1i zz i i i zz =+-==+,故选B.3.在复平面内,若复数z 满足|z +1|=|1+i z |,则z 在复平面内对应点的轨迹是( ) A .直线B .圆C .椭圆D .抛物线【答案】A【解析】【分析】设()z x yi x y R =+∈、,代入11z iz +=+,求模后整理得z 在复平面内对应点的轨迹是直线.【详解】设()z x yi x y R =+∈、,1x yi ++=,()11iz i x yi +=++=y x =-,所以复数z x yi =+对应点的轨迹为直线,故选A.【点睛】本题考查复数的代数表示法及其几何意义,考查复数模的求法,动点的轨迹问题,是基础题.4.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅=A .25-B .25C .7-D .7【答案】A【解析】【分析】 根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可【详解】Q 复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题5.a 为正实数,i 为虚数单位,2a i i+=,则a=( )A .2B C D .1【答案】B【解析】【分析】【详解】||220,a i a a a i+==∴=>∴=Q ,选B.6.复数21i z i+=-,i 是虚数单位,则下列结论正确的是A .z =B .z 的共轭复数为31+22iC .z 的实部与虚部之和为1D .z 在复平面内的对应点位于第一象限 【答案】D【解析】【分析】 利用复数的四则运算,求得1322z i =+,在根据复数的模,复数与共轭复数的概念等即可得到结论.【详解】由题意()()()()22121313111122i i i i z i i i i i ++++====+--+-,则2z ==,z 的共轭复数为1322z i =-, 复数z 的实部与虚部之和为2,z 在复平面内对应点位于第一象限,故选D .【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为a bi -.7.已知i 是虚数单位,则131i i +=+( ) A .2i -B .2i +C .2i -+D .2i -- 【答案】B【解析】【分析】利用复数的除法运算计算复数的值即可.【详解】由复数的运算法则有: 13(13)(1)422(1)(11)2i i i i i i i i ++-+===++-+. 故选B .【点睛】对于复数的乘法,类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可;对于复数的除法,关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.8.已知复数z ,则|z |=( ) A .14 B .12 C .1 D .2【答案】B 【解析】【分析】【详解】解:因为===,因此|z|=129.欧拉公式cos sinixe x i x=+(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,4i ie e ππ表示的复数在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【分析】根据欧拉公式计算4i ie e ππ,再根据复数几何意义确定象限.【详解】因为4224422iie cos isinicos isineππππππ+===-++,所以对应点(,在第二象限,选B.【点睛】本题考查复数除法以及复数几何意义,考查基本分析求解能力,属基本题.10.复数z满足()1|1|z i i+=-,则复数z在复平面内的对应点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】根据复数的运算法则,化简22z i=-,再结合复数的几何表示方法,即可求解.【详解】由题意,复数z 满足()1|1|z i i +=-,可得)()()1|1|11122i i z i i i --===-++-,则复数z 在复平面内对应的点为位于第四象限. 故选:D .【点睛】 本题主要考查了复数的几何表示方法,以及复数的除法运算,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力.11.若复数z 的虚部小于0,|z |=4z z +=,则iz =( )A .13i +B .2i +C .12i +D .12i -【答案】C【解析】【分析】 根据4z z +=可得()2z mi m =+∈R ,结合模长关系列方程,根据虚部小于0即可得解.【详解】由4z z +=,得()2z mi m =+∈R ,因为||z ==1m =±.又z 的虚部小于0,所以2z i =-,12iz i =+.故选:C【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解.12.设(1)1i x yi -=+,其中,x y 是实数,则x yi +在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】 由()11i x yi -=+,其中,x y 是实数,得:11,1x x x y y ==⎧⎧∴⎨⎨-==-⎩⎩,所以x yi +在复平面内所对应的点位于第四象限.本题选择D 选项.13.设3i z i +=,i 是虚数单位,则z 的虚部为( ) A .1B .-1C .3D .-3【答案】D【解析】因为z=3i i+13i =-∴z 的虚部为-3,选D.14.若复数z 满足1(120)z i -=,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】化简复数,求得24z i =+,得到复数在复平面对应点的坐标,即可求解.【详解】 由题意,复数z 满足1(120)z i -=,可得()()()10121024121212i z i i i i +===+--+, 所以复数z 在复平面内对应点的坐标为(2,4)位于第一象限故选:A.【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.15.设复数z 满足()13i z i +=+,则z =( )AB .2C .D 【答案】D【解析】分析:先根据复数除法得z ,再根据复数的模求结果.详解:因为()13i z i +=+,所以31(3)(1)212i z i i i i +==+-=-+,因此z =选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi16.在复平面内,复数121i z i -=+对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】试题分析:1213122i i i -=--+在复平面内所对应的点坐标为,位于第三象限,故选C . 考点:复数的代数运算及几何意义.17.如果复数z 满足336z i z i ++-=,那么1z i ++的最小值是( )A .1B 2C .2D 5【答案】A【解析】 分析:先根据已知336z i z i ++-=找到复数z 对应的点Z 的轨迹,再利用数形结合求 1z i ++的最小值.详解:设复数z 对应的点Z(x,y),2222(3)(3)6x y x y +++-=,它表示点Z 到A (0,-3)和B (0,3)的距离和为6,所以点Z 的轨迹为线段AB,因为1z i ++22(1)(1)x y +++Z 到点C (-1,-1)的距离,所以当点Z 在点D(0,-1)时,它和点C (-1,-1)的距离最小,且这个最小距离为1. 故答案为:A点睛:(1)本题主要考查复数的几何意义,意在考查学生对这些知识的掌握水平和数形结合的思想方法.(2)z a bi ++表示复数z 对应的点到(-a,-b )的距离,类似这样的结论还有一些,大家要结合直角坐标理解它的几何意义,并做到能利用它解题.18.已知复数z 满足(1)2i z i -=,i 为虚数单位,则z 等于A .1i -B .1i +C .1122i -D .1122i + 【答案】B【解析】【分析】 由题意可得21z i =-,根据复数的除法运算即可. 【详解】由()12i z i -=,可得22(1)112i z i i +===+-, 故选B.【点睛】本题主要考查了复数的除法运算,复数的模,属于中档题.19.在复平面内,复数z 满足()112z i i +=-,则z 对应的点位于 ( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】 ∵()112z i i +=-,∴()()()()221211212213131111222i i i i i i i z i i i i i -----+--=====--++--,∴1322z i =-+,故对应的点在第二象限.故选B .20.复数z 满足|||3|z i z i -=+,则||z ( )A .恒等于1B .最大值为1,无最小值C .最小值为1,无最大值D .无最大值,也无最小值【答案】C【解析】【分析】设复数z x yi =+,其中x ,y R ∈,由题意求出1y =-,再计算||z 的值.【详解】解:设复数z x yi =+,其中x ,y R ∈,由|||3|z i z i -=+,得|(1)||(3)|x y i x y i +-=++, 2222(1)(3)x y x y ∴+-=++,解得1y =-;||1z ∴=,即||z 有最小值为1,没有最大值.故选:C .【点睛】本题考查了复数的概念与应用问题,是基础题.。
2021年高考数学真题逐题解析:复数的两大热点:复数的概念与复数的运算(解析)
第2题复数的两大热点:复数的概念与复数的运算一、原题呈现【原题】已知2i z ,则 i z z ()A.62iB.42iC.62iD.42i【答案】C 【解析】解法一:因为2i z ,所以2i z ,所以2i 2i 22i =4+4i 2i 2i 62iz z 故选C.解法二:因为2i z ,2i i=5+2i+1=6+2i z z z z ,故选C.【就题论题】去年新高考试卷复数考查的是复数的除法运算,考查内容单一,今年把共轭复数与复数的运算结合在一起考查,背景有所创新,为降低难度,把除法运算改为乘法运算,可见新高考试卷入手依然比较容易.二、考题揭秘【命题意图】本题考查共轭复数及复数的乘法运算,考查数学运算与数学抽象的核心素养.难度:容易.【考情分析】复数是高考每年必考知识点,一般以容易题面目呈现,位于选择题的前3题的位置上,考查热点一是复数的概念与复数的几何意义,如复数的模、共轭复数、纯虚数、复数的几何意义等,二是复数的加减乘除运算.【得分秘籍】1.解决复数概念问题及复数的几何意义应注意的问题(1)复数的分类,复数的相等,复数的模,共轭复数的概念都与复数的实部与虚部有关,所以解答与复数概念有关的问题时,需把所给复数化为代数形式,即a +b i(a ,b ∈R )的形式,再根据题意求解.(2)(其中a ,b ∈R ),|z |表示复数z 对应的点与原点的距离.|z 1-z 2|表示两点的距离,即表示复数z 1与z 2对应的点的距离.2.求解复数运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.(3)复数的运算与复数概念的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合相关定义解答.(4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合复数的几何意义解答.(5)复数的综合运算.分别运用复数的乘法、除法法则进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.【易错警示】(1)对于复数a +b i,如果a ,b ∈C (或没有明确界定a ,b ∈R ),则不可想当然地判定a ,b ∈R .(2)易误认为y 轴上的点与纯虚数一一对应(注意原点除外).(3)对于a +b i(a ,b ∈R )为纯虚数的充要条件,只注意了a =0而漏掉了b ≠0.(4)进行复数的乘法与除法运算,误认为2i 1 ,导致运算错误(5)设i z a b (a ,b ∈R ),注意22i,z a b zz a b ,不要出现i,z a b zz 的错误三、以例及类(以下所选试题均来自新高考Ⅰ卷地区2020年1-6月模拟试卷)一、单选题1.(2021广东省珠海市第二中学高三6月热身)若 1i1ia z a R 是纯虚数,2z 满足 21+15z a z ,则复数2z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【解析】1()(1)1(1)1(1)(1)22a i a i i a a i z i i i,因为复数1()1z a ia R i为纯虚数,102a ,(1)02a ,解得1a ,所以1z i 因为 21+15z a z ,所以 225z i ,即25252222i z i i i i,所以复数2z 在复平面内对应的点为 2,1位于第一象限,故选A.2.(2021江苏省南京师范大学《数学之友》高三下学期一模)设复数z 满足234z i (i 是虚数单位),则z 等于()A B .5C D .7【答案】A【解析】设(,)z a bi a b R ,则2222()2z a bi a b abi ,而234z i ,于是2232a b ab ,则225a b ,所以z故选A3.(2021江苏省南通学科基地高三下学期高考全真模拟(四))已知i 是虚数单位,复数3(0)12a iz a i,若3z ,则a 的值为()A .1B .3C .6D .9【答案】C 【解析】复数3(3)(12)12(12)(12)a i a i i z i i i632632555a i ai a ai∵3z ,3 ,化为236a ,0a ,解得6a ,故选C.4.(2021湖南省衡阳市第八中学高三下学期考前预测(二))已知复数2i 是关于x 的方程 20,x px q p q R 的一个根,则pi q ()A .25B .5C D .41【答案】C【解析】因为复数2i 是关于x 的方程20x px q 的一个根,所以 2220i p i q ,所以423pi q i p,所以4,23p q p ,所以4,5p q ,则45pi q i ,故选C.5.(2021江苏省扬州中学高三下学期最后一模)已知 234z i i ,其中i 为虚数单位,记z 为z 的共轭复数,则z ()A .293B C .295D .553【答案】B【解析】由 234z i i ,34342(()(2)105252)(2)i i i i i iz i i,2z i ,所以z ,故选B6.(2021山东省淄博市高三三模)已知z C ,且1z i ,i 为虚数单位,则1z 的最大值是()A .2B1C1D.【答案】B【解析】由三角不等式可得1111z z i i z i i ,即1z1 .故选B.7.(2021福建省厦门市高三5月二模)已知i 为虚数单位, 34,a i bi a b R ,则a bi ()A .5B .7C .9D .25【答案】A【解析】因为 34,a i bi a b R ,所以4,3a b ,所以435a bi i ,故选A.8.(2021湖南省长沙市雅礼中学高三下学期高考热身训练)已知复数满足z i z i ,则2z i 的最小值为()A .1B .2C .3D .4【答案】B【解析】设z a bi ,则(1)z i a b i ,(1)z i a b i ,因为z i z i ,即2222(1)(1)a b a b ,整理得b =0,所以z a ,所以22z i a i 当a =0时,2z i 最小值为2.故选B9.(2021福建省厦门市双十中学高三高考热身)已知复数z 对应的向量为OZ (O 为坐标原点),OZ与实轴正向的夹角为120 ,且复数z 的模为2,则复数z 为()A.1 B .2C.1 D.1 【答案】D【解析】设复数z x yi ,∵向量OZ与实轴正向的夹角为120 且复数z 的模为2,∴1cos12021||2x OZ,sin1202|2|y OZ ,∴1z .故选D.10.(2021湖北省黄冈中学高三下学期5月适应性考试)已知z 是复数z 的共轭复数,若2z z 在复平面上的对应点位于第一象限,则z 的对应点位于()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】设z a bi (,a b R )则z a bi ,23z z a bi ,由2z z 在复平面上的对应点位于第一象限,所以30,0a b ,所以0,0a b ,所以z 的对应点位于第四象限,故选D.11.(2021广东省高州市高三二模)已知复数z 满足:3i 12i i z (其中i 为虚数单位),复数z 的虚部为()A .45i B .4i 5C .45D .45【答案】C【解析】32241212555i i i z i i i i i i ,∴2455z i ,∴复数z 的虚部为45.故选C .12.(2021河北省沧州市高三三模)设复数z 满足 22z i i ,则z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】因为 2223434222555i i i z i i i i,所以z 在复平面内对应的点位于第四象限.故选D.13.(2021河北省唐山市高三三模)已知i 是虚数单位,a R ,若复数12a ii为纯虚数,则a ()A .2B .2C .12D .12【答案】A【解析】由题意122212121214a i i a i a i ai i i i(2)(21)221555a a i a a i ,又由12a i i 为纯虚数,所以2052105a a ,解得2a .故选A.二、多选题14.(2021江苏省泰州市高三下学期考前练笔)设z 为复数,在复平面内z 、z 对应的点分别为P 、Q ,坐标原点为O ,则下列命题中正确的有()A .当z 为纯虚数时,,,P O Q 三点共线B .当1z i 时,POQ △为等腰直角三角形C .对任意复数z ,OP OQD .当z 为实数时,OP OQ【答案】ABD【解析】设(,)z a bi a b R ,则z a bi ,对A :当z 为纯虚数时, 0z bi b ,z bi 对应的点分别为(0,)P b 、(0,)Q b ,,,O P Q 均在y 轴上,所以,,P O Q 三点共线,故A 正确;对B:当1z i 时,1z i ,所以(1,1)P ,(1,1)Q ,所以||||OP OQ,而||2PQ ,所以222||||||OP OQ PQ ,所以POQ △为等腰直角三角形,故B 正确;对C :(,)OP a b ,(,)OQ a b ,当0b 时,OP OQ,故C 错误;对D :当z 为实数时,z z a ,此时(,0)OP OQ a,故D 正确.故选ABD15.(2021湖南省长沙市雅礼中学高三下学期二模)设12,z z 是复数,则下列命题中的真命题是()A .若120z z ,则12z zB .若12z z ,则12z z C .若12 z z ,则1122z z z z D .若12 z z ,则2212z z【解析】对于A ,若120z z ,则12120,z z z z ,所以12z z 为真;对于B ,若12z z ,则1z 和2z 互为共轭复数,所以12z z 为真;对于C ,设1112221122i,i,,,,z a b z a b a b a b R ,若12 z z ,则,即22221122a b a b ,所以222211112222z z a b a b z z ,所以1122z z z z 为真;对于D ,若121,i z z ,则12 z z ,而22121,1z z ,所以2212z z 为假.故选ABC 16.(2021江苏省南通市高三下学期5月四模)下列结论正确的是()A .若复数z 满足0z z ,则z 为纯虚数B .若复数z 满足1R z,则z R C .若复数z 满足20z ³,则z RD .若复数1z ,2z 满足2221 0z z ,则120z z 【答案】BC【解析】对于A 选项,设复数0z ,0z z 满足,z 不为纯虚数,故A 选项错误;对于B 选项,设复数i z a b ,a b R ,则2211i i a b z a b a bR ,所以0b ,即z R ,故B 选项正确;对于C 选项,设复数i z a b ,a b R ,则 2222i 2i 0z a b a b ab ,所以0ab 且220a b ,所以0b ,即z R ,故C 选项正确;对于D 选项,设复数11z ,2i z ,所以2221 0z z ,但120z z 不成立,故D 选项错误.故选BC17.(2021山东省临沂市高三二模)1487年,瑞士数学家欧拉发现了复指数函数和三角函数的关系,并写下公式i e cos isin ,这个公式在复变函数中有非常重要的地位,即著名的“欧拉公式”,被誉为“数学中的天桥”,据欧拉公式,则()A .πi 2e iB .πi4e1C.3112D .πi πi 44πeecos 42【解析】因为i ecos isin,所以πi 2e cos+isin i 22,故A正确πi 4e cos+isin +4422,πi 4e 1,故B正确3211111122222,故C 错误πi πi 44cos isin cos isin e e4444cos 224,故D 正确故选ABD 三、填空题18.(2021广东省深圳市高三下学期第五次统考)设复数1z ,2z 在复平面内的对应点关于虚轴对称,且11z i (i 为虚数单位),则212z z ______.【解析】因为复数1z ,2z 在复平面内的对应点关于虚轴对称,且11z i ,所以21z i .所以22121113z z i i i 19.(2021山东省济南市高三一模)已知复数2iz i(其中i 为虚数单位),则z 的值为___________.【解析】由题设,知:221i i z i i.20.(2021河北省保定市高三二模)设a 、b 为实数,若复数121i i a bi ,则ab___________.【答案】13【解析】因为121ii a bi ,则121121313111222i i i i a bi i i i i ,所以,12a,32b ,因此,13a b .。
历年(2019-2024)全国高考数学真题分类(复数)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(复数)汇编考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .3102.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 .考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1B .0 ∙C .1D .22.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .22.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10iB .2iC .10D .23.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i -B .iC .0D .16.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1-B .1-C .13-D .13-8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2-B .1-C .1D .29.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1C D .22.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .53.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1B .5C .7D .255.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1CD .26.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .27.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= . 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .19.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 . 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ). A .第一象限B .第二象限C .第三象限D .第四象限2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i--在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ). A .12i +B .2i -+C .12i -D .2i --5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=参考答案考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .310【答案】D【详细分析】利用复数的除法运算求出z 即可. 【答案详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【名师点评】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 2.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 . 【答案】3【详细分析】根据复数的运算法则,化简即可求得实部的值. 【答案详解】∵复数()()12z i i =+-∴2223z i i i i =-+-=+ ∴复数的实部为3.故答案为:3.【名师点评】本题考查复数的基本概念,是基础题.考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1 B .0 ∙ C .1 D .2【答案】C【详细分析】根据复数的代数运算以及复数相等即可解出.【答案详解】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =. 故选:C.2.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==【详细分析】利用复数相等的条件可求,a b .【答案详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=, 故选:B.3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==- B .1,1a b == C .1,1a b =-= D .1,1a b =-=-【答案】A【详细分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.【答案详解】因为,a b ÎR ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-. 故选:A.4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==- B .1,2a b =-= C .1,2a b == D .1,2a b =-=-【答案】A【详细分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可 【答案详解】12z i =-12i (12i)(1)(22)i z az b a b a b a ++=-+++=+++-由0z az b ++=,结合复数相等的充要条件为实部、虚部对应相等,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩ 故选:A5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .2【详细分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【答案详解】依题意得,z =,故22i 2zz =-=. 故选:D2.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10i B .2i C .10 D .2【答案】A【详细分析】结合共轭复数与复数的基本运算直接求解. 【答案详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A3.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-. 故选:D4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +【答案】B【详细分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可. 【答案详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+. 故选:B.5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i - B .i C .0D .1【答案】A【详细分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出. 【答案详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.6.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1- B .1- C .13-D .13-【答案】C【详细分析】由共轭复数的概念及复数的运算即可得解.【答案详解】1(1113 4.z zz =-=--=+=113z zz ==-- 故选 :C8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2- B .1- C .1 D .2【答案】D【详细分析】利用复数的除法可求z ,从而可求z z +.【答案详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D9.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +【答案】C【详细分析】利用复数的乘法和共轭复数的定义可求得结果.【答案详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C.考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1CD .2【答案】C【详细分析】由复数模的计算公式直接计算即可.【答案详解】若1i z =--,则z ==故选:C.2.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .5【答案】C【详细分析】由题意首先化简232i 2i ++,然后计算其模即可. 【答案详解】由题意可得232i 2i 212i 12i ++=--=-,则232i 2i 12i ++=-=故选:C.3.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1 B .5C .7D .25【答案】B【详细分析】利用复数四则运算,先求出z ,再计算复数的模.【答案详解】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故|5|z ==.故选:B .5.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1C D .2【答案】C【详细分析】先根据2i 1=-将z 化简,再根据复数的模的计算公式即可求出.【答案详解】因为31+2i i 1+2i i 1i z =+=-=+,所以 z ==. 故选:C .【名师点评】本题主要考查复数的模的计算公式的应用,属于容易题.6.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .2【答案】D【详细分析】由题意首先求得22z z -的值,然后计算其模即可.【答案详解】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.【名师点评】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.7.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= .【答案】【详细分析】方法一:令1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,根据复数的相等可求得2ac bd +=-,代入复数模长的公式中即可得到结果.方法二:设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+, 根据复数的几何意义及复数的模,判定平行四边形12OZ PZ 为菱形,12OZ OZ 2OP ===,进而根据复数的减法的几何意义用几何方法计算12z z -. 【答案详解】方法一:设1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,12()z z a c b d i i ∴+=+++=+,1a cb d ⎧+=⎪∴⎨+=⎪⎩12||=||=2z z ,所以224a b +=,224cd +=, 222222()()2()4a c b d a c b d ac bd ∴+++=+++++=2ac bd ∴+=-12()()z z a c b d i ∴-=-+-===.故答案为:方法二:如图所示,设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+,由已知122OZ OZ OP ====,∴平行四边形12OZ PZ 为菱形,且12,OPZ OPZ 都是正三角形,∴12Z 120OZ ∠=︒,222221212121||||||2||||cos12022222()122Z Z OZ OZ OZ OZ =+-︒=+-⋅⋅⋅-=∴1212z z Z Z -==.【名师点评】方法一:本题考查复数模长的求解,涉及到复数相等的应用;考查学生的数学运算求解能力,是一道中档题.方法二:关键是利用复数及其运算的几何意义,转化为几何问题求解 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .1【答案】C【详细分析】先由复数的除法运算(分母实数化),求得z ,再求z .【答案详解】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z =,故选C . 【名师点评】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解. 9.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 .【详细分析】先化简复数,再利用复数模的定义求所给复数的模.【答案详解】5(5)(1)231(1)(1)i i i i i i i ---==-=++-. 【名师点评】本题考查了复数模的运算,是基础题. 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .【答案】2【详细分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【答案详解】1|||1|2z i ==+.【名师点评】本题考查了复数模的运算,属于简单题.考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【详细分析】根据复数的乘法结合复数的几何意义详细分析判断.【答案详解】因为()()213i 3i 38i 3i 68i +-=+-=+,则所求复数对应的点为()6,8,位于第一象限.故选:A.2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-.故选:D3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i --在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详细分析】利用复数的除法可化简2i13i --,从而可求对应的点的位置. 【答案详解】()()2i 13i 2i 55i 1i 13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫⎪⎝⎭,该点在第一象限,故选:A.4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ).A .12i +B .2i -+C .12i -D .2i -- 【答案】B【详细分析】先根据复数几何意义得z ,再根据复数乘法法则得结果.【答案详解】由题意得12z i =+,2iz i ∴=-.故选:B.【名师点评】本题考查复数几何意义以及复数乘法法则,考查基本详细分析求解能力,属基础题. 5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【详细分析】先求出共轭复数再判断结果.【答案详解】由32,z i =-+得32,z i =--则32,z i =--对应点(‐3,‐2)位于第三象限.故选C .【名师点评】本题考点为共轭复数,为基础题目.6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x += 【答案】C【详细分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【答案详解】,(1),z x yi z i x y i =+-=+-1,z i -==则22(1)1y x +-=.故选C .【名师点评】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.。
高考数学压轴专题2020-2021备战高考《复数》知识点总复习含答案解析
【最新】数学《复数》高考知识点一、选择题1.设3443i z i-=+,()21f x x x =-+,则()f z =( )A .iB .i -C .1i -+D .1i +【答案】A 【解析】 【分析】利用复数代数形式的乘除运算化简,代入函数解析式求解. 【详解】 解:3443iz i-=+Q ()()()()344334434343i i i z i i i i ---∴===-++- ()21f x x x =-+Q()()()21f z i i i ∴=---+=故选:A 【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.2.已知复数21iz =-+,则( ) A .2z =B .z 的实部为1C .z 的虚部为1-D .z 的共轭复数为1i +【答案】C 【解析】分析:由题意首先化简复数z ,然后结合z 的值逐一考查所给的选项即可确定正确的说法. 详解:由复数的运算法则可得:()()()()21211112i i z i i i ----===---+--,则z =,选项A 错误;z 的实部为1-,选项B 错误; z 的虚部为1-,选项C 正确; z 的共轭复数为1zi =-+,选项D 错误.本题选择C 选项.点睛:本题主要考查复数的运算法则,复数的几何意义等知识,意在考查学生的转化能力和计算求解能力.3.在复平面内复数83i +、45i -+对应的点分别为A 、B ,若复数z 对应的点C 为线段AB 的中点,z 为复数z 的共轭复数,则z z ⋅的值为( ) A .61 B .13 C .20 D .10【答案】C 【解析】由题意知点、的坐标为、,则点的坐标为,则,从而,选C.4.若z C ∈且342z i ++≤,则1z i --的最大和最小值分别为,M m ,则M m -的值等于( ) A .3 B .4C .5D .9【答案】B 【解析】 【分析】根据复数差的模的几何意义可得复数z 在复平面上对应的点的轨迹,再次利用复数差的模的几何意义得到,M m ,从而可得M m -的值. 【详解】因为342z i ++≤,故复数z 在复平面上对应的点P 到134z i =--对应的点A 的距离小于或等于2, 所以P 在以()3,4C --为圆心,半径为2的圆面内或圆上, 又1z i --表示P 到复数21z i =+对应的点B 的距离, 故该距离的最大值为()()22231412412AB +=--+--=,最小值为2412AB -=,故4M m -=. 故选:B. 【点睛】本题考查复数中12z z -的几何意义,该几何意义为复平面上12,z z 对应的两点之间的距离,注意12z z +也有明确的几何意义(可把12z z +化成()12z z --),本题属于中档题.5.欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e 2i 表示的复数在复平面中对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B【解析】 【分析】由题意得2cos 2sin 2i e i =+,得到复数在复平面内对应的点(cos 2,sin 2),即可作出解答. 【详解】由题意得,e 2i =cos 2+isin 2,∴复数在复平面内对应的点为(cos 2,sin 2). ∵2∈,∴cos 2∈(-1,0),sin 2∈(0,1),∴e 2i 表示的复数在复平面中对应的点位于第二象限, 故选B. 【点睛】本题主要考查了复数坐标的表示,属于基础题.6.已知复数z 满足121iz i i+⋅=--(其中z 为z 的共轭复数),则z 的值为( ) A .1 B .2C 3D 5【答案】D 【解析】 【分析】按照复数的运算法则先求出z ,再写出z ,进而求出z . 【详解】21(1)21(1)(1)2i i i i i i i ++===--+Q , 1222(2)121i iz i i z i z i i i i i+-∴⋅=-⇒⋅=-⇒==--=---, 2212||(1)25z i z ∴=-+⇒=-+=故选:D 【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.7.已知2a ib i i+=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1 B .1C .2D .3【答案】B 【解析】 【分析】利用复数除法运算法则化简原式可得2ai b i -=+,再利用复数相等列方程求出,a b 的值,从而可得结果. 【详解】因为22222a i ai i ai b i i i+--==-=+- ,,a b ∈R , 所以2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b =,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.8.已知两非零复数12,z z ,若12R z z ∈,则一定成立的是 A .12R z z ∈ B .12R z z ∈C .12R z z +∈D .12R z z ∈【答案】D 【解析】 利用排除法:当121,1z i z i =+=-时,12z z ∈R ,而()21212z z i i R =+=∉,选项A 错误,1211z i i R z i+==∉-,选项B 错误, 当121,22z i z i =+=-时,12z z ∈R ,而123z z i R +=-∉,选项C 错误, 本题选择D 选项.9.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案. 【详解】若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩ 解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件.故选C. 【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题.10.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限 B .z 一定不为纯虚数 C .z 对应的点在实轴的下方 D .z 一定为实数【答案】C 【解析】 【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定. 【详解】()2222110t t t ++=++>Q ,z ∴不可能为实数,所以D 错误;z ∴对应的点在实轴的上方,又z Q 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误;21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C 【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.11.复数11i +的共轭复数是 ( ) A .1122i + B .1122i -C .1i -D .1i +【答案】A 【解析】 【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数11i+,进而可得结果. 【详解】因为()()111121211i i i i i -+--==+,所以11i+的共轭复数是1122i +,故选:A. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.12.复数(1)(2)z ai a i =-+在复平面内对应的点在第一象限,其中a R ∈,i 为虚数单位,则实数a 的取值范围是( )A .B .)+∞C .(,-∞D .(【答案】A 【解析】 【分析】利用复数代数形式的乘除运算、化简,再由实部与虚部均大于0,列出不等式组,即可求解. 【详解】由题意,复数2(1)(2)3(2)z ai a i a a i =-+=+-在复平面内对应的点在第一象限,所以23020a a >⎧⎨->⎩,解得0a <<,即实数a 的取值范围是. 故选:A . 【点睛】本题主要考查了复数的乘法运算,以及复数的代数表示法及其几何意义的应用,着重考查了推理与运算能力.13.若复数1a iz i+=-,且3·0z i >,则实数a 的值等于( ) A .1 B .-1C .12D .12-【答案】A 【解析】 【分析】由3·0z i >可判定3·z i 为实数,利用复数代数形式的乘除运算化简复数z ,再由实部为0,且虚部不为0列式求解即可. 【详解】()()()()()i 1i 11ii 1i 1i 1i 2a a a a z ++-+++===--+Q ,所以3·z i =()()()()341i 1i 1i 122a a a a -++--++=,因为3·0z i >,所以3·z i 为实数,102a --= 可得1a =,1a =时3,?10z i =>,符合题意,故选A. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.14.已知复数122iz i+=- (i 为虚数单位),则z 的虚部为( ) A .-1 B .0C .1D .i【答案】C 【解析】 【分析】利用复数的运算法则,和复数的定义即可得到答案. 【详解】 复数()()()()1221252225i i i iz i i i i +++====--+,所以复数z 的虚部为1,故选C . 【点睛】本题主要考查了复数的运算法则和复数的概念,其中解答中熟记复数的基本运算法则和复数的概念及分类是解答的关键,着重考查了推理与运算能力,属于基础题.15.若1+是关于x 的实系数方程20x bx c ++=的一个复数根,则( ) A .2,3b c == B .2,1b c ==-C .2,1b c =-=-D .2,3b c =-=【答案】D 【解析】 【分析】由题意,将根代入实系数方程x 2+bx +c =0整理后根据得数相等的充要条件得到关于实数a ,b的方程组10b c -++=⎧⎪⎨=⎪⎩,解方程得出a ,b 的值即可选出正确选项【详解】由题意1是关于x 的实系数方程x 2+bx +c =0∴﹣2+b bi +c =0,即()10b c i -+++=∴102220b c b -++=⎧⎪⎨+=⎪⎩,解得b =﹣2,c =3 故选:D . 【点睛】本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题16.下列命题中,正确命题的个数是( ) ①若,,则的充要条件是;②若,且,则;③若,则.A .B .C .D . 【答案】A 【解析】对①,由于x ,y ∈C ,所以x ,y 不一定是x +yi 的实部和虚部,故①是假命题; 对②,由于两个虚数不能比较大小,故②是假命题; ③是假命题,如12+i 2=0,但1≠0,i≠0. 考点:复数的有关概念.17.复数52i -的共轭复数是( ) A .2i + B .2i - C .2i -+ D .2i --【答案】C 【解析】 【分析】先化简复数代数形式,再根据共轭复数概念求解.【详解】因为522i i =---,所以复数52i -的共轭复数是2i -+,选C. 【点睛】本题考查复数运算以及共轭复数概念,考查基本求解能力.18.已知复数z 满足()11z i i +=-,则z = ( ) A .i B .1C .i -D .1-【答案】B 【解析】()()1i1iz+=-,则()()()21i1i2i1i1i1i2z---====-++-i,1z∴=,故选B.19.若复数满足,则复数的虚部为()A.B.C.D.【答案】B【解析】分析:先根据复数除法法则得复数,再根据复数虚部概念得结果.详解:因为,所以,因此复数的虚部为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为20.已知复数为纯虚数(为虚数单位),则实数()A.-1 B.1 C.0 D.2【答案】B【解析】【分析】化简得到,根据纯虚数概念计算得到答案.【详解】为纯虚数,故且,即.故选:.【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.。
专题02复数(新高考地区专用)-2021届高三《新题速递·数学》(适用于高考复习)(解析版)
【详解】
由题意,设复数 ,
因为 ,可得 ,整理得 ,
即复数 在复平面内对应的点为 则 满足的关系式为 .
故答案为: .
13.(2020·天津高三月考)已知 为虚数单位,则 ______.
【答案】
【详解】
已知 为虚数单位,则 .
故答案为: .
14.(2020·上海市建平中学高三月考)若复数 满足 ,则复数 的最大值为______.
19.(2020·安徽安庆一中高二期中(理))已知复数 , 为虚数单位.
(1)求 的值;
(2)类比数列的有关知识,求 的值.
【答案】(1) (2)1
【详解】
(1) 复数 为虚数单位),
,
,
(2)
20.(2020·山东高一期中)已知复数 (i为虚数单位, )为纯虚数, 和b是关于x的方程 的两个根.
(1)求实数a,b的值;
A.0B.1C. D.
【答案】C
【详解】
∵ 为正实数,
∴ 且 ,
解得 .
故选:C.
3.(2020·南京航空航天大学附属高级中学高三期中)若复数 ,则复数 的虚部为()
A.-1B.1C.-iD.i
【答案】B
【详解】
由题意 ,则复数 的虚部为1
故选:B
4.(2020·浙江宁波·高三期中)若复数 ( 为虚数单位)的实部和虚部互为相反数,则实数 ()
(2)若复数z满足 ,说明在复平面内z对应的点Z的集合是什么图形?并求该图形的面积
【答案】(1) , (2)点 的集合是以原点为圆心,以 和 为半径的两个圆所夹的圆环,包括边界;面积为
【详解 ,
解得 ,
此时 ,由韦达定理得 ,
.
高考数学压轴专题2020-2021备战高考《复数》全集汇编含答案解析
【最新】单元《复数》专题解析(1)一、选择题1.若202031i i z i+=+,则z 在复平面内对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】化简得到2z i =+,得到答案.【详解】 ()()()()202013131342211112i i i i i i z i i i i i +-+++=====++++-,对应的点在第一象限. 故选:A .【点睛】本题考查了复数对应象限,意在考查学生的计算能力.2.若1z i =+,则31i zz =+( ) A .i -B .iC .1-D .1 【答案】B【解析】因为1z i =+,所以1z i =- ,()()3112,1i zz i i i zz =+-==+,故选B.3.若z C ∈且342z i ++≤,则1z i --的最大和最小值分别为,M m ,则M m -的值等于( )A .3B .4C .5D .9【答案】B【解析】【分析】根据复数差的模的几何意义可得复数z 在复平面上对应的点的轨迹,再次利用复数差的模的几何意义得到,M m ,从而可得M m -的值.【详解】 因为342z i ++≤,故复数z 在复平面上对应的点P 到134z i =--对应的点A 的距离小于或等于2, 所以P 在以()3,4C --为圆心,半径为2的圆面内或圆上,又1z i --表示P 到复数21z i =+对应的点B 的距离,故该距离的最大值为222AB +==,最小值为22AB -=,故4M m -=.故选:B.【点睛】本题考查复数中12z z -的几何意义,该几何意义为复平面上12,z z 对应的两点之间的距离,注意12z z +也有明确的几何意义(可把12z z +化成()12z z --),本题属于中档题.4.在复平面内,已知复数z 对应的点与复数2i --对应的点关于实轴对称,则z i =( ) A .12i -B .12i +C .12i -+D .12i -- 【答案】B【解析】【分析】由已知求得z ,代入z i,再由复数代数形式的乘除运算化简得答案. 【详解】由题意,2z i =-+, 则22(2)()12z i i i i i i i -+-+-===+-. 故选:B . 【点睛】 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.5.复数21i z i+=-,i 是虚数单位,则下列结论正确的是A .z =B .z 的共轭复数为31+22iC .z 的实部与虚部之和为1D .z 在复平面内的对应点位于第一象限 【答案】D【解析】【分析】利用复数的四则运算,求得1322z i =+,在根据复数的模,复数与共轭复数的概念等即可得到结论.【详解】由题意()()()()22121313111122i i i i z i i i i i ++++====+--+-,则2z ==,z 的共轭复数为1322z i =-, 复数z 的实部与虚部之和为2,z 在复平面内对应点位于第一象限,故选D .【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为a bi -.6.已知复数z ,则|z |=( ) A .14 B .12 C .1 D .2【答案】B【解析】【分析】【详解】解:因为4i ===,因此|z |=127.已知复数z 满足(1)43z i i +=-,其中i 是虚数单位,则复数z 在复平面中对应的点到原点的距离为( )A B .2 C .52 D .54【答案】B【解析】【分析】利用复数的除法运算化简z, 复数z 在复平面中对应的点到原点的距离为||,z 利用模长公式即得解.【详解】由题意知复数z 在复平面中对应的点到原点的距离为||,z43(43)(1)1717,1222214952||442i i i i z i i z ----====-+∴=+= 故选:B【点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.8.复数的共轭复数对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,再利用共轭复数的概念求出复数的共轭复数,进一步求出对应点的坐标得结果 . 【详解】,的共轭复数为, 对应坐标是在第三象限,故选C.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.9.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( )A .[0,1]B .[1,1]-C .(0,1)(1,)⋃+∞D .(1,)-+∞【答案】C【解析】【分析】首先根据复数的几何意义得到z 的轨迹方程2x y t =-,再根据指数函数的图象,得到关于t 的不等式,求解.由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,2a x a y b t=⎧⎨==-⎩ ,即2x y t =- , 因为z 在复平面上的轨迹经过三个象限,则当0x =时,11t -< 且10t -≠ ,解得0t >且1t ≠ ,即t 的取值范围是()()0,11,+∞U .故选:C【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.10.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 对应的点在实轴的下方D .z 一定为实数 【答案】C【解析】【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定.【详解】()2222110t t t ++=++>Q ,z ∴不可能为实数,所以D 错误; z ∴对应的点在实轴的上方,又z Q 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误; 21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.11.设i 是虚数单位,z 表示复数z 的共轭复数,若231z i i =+-,则4z i +=( )A .6B .50C .D【解析】【分析】计算5z i =-,再代入计算得到答案.【详解】由231z i i=+-,得()()2315z i i i =+-=-,则45455z i i i i +=++=+= 故选:C .【点睛】本题考查了复数运算,共轭复数,复数的模,意在考查学生对于复数知识的综合应用.12.若复数z 满足1(120)z i -=,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】【分析】化简复数,求得24z i =+,得到复数在复平面对应点的坐标,即可求解.【详解】由题意,复数z 满足1(120)z i -=,可得()()()10121024121212i z i i i i +===+--+, 所以复数z 在复平面内对应点的坐标为(2,4)位于第一象限故选:A.【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.13.复数z 满足(2)1i z i -=+,那么||z =( )A .5B .15C .25D 【答案】D【解析】【分析】 化简得到1355z i =+,再计算复数模得到答案. 【详解】(2)1i z i -=+,∴1(1)(2)13255i i i i z i ++++===-,∴1355z i =+,∴||z =. 故选:D .本题考查了复数的运算,复数模,意在考查学生的计算能力.14.设2i 2i 1i z =++-,则复数z =( ) A .12i -B .12i +C .2i +D .2i - 【答案】A【解析】【分析】根据复数的运算法则,求得12z i =+,再结合共轭复数的概念,即可求解.【详解】 由题意,可得复数()()()2i 1i 2i 2i 2i 12i 1i 1i 1i z +=++=++=+--+, 所以12i z =-.故选:A .【点睛】本题主要考查了复数的运算,以及复数的共轭复数的概念及应用,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了运算能力.15.设复数z 满足()13i z i +=+,则z =( )AB .2C .D 【答案】D【解析】分析:先根据复数除法得z ,再根据复数的模求结果.详解:因为()13i z i +=+,所以31(3)(1)212i z i i i i +==+-=-+,因此z =选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi16.若复数1a i z i +=-,且3·0z i >,则实数a 的值等于( ) A .1 B .-1 C .12 D .12-【解析】【分析】由3·0z i >可判定3·z i 为实数,利用复数代数形式的乘除运算化简复数z ,再由实部为0,且虚部不为0列式求解即可.【详解】()()()()()i 1i 11i i 1i 1i 1i 2a a a a z ++-+++===--+Q , 所以3·z i =()()()()341i 1i 1i 122a a a a -++--++=,因为3·0z i >,所以3·z i 为实数,102a --= 可得1a =,1a =时3,?10z i =>,符合题意,故选A. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.17.已知z 是复数,则“2z 为纯虚数”是“z 的实部和虚部相等”的( )A .充分必要条件B .充分不必要条C .必要不充分条件D .既不充分也不必要条件 【答案】D【解析】【分析】设z a bi =+,2z 为纯虚数得到0a b =±≠,得到答案.【详解】设z a bi =+,,a b ∈R ,则()2222z a b abi =-+,2z 为纯虚数220020a b a b ab ⎧-=⇔⇔=±≠⎨≠⎩,z 的实部和虚部相等a b ⇔=. 故选:D.【点睛】本题考查了既不充分也不必要条件,意在考查学生的推断能力.18.已知复数134z i=+,则下列说法正确的是( )A .复数z 的实部为3B .复数z 的虚部为425iC .复数z 的共轭复数为342525i + D .复数的模为1【答案】C【解析】【分析】直接利用复数的基本概念得选项.【详解】 1343434252525i z i i -===-+, 所以z 的实部为325,虚部为425- ,z 的共轭复数为342525i +15=, 故选C.【点睛】该题考查的是有关复数的概念和运算,属于简单题目.19.复数z 满足|||3|z i z i -=+,则||z ( )A .恒等于1B .最大值为1,无最小值C .最小值为1,无最大值D .无最大值,也无最小值【答案】C【解析】【分析】设复数z x yi =+,其中x ,y R ∈,由题意求出1y =-,再计算||z 的值.【详解】解:设复数z x yi =+,其中x ,y R ∈,由|||3|z i z i -=+,得|(1)||(3)|x y i x y i +-=++, 2222(1)(3)x y x y ∴+-=++,解得1y =-;||1z ∴=,即||z 有最小值为1,没有最大值.故选:C .【点睛】本题考查了复数的概念与应用问题,是基础题.20.若复数z满足22iz i=-(i为虚数单位),则z的共轭复数z在复平面内对应的点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】分析:直接利用复数代数形式的乘除运算化简复数,然后求z的共轭复数,即可得到z在复平面内对应的点所在的象限.详解:由题意,()()()222222,i iiz ii i i-⋅--===--⋅-Q22,z i∴=-+则z的共轭复数z对应的点在第二象限.故选B.点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.。
高考数学专题《复数》习题含答案解析
专题10.2 复数1.(2020·全国高考真题(理))复数113i-的虚部是( ) A .310-B .110-C .110D .310【答案】D 【解析】 因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.2.(2020·全国高考真题(文))(1–i )4=( ) A .–4 B .4 C .–4i D .4i【答案】A 【解析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-.故选:A.3.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =( ) A .1i -- B .1i -+C .1i -D .1i +【答案】D 【分析】由题意利用复数的运算法则整理计算即可求得最终结果. 【详解】 由题意可得:()()()()2121211112i i z i i i i ++====+--+. 故选:D.4.(2021·全国·高考真题)已知2i z =-,则()i z z +=( ) A .62i - B .42i -C .62i +D .42i +【答案】C 【分析】练基础利用复数的乘法和共轭复数的定义可求得结果. 【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C.5.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =( ) A .312i --B .312i -+C .32i -+D .32i --【答案】B 【分析】 由已知得322iz i+=-,根据复数除法运算法则,即可求解. 【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅. 故选:B.6.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( ) A .12i - B .12i +C .1i +D .1i -【答案】C 【分析】设z a bi =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z . 【详解】设z a bi =+,则z a bi =-,则()()234646z z z z a bi i ++-=+=+,所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1z i =+.故选:C.7.(2021·全国·高考真题(文))设i 43i z =+,则z =( ) A .–34i - B .34i -+C .34i -D .34i +【答案】C 【分析】由题意结合复数的运算法则即可求得z 的值. 【详解】由题意可得:()2434343341i i i i z i i i ++-====--. 故选:C.8.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =( ) A .1- B .1C .3-D .3【答案】C 【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值. 【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-. 故选:C.9.(2019·北京高考真题(文))已知复数z =2+i ,则( ) ABC .3D .5【答案】D 【解析】∵ 故选D. 10.(2019·全国高考真题(文))设,则=( ) A .2 BCD .1【答案】C 【解析】 因为,所以,所以C .1.(2010·山东高考真题(文))已知 ,,其中 为虚数单位,则=( ) A .-1 B .1C .2D .3【答案】B 【解析】z z ⋅=z 2i,z z (2i)(2i)5=+⋅=+-=3i12iz -=+z 312i z i -=+(3)(12)17(12)(12)55i i z i i i --==-+-z ==2a ib i i+=+,a b ∈R i +a b 练提升因为 ,, 所以,则,故选B. 2.(全国高考真题(理))复数的共轭复数是( ) A . B .iC .D .【答案】A 【解析】,故其共轭复数为.所以选A.3.(2018·全国高考真题(理))设,则( ) A . B .C .D【答案】C 【解析】,则,故选c.4.(2009·重庆高考真题(理))已知复数的实部为,虚部为2,则的共轭复数是( ) A . B .C .D .【答案】B 【解析】 由题意得:所以,共轭负数为2+i 故选B5.(2017·山东高考真题(理))已知,是虚数单位,若,,则( )22222a i ai iai b i i i+--==-=+-,a b ∈R 2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩+1a b =212ii+-i -35i -35i ()()()()2i 12i 5i i12i 12i 5++==-+i -1i2i 1iz -=++||z =0121()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+i 2i i =-+=1z =z 1-5iz2i -2i +2i --2i -+R a ∈i z a =+4z z ⋅=a =A .1或 B或 C .D【答案】A 【解析】由得,所以,故选A.6.(2021·广东龙岗·高三期中)已知复数z 满足()2i 34i z +=+(其中i 为虚数单位),则复数z =( ) A .2i - B .2i -+C .2i +D .2i --【答案】C 【分析】根据复数除法运算求出z ,即可得出答案. 【详解】()2i 34i 5z +=+=, ()()()52i 52i 2i 2i 2i z -∴===-++-,则2i z =+. 故选:C.7.(2021·安徽·合肥一六八中学高一期中)欧拉公式i s co in s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【分析】先由欧拉公式计算可得i312e π=,然后根据复数的几何意义作出判断即可. 【详解】根据题意i s co in s i xe x x +=,故i3is n 1cos 33i 2e πππ=+=,对应点12⎛ ⎝⎭,在第一象限. 故选:A .8.【多选题】(2021·全国·模拟预测)已知复数z =i 为虚数单位),则下列说法正确的是( )A .复数z 在复平面内对应的点坐标为()sin3cos3,sin3cos3+-1-,4z a z z =⋅=234a +=1a =±B .z 的虚部为C .2z z ⋅=D .z ⋅为纯虚数【答案】CD 【分析】根据复数的概念、共轭复数的概念、复数的几何意义以及四则运算法则即可求解. 【详解】 复数sin3cos3i sin3cos3z ==++-.因为334ππ<<,所以sin 3cos3304π⎛⎫+=+< ⎪⎝⎭,sin3cos30->,所以原式()()sin3cos3i sin3cos3=-++-,所以选项A 错误;复数z ,所以选项B错误;222z z ⋅=+=,所以选项C 正确;z ⋅=()i 1sin 61sin 62i⋅=++-=,所以选项D 正确. 故选:CD.9.【多选题】(2021·河北武强中学高三月考)已知复数cos isin z θθ=+(其中i 为虚数单位),下列说法正确的是( ) A .1z z ⋅=B .1z z+为实数C .若83πθ=,则复数z 在复平面上对应的点落在第一象限 D .若(0,)θπ∈,复数z 是纯虚数,则2πθ=【答案】ABD 【分析】对选项A ,根据计算1z z ⋅=即可判断A 正确,对选项B ,根据12cos z zθ+=即可判断B 正确,对选项C ,根据88cosisin 33z ππ=+在复平面对应的点落在第二象限,即可判断C 错误,对选项D ,根据z 是纯虚数得到2πθ=即可判断D 正确.【详解】 对选项A ,()()()2222cos isin cos isin cos isin cos sin 1z z θθθθθθθθ⋅=+-=-=+=,故A 正确. 对选项B ,因为11cos isin cos isin z z θθθθ+=+++ ()()cos isin cos isin cos isin cos isin θθθθθθθθ-=+++-cos isin cos isin 2cos θθθθθ=++-=, 所以1z z+为实数.故B 正确.对选项C ,因为83πθ=为第二象限角,所以8cos03π<,8sin 03π>, 所以88cos isin 33z ππ=+在复平面对应的点落在第二象限. 故C 错误.对选项D ,复数z 是纯虚数,则cos 0sin 0θθ=⎧⎨≠⎩,又因为(0,)θπ∈,所以2πθ=,故D 正确.故选:ABD10.(2021·福建·厦门一中模拟预测)在复平面内,复数(,)z a bi a b R =+∈对应向量OZ (O 为坐标原点),设||OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则(cos sin )z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:1111(cos sin )z r i θθ=+,2222(cos sin )z r i θθ=+,则12121212[cos()sin()]z z rr i θθθθ=+++,由棣莫弗定理可以推导出复数乘方公式:[(cos sin )](cos sin )n n r i r n i n θθθθ+=+,已知4)z i =,则||z =______;若复数ω满足()*10n n ω-=∈N ,则称复数ω为n 次单位根,若复数ω是6次单位根,且ω∉R ,请写出一个满足条件的ω=______. 【答案】16 ()22cos sin 1,2,4,566k k i k ππ+= 【分析】2(cos sin )66i i ππ=+,则4222(cos sin )33z i ππ=+,再由||||z z =求解,由题意知61ω=,设cos sin i ωθθ=+,即可取一个符合题意的θ,即可得解.【详解】解:2(cossin )66i i ππ=+,∴4422)2(cos sin )33z i i ππ==+,则4||||216z z ===.由题意知61ω=,设cos sin i ωθθ=+,则6cos6sin 61i ωθθ=+=,所以sin 60cos61θθ=⎧⎨=⎩,又ω∉R ,所以sin 0θ≠,故可取3πθ=,则cossin33i ππω=+故答案为:16,cossin33i ππω=+(答案不唯一).1.(2021·江苏·高考真题)若复数z 满足()1i 3i z +=-,则z 的虚部等于( ) A .4 B .2C .-2D .-4【答案】C 【分析】利用复数的运算性质,化简得出12z i =-. 【详解】若复数z 满足()1i 3i z +=-,则()()()()3i 1i 3i 12i 1i 1i 1i z ---===-++-,所以z 的虚部等于2-. 故选:C.2.(2021·全国·高考真题)复数2i13i--在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【分析】利用复数的除法可化简2i13i--,从而可求对应的点的位置. 【详解】()()2i 13i 2i 55i 1i13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭,该点在第一象限, 故选:A.3.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |=( ) A .0B .1CD .2练真题【答案】D 【解析】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=. 故选:D.4.(2020·全国高考真题(文))若312i i z =++,则||=z ( ) A .0 B .1C D .2【答案】C 【解析】因为31+21+21z i i i i i =+=-=+,所以z ==故选:C .5.(2019·全国高考真题(理))设z =-3+2i ,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】C 【解析】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C . 6.(2018·江苏高考真题)若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为________. 【答案】2 【解析】因为i 12i z ⋅=+,则12i2i iz +==-,则z 的实部为2.。
高考数学压轴专题2020-2021备战高考《复数》真题汇编附解析
数学《复数》期末复习知识要点一、选择题1.若复数z 的虚部小于0,|z |5=,且4z z +=,则iz =( ) A .13i + B .2i + C .12i + D .12i -【答案】C【解析】【分析】根据4z z +=可得()2z mi m =+∈R ,结合模长关系列方程,根据虚部小于0即可得解.【详解】由4z z +=,得()2z mi m =+∈R ,因为2||45z m =+=,所以1m =±. 又z 的虚部小于0,所以2z i =-,12iz i =+.故选:C【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解.2.设i 为虚数单位,321i z i =+-,则||z =( ) A .1B .10C .2D .10 【答案】D【解析】【分析】计算出z ,进而计算z 即可.【详解】 ()()()3133313222,111222i i i i i z i i i ⋅+-=+=+=+=+--+ 22131022z ⎛⎫⎛⎫∴=+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查复数的除法运算及模的求法,考查计算能力.3.在复平面内复数83i +、45i -+对应的点分别为A 、B ,若复数z 对应的点C 为线段AB 的中点,z 为复数z 的共轭复数,则z z ⋅的值为( )A .61B .13C .20D .10【答案】C【解析】由题意知点、的坐标为、,则点的坐标为, 则,从而,选C.4.若复数z 满足232,z z i +=-其中i 为虚数单位,则z=A .1+2iB .1-2iC .12i -+D .12i --【答案】B 【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.5.已知复数z 满足()13i z i +=,i 为虚数单位,则z 等于( ) A .1i -B .1i +C .1122i -D .1122i + 【答案】A【解析】因为|3+|2(1)1(1)(1)i i z i i i -===-+-,所以应选答案A . 6.已知i 是虚数单位,则131i i+=+( ) A .2i -B .2i +C .2i -+D .2i --【答案】B【解析】【分析】利用复数的除法运算计算复数的值即可.【详解】由复数的运算法则有: 13(13)(1)422(1)(11)2i i i i i i i i ++-+===++-+. 故选B .【点睛】对于复数的乘法,类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可;对于复数的除法,关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.7.已知复数i z x y =+(x ,y ∈R),且2z +=1y x -的最大值为( ) ABC.2+D.2【答案】C【解析】【分析】根据模长公式,求出复数z 对应点的轨迹为圆,1y x -表示(,)x y 与(0,1)连线的斜率,其最值为过(0,1)点与圆相切的切线斜率,即可求解.【详解】∵复数i z x y =+(x ,y ∈R),且2z +==()2223x y ++=. 设圆的切线l :1y kx =+=化为2420k k--=,解得2k =∴1y x-的最大值为2 故选:C.【点睛】 本题考查复数的几何意义、轨迹方程、斜率的几何意义,考查数形结合思想,属于中档题.8.若复数()21a i a R i -∈+为纯虚数,则3ai -=() A B .13 C .10 D【答案】A 【解析】【分析】由题意首先求得实数a 的值,然后求解3ai -即可.由复数的运算法则有:2(2)(1)221(1)(1)22a i a i i a a i i i i ++-+-==+++-, 复数()21a i a R i -∈+为纯虚数,则2020a a +=⎧⎨-≠⎩,即2,|3|a ai =--=本题选择A 选项.【点睛】复数中,求解参数(或范围),在数量关系上表现为约束参数的方程(或不等式).由于复数无大小之分,所以问题中的参数必为实数,因此,确定参数范围的基本思想是复数问题实数化.9.设i 是虚数单位,则复数734i i ++在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】 因为734i i++(7)(34)2525=1(34)(34)25i i i i i i +--==-+-, 所以所对应的点为(1,1)-,位于第四象限,选D.10.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 对应的点在实轴的下方D .z 一定为实数【答案】C【解析】【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定.【详解】 ()2222110t t t ++=++>Q ,z ∴不可能为实数,所以D 错误; z ∴对应的点在实轴的上方,又z Q 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误; 21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.11.复数11i+的共轭复数是 ( ) A .1122i + B .1122i - C .1i - D .1i +【答案】A【解析】【分析】 利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数11i+,进而可得结果.【详解】 因为()()111121211i i i i i -+--==+, 所以11i+的共轭复数是1122i +, 故选:A.【点睛】 复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.12.在复平面内,复数21i z i =+ (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】分析:首先求得复数z ,然后求解其共轭复数即可. 详解:由复数的运算法则有:()()()()2121211112i i i i i z i i i i --====+++-, 则1z i =-,其对应的点()1,1-位于第四象限.本题选择D 选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求13.复数(1)(2)z ai a i =-+在复平面内对应的点在第一象限,其中a R ∈,i 为虚数单位,则实数a 的取值范围是( )A .B .)+∞C .(,-∞D .(【答案】A【解析】【分析】利用复数代数形式的乘除运算、化简,再由实部与虚部均大于0,列出不等式组,即可求解.【详解】由题意,复数2(1)(2)3(2)z ai a i a a i =-+=+-在复平面内对应的点在第一象限,所以23020a a >⎧⎨->⎩,解得0a <<,即实数a 的取值范围是. 故选:A .【点睛】本题主要考查了复数的乘法运算,以及复数的代数表示法及其几何意义的应用,着重考查了推理与运算能力.14.(2018江西省景德镇联考)若复数2i 2a z -=在复平面内对应的点在直线0x y +=上,则z =( )A .2B C .1 D .【答案】B【解析】分析:化简复数z ,求出对应点坐标,代入直线方程,可求得a 的值,从而可得结果. 详解:因为复数2i 22a a z i -==-, 所以复数2i 2a z -=在复平面内对应的点的坐标为,12a ⎛⎫- ⎪⎝⎭, 由复数2i 2a z -=在复平面内对应的点在直线0x y +=上, 可得10212a a z i -=⇒==-,,z ==,故选B.15.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( )A .[0,1]B .[1,1]-C .(0,1)(1,)⋃+∞D .(1,)-+∞【答案】C【解析】【分析】首先根据复数的几何意义得到z 的轨迹方程2x y t =-,再根据指数函数的图象,得到关于t 的不等式,求解.【详解】由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,2a x a y b t=⎧⎨==-⎩ ,即2x y t =- , 因为z 在复平面上的轨迹经过三个象限,则当0x =时,11t -< 且10t -≠ ,解得0t >且1t ≠ ,即t 的取值范围是()()0,11,+∞U .故选:C【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.16.已知i 为虚数单位,,a b ∈R ,复数12i i a bi i+-=+-,则a bi -=( ) A .1255i - B .1255i + C .2155i - D .21i 55+ 【答案】B【解析】【分析】 由复数的除法运算,可得(1)(2)12(2)(2)55i i i i i i a b i=+++-=--+,即可求解a b i -,得到答案.【详解】 由题意,复数12i i a bi i+-=+-,得(1)(2)1312(2)(2)555i i a b i=i i i i i i ++++-=-=--+, 所以1255a b i=i -+,故选B . 【点睛】 本题主要考查了复数的运算,其中解答中熟记复数的基本运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.17.已知复数134z i =+,则下列说法正确的是( ) A .复数z 的实部为3 B .复数z 的虚部为425i C .复数z 的共轭复数为342525i + D .复数的模为1【答案】C 【解析】【分析】直接利用复数的基本概念得选项. 【详解】 1343434252525i z i i -===-+, 所以z 的实部为325,虚部为425- , z 的共轭复数为342525i +,模为2234125255⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 故选C.【点睛】该题考查的是有关复数的概念和运算,属于简单题目.18.若复数满足,则复数的虚部为( ) A .B .C .D .【答案】B【解析】分析:先根据复数除法法则得复数,再根据复数虚部概念得结果.详解:因为,所以, 因此复数的虚部为,选B. 点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为19.复数321i i -(i 为虚数单位)的共轭复数是 ( ) A .2155i -+ B .2133i + C .2155i -- D .2133i - 【答案】C【解析】 试题分析:由题;3(21)22121(21)(21)555i i i i i i i i -+-===-+--+-,则共轭复数为:2155i --. 考点:复数的运算及共轭复数的概念.20.若复数z 满足()12z i i +=(i 为虚数单位),则z =( )A .1B .2CD .【答案】C【解析】试题分析:因为(1)2z i i +=,所以22(1)1,12i i i z i i -===++因此1z i =+= 考点:复数的模。
高考数学真题汇编 16:复数 理 试题
2021高考真题分类汇编:复数制卷人:打自企; 成别使; 而都那。
审核人:众闪壹; 春壹阑; 各厅……日期:2022年二月八日。
1.【2021高考真题理2】 i 是虚数单位,那么31ii +-=A .1-2i B.2-i C.2+i D .1+2i【答案】D2.【2021高考真题新课标理3】下面是关于复数21z i =-+的四个命题:其中的真命题为〔 〕1:2p z = 22:2p z i = 3:p z 的一共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【答案】C3.【2021高考真题理2】复数2(1)2i i -=〔 〕A 、1B 、1-C 、iD 、i -【答案】B4.【2021高考真题理3】设,a b R ∈,i 是虚数单位,那么“0ab =〞是“复数ba i +为纯虚数〞的〔〕 A.充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B.5.【2021高考真题理15】假设i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,那么〔〕A .3,2==c bB .3,2=-=c bC .1,2-=-=c bD .1,2-==c b【答案】B6.【2021高考真题理1】假设复数z 满足(2)117z i i -=+〔i 为虚数单位〕,那么z 为〔A 〕35i + 〔B 〕35i - 〔C 〕35i -+ 〔D 〕35i --【答案】A7.【2021高考真题理2】复数22i i -=+ (A)3455i - (B)3455i + (C) 415i - (D) 315i + 【答案】A8.【2021高考真题理1】方程26130x x ++=的一个根是A .32i -+B .32i +C .23i -+D .23i + 【答案】A9.【2021高考真题理1】 设i 为虚数单位,那么复数56i i-= A .6+5i B .6-5i C .-6+5i D .-6-5i【答案】D10.【2021高考真题理1】假设复数z 满足zi=1-i ,那么z 等于I B.1-i C.-1+I D.1=i【答案】A.11.【2021高考真题理3】设a ,b ∈R 。
高考数学压轴专题2020-2021备战高考《复数》难题汇编及答案解析
【高中数学】数学《复数》高考复习知识点一、选择题1.复数的共轭复数对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】 【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,再利用共轭复数的概念求出复数的共轭复数,进一步求出对应点的坐标得结果 .【详解】,的共轭复数为,对应坐标是在第三象限,故选C.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.在复平面内,若复数z 满足|z +1|=|1+i z |,则z 在复平面内对应点的轨迹是( ) A .直线 B .圆 C .椭圆 D .抛物线【答案】A 【解析】 【分析】设()z x yi x y R =+∈、,代入11z iz +=+,求模后整理得z 在复平面内对应点的轨迹是直线. 【详解】设()z x yi x y R =+∈、,()2211x yi x y ++=++,()()22111iz i x yi y x +=++=-+()()222211x y y x ++-+=y x =-,所以复数z x yi =+对应点的轨迹为直线,故选A.【点睛】本题考查复数的代数表示法及其几何意义,考查复数模的求法,动点的轨迹问题,是基础题.3.已知复数(2)z i i =-,其中i 是虚数单位,则z 的模z = ( ) A .3 B .5C .3D .5【答案】B 【解析】22(2)22(1)5z i i i i =-=-=+-=,故选B .4.已知为虚数单位, m R ∈,复数()()22288z m m m m =-+++-,若z 为负实数,则m 的取值集合为( )A .{}0B .{}8C .()2,4-D .()4,2- 【答案】B【解析】由题设可得2280{280m m m m -=-++<,解之得8m =,应选答案B 。
高考数学压轴专题2020-2021备战高考《复数》基础测试题附答案解析
【高中数学】数学高考《复数》复习资料一、选择题1.已知复数z =23(13)i i +-,则|z |=( ) A .14 B .12 C .1 D .2【答案】B【解析】【分析】【详解】解:因为z=23(3)334(13)2232(3)i i i i i i i i +++-+===----,因此|z |=122.若1z i =+,则31i zz =+( ) A .i -B .iC .1-D .1 【答案】B【解析】因为1z i =+,所以1z i =- ,()()3112,1i zz i i i zz =+-==+,故选B.3.如图所示,在复平面内,OP uuu v 对应的复数是1-i ,将OP uuu v向左平移一个单位后得到00O P u u u u v ,则P 0对应的复数为( )A .1-iB .1-2iC .-1-iD .-i 【答案】D【解析】【分析】 要求P 0对应的复数,根据题意,只需知道0OP u u u v ,而0000OP OO O P =+u u u v u u u u v u u u u v ,从而可求P 0对应的复数【详解】 因为00O P OP =u u u u v u u u v ,0OO u u u u v 对应的复数是-1,所以P 0对应的复数,即0OP u u u v对应的复数是()11i i -+-=-,故选D. 【点睛】本题考查复数的代数表示法及其几何意义,复平面内复数、向量及点的对应关系,是基础题.4.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( )AB C .2 D .3【答案】A【解析】 ()11z i i i =-=+,故z = A.5.已知复数(2)z i i =-,其中i 是虚数单位,则z 的模z = ( )A B C .3 D .5【答案】B【解析】(2)2z i i i i =-=-==B .6.若z C ∈且342z i ++≤,则1z i --的最大和最小值分别为,M m ,则M m -的值等于( )A .3B .4C .5D .9 【答案】B【解析】【分析】根据复数差的模的几何意义可得复数z 在复平面上对应的点的轨迹,再次利用复数差的模的几何意义得到,M m ,从而可得M m -的值.【详解】 因为342z i ++≤,故复数z 在复平面上对应的点P 到134z i =--对应的点A 的距离小于或等于2, 所以P 在以()3,4C --为圆心,半径为2的圆面内或圆上, 又1z i --表示P 到复数21z i =+对应的点B 的距离,故该距离的最大值为222AB +==,最小值为22AB -=,故4M m -=.【点睛】 本题考查复数中12z z -的几何意义,该几何意义为复平面上12,z z 对应的两点之间的距离,注意12z z +也有明确的几何意义(可把12z z +化成()12z z --),本题属于中档题.7.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( )A .1B .iC .1-D .i -【答案】A【解析】 ()12i z i +=22(1)112i i i z i i -⇒===++,所以z 的虚部是1,选A. 8.若43i z =+,则z z=( ) A .1B .1-C .4355i +D .4355i - 【答案】D【解析】【详解】由题意可得 :5z ==,且:43z i =-, 据此有:4343555z i i z -==-. 本题选择D 选项.9.已知i 是虚数单位,则131i i +=+( ) A .2i -B .2i +C .2i -+D .2i -- 【答案】B【解析】【分析】利用复数的除法运算计算复数的值即可.【详解】由复数的运算法则有: 13(13)(1)422(1)(11)2i i i i i i i i ++-+===++-+. 故选B .对于复数的乘法,类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可;对于复数的除法,关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.10.复数21i z i +=-,i 是虚数单位,则下列结论正确的是A .z =B .z 的共轭复数为31+22iC .z 的实部与虚部之和为1D .z 在复平面内的对应点位于第一象限 【答案】D【解析】【分析】 利用复数的四则运算,求得1322z i =+,在根据复数的模,复数与共轭复数的概念等即可得到结论.【详解】 由题意()()()()22121313111122i i i i z i i i i i ++++====+--+-,则22z ==,z 的共轭复数为1322z i =-, 复数z 的实部与虚部之和为2,z 在复平面内对应点位于第一象限,故选D .【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为a bi -.11.已知m 为实数,i 为虚数单位,若()24m m +- 0i >,则222m i i +=-( ) A .iB .1C .- iD .1-【答案】A【解析】因为2(4)0m m i +->,所以2(4)m m i +-是实数,且20{240m m m >⇒=-=,故22(1)222(1)m i i i i i ++==--,应选答案A .12.复数的共轭复数对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,再利用共轭复数的概念求出复数的共轭复数,进一步求出对应点的坐标得结果 . 【详解】,的共轭复数为, 对应坐标是在第三象限,故选C.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.13.复数z 满足()1|1|z i i +=-,则复数z 在复平面内的对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】【分析】根据复数的运算法则,化简2222z i =-,再结合复数的几何表示方法,即可求解. 【详解】由题意,复数z 满足()1|1|z i i +=-,可得)()()21|1|2211122i i z i i i --===-++-,则复数z 在复平面内对应的点为位于第四象限. 故选:D .【点睛】 本题主要考查了复数的几何表示方法,以及复数的除法运算,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力.14.设复数21i x i =-(i 是虚数单位),则112233202020202020202020202020C x C x C x C x +++⋅⋅⋅+=( )A .1i +B .i -C .iD .0【答案】D【解析】【分析】先化简1x +,再根据所求式子为2020(1)1x +-,从而求得结果.【详解】 解:复数2(1i x i i =-是虚数单位), 而1122332020202020202020202020202020(1)1C x C x C x C x x +++⋯+=+-, 而2121(1)111(1)(1)i i i i x i i i i i -++++====--+-, 故11223320202020202020202020202020202020(1)11110C x C x C x C x x i +++⋯+=+-=-=-=, 故选:D .【点睛】本题主要考查复数的乘除法运算、二项式定理的应用,属于中档题.15.若121z z -=,则称1z 与2z 互为“邻位复数”.已知复数1z a =与22z bi =+互为“邻位复数”,,a b ∈R ,则22a b +的最大值为( )A .8-B .8+C .1+D .8【答案】B【解析】【分析】根据题意点(,)a b 在圆22(2)(1x y -+-=(,)a b 到原点的距离,计算得到答案.【详解】|2|1a bi --=,故22(2))1a b -+=,点(,)a b 在圆22(2)(1x y -+=上,(,)a b 到原点的距离,故22a b +的最大值为)221(18=+=+. 故选:B .【点睛】本题考查了复数的运算,点到圆距离的最值,意在考查学生的计算能力和转化能力.16.复数12i 2i +=-( ). A .iB .1i +C .i -D .1i -【答案】A【解析】 试题分析:12(12)(2)2422(2)(2)5i i i i i i i i i +++++-===--+,故选A. 【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.17.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将2i e π表示的复数记为z ,则(12)z i +的值为( )A .2i -+B .2i --C .2i +D .2i -【答案】A【解析】【分析】 根据欧拉公式求出2cossin 22i z e i i πππ==+=,再计算(12)z i +的值.【详解】 ∵2cos sin 22i z e i i πππ==+=,∴(12)(12)2z i i i i +=+=-+.故选:A.【点睛】此题考查复数的基本运算,关键在于根据题意求出z .18.若复数z 满足1(120)z i -=,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】【分析】化简复数,求得24z i =+,得到复数在复平面对应点的坐标,即可求解.【详解】由题意,复数z 满足1(120)z i -=,可得()()()10121024121212i z i i i i +===+--+, 所以复数z 在复平面内对应点的坐标为(2,4)位于第一象限故选:A.【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.19.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,4ii e e ππ表示的复数在复平面中位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】 根据欧拉公式计算4i i e e ππ,再根据复数几何意义确定象限.【详解】因为444ii e cos isin cos isin e ππππππ+===+,所以对应点22-(,,在第二象限,选B.【点睛】本题考查复数除法以及复数几何意义,考查基本分析求解能力,属基本题.20.复数满足48i z z +=+,则复数z 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】设(,)z a bi a b R =+∈,则48z z a bi i +=+=+,可得48a b ⎧⎪+=⎨=⎪⎩,即可得到z ,进而找到对应的点所在象限.【详解】设(,)z a bi a b R =+∈,则48z z a bi i +=++=+,48a b ⎧⎪+=∴⎨=⎪⎩,6,68i 8a z b =-⎧∴∴=-+⎨=⎩, 所以复数z 在复平面内所对应的点为()6,8-,在第二象限.故选:B【点睛】本题考查复数在复平面内对应的点所在象限,考查复数的模,考查运算能力.。
高考数学压轴专题2020-2021备战高考《复数》单元汇编含答案
【最新】高中数学《复数》专题解析一、选择题1.若202031i i z i+=+,则z 在复平面内对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】化简得到2z i =+,得到答案.【详解】 ()()()()202013131342211112i i i i i i z i i i i i +-+++=====++++-,对应的点在第一象限. 故选:A .【点睛】本题考查了复数对应象限,意在考查学生的计算能力.2.已知i 是虚数单位,44z 3i (1i)=-+,则z (= )A .10BC .5D 【答案】B【解析】【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】4244z 3i 3i 13i (1i)(2i)=-=-=--+Q ,z ∴== 故选B .【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.设i 为虚数单位,321i z i =+-,则||z =( )A .1B C D .2【答案】D【解析】【分析】计算出z ,进而计算z 即可.【详解】()()()3133313222,111222i i i i i z i i i ⋅+-=+=+=+=+--+z ∴== 【点睛】本题考查复数的除法运算及模的求法,考查计算能力.4.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅=A .25-B .25C .7-D .7【答案】A【解析】【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可【详解】 Q 复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题5.a 为正实数,i 为虚数单位,2a i i +=,则a=( )A .2B C D .1【答案】B【解析】【分析】【详解】||220,a i a a a i+==∴=>∴=Q ,选B.6.已知复数z 满足()1i z i +=,i 为虚数单位,则z 等于( ) A .1i -B .1i +C .1122i -D .1122i + 【答案】A【解析】因为|2(1)11(1)(1)i i z i i i i -===-++-,所以应选答案A .7.已知复数z,则|z |=( ) A .14 B .12 C .1 D .2【答案】B【解析】【分析】【详解】解:因为4i ===,因此|z |=128.已知z C ∈,2z i z i ++-=,则z 对应的点Z 的轨迹为( )A .椭圆B .双曲线C .抛物线D .线段【答案】D【解析】【分析】由复数模的几何意义,结合三角不等式可得出点Z 的轨迹.【详解】 2z i z i ++-=的几何意义为复数z 对应的点Z 到点()0,1A -和点()0,1B 的距离之和为2,即ZA ZB AB +=,另一方面,由三角不等式得ZA ZB AB +≥.当且仅当点Z 在线段AB 上时,等号成立.因此,点Z 的轨迹为线段.故选:D.【点睛】本题考查复数模的几何意义,将问题转化为距离之和并结合三角不等式求解是解题的关键,考查分析问题和解决问题的能力,属于中等题.9.已知2a i b i i +=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1 B .1 C .2 D .3【答案】B【解析】【分析】利用复数除法运算法则化简原式可得2ai b i -=+,再利用复数相等列方程求出,a b 的值,从而可得结果.【详解】 因为22222a i ai i ai b i i i+--==-=+- ,,a b ∈R , 所以2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b =,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.10.若121z z -=,则称1z 与2z 互为“邻位复数”.已知复数1z a =与22z bi =+互为“邻位复数”,,a b ∈R ,则22a b +的最大值为( )A .8-B .8+C .1+D .8【答案】B【解析】【分析】根据题意点(,)a b 在圆22(2)(1x y -+-=(,)a b 到原点的距离,计算得到答案.【详解】|2|1a bi --=,故22(2))1a b -+=,点(,)a b 在圆22(2)(1x y -+=上,(,)a b 到原点的距离,故22a b +的最大值为)221(18=+=+. 故选:B .【点睛】本题考查了复数的运算,点到圆距离的最值,意在考查学生的计算能力和转化能力.11.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 对应的点在实轴的下方D .z 一定为实数【答案】C【解析】【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定.【详解】 ()2222110t t t ++=++>Q ,z ∴不可能为实数,所以D 错误; z ∴对应的点在实轴的上方,又z Q 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误; 21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.12.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将2i e π表示的复数记为z ,则(12)z i +的值为( )A .2i -+B .2i --C .2i +D .2i -【答案】A【解析】【分析】 根据欧拉公式求出2cossin 22i z e i i πππ==+=,再计算(12)z i +的值.【详解】 ∵2cos sin 22i z e i i πππ==+=,∴(12)(12)2z i i i i +=+=-+.故选:A.【点睛】此题考查复数的基本运算,关键在于根据题意求出z .13.设2i 2i 1i z =++-,则复数z =( ) A .12i -B .12i +C .2i +D .2i - 【答案】A【解析】【分析】根据复数的运算法则,求得12z i =+,再结合共轭复数的概念,即可求解.【详解】 由题意,可得复数()()()2i 1i 2i 2i 2i 12i 1i 1i 1i z +=++=++=+--+, 所以12i z =-.故选:A .【点睛】本题主要考查了复数的运算,以及复数的共轭复数的概念及应用,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了运算能力.14.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,4ii e e ππ表示的复数在复平面中位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】 根据欧拉公式计算4i i e e ππ,再根据复数几何意义确定象限.【详解】因为4224422ii e cos isin i cos isin e ππππππ+===-++,所以对应点(,在第二象限,选B.【点睛】本题考查复数除法以及复数几何意义,考查基本分析求解能力,属基本题.15.已知i 为虚数单位,,a b ∈R ,复数12i i a bi i+-=+-,则a bi -=( )A .1255i - B .1255i + C .2155i - D .21i 55+ 【答案】B【解析】【分析】 由复数的除法运算,可得(1)(2)12(2)(2)55i i i i i i a b i=+++-=--+,即可求解a b i -,得到答案.【详解】 由题意,复数12i i a bi i+-=+-,得(1)(2)1312(2)(2)555i i a b i=i i i i i i ++++-=-=--+, 所以1255a b i=i -+,故选B . 【点睛】 本题主要考查了复数的运算,其中解答中熟记复数的基本运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.16.复数1122i i ++的虚部为( ) A .110 B .110- C .310 D .310- 【答案】A【解析】【分析】 化简复数111122510i i i +=++,结合复数的概念,即可求解复数的虚部,得到答案,. 【详解】 由题意,复数()()1121112212122510i i i i i i i -+=+=+++-, 所以复数1122i i ++的虚部为110. 故选:A. 【点睛】本题主要考查了复数的运算法则,以及复数的概念,其中解答中熟记复数的运算法则,准确化简是解答的关键,着重考查了推理与计算能力,属于基础题.17.已知复数z 满足11212i i z+=+(i 为虚数单位),则z 的虚部为( ) A .4 B .4i C .4- D .4i -【答案】C 【解析】112i 11420i 34i 12i 5z ++-===-+ ,所以z 的虚部为4-,选C. 18.若复数满足,则复数的虚部为( ) A .B .C .D . 【答案】B【解析】 分析:先根据复数除法法则得复数,再根据复数虚部概念得结果.详解:因为,所以, 因此复数的虚部为,选B. 点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为19.若复数z 满足()12z i i +=(i 为虚数单位),则z =( )A .1B .2C 2D . 3【答案】C【解析】 试题分析:因为(1)2z i i +=,所以22(1)1,12i i i z i i -===++因此1 2.z i =+= 考点:复数的模20.若复数z 满足22iz i =-(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】分析:直接利用复数代数形式的乘除运算化简复数,然后求z 的共轭复数,即可得到z 在复平面内对应的点所在的象限. 详解:由题意,()()()222222,i i i z i i i i -⋅--===--⋅-Q22,∴=-+则z的共轭复数z对应的点在第二象限.z i故选B.点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.。
高考数学压轴专题2020-2021备战高考《复数》图文答案
【高中数学】数学高考《复数》复习资料一、选择题1.设3443i z i-=+,()21f x x x =-+,则()f z =( ) A .iB .i -C .1i -+D .1i + 【答案】A【解析】【分析】利用复数代数形式的乘除运算化简,代入函数解析式求解.【详解】 解:3443i z i-=+Q ()()()()344334434343i i i z i i i i ---∴===-++- ()21f x x x =-+Q()()()21f z i i i ∴=---+=故选:A【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.2.已知复数21i z =-+,则( ) A .2z = B .z 的实部为1 C .z 的虚部为1- D .z 的共轭复数为1i +【答案】C【解析】分析:由题意首先化简复数z ,然后结合z 的值逐一考查所给的选项即可确定正确的说法. 详解:由复数的运算法则可得:()()()()21211112i i z i i i ----===---+--,则z =,选项A 错误;z 的实部为1-,选项B 错误;z 的虚部为1-,选项C 正确;z 的共轭复数为1z i =-+,选项D 错误.本题选择C 选项.点睛:本题主要考查复数的运算法则,复数的几何意义等知识,意在考查学生的转化能力和计算求解能力.3.若复数z 满足232,z z i +=-其中i 为虚数单位,则z=A .1+2iB .1-2iC .12i -+D .12i --【答案】B【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.4.若z C ∈且342z i ++≤,则1z i --的最大和最小值分别为,M m ,则M m -的值等于( )A .3B .4C .5D .9 【答案】B【解析】【分析】根据复数差的模的几何意义可得复数z 在复平面上对应的点的轨迹,再次利用复数差的模的几何意义得到,M m ,从而可得M m -的值.【详解】因为342z i ++≤,故复数z 在复平面上对应的点P 到134z i =--对应的点A 的距离小于或等于2, 所以P 在以()3,4C --为圆心,半径为2的圆面内或圆上, 又1z i --表示P 到复数21z i =+对应的点B 的距离,故该距离的最大值为()()22231412412AB +=--+--=, 最小值为2412AB -=,故4M m -=.故选:B.【点睛】本题考查复数中12z z -的几何意义,该几何意义为复平面上12,z z 对应的两点之间的距离,注意12z z +也有明确的几何意义(可把12z z +化成()12z z --),本题属于中档题.5.欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e 2i 表示的复数在复平面中对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】由题意得2cos 2sin 2i e i =+,得到复数在复平面内对应的点(cos 2,sin 2),即可作出解答.【详解】由题意得,e 2i =cos 2+isin 2,∴复数在复平面内对应的点为(cos 2,sin 2).∵2∈, ∴cos 2∈(-1,0),sin 2∈(0,1),∴e 2i 表示的复数在复平面中对应的点位于第二象限,故选B.【点睛】本题主要考查了复数坐标的表示,属于基础题.6.在复平面内,已知复数z 对应的点与复数2i --对应的点关于实轴对称,则z i =( ) A .12i -B .12i +C .12i -+D .12i -- 【答案】B【解析】【分析】由已知求得z ,代入z i,再由复数代数形式的乘除运算化简得答案. 【详解】由题意,2z i =-+, 则22(2)()12z i i i i i i i-+-+-===+-. 故选:B .【点睛】 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.7.若12i +是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A .2,3b c ==B .2,1b c ==-C .2,1b c =-=-D .2,3b c =-=【答案】D【解析】【分析】由题意,将根代入实系数方程x 2+bx +c =0整理后根据得数相等的充要条件得到关于实数a ,b的方程组100b c -++=⎧⎪⎨=⎪⎩,解方程得出a ,b 的值即可选出正确选项 【详解】由题意1是关于x 的实系数方程x 2+bx +c =0∴﹣2+b bi +c =0,即()10b c i -+++=∴100b c -++=⎧⎪⎨=⎪⎩,解得b =﹣2,c =3 故选:D .【点睛】本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题8.在复平面内与复数21i z i =+所对应的点关于虚轴对称的点为A ,则A 对应的复数为( )A .1i --B .1i -C .1i +D .1i -+ 【答案】D【解析】【分析】根据复数的运算法则求出1z i =+,即可得到其对应点关于虚轴对称点的坐标,写出复数.【详解】 由题()()()2122211112i i i i z i i i i -+====+++-,在复平面对应的点为(1,1), 关于虚轴对称点为(-1,1),所以其对应的复数为1i -+.故选:D【点睛】此题考查复数的几何意义,关键在于根据复数的乘法除法运算准确求解,熟练掌握复数的几何意义.9.若复数()21a i a R i -∈+为纯虚数,则3ai -=( ) AB .13C .10 D【答案】A【解析】【分析】由题意首先求得实数a 的值,然后求解3ai -即可.由复数的运算法则有:2(2)(1)221(1)(1)22a i a i i a a i i i i ++-+-==+++-, 复数()21a i a R i -∈+为纯虚数,则2020a a +=⎧⎨-≠⎩,即2,|3|a ai =--=本题选择A 选项.【点睛】复数中,求解参数(或范围),在数量关系上表现为约束参数的方程(或不等式).由于复数无大小之分,所以问题中的参数必为实数,因此,确定参数范围的基本思想是复数问题实数化.10.已知两非零复数12,z z ,若12R z z ∈,则一定成立的是A .12R z z ∈B .12R z z ∈C .12R z z +∈D .12R z z ∈ 【答案】D【解析】利用排除法:当121,1z i z i =+=-时,12z z ∈R ,而()21212z z i i R =+=∉,选项A 错误, 1211z i i R z i+==∉-,选项B 错误, 当121,22z i z i =+=-时,12z z ∈R ,而123z z i R +=-∉,选项C 错误,本题选择D 选项.11.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案.【详解】 若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩ 解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件.【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题.12.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将2i e π表示的复数记为z ,则(12)z i +的值为( )A .2i -+B .2i --C .2i +D .2i -【答案】A【解析】【分析】 根据欧拉公式求出2cossin 22i z e i i πππ==+=,再计算(12)z i +的值.【详解】 ∵2cos sin 22i z e i i πππ==+=,∴(12)(12)2z i i i i +=+=-+.故选:A.【点睛】此题考查复数的基本运算,关键在于根据题意求出z .13.在复平面内,复数21i z i =+ (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】分析:首先求得复数z ,然后求解其共轭复数即可. 详解:由复数的运算法则有:()()()()2121211112i i i i i z i i i i --====+++-, 则1z i =-,其对应的点()1,1-位于第四象限.本题选择D 选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.14.设复数z 满足()13i z i +=+,则z =( )A B .2 C .D【解析】分析:先根据复数除法得z ,再根据复数的模求结果.详解:因为()13i z i +=+,所以31(3)(1)212i z i i i i +==+-=-+, 因此5,z = 选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭为.-a bi15.复数1122i i ++的虚部为( ) A .110 B .110- C .310 D .310- 【答案】A【解析】【分析】化简复数111122510i i i +=++,结合复数的概念,即可求解复数的虚部,得到答案,. 【详解】 由题意,复数()()1121112212122510i i i i i i i -+=+=+++-, 所以复数1122i i ++的虚部为110. 故选:A.【点睛】本题主要考查了复数的运算法则,以及复数的概念,其中解答中熟记复数的运算法则,准确化简是解答的关键,着重考查了推理与计算能力,属于基础题.16.下列命题中,正确命题的个数是( )①若,,则的充要条件是;②若,且,则; ③若,则. A . B .C .D .【答案】A对①,由于x ,y ∈C ,所以x ,y 不一定是x +yi 的实部和虚部,故①是假命题; 对②,由于两个虚数不能比较大小,故②是假命题;③是假命题,如12+i 2=0,但1≠0,i≠0.考点:复数的有关概念.17.已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z z =.则其中正确命题的个数为( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】运用复数的模、共轭复数、虚数等知识对命题进行判断.【详解】对于①中复数1z 和2z 的模相等,例如1=1+z i ,2z ,则1z 和2z 是共轭复数是错误的;对于②1z 和2z 都是复数,若12+z z 是虚数,则其实部互为相反数,则1z 不是2z 的共轭复数,所以②是正确的;对于③复数z 是实数,令z a =,则z a =所以z z =,反之当z z =时,亦有复数z 是实数,故复数z 是实数的充要条件是z z =是正确的.综上正确命题的个数是2个.故选C【点睛】本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.18.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v ( )A .-16B .0C .16D .32【答案】B【解析】【分析】 先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点. 由24y x y x ⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-,则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r .故选B【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.复数满足48i z z +=+,则复数z 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】 设(,)z a bi a b R =+∈,则48z z a bi i +=+=+,可得48a b ⎧⎪+=⎨=⎪⎩,即可得到z ,进而找到对应的点所在象限.【详解】设(,)z a bi a b R =+∈,则48z z a bi i +=++=+,48a b ⎧⎪+=∴⎨=⎪⎩,6,68i 8a z b =-⎧∴∴=-+⎨=⎩, 所以复数z 在复平面内所对应的点为()6,8-,在第二象限.故选:B【点睛】本题考查复数在复平面内对应的点所在象限,考查复数的模,考查运算能力.20.若复数z 满足22iz i =-(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】分析:直接利用复数代数形式的乘除运算化简复数,然后求z 的共轭复数,即可得到z 在复平面内对应的点所在的象限. 详解:由题意,()()()222222,i i i z i i i i -⋅--===--⋅-Q 22,z i ∴=-+ 则z 的共轭复数z 对应的点在第二象限.故选B.点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
zi,+2=2z设=2a+2bi在复平面内对应的.第四象限,故答案为D.对应的点的坐标是( ) ()(+为虚数单位1i iA .第一象限B .第二象限C .第三象限D .第四象限 【答案】 B【解析】 z = i·(1+i) = i – 1,因此对应点(-1,1).选B 选B9.【2021山东】(1)复数z 知足(z-3)(2-i)=5(i 为虚数单位),那么z 的共轭复数为( D )A. 2+i C. 5+i10.【2021上海理】设m R ∈,222(1)i m m m +-+-是纯虚数,其中i 是虚数单位,那么________m =【解答】2220210m m m m ⎧+-=⇒=-⎨-≠⎩11.【2021四川理】2.如图,在复平面内,点A 表示复数z ,那么图中表示z 的共轭复数的点是( )(A )A (B )B (C )C (D )D 12.【2021全国新课改II 】设复数z 知足(1i )z = 2 i ,那么z =(A )1+ i(B )1 i(C )1+ i(D )1 i答案:A【解法一】将原式化为z =2i 1- i ,再分母实数化即可.【解法二】将各选项一一查验即可.13.【2021课标1】假设复数z 知足 (3-4i)z =|4+3i |,则z 的虚部为()A 、-4(B )-45(C )4(D )45【命题用意】此题要紧考查复数的概念、运算及复数模的计算,是容易题.【点评】此题考查复数代数形式的四那么运算及复数的大体概念,考查大体运算能力.先把Z 化成标准的(,)a bi a b R +∈形式,然后由共轭复数概念得出1z i =--. 10.【2021高考湖北文12】.若=a+bi (a ,b 为实数,i 为虚数单位),那么a+b=____________. 【答案】3【点评】此题考查复数的相等即相关运算.此题假设第一对左侧的分母进行复数有理化,也能够求解,但较繁琐一些.来年需注意复数的几何意义,大体概念(共轭复数),大体运算等的考查.11.【2021高考广东文1】设i 为虚数单位,那么复数34ii+= A. 43i -- B. 43i -+ C. 43i + D. 43i - 【答案】D12.【2102高考福建文1】复数(2+i )2等于 +4i +4i +2i +2i 【答案】A.【解析】i i i 43)22()14()2(2+=++-=+,应选A.13.【2102高考北京文2】在复平面内,复数103ii+对应的点的坐标为 A . (1 ,3) B .(3,1) C .(-1,3) D .(3 ,-1) 【答案】A14.【2021高考天津文科1】i 是虚数单位,复数534i i+-=(A )1-i (B )-1+i (C )1+i (D )-1-i【答案】C或,复数a+为纯虚数0,0b00b,应选B.=+(i为虚数单位年高考(山东理))假设复数)117i-i D.3--B.35i【解析】1iz i-=2021年高考(大纲理)【考点定位】此题要紧考查复数的代数运算在复平面内所对应的图形的面积为__8__.3416.(2021年高考(上海春))假设复数z 知足1(iz i i =+为虚数单位),那么z =1i -_______.34(江苏))设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),那么a b +的值为____. 7. 【考点】复数的运算和复数的概念.【分析】由117ii 12ia b -+=-得()()()()117i 12i 117i 1115i 14i ===53i 12i 12i 12i 14a b -+-+++=+--++,因此=5=3a b ,,=8a b + .2020年高考复数1.【2020安徽理】 设 i 是虚数单位,复数aii1+2-为纯虚数,那么实数a 为 (A )2 (B) -2 (C) 1-2(D) 12A. 【命题用意】此题考查复数的大体运算,属简单题.【解析】设()aibi b R i1+∈2-=,那么1+(2)2ai bi i b bi =-=+,因此1,2b a ==.应选A. 2.【2020北京理】复数i 212i-=+ A. i B. i - C. 43i 55-- D. 43i 55-+【解析】:i 212ii -=+,选A 。
3.【2020福建理】.i 是虚数单位,假设集合{1,0,1}S =-,那么 (B )A .i S ∈B .2i S ∈C .3i S ∈D .2S i∈ 4.【2020福建文】i 是虚数单位,1+i 3等于(D ) A .iB .-iC .1+iD .1-i5.【2020广东理】设复数z 知足(1+i)z=2,其中i 为虚数单位,那么Z= A .1+i B .1-i C .2+2i D .2-2i6.【2020广东文】1.设复数z 知足1iz =,其中i 为虚数单位,那么z = ( ) AA .i -B .iC .1-D .17.【2020湖北理】i 为虚数单位,那么=⎪⎭⎫⎝⎛-+201111i iA.i -B.1-C.iD.1 【答案】A解析:因为()i i i i i =-+=-+221111,因此i i i i i i -====⎪⎭⎫⎝⎛-++⨯3350242011201111,应选A.8.【2020湖南理】.假设,a b R ∈,i 为虚数单位,且()a i i b i +=+,那么( ) A .1,1a b == B .1,1a b =-= C .1,1a b =-=- D .1,1a b ==- 答案:D解析:因()1a i i ai b i +=-+=+,依照复数相等的条件可知1,1a b ==-。
9.【2020江苏】设复数i 知足i z i 23)1(+-=+(i 是虚数单位),那么z 的实部是_________ 答案:1解析:由(1)32i z i +=-+取得32123113iz i i i-+=-=+-=+ 此题要紧考查考查复数的概念,四那么运算,容易题.10.【2020江西理】 设iiz 21+=,那么复数=_z ( )A. i --2B. i +-2C. i -2D.i +2 【答案】D【解析】i iiz -=+=221,∴i z +=2_11.【2020江西文】.假设()2,,x i i y i x y R -=+∈,那么复数x yi +=( ) A.2i -+ B.2i + C.12i - D.12i+答案:B解析: ()iyi x x y iy i xi i y i i x +=+∴==∴+=-+=-22,12,2212.【2020辽宁理】a 为正实数,i 为虚数单位,2=+iia ,那么=a BA .2B .3C .2D .113.【2020辽宁文】i 为虚数单位,=+++7531111i i i i A .0B .2iC .i 2-D .4iA14.【2020全国Ⅰ理】(1)复数212ii+-的共轭复数是 C (A )35i - (B )35i (C )i - (D )i15.【2020全国Ⅰ文】(3)已知复数23(13)iz i +=-则i =( D ) (A)14 (B )12(C )1 (D )2 16.【全国Ⅱ理】(1)复数1z i =+,z 为z 的共轭复数,那么1zz z --=(A)-2i (B)-i (C)i (D)2i 【答案】:B【命题用意】:本小题要紧考查复数的运算及共轭复数的概念。
【解析】:1z i =+,那么12(1)1zz z i i --=-+-=- 17【2020上海理】19.(本大题总分值12分)已知复数1z 知足1(2)(1)1z i i -+=-(i 为虚数单位),复数2z 的虚部为2,且12z z ⋅是实数,求2z .解: 1(2)(1)1z i i -+=-⇒12z i =-………………(4分)设22,z a i a R =+∈,那么12(2)(2)(22)(4)z z i a i a a i =-+=++-,………………(12分) ∵ 12z z R ∈,∴ 242z i =+ ………………(12分)18.【2020四川理】2.复数1i i -+=(A )2i -(B )1i 2(C )0 (D )2i答案:A解析:21i i i 2i i i -+=--=-,选A .19.【2020天津理】i 是虚数单位,复数13i12i-+=+( ).A.1i + B.55i + C.55i -- D.1i -- 【解】()()()()13i 12i 13i 55i1i 12i 12i 12i 5-+--++===+++-.应选A.20.【2020天津文】i 是虚数单位,复数3i1i+=-( ). A.12i + B.24i + C.12i -- D.2i - 【解】()()()()3i 1i 3i 24i12i 1i 1i 1i 2++++===+--+.应选A. 21.【2020浙江理】11.已知复数i i z --=12,其中i 是虚数单位,那么z = . 21022.【2020浙江文】(2)假设复数1z i =+,i 为虚数单位,那么(1)i z +⋅=AA .13i +B .33i +C .3i -D .323.【2020重庆理】复数2341i i i i++=- ( C )【答案】B 【解析】33ii+为分式形式的复数问题,化简时通常分子与分母同时乘以分母的共轭复数3i -,然后利用复数的代数运算,结合21i =-得结论.(33)3313391241233i i i i i i-+===+++,选B.19.【2020·湖北理数】假设i 为虚数单位,图中复平面内点Z 表示复数Z ,那么表示复数1zi+的点是( )【答案】D【解析】观看图形可知3z i =+,那么3211z ii i i+==-++,即对应点H (2,-1),故D 正确. 20.【2020·浙江理数】某程序框图如左图所示,假设输出的S=57,那么判定框内位( )A. k >4? >5? C. k >6? >7? 【答案】A【解析】此题要紧考察了程序框图的结构,和与数列有关的简 单运算,属容易题.21.【2020·辽宁文数】若是执行以下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( ).360 C 【答案】B【解析】13456360.p =⨯⨯⨯⨯=22.【2020·辽宁理数】若是执行上图(右)的程序框图,输入正整数n ,m ,知足n ≥。