第五章 相 图 5

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.7 三元相图的应用举例

5.7.1. CaO-Al2O3-SiO2系统三元相图

具体的硅酸盐系统三元相图往往图形比较复杂。我们首先以CaO-Al2O3-SiO2系统为例说明判读一张实际相图的步骤(见图5-42)。本系统15个无变量点标于图中。

(1) 首先看系统中生成了多少化合物,找出各化合物的初晶区,根据化合物组成点与其初晶区的位置关系,判断化合物的性质。本系统共有10个二元化合物,其中四个是一致熔化合物:CS、C2S、C12A7、A3S2,六个不一致熔化合物:C3S2、C3S、C3A、CA、CA2、CA6。两个三元化合物都是一致熔的:CAS2(钙长石)及C2AS(铝方柱石)。这些化合物的熔点或分解温度都标在相图上各自的组成点附近。

(2) 如果界线上未标明等温线,也未标明界线的温降方向,则需要运用连线规则,首先判明各界线的温度下降方向,再用切线规则判明界线性质。然后,在界线上打上相应的单箭头或双箭头。

图5-42 CaO-Al2O3-SiO2系统三元相图

(3) 运用重心规则判断各无变量点的性质。

如果在判断界线的性质时,已经画出了与各界线相对应的连线,则与无变量点相对应的副三角形已经自然形成了;如果先画出与各无变量点相对应的副三角形,则与各界线相对应的连线也会自然形成。

需要注意的是,不能随意在二个组成点之间连连线或在三个组成点间连副三角形。如A3S2与CA组成点之间不能连连线,因为相图上这二个化合物的初晶区并无共同的界线,液相与这二个晶相并无平衡共存关系;在A3S2、CA、Al2O3的组成点间也不能连副三角形,因为相图上不存在这三个初晶区相交的无变量点,它们并无共同析晶的关系。

三元相图上的无变量点必定都处于三个初晶区,三条界线的交点,而不可能出现其它的形式,否则是违反相律的。

在一般情况下,有多少个无变量点,就可以将系统划分成多少个相应的副三角形(有时副三角形可能少于无变量点的数目)。本系统共有15个无变量点,所以整个相图可以划分成15个副三角形。在副三角形化以后,根据配料点所处的位置,运用三角形规则,就可以很容易地预先判断任一配料的结晶产物和结晶终点。

(4) 仔细观察相图上是否指示系统中存在晶型转变、液相分层或形成固溶体等现象。本相图在富硅部分液相有分液区(2L),它是从CaO-SiO2二元的分液区发展而来的。此外,在SiO2初晶区还有一条1470℃的方石英与鳞石英之间的晶型转变线。

CaO-Al2O3-SiO2系统与许多硅酸盐产品有关,其富钙部分相图与硅酸盐水泥生产关系尤为密切。在这一部分相图上(图5-43),共有三个无变量点h、k、F,h、k是单转熔点,F 是低共熔点。与这三个无变量点相对应的副三角形是CaO-C3A-C3S、C3S-C3A-C2S、C2S-C3A-C12A7。用切线规则判断,CaO与C3S初晶区的界线在Z点从转熔界线变为共熔界线,而C3S与C2S初晶区的界线则在Y点从共熔性质变为转熔性质。在Yk段,冷却时,L+C2S→C3S,即C2S被回吸,生成C3S。但到达k点,L k+C3S→C2S+C3A,即C3S被回吸,生成C2S。这个有趣的现象说明,系统从三相图进人四相图,是一种质的飞跃,而不是量的渐变,不能简单地从三相图关系类推四相图关系。

图5-43 CaO-Al2O3-SiO2系统的富钙部分相图

我们以硅酸盐水泥熟料的典型配料,图上的点3为例,分析一下结晶路程。将配料3加热到高温完全熔融(约2000℃),然后平衡冷却析晶,从熔体中首先析出C2S,液相组成沿C2S—3连线的延长线变化到C2S-C3S界线,开始从液相中同时析出C2S与C3S。液相点随温度下降沿界线变化到Y点时,共析晶过程结束,转熔过程开始,C2S被回吸,析出C3S。当系统冷却到k点温度(1455℃),液相点沿Yk界线到达k点,系统进入相图的无变量状态,L k液相与C3S晶体不断反应生成C2S与C3A。由于配料点处于三角形C3S-C3A-C2S内,最后L k首先耗尽,结晶过程在k点结束。获得的结晶产物是C3S、C3A、C2S。

下面我们就硅酸盐水泥生产中的配料、烧成及冷却,结合相图加以讨论,以提高利用相图分析实际问题的能力。

(1) 硅酸盐水泥的配料

硅酸盐水泥熟料中含有C3S、C3A、C2S、C4AF四种矿物,相应的组成氧化物为CaO、SiO2、Al2O3、Fe2O3。因为Fe2O3含量较低(2%~5%),可以合并入Al2O3一并考虑,C4AF则相应计入C3A,这样可以用CaO-Al2O3-SiO2三元来表示硅酸盐水泥的配料组成。

根据三角形规则,配料点落在何副三角形中,最后析晶产物便是这个副三角形三个角顶所表示的三种晶相。图中1点配料处于三角形CaO-C3A-C3S中,平衡析晶产物中将有游离CaO。2点配料处于三角形C2S-C3A-C12A7内,平衡析晶产物中将有C12A7,而没有C3S,前者的水硬活性很差,而后者是水泥中最重要的水硬矿物。因此,这二种配料都不符合硅酸盐水泥熟料矿物组成的要求。硅酸盐水泥生产中熟料的实际组成是含62%~67%CaO,20%~24% SiO2,6.5%~13%( Al2O3+Fe2O3),即在三角形C3S-C3A-C2S内的小圆圈内波动。从相图的观点看,这个配料是合理的,因为最后析晶产物都是水硬性能良好的胶凝矿物。以C3S-C3A-C2S 作为一个浓度三角形,根据配料点在此三角形中的位置,可以读出平衡析晶时水泥熟料中各矿物的含量。

(2) 烧成

工艺上不可能将配料加热到2000℃左右完全熔融,然后平衡冷却析晶。实际上是采用部分熔融的烧结法生产熟料。因此,熟料矿物的形成并非完全来自液相析晶,固态组分之间的固相反应起着更为重要的作用。为了加速组分间的固相反应,液相开始出现的温度及液相量至关重要。如果是非常缓慢的平衡加热,则加热熔融过程应是缓慢冷却平衡析晶的逆过程,且在同一温度下,应具有完全相同的平衡状态。以配料3为例,其结晶终点是k点,则平衡加热时应在k点出现与C3S、C3A、C2S平衡的L k液相,但C3S很难通过纯固相反应生成(如果很容易,水泥就不需要在1450℃的高温下烧成了),在1200℃以下组分间通过固相反应生成的是反应速度较快的C12A7、C3A、C2S。因此,液相开始出现的温度并不是k点的1445℃,而是与这三个晶相图的F点温度1335℃(事实上,由于工艺配料中含有Na2O、K2O、MgO 等其它氧化物,液相开始出现的温度还要低,约1250℃)。F点是一个低共熔点,加热时C2S+C12A7+C3A→L F,即C12A7、C3A、C2S低共熔形成F点液相。当C12A7熔完后,液相组成将沿Fk界线变化,升温过程中,C3A与C2S继续熔入液相,液相量随温度升高不断增加。系统中一旦形成液相,生成C3S的固相反应:C2S+CaO→C3S的反应速度即大大增加。从某种意义上说,水泥烧成的核心问题是如何创造良好的动力学条件促成熟料中的主要矿物C3S 的大量生成。C12A7是在非平衡加热过程中在系统中出现的一个非平衡相,但它的出现降低了液相开始形成的温度,对促进热力学平衡相C3S的大量生成是有帮助的。

(3) 冷却

水泥配料达到烧成温度时所获得的液相量约20%~30%。在随后的降温过程中,为了防止C3S分解及β-C2S发生晶型转化,工艺上采取快速冷却措施,而不是缓慢冷却,因而冷却过程也是不平衡的。这种不平衡的冷却过程可以用下面二种模式来加以讨论。

①急冷:此时冷却速度超过熔体的临界冷却速度,液相完全失去析晶能力,全部转变为低温下的玻璃体。

②液相独立析晶:如果冷却速度不是快到使液相完全失去析晶能力,但也不是慢到足以使它能够和系统中其它晶相保持原有的相图关系,则此时液相犹如一个原始配料的高温熔体那样独自析晶,重新建立一个新的平衡体系,不受系统中已存在的其它晶相的制约。这种现象特别容易发生在转熔点上的液相。譬如在k点,L k+C3S→C2S+C3A,生成的C2S和C3A 往往包裹在C3S的表面,阻止了L k与C3S的进一步反应,此时液相将作为一个原始熔体开始独立析晶,沿kF界线析出C2S和C3A,到F点后又有C12A7析出。因为k点在三角形C2S-C3A-C12A7内,独立析晶的析晶终点必在与其相应的无变量点F。因此,在发生液相独立析晶时,尽管原始配料点处在三角形C3S-C3A-C2S内,其最终获得的产物中可能有四个晶相,除了C3S、C3A、C2S外,还可能有C12A7,这是由过程的非平衡性质造成的。由于冷却时在k点发生L k+C3S→C2S+C3A的转熔过程,C3S要消耗,如在k点发生液相独立析晶或急冷成玻璃体,可以阻止这一转熔过程。因此,对某些硅酸盐水泥配料,快速冷却反而可以

相关文档
最新文档