八年级奥林匹克数学竞赛题
初中八年级奥林匹克数学竞赛(决赛)模拟试题附答案
初中八年级奥林匹克数学竞赛(决赛)试题附答案班级 姓名(竞赛时间:2010年3月21日上午9:30—11:30)题号 一 二 三 四 五 总分得分评卷人一、选择题(每小题5分,共30分) 1.计算(1252011)(2462010)++++-++++的结果是( )A . 1004B . 1006C . 1008D .10102.如图1是一个无盖正方体盒子的表面展开图,A 、B 、C 为图上三点,则在正方体盒子中,∠ABC 的度数为( )A . 120°B .90°C . 60°D .45°3.九年级的数学老师平均每月上6节辅导课,如果由女教师完成,则每人每月应上15节;如果只由男教师完成,则每人应上辅导课( )节A .9B . 10C . 12D .144.如果有四个不同的正整数m 、n 、p 、q 满足(7-m )(7-n )(7-p)(7-q )=4,那么m+n+p+q 等于( )A .21B . 24C . 26D .25.如图2,在△ABC 中,AC=BC ,∠ACB=90°,AD 平分∠BAC,AD 的延长线交BF 于E ,且E 为垂足,则结论①AD=BF ,②CF=CD,③AC+CD=AB ,④BE=CF,⑤BF=2BE ,其中正确的结论的个数是( )F( 图2 )EDC BAA .4B .3C .2D .1 6.如果实数8181m n m m n m n n m n ++≠=+=++,且,则( )A . 7B . 8C . 9D .10 二、填空题(每小题5分,共30分) 7.若(2011 4149aQ a --,)是第三象限内的点,且a 为整数,则a = 。
8.若实数2222231 3-2x y x y S x y +==,满足,,则S 的取值范围是 . 9.在△ABC 中,三个内角的度数均为整数,且∠A 〈∠B 〈∠C ,5∠C=9∠A ,则∠B 的度数是 .10.已知22302010 672010 x yx y==+=,,则 。
初二奥数竞赛试题及答案
初二奥数竞赛试题及答案试题一:代数问题题目:若\( a \)、\( b \)、\( c \)为正整数,且满足\( a^2 + b^2 + c^2 = 1 \),求\( a \)、\( b \)、\( c \)的值。
答案:由于\( a \)、\( b \)、\( c \)为正整数,且\( a^2 + b^2 + c^2 = 1 \),我们可以推断出\( a \)、\( b \)、\( c \)的值只能是1或0。
因为\( 1^2 = 1 \),而\( 2^2 = 4 \),所以\( a \)、\( b \)、\( c \)不能大于1。
经过尝试,我们可以发现只有当\( a = b = c = 0 \)或\( a = 1, b = 0, c = 0 \)(或其它两种排列)时,等式成立。
试题二:几何问题题目:在一个直角三角形ABC中,∠C是直角,AC = 6,BC = 8,求斜边AB的长度。
答案:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
所以,我们有:\[ AB^2 = AC^2 + BC^2 \]\[ AB^2 = 6^2 + 8^2 \]\[ AB^2 = 36 + 64 \]\[ AB^2 = 100 \]\[ AB = \sqrt{100} \]\[ AB = 10 \]试题三:组合问题题目:有5种不同的颜色的球,每种颜色有3个球,现在要从中选出3个球,求不同的选法总数。
答案:这是一个组合问题,我们可以使用组合公式来解决。
组合公式为:\[ C(n, k) = \frac{n!}{k!(n-k)!} \]其中\( n \)是总数,\( k \)是要选择的数目。
在这个问题中,\( n = 15 \)(因为有5种颜色,每种3个球),\( k = 3 \)。
所以:\[ C(15, 3) = \frac{15!}{3!(15-3)!} \]\[ C(15, 3) = \frac{15 \times 14 \times 13}{3 \times 2 \times 1} \]\[ C(15, 3) = 455 \]试题四:逻辑问题题目:有5个盒子,每个盒子里都装有不同数量的糖果,从1到5。
全国奥林匹克数学初二竞赛题
全国奥林匹克数学初二竞赛题
全国奥林匹克数学初二竞赛题
一、数学逻辑
1、已知函数f(x)的定义域为[a,b],若f(a)=8,f(b)=15,求f(c)的值。
2、若函数f(x)的定义域为[a,b],其图像对称轴的方程若为y=kx-k,求a,b的值。
3、已知椭圆的两个焦点F1,F2在x轴上,以及它们到圆心的距离为a,求椭圆方程。
二、不等式
4、设a,b,c分别为正实数,求使a,b,c满足不等式x^2+2ax+2bx+c=0
的有界解集。
5、若x^2+2ax+2bx+c>0,其中a,b,c均为正实数,求对应的x的取值范围。
6、已知x,y,a,b均为正实数,求使x^2+2ax+2bx+y^2+2ay+2by=c的有
界解集。
三、函数
7、已知f(x)的定义域为[2,30],求f(x)的最大值以及f(x)的最小值。
8、已知直线上有m,n两点,求m到n的最短距离以及对应的方程(以
y=mx+b的形式表示)。
9、已知椭圆上有m,n两点,求m到n的最短距离以及对应的方程(以ax^2+by^2+cx+dy+k=0的形式表示)。
四、应用题
10、已知某商品的销售总额为50万,还知该商品的单位成本为100元,求该商品的最大利润。
11、若有两段距离分别为a,b共需要t小时,若要同时全程行驶,求所
需的最大时间。
12、已知f(x)的定义域为[1,50],求f(x)的单调递增区间及它们的
端点值。
第八届奥林匹克全国数学大赛初二的题
第八届奥林匹克全国数学大赛初二的题题目一:第八届奥林匹克全国数学大赛初二组一、选择题(共20题,每题4分,共80分)1. 在一个等差数列中,首项为3,公差为5,第5项为23,则这个等差数列的前n项和Sn为__________。
2. 已知一组数的平均值是18,如果将其中一个数3改成2,则新的平均值为____。
3. 若一个正整数除以8余2,除以10余6,求这个数除以40的余数是多少?4. 若直线y=3x+2与圆的方程为$x^2+y^2-2x-4y-11=0$,求这个圆与y轴的交点坐标。
5. 若正方形的边长为a,则其对角线的长度为______。
6. 若两条直线的斜率之和为5,斜率之积为-6,则这两条直线的方程分别是______。
7. 若甲乙两个数的和是100,乙丙两个数的和是80,乙数比丙数多10,求甲数是多少?8. 若一个正整数除以5余3,除以6余4,求这个数除以30的余数是多少?9. 设A、B、C三个整数满足A<B<C,如果A、B、C是一个等差数列,则这个等差数列的公差为______。
10. 若集合A={1, 2, 3},集合B={2, 3, 4},则集合A与集合B的并集为______。
二、填空题(共5题,每题6分,共30分)1. 在一个等差数列中,首项为2,公差为4,若前n项的和为56,则这个等差数列的第n项为______。
2. 设矩形的长是宽的3倍,周长为72,这个矩形的长和宽的分别是______。
3. 若$ax^2+bx+c$的图像与x轴两交点均为负数,则a、b、c的关系式为______。
4. 若直线y=2x-7与直线y=kx-2平行,则k的值为______。
5. 设一个正整数的个、十位数字和为12,将该数字的个、十位数字对调后,新数字比原数字增大36,该正整数为______。
三、解答题(共5题,每题10分,共50分)1. 设$\log_5{x}=a,\log_3{x}=b$,求$\log_{75}{x}$的值。
初中奥林匹克数学竞赛试题
初中奥林匹克数学竞赛试题一、选择题(每题3分,共30分)1. 若实数a,b满足 a + 2 +(b - 4)² = 0,则a + b的值为()。
A. - 2B. 2C. 6D. - 6答案:B。
解析:因为绝对值是非负的,一个数的平方也是非负的,要使 a + 2 +(b - 4)² = 0,那么a+2 = 0且b - 4 = 0,解得a=-2,b = 4,所以a + b=2。
2. 把多项式x² - 4x+4分解因式,结果正确的是()。
A. (x - 2)²B. (x+2)²C. (x - 4)²D. (x+4)²答案:A。
解析:x²- 4x + 4符合完全平方公式a²- 2ab+b²=(a - b)²的形式,这里a=x,b = 2,所以分解因式结果为(x - 2)²。
3. 已知一元二次方程x² - 3x - 2 = 0的两个实数根为x1,x2,则(x1 - 1)(x2 - 1)的值是()。
A. - 4B. - 2C. 0D. 2答案:C。
解析:根据韦达定理,对于一元二次方程ax²+bx + c = 0(a≠0),x1+x2=-b/a,x1x2=c/a。
在方程x² - 3x - 2 = 0中,a = 1,b=-3,c = - 2,所以x1+x2 = 3,x1x2=-2。
(x1 - 1)(x2 - 1)=x1x2-(x1+x2)+1=-2 - 3+1 = 0。
4. 一个三角形的三个内角之比为1:2:3,则这个三角形是()。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B。
解析:设三个内角分别为x,2x,3x,因为三角形内角和为180°,所以x+2x+3x = 180°,解得x = 30°,那么三个角分别为30°,60°,90°,所以是直角三角形。
初二数学奥林匹克竞赛题及答案
初二数学奥林匹克竞赛题及答案1、如图,梯形ABCD 中,AD ∥BC ,DE =EC ,EF ∥AB 交BC 于点F ,EF =EC ,连结DF 。
(1)试说明梯形ABCD 是等腰梯形;(2)若AD =1,BC =3,DC DCF 的形状;(3)在条件(2)下,射线BC 上是否存在一点P ,使△PCD 是等腰三角形,若存在,请直接写出PB 的长;若不存在,请说明理由.2、在边长为6的菱形ABCD 中,动点M 从点A 出发,沿A →B →C 向终点C 运动,连接DM 交AC 于点N 。
(1)如图25-1,当点M 在AB 边上时,连接BN .①求证:△ABN ≌△ADN ; ②若∠ABC = 60°,AM = 4,求点M 到AD 的距离; (2)如图25-2,若∠ABC = 90°,记点M 运动所经过的路程为x (6≤x ≤12)试问:x 为何值时,△ADN 为等腰三角形.3、对于点O 、M ,点M 沿MO 的方向运动到O 左转弯继续运动到N ,使OM =ON ,且OM ⊥ON ,这一过程称为M 点关于O 点完成一次“左转弯运动".正方形ABCD 和点P ,P 点关于A 左转弯运动到P 1,P 1关于B 左转弯运动到P 2,P 2关于C 左转弯运动到P 3,P 3关于D 左转弯运动到P 4,P 4关于A 左转弯运动到P 5,……. (1)请你在图中用直尺和圆规在图中确定点P 1的位置;(2)连接P 1A 、P 1B ,判断 △ABP 1与△ADP 之间有怎样的关系?并说明理由。
(3)以D 为原点、直线AD 为y 轴建立直角坐标系,并且已知点B 在第二象限,A 、P 两点的坐标为(0,4)、(1,1),请你推断:P 4、P 2009、P 2010三点的坐标.BA4、如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt △A1B1C1关于直线QN成轴对称的图形;(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?5、如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图中有几个等腰三角形?猜想: EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由。
八年级数学奥林匹克试卷
一、选择题(每题5分,共20分)1. 若一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为()A. 24cmB. 26cmC. 28cmD. 30cm2. 下列哪个数是0.2的平方根()A. -0.2B. 0.2C. 0.04D. -0.043. 已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,若OA=3,OB=4,则该一次函数的解析式为()A. y=3x+4B. y=4x+3C. y=3x-4D. y=4x-34. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 120°C. 105°D. 90°5. 若一个数的平方根是±3,则这个数是()A. 9B. -9C. 27D. -27二、填空题(每题5分,共25分)6. 已知一元二次方程x^2-5x+6=0,则该方程的解为______。
7. 在直角坐标系中,点P(-2,3)关于y轴的对称点坐标为______。
8. 一个等边三角形的边长为a,则其面积S为______。
9. 若一个数的立方根是2,则该数是______。
10. 在△ABC中,若AB=AC,则△ABC是______三角形。
三、解答题(每题10分,共30分)11. (10分)已知等腰三角形ABC中,AB=AC,∠B=50°,求∠A的度数。
12. (10分)已知一次函数y=kx+b的图象经过点A(2,-3)和点B(-1,1),求该一次函数的解析式。
13. (10分)在平面直角坐标系中,点P(m,n)在第二象限,且m+n=5,求点P 关于x轴的对称点坐标。
四、附加题(20分)14. (10分)已知一元二次方程x^2-4x+3=0,求该方程的解,并证明该方程的解是方程x^2+2x-15=0的根。
15. (10分)已知等腰三角形ABC中,AB=AC,BC=6cm,AD⊥BC于点D,求三角形ABC的面积。
【精品】初二数学奥林匹克竞赛题及答案
F EA DCB 初二数学奥林匹克竞赛题及答案1、如图,梯形ABCD 中,AD ∥BC ,DE =EC ,EF ∥AB 交BC 于点F ,EF =EC ,连结DF 。
(1)试说明梯形ABCD 是等腰梯形;(2)若AD =1,BC =3,DC =2,试判断△DCF 的形状;(3)在条件(2)下,射线BC 上是否存在一点P ,使△PCD 是等腰三角形,若存在,请直接写出PB 的长;若不存在,请说明理由。
2、在边长为6的菱形ABCD 中,动点M 从点A 出发,沿A →B →C 向终点C 运动,连接DM 交AC 于点N .(1)如图25-1,当点M 在AB 边上时,连接BN .①求证:△ABN ≌△ADN ;②若∠ABC = 60°,AM = 4,求点M 到AD 的距离;(2)如图25-2,若∠ABC = 90°,记点M 运动所经过的路程为x (6≤x ≤12)试问:x 为何值时,△ADN 为等腰三角形.3、对于点O 、M ,点M 沿MO 的方向运动到O 左转弯继续运动到N ,使OM =ON ,且OM ⊥ON ,这一过程称为M 点关于O 点完成一次“左转弯运动”.正方形ABCD 和点P ,P 点关于A 左转弯运动到P 1,P 1关于B 左转弯运动到P 2,P 2关于C 左转弯运动到P 3,P 3关于D 左转弯运动到P 4,P 4关于A 左转弯运动到P 5,,,.(1)请你在图中用直尺和圆规在图中确定点P 1的位置;(2)连接P 1A 、P 1B ,判断△ABP 1与△ADP 之间有怎样的关系?并说明理由。
(3)以D 为原点、直线AD 为y 轴建立直角坐标系,并且已知点B 在第二象限,A 、P 两点的坐标为(0,4)、(1,1),请你推断:P 4、P 2009、P 2010三点的坐标.B AO4、如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt△A1B1C1关于直线QN成轴对称的图形;(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?5、如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图中有几个等腰三角形?猜想: EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由。
第八届奥林匹克全国数学大赛初二试题
第八届 全国数学大赛初二试题(时间:120分钟 满分:140分)题号 一 二三总分 1718 19 20 得分一、选择 题(每小题5分,共40分)1、已知a ,b ,c 为△ABC 三边,且满足a 2c 2-b 2c 2=a 4-b 4,则它的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形2、已知方程组⎩⎨⎧=+=+4535y ax y x 与⎩⎨⎧=-=+5235y x by x 有相同的解,则b a ,的值为( )A .⎩⎨⎧==21b aB .⎩⎨⎧-=-=64b aC .⎩⎨⎧=-=26b aD .⎩⎨⎧==114b a3、甲是乙现在的年龄时,乙l0岁;乙是甲现在的年龄时,甲25岁,那么( ). A .甲比乙大5岁 B .甲比乙大10岁 C .乙比甲大10岁 D .乙比甲大5岁4、化简)2(2)2(2234++-n n n 得( ). A .8121-+n B .12+-n C .87 D .475、如果式子aa ---11)1( 根号外的因式移入根号内,化简的结果为( )A .a -1B .1-aC .1--aD .a --1 6、如图,已知△ABC 中,AB =AC ,∠BAC =90°,直角EPF 的 顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点C 、F , 给出以下四个结论:①AE =CF ; ②△EPF 是等腰直角三角形; ③S 四边形AEPF =21S △ABC ;④EF =AP .当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的有( )A .1个B .2个C .3个D .4个.7、在实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是( )A .B .C .D .8、若p 为质数,35p +仍为质数,则57p +为( ).A.质数B.可为质数也可为合数C.合数D.既不是质数也不是合数二、填空题(每小题5分,共40分)9、若关于x 的方程)2(2015)1(--=-x n x m 有无数个解,则m 2015+n 2015= . 10、已知3=xy ,那么yx y xy x +的值为 .11、某数的平方根是22b a +和1364+-b a ,那么这个数是 . 12、设43239-的整数部分为a ,小数部分为b ,则ba b a -+++41111= . 13、直角三角形有一条直角边为11,另外两条边长是自然数,则周长为__________.14、如图,已知直线l :y =33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;……按此作法继续下去,则点A 2015的坐标为 .15.如上图,在四边形ABCD 中,∠A =60°,∠B =∠D =90°,BC =2, CD =3,则AB =16、小明、小强、小华三人参加奥林匹克杯数学大赛,他们是来自北京、上海、成都的选手,并分别获得一、二、三等奖。
八年级奥林匹克数学竞赛题
八年级奥林匹克数学竞赛题八年级的奥林匹克数学竞赛题相对于一般数学题而言,更侧重考查学生对知识的综合运用能力和解题思维能力,题目相对偏难一些。
接下来是店铺为大家带来的八年级奥林匹克的数学竞赛题,供大家参考。
八年级奥林匹克数学竞赛题目一填空题1、观察下列各式1× 3=3而3=22-1,3×5=15而15=42-1,5×7=35而35=62-1,……,11×13=143而143=122-1;你猜想到的规律用只含一个字母n的式子表示出来是 __ 。
2、a=2005x+2004,b=2005x+2005,c=2005x+2006,代数式a2+b2+c2-ab-bc-ca= 。
3、一个多边形的对角线的条数等于边数的5倍,则这个多边形是_____边形.4、现有铁矿石73吨,计划用载重量分别为7吨和5吨的两种卡车一次运走,已知载重量7吨的卡车每台车的运费为65元,载重量5吨的卡车每台车运费为50元,则最省的运费是元。
5、100个数据分成5组,其中第一、二小组的频率之和等于0.11,第四、五小组的频率之和等于0.27,则第三小组的频数等于_______________。
6、甲、乙、丙三人进行智力抢答活动,规定:第一个问题由乙提出,由甲、丙抢答.以后在抢答过程中若甲答对1题,就可提6个问题,乙答对1题就可提5个问题,丙答对1题就可提4个问题,供另两人抢答.抢答结束后,总共有16个问题没有任何人答对,则甲、乙、丙答对的题数分别是________。
7、在四边形ABCD中,如果要使对角线AC⊥BD,可添加条件(只需填写一个你认为适当的条件即可)。
8、有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币___枚,第2堆有硬币____枚,第3堆有硬币_____枚.9、盒子里有10个球,每个球上写有1~10中的1个数字,不同的球上数字不同,其中两个球上的数的和可能是3,4,…,19.现从盒中随意取两个球,这两个球上的数的和,最有可能出现的是_______。
八年级数学奥赛题及答案
一,选择题。
1、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有(D )A 、3个B 、4个C 、5个D 、无数个2、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为(C )A 、680 B 、720 C 、745 D 、760 3、已知四边形ABCD 为任意凸四边形,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,用S 、P 分别表示四边形ABCD 的面积和周长;S 1、P 1分别表示四边形EFGH 的面积和周长.设K = S S 1,K 1 = PP 1,则下面关于K 、K 1的说法正确的是(A ).A .K 、K 1均为常值B .K 为常值,K 1不为常值C .K 不为常值,K 1为常值D .K 、K 1均不为常值二,填空题。
1、如图,△ABC 是一个等边三角形,它绕着点P 旋转,可以与等边△ABD重合,则这样的点P 有__3_____个。
2、如图,现有棱长为a 的8个正方体堆成一个棱长为2a 的正方体,它的主视图、俯视图、左视图均为一个边长为2a 的正方形,现如果要求从图中上面4个正方体中拿去2个,而三个视图的形状仍不改变,那么拿去的2个正方体的编号应为____A 、C 或B 、D______。
3、如图、如图,G ,G 是边长为4的正方形ABCD 的边BC 上一点上一点,,矩形DEFG 的边EF 过点A,GD=5,A,GD=5,则则FG 的长为的长为_____3,2_____. _____3,2_____.4、如图,P 为平行四边形ABCD 内一点,内一点,过点过点P 分别作AB 、AD 的平行线交平行四边形E 、F 、G 、H 四点,若S AHPE =3, S PFCG =5,则S△PBD= 1 5、如图,边长分别为1、2、3、4、……2007、2008的正方形叠放在一起,则图中阴影部分D CBAABCDF AEHBP DGC BCDFGE A的面积和为的面积和为 20170362017036 。
初二奥林匹克数学竞赛(10道变态难数学题)
初二奥林匹克数学竞赛(10道变态难数学题)今天给大家分享的是八年级数学奥林匹克竞赛的知识,也会讲解10道异常难的数学题。
如果你碰巧解决了你现在面临的问题,别忘了关注这个网站,现在就开始!初二奥林匹克数学竞赛始于1894年由匈牙利数学界为纪念数理学家厄特沃什-罗兰而组织的数学竞赛。
而把数学竞赛与体育竞赛相提并论,与科学的发源地–古希腊联系在一起的是前苏联,她把数学竞赛称为数学奥林匹克。
20世纪上半叶,不同国家相继组织了各级各类的数学竞赛,先在学校,继之在地区,后来在全国进行,逐步形成了金字塔式的竞赛系统。
从各国的竞赛进一步发展,自然为形成最高一层的国际竞赛创造了必要的条件。
1975年匈牙利布达佩斯大学数学委员会提倡创立,并于1978年8月在匈牙利举行了第一次世界奥林匹克数学竞赛(Would Mathematical Olympiad 简称WMO)。
随着影响力的扩大,越来越多的国家和地区参与进来。
2006年,中国组委会提出申请,并于2007年8月获准加入该协会。
最近几年中国一直排名第一。
10道变态难数学题1、有六级台阶,小明从下往上走,若每次只能跨一级或两级,她走上去有几种可能?2.如果今天是星期六,从明天算起2的20次方后的第一天是星期几?3.在一个月中,星期二的天数比星期三多,星期一的天数比星期天多。
这个月5号是星期几?4、100的平方-99的平方+98的平方-97的平方+……+2的平方-1的平方是多少?5、1×2+2×3+3×4+……100×1016.某次比赛,一等奖10个,二等奖20个。
现在一等奖最后四个人调整为二等奖,所以二等奖平均分增加2分,也就是一等奖平均分增加1分。
原来一等奖比二等奖平均分多多少分?7.一条公交线路中间有15个站,有快车和慢车两种。
快车的速度是慢车的1.5倍。
慢车每站都停,快车只停中间站,停站时间2分钟。
慢车每次60分钟从同一个始发站发车时,快车刚好到达终点。
初中数学奥林匹克竞赛(八年级)
数学奥林匹克竞赛试卷(八年级)一、选择题1、已知三点A(2,3),B(5,4),C(-4,1)依次连接这三点,则( )A、构成等边三角形B、构成直角三角形C、构成锐角三角形D、三点在同一直线上2、边长为整数,周长为20的三角形个数是()A、4个B、6个C、8个D、123、N=31001+71002+131003,则N的个位数字是()A、3B、6C、9D、04、P为正方形ABCD内一点,若PA:PB:PC=1:2:3,则∠APB的度数为()A、120°B、135°C、150°D、以上都不对6、已知a+b+c≠0,且a+bc=b+ca=a+cb=p,则直线y=px+p不经过()A、第一象限B、第二象限C、第三象限D、第四象限7、计算(1252011)(2462010)的结果是()A.1004 B.1006 C.1008 D.10108、如果有四个不同的正整数m、n、p、q满足(7-m)(7-n)(7-p)(7-q)=4,那么m+n+p+q等于()A.21 B.24 C.26 D.289、如图2,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,AD的延长线交BF于E,且E为垂足,则结论①AD=BF,②CF=CD,③AC+CD=AB,④BE=CF,⑤BF=2BE,其中正确的结论的个数是()A.4 B.3 C.2 D.110、如果实数8181m n mm n m nn m n,且,则()A.7 B.8 C.9 D.10 二、填空题11、如果a是方程x2-3x+1=0的根,那么分式2a5-6a4+2a3-a2-13aF( 图2 )EDCBA的值是;12、甲乙两个机器人同时按匀速进行100米速度测试,自动记录仪表明:当甲距离终点差1米,乙距离终点2米;当甲到达终点时,乙距离终点 1.01米,经过计算,这条跑道长度不标准,这这条跑道比100米多;13、根据图中所标的数据,图中的阴影部分的面积是;14、有三个含有30°角的直角三角形,它们的大小互不相同,但彼此有一条边相等,这三个三角形按照从大到小的顺序,其斜边的比为;15.若(20114149aQ a ,)是第三象限内的点,且a 为整数,则a =.16.若实数22222313-2x y x y S x y,满足,,则S 的取值范围是.17.在△ABC 中,三个内角的度数均为整数,且∠A<∠B<∠C ,5∠C=9∠A ,则∠B 的度数是.18.已知22302010 672010xyxy,,则.三、解答题(本大题共有3小题,第11小题20分,第12、13小题各25分,满分70分)19、已知△ABC 是等边三角形,E 是AC 延长线上一点,选择一点D ,使得△CDE是等边三角形,如果M 是线段AD 的中点,N 是线段BE 的中点,求证:△CMN 是等边三角形20、已知n是大于1的整数求证:n3可以写出两个正整数的平方差21、已知正整数x、y满足条件:2x+1y=a,(其中,a是正整数,且x<y)求x和y。
八年级奥林匹克数学竞赛试题
一、请你填一填。
(19分)1. + + + =( ×)。
2.画一个直径6厘米的圆,圆规两脚尖的距离是( )厘米,面积是( )平方厘米。
3. =0.4= ( ) : 20 =( )%。
4.把3:1.25化成最简单的整数比是( ),比值是( )。
5.40千克的20%是( )千克,20吨比( )吨少。
6. 六(1)班今天出勤48人,有2人请假,今天六(1)班学生的出勤率是( )。
7.油菜籽的出油率是40%,500千克油菜籽可出油( )千克;要出油500千克需要( )千克油菜籽。
8.一个长方形的周长是30厘米,长与宽的比是3:2,这个长方形的面积是( )平方厘米。
9.一个钟面的分针长4厘米,时针走了1大格,分针扫过的面积是( )平方厘米,分针的尖端所走过的路程是( )厘米。
10.六(1)班女生人数是男生人数的,女生人数与全班人数的比是( ),男生人数占全班的,男生比女生多。
二、请你来判断。
(6分)1.1的倒数是1,0的倒数是0。
( )2.用110粒种子做发芽试验,有100粒发芽,发芽率是100% ( )3.走完一段路,甲需要8时,乙需要10时,甲、乙速度比是4:5。
( )4.1吨煤用去吨,还剩20%吨。
( )5.5比4多25%,4比5少20%。
( )6.大牛和小牛的头数比是4:5,表示大牛比小牛少。
( )三、请你来选择。
(16分)1.两根3米长的铁丝,第一根用去全长的,第二根用去米,剩下的铁丝( )。
A第一根长B第二根长C 两根一样长2.一台电视机降价40%后售价是660元,原价是( )元。
A 1100B 396C 3303.小圆的直径是2厘米,大圆的半径是2厘米,小圆的面积是大圆面积的( )。
4.一个正方形的边长和圆的半径相等,已知正方形的面积是20平方米,圆的面积是( )平方米。
A 62.8B 12.56C 15.75.一种MP3原来的售价是820元,降低10%,再提高10%,现在的价格和原来相比( )。
初二奥林匹克数学竞赛试卷
一、选择题(每题5分,共20分)1. 下列数中,不是有理数的是()A. 2/3B. -1/4C. √2D. 3.142. 已知a=2,b=-3,那么a²+b²的值是()A. 1B. 5C. 13D. 173. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 等腰梯形D. 长方形4. 下列等式中,不成立的是()A. a²+b²=c²(c为直角三角形斜边)B. (a+b)²=a²+2ab+b²C. (a-b)²=a²-2ab+b²D. (a+b)(a-b)=a²-b²5. 已知函数f(x)=3x²-4x+1,当x=2时,f(x)的值是()A. 5B. 7C. 9D. 11二、填空题(每题5分,共20分)6. 分数4/5的倒数是__________。
7. 下列数中,最小的负整数是__________。
8. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是__________cm。
9. 若a、b、c为三角形的三边,且满足a+b>c,b+c>a,a+c>b,那么这个三角形一定是__________三角形。
10. 在平面直角坐标系中,点A(2,3),点B(-1,-2),那么线段AB的中点坐标是__________。
三、解答题(每题20分,共80分)11. (10分)已知一元二次方程x²-5x+6=0,求它的两个根。
12. (10分)已知函数f(x)=2x+1,求函数f(x)的值域。
13. (10分)已知等差数列{an}的首项为2,公差为3,求第10项an的值。
14. (10分)已知直角三角形ABC中,∠C=90°,AB=10cm,BC=6cm,求AC的长度。
15. (10分)已知函数f(x)=ax²+bx+c(a≠0),若f(1)=2,f(2)=5,f(3)=10,求a、b、c的值。
八年级上册数学奥林匹克竞赛题
八年级上册数学奥林匹克竞赛题1.八年级奥数题精选大全1、某厂向银行申请甲、乙两种贷款共40万元,每年需付利息5万元。
甲种贷款年利率为12%,乙种贷款年利率为14%。
该厂申请甲、乙两种贷款的金额各是多少?2、商店进了一批钢笔,用零售价10元卖出20支与用零售价11元卖出15支的利润相同。
这批钢笔的进货价每支多少元?3、某种蜜瓜大量上市,这几天的价格每天都是前一天的80%。
妈妈第一天买了2个,第二天买了3个,第三天买了5个,共花了38元。
若这10个蜜瓜都在第三天买,则能少花多少钱?4、商店以每双13元购进一批凉鞋,售价为14.8元,卖到还剩5双时,除去购进这批凉鞋的全部开销外还获利88元。
问:这批凉鞋共多少双?5、体育用品商店用3000元购进50个足球和40个篮球。
零售时足球加价9%,篮球加价11%,全部卖出后获利润298元。
问:每个足球和篮球的进价是多少元?6、甲、乙两个油桶各装了15千克油,售货员卖了14千克。
后来,售货员从剩下较多油的甲桶倒一部分给乙桶,使乙桶的油增加一倍;然后又从乙桶倒一部分给甲桶,使甲桶的油也增加一倍;这时甲桶的油恰好是乙桶油的3倍。
问售货员从两个油桶里各卖了多少千克油?2.八年级奥数题精选大全1.平整一块土地,原计划8人平整,每天工作7.5小时,6天可以完成任务。
由于急需播种,要求5天完成,并且增加1人。
问:每天要工作多少小时?2.妈妈买了2斤苹果,4斤菠萝,花去14元;爸爸买了3斤苹果,2斤菠萝,花去13元;那么1斤苹果,1斤菠萝各多少钱?3.修一段路计划16人20天完成,这16人工作了5天后,增加4人,如果这些人的工作效率相同,问提前几天完成修路任务?4.某饭店要安装空调240台,已知10名工程技术人员8小时能安装空调64台,现饭店要求安装公司在12小时内装完,需要增派同样工作效率的技术人员多少名?5.某工程原计划42人12天(每天按8小时工作)完成,工作7天后因支持其它紧急任务调走了12人,那么剩下的工作还要几天才能完成?若要求按原定日期完工,那么每天得工作多少小时?6.小强家住三层,从一层到三层需要走60秒钟,按此速度,从一层到六层需要多少秒钟?3.八年级奥数题精选大全1、小明放学回家,他沿一电车的路线步行,他发现每6分钟,有一辆电车迎面开来;每12分钟,有一辆电车从背后开来。
初中数学奥林匹克竞赛题及答案
初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
九初中八年级奥林匹克数学竞赛(决赛)模拟试题附答案
八年级奥林匹克数学竞赛一、选择题(每小题5分,共30分)1.计算(1252011)(2462010)++++-++++L L 的结果是( )A . 1004B . 1006C . 1008D .10102.如图1是一个无盖正方体盒子的表面展开图,A 、B 、C 为图上三点,则在正方体盒子中,∠ABC 的度数为( )A . 120°B .90°C . 60°D .45°3.九年级的数学老师平均每月上6节辅导课,如果由女教师完成,则每人每月应上15节;若只由男教师完成,则每人应上辅导课( )节A .9B . 10C . 12D .144.如果有四个不同的正整数m 、n 、p 、q 满足(7-m )(7-n )(7-p )(7-q )=4,那么m+n+p+q 等于( )A .21B . 24C . 26D .285.如图2,在△ABC 中,AC=BC ,∠ACB=90°,AD 平分∠BAC ,AD 的延长线交BF 于E ,且E 为垂足,则结论①AD=BF ,②CF=CD ,③AC+CD=AB ,④BE=CF ,⑤BF=2BE ,其中正确的结论的个数是( )A .4B .3C .2D .16.如果实数8181m n m mn m n n m n ++≠=+=++,且,则( )A . 7B . 8C . 9D .10二、填空题(每小题5分,共30分)7.若(2011 4149aQ a --,)是第三象限内的点,且a 为整数,则a = . 8.若实数2222231 3-2x y x y S x y +==,满足,,则S 的取值范围是 . 9.在△ABC 中,三个内角的度数均为整数,且∠A<∠B<∠C ,5∠C=9∠A ,则∠B 的度数是 .10.分解因式:2322+-+-y x yx =__________________。
11.如图3所示的长方形中,甲、乙、丙、丁四块面积相等,甲的长是宽的2倍,设乙的长和宽分别是 :a b a b =和,则 .12.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC +CD 等于______________三、(本题满分20分)F( 图2 )EDC BA13.某公司用1400元向厂家订了22张办公椅,办公椅有甲、乙、丙三种,它们的单价分别是80元,50元,30元,问有哪些不同的订购方案.四、(本题满分20分)14.如图4,在△ABC 中,AD 交边BC 于点D , ∠BAD=15°,∠ADC=4∠BAD ,DC=2BD . ⑴求∠B 的度数; ⑵求证:∠CAD=∠B.五、(本题满分20分) 15.已知4 5 6.ab ac bca b a c b c===+++,, 求17137a b c +-的值.( 图4 )DCBA。
数学奥林匹克竞赛试卷初中
一、选择题(每题5分,共50分)1. 下列各数中,能被3整除的是()A. 2B. 7C. 12D. 252. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 20cmB. 22cmC. 24cmD. 26cm3. 已知函数y=2x+1,若x=3,则y的值为()A. 5B. 6C. 7D. 84. 在下列各组数中,有最大公约数4的是()A. 16,24B. 12,18C. 20,28D. 15,215. 一个长方体的长、宽、高分别为5cm、4cm、3cm,那么它的体积是()A. 60cm³B. 72cm³C. 80cm³D. 90cm³6. 已知x²-5x+6=0,则x的值为()A. 2B. 3C. 4D. 57. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)8. 下列各图中,是轴对称图形的是()A.B.C.D.9. 下列各数中,有最小公倍数120的是()A. 24,40B. 30,48C. 36,50D. 42,6010. 已知a²+b²=c²,则下列结论正确的是()A. a、b、c都是正数B. a、b、c都是负数C. a、b、c都是整数D. a、b、c都是正整数二、填空题(每题5分,共50分)11. 若a+b=5,ab=6,则a²+b²的值为______。
12. 0.5+0.2+0.1+…+0.05+0.01+0.005+…+0.0005+0.0001的和为______。
13. 一个数的平方根是±2,那么这个数是______。
14. 下列各数中,是质数的是______。
15. 一个圆的半径增加了50%,那么这个圆的面积增加了______。
16. 若一个等边三角形的边长为a,那么它的周长是______。
初二奥数竞赛试题及答案
初二奥数竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于它本身,那么这个数可能是:A. 0或1B. 0或-1C. 1或-1D. 0或2答案:A3. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是多少立方厘米?A. 24B. 12C. 8D. 6答案:A4. 一个数列的前四项是2, 4, 8, 16,那么第五项是多少?A. 32B. 64C. 128D. 256答案:A二、填空题(每题5分,共20分)1. 一个等差数列的前三项是2, 5, 8,那么它的第五项是_________。
答案:112. 如果一个三角形的两边长分别是3cm和4cm,且这两边的夹角是90度,那么第三边的长度是_________。
答案:5cm3. 一个圆的直径是14cm,那么它的周长是_________。
答案:44π cm4. 一个数的立方等于它自身,那么这个数是_________。
答案:0或1或-1三、解答题(每题10分,共60分)1. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和。
求这个数列的第十项。
答案:第十项是76。
2. 一个长方体的长、宽、高分别是5cm、4cm和3cm,求它的表面积和体积。
答案:表面积是94平方厘米,体积是60立方厘米。
3. 一个等比数列的前三项是2, 6, 18,求它的第五项。
答案:第五项是54。
4. 一个圆的半径是7cm,求它的面积。
答案:面积是154π平方厘米。
5. 一个数列的前四项是1, 3, 6, 10,求它的通项公式。
答案:通项公式是n(n+1)/2。
6. 一个长方体的长、宽、高分别是a、b、c,且a+b+c=12,求当a=4时,b和c的可能值。
答案:当a=4时,b和c的可能值是(3, 5)或(4, 4)或(5, 3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级奥林匹克数学竞赛题
一填空题
1、观察下列各式1× 3=3而3=22-1,3×5=15而15=42-1,5×7=35而35=62-1,……,11×13=143而143=122-1;你猜想到的规律用只含一个字母n的式子表示出来是
__ 。
2、a=2021x+2021,b=2021x+2021,c=2021x+2021,代数式a2+b2+c2-ab-bc-ca= 。
3、一个多边形的对角线的条数等于边数的5倍,则这个多边形是_____边形.
4、现有铁矿石73吨,计划用载重量分别为7吨和5吨的两种卡车一次运走,已知载
重量7吨的卡车每台车的运费为65元,载重量5吨的卡车每台车运费为50元,则最省的
运费是元。
5、100个数据分成5组,其中第一、二小组的频率之和等于0.11,第四、五小组的
频率之和等于0.27,则第三小组的频数等于_______________。
6、甲、乙、丙三人进行智力抢答活动,规定:第一个问题由乙提出,由甲、丙抢答.
以后在抢答过程中若甲答对1题,就可提6个问题,乙答对1题就可提5个问题,丙答对
1题就可提4个问题,供另两人抢答.抢答结束后,总共有16个问题没有任何人答对,则甲、乙、丙答对的题数分别是________。
7、在四边形ABCD中,如果要使对角线AC⊥BD,可添加条件只需填写一个你认为适
当的条件即可。
8、有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入
第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存
的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币___枚,
第2堆有硬币____枚,第3堆有硬币_____枚.
9、盒子里有10个球,每个球上写有1~10中的1个数字,不同的球上数字不同,其
中两个球上的数的和可能是3,4,…,19.现从盒中随意取两个球,这两个球上的数的和,最有可能出现的是_______。
10、传说古埃及人曾用“拉绳”的方法画直角,现有一根长24cm的绳子,请你利用
它拉出一个周长为24cm的直角三角形,那么你拉出的直角三角形的三边的长度分别为
_______________________,其中的道理是:_______________ 。
二选择题每题5分,共50分
11、在△ABC中,AC⊥BC,∠B=30º,CN、CM 三等分∠ACB,
12、若关于x的方程|2x-1|+a=0无解,|3x-5|+b=0只有一个解,|4x-3|+c=0有两个解,则a,b,c的大小关系是Aa>b>c Bb>c>a Cb>a>cDa>c>b
13、在凸四边形ABCD中,AB=BC=BD,∠ABC=700,则∠ADC等于
A1450 B1500 C1550 D1600
14、x2+mx-10=x+ax+ba,b是整数则m值
A3或9 B±3 C±9 D±3或±9
15、已知△ABC两边长a,b且a
A3a
16、△ABC三边长分别为a,b,c,a2+b2+c2=ab+bc+ca,则这个三角形一定是
A不等边三角形 B等边三角形 C等腰三角形D任意三角形
17、设有一凸多边形,除去一个内角外,其他内角和是2570°,则该内角的度数是
A40°B90° C120 D130 °
18、已知三条线段的长分别是22、16、18,以其中两条为对角线,其余一条为一边,可画平行四边形的个数是 A0 B1 C2 D3
19、某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算其中一台盈利20%,另一台亏本20%,则本次出售中商场
A不赔不赚 B赚160元 C赚80元 D赔80元
20、三角形内有八个点,每三个点能组成一个三角形,最多能组成不重叠的三角形的
个数为 A15 B16C17 D18
三、解答题
21、某仓库有50件同一规格的某种集装箱,准备委托运输公司送到码头.运输公司有
每次可装运一件、二件、三件这种集装箱的三种型号的货车,这三种型号的货车每次收费
分别为120元、160元、180元.现要求安排20辆货车刚好一次装运完这些集装箱.问这三
种型号的货车各需多少辆,有多少种安排方式?哪种安排方式所付的运费最少?最小运费是
多少?
22、一个多边形的内角和是外角和的五分之一,这个多边形存在吗?若存在,是几边形?若不存在,请说明理由。
23、随着IT技术的普及,越来越多的学校开设了微机课.某初中计划拿出72万元购
买电脑,由于团体购买,结果每台电脑的价格比计划降低了500元,因此实际支出了64
万元.学校共买了多少台电脑?若每台电脑每天最多可使用4节课,这些电脑每天最多可供多少学生上微机课?该校上微机课时规定为单人单机
24、一个等腰三角形的周长是12,且三边长都是整数,则三角形的腰长是多少?
25、某工艺品厂的手工编织车间有工人20名,每人每天可编织5个座垫或4个挂毯.在这20名工人中,如果派x人编织座垫,其余的编织挂毯.已知每个座垫可获利16元,每个挂毯可获利24元.
1写出该车间每天生产这两种工艺品所获得的利润y元与x人之间的函数关系式;
2若使车间每天所获利润不小于1800元,最多安排多少人编织座垫?
26、一个长方体盒子的长为16,宽为12,高为9。
在这个长方体下底部的顶点A有一只蚂蚁,它想吃到它上底面的对角顶点B的食物,需爬行的最短路程是多少?
感谢您的阅读,祝您生活愉快。