四年级数学三角形的知识点
四年级数学下册认识三角形和四边形知识点及测试题
第二单元:认识三角形和四边形知识点及测试题1.图形分为:立体图形和平面图形。
2.平面图形:a、圆(由曲线围成的图形)b、三角形、四边形、多边形(由线段围成的图形)3.三角形内角和是180°。
锐角:小于90°的角是锐角。
钝角:大于90°的角是钝角。
直角:等于90°的角是直角。
平角=180°;周角=360°4.等腰三角形相等的两条边叫做腰。
等腰三角形两腰间的夹角叫顶角。
腰与底边的夹角叫底角。
5.等腰三角形包含:等腰三角形、等边三角形(又叫正三角形)、等腰直角三角形。
等边三角形是特殊的等腰三角形,它的每个内角都是60°。
6.三角形不易变形具有稳定性。
四边形易变形具有不稳定性.直角三角形(有一个直角两个锐角)按角分锐角三角形(三个角都是锐角)钝角三角形(有一个钝角两个锐角)7 .三角形(有三条边)等边三角形(三条边都相等)是对称图形,有三条对称轴按边分等腰三角形(有两条边相等)是对称图形,有一条对称轴不等边三角形(三条边都不相等)8.三角形任意两边之和大于第三边。
9.由四条线段围成的封闭图形叫四边形四边形内角和是360°。
10.正方形是特殊的长方形。
长方形和正方形是特殊的平行四边形。
11.平行四边形:两组对边分别平行且相等的四边形。
12.梯形:只有一组对边平行的四边形。
13.平行的两条边叫做梯形的底边,上面的一条叫上底,下面一条叫下底。
14.梯形的周长:上底+下底+腰+腰梯形的面积:(上底+下底)×高÷215..根据三角形的边长判定三角形的类型:较小两边的平方和小于最长边的平方钝角三角形较小两边的平方和等于最长边的平方直角三角形较小两边的平方和大于最长边的平方钝角三角形16.. 等腰三角形的两个底角相等。
等边三角形是特殊的等腰三角形。
一般平行四边形平行四边形: 长方形(两组对边分别平行且相等的四边形) 正方形 17. 四边形 一般四边形: (有四条边) (两组对边都不平行的四边形) 一般梯形梯形: 等腰梯形:两条腰相等,同一底上的两个底角相等。
小学数学四年级知识点(三角形)
1.什么是三角形?
三角形是由三条不在同一直线上的线段首尾顺次连结所组成的图形叫做三角形。
2.三角形的性质和特点。
三角形具有三个角、三条边、三个顶点、三条高。
三角形具有稳定性。
3.三角形的三条边关系:三角形的任意两边之和大于第三边。
(通常情况下判断三条线段是否能组成一个三角形,采用这种方法:取最小的两边之和与最长的一条边做比较,只要最小的两边之和大于最长的边,就一定能构成三角形。
)
4.三角形的高:就是从底边所对应的顶点,到底边上垂直
..距离,叫做三角形的高。
底底底
5.三角形的周长=三条边相加
6.三角形的面积=底×高÷2
7.三角形的内角和等于180度。
8.三角形的分类。
锐角三角形:三个角全都是锐角的三角形叫做锐角三角形。
直角三角形:其中有一个角为90度的三角形叫做直角三角形。
钝角三角形:其中有一个角为钝角的三角形叫做钝角三角形。
8.等腰三角形:在一个三角形中,有两条边一样长(或有两个角相等)的三角形叫做等腰三角形。
等腰三角形的特点:①两条腰的长度相等;②两个底角的度数相等;
③两条腰上的高长度相等。
9.等边三角形:在一个三角形中,三条边都一样长(或三个角的度数都相等)的三角形叫做等边三角形。
等边三角形的特点:①三条边的长度相等;②三个角的度数相等且都等于60度;③三条边上的高长度都相等。
10. ①顶角为60度的等腰三角形一定是等边三角形。
②有一个底角为60度的等腰三角形一定等边三角形。
四年级数学下册三角形知识点梳理与思维导图
直角:180° 钝角:180° 三角形的内角和180° 锐角:180°
长方形:360° 正方形:360°
四边形的内角和都是360°
其他四边形:360°
60°
定义:由三条线段围成的图形(每相邻两条线段的端点相连)
三角形的特性
认识三角形
高:从三角形的一个顶点到它的对边作一条垂线,顶点和垂 足之间的线段叫做三角形的高。这条对边叫做三角形的底
数数:三条边 三个顶点 三个角 三条高 三个底
三角形的特性 具有稳定性
两点间所有的连线中线段最短,这条线段的长度叫做两点间
的距离
按角分
直角三角形:一个直角,两个锐角。 钝角三角形:一个钝角,两个锐角。
三角形的分类
锐角三角形:三个角都是锐角。
三
按边分
等腰三角形:两条边相等(两底角相等)。
角
等边三角形(正三角形):三条边相等(三个内角相等,
形
都是60°)。
任意两边的和大于第三边
三角形的三边关系
任意两边的差小于第三边
三角形的内角和 四边形的内角和 多边形的内角和
人教版四年级数学下册第五单元知识点归纳整理word版本
人教版四年级数学下册第五单元知识点归纳整理第五单元《三角形》一、三角形的认识及特性1、三角形的定义:由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2、三角形的特点:三角形有3条边、3个角和3个顶点。
3、三角形的底和高:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
例如:从三角形的一个顶点到它的对边作一条垂线,如图所示:顶点顶点 边AB4、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,上面的三角形可以表示成三角形ABC。
5、三角形的特性:三角形具有稳定性。
6、两点间的距离:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。
7、三角形三条边的关系:三角形任意两边的和大于第三边。
8、判断3条线段能否围城三角形,只要把较短的两条线段相加的和与最长的线段比较,大于最长的线段就能围成三角形,反之则不能。
二、三角形的分类1、三角形按角分为:锐角三角形、直角三角形和钝角三角形。
①、三个角都是锐角的三角形叫做锐角三角形;②、有一个角是直角的三角形叫做直角三角形;③、有一个角是钝角的三角形叫做钝角三角形。
用集合图形表示为:2、直角三角形的特性:3、三角形按边分为:不等边三角形和等腰三角形(等腰三角形包括等边三角形)用集合图形表示为:直角边直角边4、认识等腰三角形:在等腰三角形中,相等的两条边叫做腰,另一条边叫底;两腰的夹角叫做顶角,两腰与底边的两个夹角底温馨提示:等腰三角形可以是锐角三角形、直角三角形或钝角三角形。
在直角三角形中,如果两条直角边相等,这个直角三角形叫做等腰直角三角形,它的两个底角分别是45°.5、认识等边三角形:三条边相等的三角形叫做等边三角形(也叫正三角形)。
①、等边三角形的特点:3条边都相等,3个角都相等,每个角都是60°。
②、与等腰三角形的关系:等边三角形是特殊的等腰三角形,当等腰三角形的两条腰与底边相等时,这个等腰三角形就是等边三角形。
2022春季四年级数学教学讲义-第四讲 认识图形(含答案)
2022春季四年级数学教学讲义-第四讲认识图形(含答案)一、知识点(一)、三角形的分类1、按角分锐角三角形:三个角都是锐角直角三角形:有一个角是直角钝角三角形:有一个角是钝角2、按边分等腰三角形①两条边相等②相等的两条边叫“腰”③另一条边叫“底”④两腰夹角叫“顶角”⑤腰和底的夹角叫“底角”等边三角形三条边都相等三个角都是60°不等边三角形三条边都不相等(二)四边形的分类1、两组对边分别平行(平行四边形)长方形:正方形是特殊的长方形一般平行四边形2、只有一组对边平行(梯形)等腰梯形:不平行的一组对边长度相等直角梯形:其中一条腰与底边垂直3、两组对边都不平行(一般四边形)二、学习目标1、我能够了解三角形的组成及其特性。
2、我能够熟悉三角形不同的分类。
3、我能够了解平行四边形和梯形的组成及特性,并能说明四边形的包含关系。
三、课前练习1、在格子图上分别画出一个锐角、直角和钝角。
2、按要求作图。
在图①画一条线把原图分成两个平行四边形;在图②画一条线把原图分成两个三角形;在图③画一条线把原图分成一个长方形和一个三角形;在图④画一条线把原图分成一个长方形和一个正方形。
四、典型例题例题1几何图形是一个大家族,要想把这个大家族认识清楚,必须学会把他们分门别类,常用的分类方法有好几种,如按平面图形和立体图形来分、按图形是否由线段围成来分、按围成图形的边数来分…看,数学王国的图形树上,结满了各种图形。
(1)请你把塔它们摘下来,分类放在对应的篮子里,思琪已经放好了第一个,请你继续完成吧(填序号即可)。
(2)号是正方形,号是正方体;号是长方形,号是长方体;号是三角形,号是梯形。
(3)⑧号是,⑤号是,⑨号和号都是,⑥号是。
练习1写出下列各个图形的名称,并回答问题。
其中立体图形有: ,其它都是。
例题2填一填。
(1)三角形是由条边首尾顺次连接组成的封闭图形,它有个角。
(2)三角形按角的大小(最大角的大小)可以分为三角形,三角形,三角形;按边可以分为:、、。
第6讲 四年级 下册数学 三角形 讲义
知识点一:三角形的特性1、三角形的定义:由 围成的图形(每相邻两条线段的端点 ),叫三角形。
2、从三角形的 ,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。
三角形只有 条高。
重点:三角形高的画法:一落二移三画四标3、三角形具有 。
如:自行车的三角架,电线杆上的三角架。
学生/课程年级 四年级 学科 数学 授课教师日期 时段 核心内容 三角形(第6讲)教学目标 1、认识三角形的特性,掌握三角形任意两边之和大于第三边以及三角形的内角和是180°2、认识三角形的分类,了解这些三角形的特点并能够辨认和区别它们3、培养应用数学知识解决实际问题的能力4、三角形三边的关系:三角形任意两边之和第三边。
三角形任意两边之差第三边。
两边第三边〈两边。
判断三条线段能不能组成三角形,只要看两条边的和是不是大于。
5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
知识点二:三角形的分类1、按照角大小来分:三角形,三角形,三角形。
2、按照边长短来分:三边不等的△,三边相等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。
3、等边△的三边,每个角是度。
(顶角、底角、腰、底的概念)4、三个角都是的三角形叫做锐角三角形。
5、有一个角是的三角形叫做直角三角形。
6、有一个角是的三角形叫做钝角三角形。
7、每个三角形都至少有两个;每个三角形都至多有1个;每个三角形都至多有1个。
8、两条边的三角形叫做等腰三角形。
9、三条边都的三角形叫等边三角形,也叫正三角形。
10、等边三角形是三角形知识点三:三角形的内角和1、三角形的内角和是。
四边形的内角和是。
一个三角形中至少有两个,每个三角形都至多有一个;每个三角形都至多有一个。
可以根据最大的角判断三角形的类型。
最大的角是哪类角,就属于那类三角形。
最大的角是直角,就是直角三角形。
最大的角是钝角,就是钝角三角形。
2、图形的拼组:(1)当两个三角形有一条边长度相等时,就可以拼成。
第二单元认识三角形和四边形(易错梳理)-四年级下册数学单元复习讲义北师大版
认识三角形和四边形知识盘点知识点1:图形的分类立体图形圆(由曲线围成) 平面图形 三角形(3条边) 三角形、四边形 平行四边形(由线段围成) 四边形(4条边) 长方形正方形知识点2:三角形的认识1、 直角三角形:三个角都是锐角的三角形是锐角三角形 按角分 锐角三角形:有一个角是直角的三角形是直角三角形 三角形分类 钝角三角形:有一个角是钝角的三角形是钝角三角形 等腰三角形:有两条边相等的三角形是等腰三角形按边分 等边三角形:三条边都相等的三角形是等边三角形任意三角形 2、三角形内角和及三边关系① 任意一个三角形内角和等于180度。
② 三角形任意两边之和大于第三边。
已知两条边的长度,那么第三边的长度要大于已知两边之差小于两边只差。
知识点3:四边形的认识由四条线段围成的封闭图形叫作四边形。
四边形中有两组对边分别平行的四边形是平行四边形。
只由一组对边平行的四边形是梯形。
长方形、正方形是特殊的平行四边形。
正方形是特殊的长方形。
⭐注意易错集合易错点1:四边形的概念典例 判断:由四条线段组成的图形就是四边形。
( ) 解析 误认为只要四条线段组成的图形就是四边形,忽略了四条线段需要首尾相连。
解答 ×✨针对练习1你能解释为什么吗?易错点2:三角形的分类典例 猜一猜被遮挡住的可能是什么三角形?解析 直角三角形和钝角三角形都有两个锐角,可以根据露出的这个角是直角或钝角来判断是直角三角形还是钝角三角形;当露出来的角是锐角时,则无法直接断定是什么三角形。
解答 直角三角形 钝角三角形 可能是锐角三角形或直角三角形或钝角三角形⭐点拨 由四条线段首位顺次连接组成的封闭图形叫作四边形。
⭐点拨 四边形具有不稳定性,三角形具有稳定性。
✨针对练习2将下面的三角形进行分类(填写序号)锐角三角形有( );直角三角形有( );钝角三角形有( ); 等腰三角形有( );等边三角形( )。
易错点3:三角形的内角和问题 典例 求出图中三角形未知角的度数。
最新四年级数学下册《第5单元三角形【全单元】练习课》附知识点归纳与小结(PPT版)
椅子太摇晃了!
怎样加固它呢?
三角形具有稳定性
画出蚂蚁进洞的线路。
等腰三角形 等边三角形 锐角三角形 钝角三角形 直角三角形
哪条路最近?
两点之间 线段最短。
在能拼成三角形的各组小棒下面画“√” (单位:cm)。
(1)
(2)
(3)
(√)
(√)
(4)
()
(√)
小红手中有一个三角形,这个三角形没有钝角, 它可能是什么三角形?
Good Bye!
答:可能是锐角三角形, 也可能是直角三角形。
一个等腰三角形的周长是132厘米,腰长20厘米,那 么这样的三角形存在吗?
根据三角形中任意两边之和大于第三边来验证这个 三角形:20+20<132-20-20=92,所以这样的三角形不 存在。 答:这样的三角形不存在。
下图中一共有多少个三角形?
本身就是三角形的图形:①②④⑤⑥,共5个。 两部分组成的三角形:①+②、②+③、②+④、 ④+⑤、⑤+⑥、③+⑤,共6个。 三部分组成的三角形:①+②+④、④+⑤+⑥,共2个。 四部分组成的三角形:②+③+④+⑤ ,共1个。 共计:5+6+2+1=14(个)。 答:一共有14个三角形。
人教部编版四年级数学下册 《第5单元 【全单元】练习课》
精品PPT优质公开课件
5 三角形
练习十五
由3条线段围成的图形(每相邻两条线段的 端点相连)叫做三角形。
顶点
边
顶点
角
角
边
角 边
顶点
三角形有3条边,3个角,3个顶点。
苏教版小学四年级数学下第7单元三角形、平行四边形和梯形知识点及易错题
七三角形、平行四边形和梯形一、三角形1.认识三角形:(1)生活中的三角形:生活中的三角形无处不在,如大桥的桥柱、斜拉索与桥面可以组成三角形。
生活中一些物体的包装盒的面,一些积木的面等都是三角形。
(2)画三角形:(步骤)①先画一条线段。
②再以第一条线段的一个端点为端点画第二条线段。
③最后连接另两个端点,围成封闭图形。
(3)三角形的特点:①三角形有3条边、3个角和3个顶点。
②三角形的3条边都是线段。
③三角形的三条线段要首尾相接地围起来。
(4)三角形的定义:三条线段首尾相接围成的图形叫作三角形。
(5)三角形各部分的名称:①围成三角形的三条线段就是三角形的边,每两条边所组成的角就是三角形的角,每个角的顶点就是三角形的顶点。
②三角形有3个顶点、3条边和3个角。
要点提示:三角形具有稳定性。
三角形是由三条线段首尾相接围成的图形。
易错点:过同一条直线上的3个点不能画出三角形;围成三角形的3个顶点不能在同一条直线上。
要点提示:如果有三条线段,而没有说是首尾相接围成的图形,就不是三角形。
(6)认识三角形的底和高:①从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
(7)三角形高的画法:通常用三角尺画三角形的高。
①把三角尺的一条直角边与指定的底边重合。
②沿底边平移三角尺,直到另一条直角边与该底边相对的顶点重合。
③再从该顶点沿三角尺的另一条直角边向底边画一条虚线段,这条虚线段就是三角形的高。
④最后标上直角符号。
(8)解决问题:①运用类推法解决数三角形的问题:从三角形的一个顶点向对边引若干条线段,将三角形分成了若干个小三角形,所分成的三角形的个数与对边上的线段的条数相等。
如果对边被分成n段,则三角形有【n+(n-1)+(n-2)+…+1】个。
②运用分析法解决求用时最短的路线问题:要想使每次走的路线最短,就应从每个顶点向与对面路垂直的方向走,即点到对边的垂直线段最短。
2.三角形的三边关系:(1)在拼成的三角形中,任意两根小棒的长度一定大于第三根小棒的长度。
【易错笔记】人教版四年级数学下册第五单元《三角形》易错点汇总及优选易错题B(含答案)卷
第五单元三角形-四年级数学下册易错点汇总及优选易错题B卷本单元知识点易错汇总:1.三角形的高和底是对应关系。
2.为三角形所作的高必须与所对的底边相交成直角。
3.只有当任意两边的和大于第三边时,才能围成三角形,等于或者小于第三边都不能围成三角形。
4. 当三角形3条边的长度确定后,这个三角形的形状和大小就完全确定,不会改变。
5. 判断3条线段能否围成三角形,要全面比较,只有当任意两边的和大于第三边时,才能围成三角形。
6. 两点间的距离是两点间的线段的长度,不是两点间的线段。
7.一个三角形中至少有两个锐角,因此,根据最大的角就能直接判断出三角形的类型。
8. 等腰三角形是按边分类的结果,锐角三角形是按角分类的结果,二者没有必然关联。
9. 等边三角形一定是等腰三角形,但等腰三角形不一定是等边三角形。
10.一个三角形中最多有一个直角。
11. 任意一个三角形的内角和都是180°。
12.不管把四边形分成几个三角形,四边形的内角和总是360°。
(完成时间:60分钟,总分:100分)一、选择题(满分16分)1.下面每组三条线段,不能围成三角形的是()。
A.3厘米、4厘米、5厘米B.3厘米、3厘米、7厘米C.3厘米、3厘米、3厘米2.一个三角形两条边的长度分别是6厘米和9厘米,它的周长不可能是()。
A.19厘米B.21厘米C.27厘米D.30厘米3.如图,图形中共有()个三角形。
A.7个B.4个C.8个D.10个4.下面图()中的虚线是三角形给定底边上的高。
A.B.C.5.一个三角形中,其中两个角的平均度数是45度,这个三角形是()三角形。
A.锐角B.直角C.钝角6.三角形中,至少要有()个锐角。
A.1 B.2 C.37.一个三角形中,已知其中两个角的度数之和等于第三个角的度数,这是一个()。
A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形8.下图中的三角形被纸遮住了一部分,它可能是()三角形。
苏教版四年级数学下册第7单元《三角形、平行四边形和梯形》单元复习知识点归纳总结
一、三角形1.认识三角形:(1)生活中的三角形:生活中的三角形无处不在,如大桥的桥柱、斜拉索与桥面可以组成三角形。
生活中一些物体的包装盒的面,一些积木的面等都是三角形。
(2)画三角形:(步骤)①先画一条线段。
②再以第一条线段的一个端点为端点画第二条线段。
③最后连接另两个端点,围成封闭图形。
(3)三角形的特点:①三角形有3条边、3个角和3个顶点。
②三角形的3条边都是线段。
③三角形的三条线段要首尾相接地围起来。
(4)三角形的定义:三条线段首尾相接围成的图形叫作三角形。
(5)三角形各部分的名称:①围成三角形的三条线段就是三角形的边,每两条边所组成的角就是三角形的角,每个角的顶点就是三角形的顶点。
②三角形有3个顶点、3条边和3个角。
要点提示:三角形具有稳定性。
三角形是由三条线段首尾相接围成的图形。
易错点:过同一条直线上的3个点不能画出三角形;围成三角形的3个顶点不能在同一条直线上。
要点提示:如果有三条线段,而没有说是首尾相接围成的图形,就不是三角形。
(6)认识三角形的底和高:①从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
(7)三角形高的画法:通常用三角尺画三角形的高。
①把三角尺的一条直角边与指定的底边重合。
②沿底边平移三角尺,直到另一条直角边与该底边相对的顶点重合。
③再从该顶点沿三角尺的另一条直角边向底边画一条虚线段,这条虚线段就是三角形的高。
④最后标上直角符号。
(8)解决问题:①运用类推法解决数三角形的问题:从三角形的一个顶点向对边引若干条线段,将三角形分成了若干个小三角形,所分成的三角形的个数与对边上的线段的条数相等。
如果对边被分成n段,则三角形有【n+(n-1)+(n-2)+…+1】个。
②运用分析法解决求用时最短的路线问题:要想使每次走的路线最短,就应从每个顶点向与对面路垂直的方向走,即点到对边的垂直线段最短。
2.三角形的三边关系:(1)在拼成的三角形中,任意两根小棒的长度一定大于第三根小棒的长度。
四年级数学下册《三角形的内角和》知识点及基础习题
方法4:转化法:
转化成两个直角三角形。
把三角形沿着高剪开,变成两个直角三角形,直角三角形中,第一个直角三角形的两个锐角的和是90°,第二个直角三角形的两个锐角的和也是90°,合起来就是180°,刚好是原来三角形的内角和。
所以三角形的内角和是180°。
三、求出下面∠1的度数。
①180°-105°-40°②∠2=180°-60°-50°=70°
=75°-40°因为对顶角相等
=35°所以∠1=70°
180°-35°=145°
③180°-(120°+25°)④180°-90°-30°
=180°-145°=90°-30°
=35°=60°
四、解答题
张叔叔不小心把家里的一块玻璃摔成3块(如下图),可他
只拿其中一块玻璃去玻璃店划了一块与原来一样大的玻璃,
你知道他拿的是哪一块玻璃吗?动脑想一想吧!
3号;这三块玻璃中,只有3号玻璃中有原来三角形的两个角,可以用这块玻璃得到与原来一样大的玻璃。
以下是4组小棒的长度,都能分别围成三角形吗?你从中发
现了什么?(单位:cm)
①1、2、3
②2、3、4
③7、8、9
④19、20、21
除第一组外,其它的三组都能围成三角形,我发现,三角形
的任意两边的长度之和大于第三边,任意两边的长度之差小
于第三边。
四年级【下】册数学-第5单元三角形三角形的特性(22张ppt)人教版公开课课件
1. 三角形有 3 条边,3 个角和 3 个顶点。 2. 从三角形的一个顶点到它的对边作一条垂线,
顶点和垂足之间的线段叫做三角形的高,这条 对边叫做三角形的底。三角形可以用字母表示 成三角形 ABC。 3.三角形具有稳定性。
(名师示范课)四年级【下】册数学- 第5单 元 三角形5.1 三角形的特性 (22张ppt)人教版公开课课件
我围来围去,围出的 我 已 经 围 出 3 个 形 状 都是一种三角形。 不同的四边形了!
(名师示范课)四年级【下】册数学- 第5单 元 三角形5.1 三角形的特性 (22张ppt)人教版公开课课件
你发现了什么?
用3根小棒只能围 出一种三角形,用 4根小棒可以围出 的四边形不唯一。
(名师示范课)四年级【下】册数学- 第5单 元 三角形5.1 三角形的特性 (22张ppt)人教版公开课课件
看看下图中哪儿有三角形,想想它们有什么作用?
(名师示范课)四年级【t)人教版公开课课件
稳定、支撑 三角形具有稳定性
(名师示范课)四年级【下】册数学- 第5单 元 三角形5.1 三角形的特性 (22张ppt)人教版公开课课件
知识提炼
三角形具有稳定性。
3.用手势比画下面的长度。 (选自教材P65 T3)
小猴子的方法更牢固,因为三角形具有稳定性。
(名师示范课)四年级【下】册数学- 第5单 元 三角形5.1 三角形的特性 (22张ppt)人教版公开课课件
(名师示范课)四年级【下】册数学- 第5单 元 三角形5.1 三角形的特性 (22张ppt)人教版公开课课件
5.图 1 和图 2 是电力部门常用的两种电线杆架 子,说说它们为什么是这样的结构。
它们利用了 三角形不易变形 的特性。
四年级数学下册第5单元知识点汇总
(各版本)四年级数学下册第五单元知识汇总人教版第五单元三角形1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。
三角形有三个顶点、三个角、三条边。
(为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC或△ABC)2、三角形的高从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。
三角形只有3条高。
重点:三角形高的画法。
3、三角形的特性:三角形具有稳定性。
4、三角形的三边关系:三角形任意两边之和大于第三边。
判断三条线段能否组成三角形,只看最小两条线段之和是否大于第三条线段。
5、三角形的内角和:三角形的内角和是180°。
6、三角形分类:(1)按角分类:锐角三角形、钝角三角形、直角形三角形;(2)按边分类:不等边三角形和等腰三角形;等边三角形(等边三角形是特殊的等腰三角形。
)7、三角形的拼组:两个完全相同的三角形可以拼成一平行四边形;两个完全相同的直角三角形可以拼成一个长方形;两个完全相同的等腰直角三角形可以拼成一个正方形或菱形;三个完全相同的三角形可以拼成一个梯形。
8、多边形内角和的计算公式:﹙n-2﹚×180°。
其中n为边数如:三角形内角和为:﹙3-2﹚×180°=180°四边形内角和为:﹙4-2﹚×180°=360°五边形内角和为:﹙5-2﹚×180°=540°六边形内角和为:﹙6-2﹚×180°=720°苏教版第五单元解决问题的策略1、已知两个数的和,两个数的差,求这两个数。
(线段图记在头脑里)解法:①(和—差)÷2=小的数小的数+差=大的数②(和+差)÷2=大的数大的数—差=小的数(注:3 个以上的数也是这样的道理,就是想办法使它们一样多,然后同理可求)2、已经两个数的和(即两个数一共是多少),大数拿8个(假设)给小数,这样两个数一样多,求这两个数。
人教版同步教参四年级数学下册—三角形: 三角形的特性(学生)
三角形第1节 三角形的特征【知识梳理】1.认识三角形(1)画三角形在平面上任意画三个点(这三个点不在同一直线上),用线段把每两个点连起来,所组成的图形就是三角形。
如下图:(2)三角形各部分的名称观察所画的三角形你会发现,三角形由三条线段围成,这三条线段叫做三角形的三条边,每两条边所夹的角就是三角形的内角,三角形有3个内角,3个内角的顶点就是三角形的顶点,三角形共有三个顶点。
(3)认识三角形的底和高从一个三角形顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高。
这条对边叫做三角形的底。
因为三角形有三个顶点,过每个顶点都可以向对边做高,所以任意一个三角形都可以做三条高。
画高时必须由定点向它的对边画垂线,它们是相对的,当边长不够长时,可画虚线延长。
所画的高用虚线表示并且标上垂直符号。
三角形的三条高总是相交于一点的,这个交点或在三角形内部,或在三角形外部,或在三角形边上,在这里,三角形的内部和外部指的是三角形的三条边所围成的范围的内部或外部。
下一节中我们将学习三角形的分类,我们会发现三角形按角分可分为锐角三角形、直角三角形、钝角三角形,这三种类型的三角形的高的情况也各不相同,如下图所示:顶点 边 底CB A 三角形ABC:锐角三角形的三条高(三条虚线) 直角三角形的三条高(一条虚线加两条直角边)钝角三角形的三条高(三条虚线)(4)三角形的表示方法为了表达方便我们用字母A 、B 、C 分别表示三角形的三个顶点,这个三角形就表示成三角形ABC 。
2.三角形的特性(1)三角形具有稳定性只要三角形的三条边的长度确定,这个三角形的形状和大小就会完全确定,不会改变,因此三角形具有稳定性,它能够起到固定物体的作用,使物体不容易变形。
3.三角形的三边关系(1)三角形的三边关系三角形的任意两边之和大于第三边(2)判断三条线段是否围成三角形,只要把最短的两条边相加与最长的比较即可,如果最短的两条边之和大于第三边,也就证明两边之和大于第三边。
四年级数三角形个数方法及公式
一、概述1. 数学作为一门基础学科,对于孩子的学习和发展至关重要。
2. 三角形是初等数学中的基本图形之一,让孩子学会数三角形的个数方法及公式,对于培养其逻辑思维和数学能力至关重要。
二、数三角形的基本方法1. 数三角形的方法有很多种,其中最基本的包括直接计数和组合计数两种方法。
2. 直接计数法是最简单直观的数学方法,通过直接数出各种三角形的个数来得出最终结果。
3. 组合计数法是一种高效的数学方法,通过利用组合数学中的知识,结合排列组合的方法来快速求解三角形的个数。
三、数三角形的常见公式1. 数三角形的公式是通过数学推导和总结而得出的,能够帮助孩子更快速、更准确地求解问题。
2. 常见的数三角形公式包括等腰三角形的个数公式、等边三角形的个数公式以及任意三角形的个数公式等。
3. 对于不同类型的三角形,其求解公式和方法也有所区别,需要根据实际情况进行灵活运用。
四、用例分析:具体案例说明1. 以具体的例子来说明数三角形的方法和公式的应用,可以让孩子更直观地理解并掌握知识点。
2. 举例说明直接计数法和组合计数法在求解三角形个数时的应用情况,并结合公式加以说明。
五、数三角形方法及公式的应用1. 数三角形的方法及公式在实际问题中有着广泛的应用,可以帮助孩子更好地理解和解决问题。
2. 在几何图形的题目中,数三角形的方法能够帮助孩子更好地理清思路,准确分析和解答问题。
3. 通过数三角形的方法及公式,还可以拓展到更复杂的数学领域,如概率统计和组合数学等,为孩子打下坚实的数学基础。
六、总结与展望1. 数三角形的方法及公式是数学学习的重要内容,对于培养孩子的逻辑思维和数学能力至关重要。
2. 通过本文的介绍,希望能够帮助家长和老师更全面地了解数三角形的方法及公式,并在教学和辅导中加以运用。
3. 未来,应继续为孩子提供更丰富、更多样的学习资源,让他们在数学学习中体会到更多的乐趣与成就感。
七、参考文献1. 参考文献一:《小学数学教学大全》2. 参考文献二:《数学奥赛习题集》3. 参考文献三:《数学周报》注:本文所述内容为笔者根据教育教学实践经验整理而成,具有一定的参考和借鉴价值。
7.三角形、平行四边形和梯形-苏教版四年级下册数学期末复习专题讲义(知识点归纳 典例讲解 同步测试)
苏教版四年级下册数学期末复习专题讲义-7.三角形、平行四边形和梯形【知识点归纳】三角形:三条线段首尾相接围成的图形叫做三角形。
三角形的高和底:从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
三角形三边关系:三角形任意两边长度的和大于第三边。
三角形的内角和等于180°。
三角形分类:按角分为:锐角三角形、直角三角形、钝角三角形。
按边分类:等腰三角形、等边三角形(正三角形)、不等边三角形。
平行四边形:两组对边分别平行的四边形叫作平行四边形。
平行四边形的高和底:从平行四边形一条边上的一点到它对边的垂直线段,是平行四边形的高,这条对边是平行四边形的底。
梯形:只有一组对边平行的四边形叫作梯形。
梯形的上底、下底和腰:互相平行的一组对边分别是梯形的上底和下底,不平行的一组对边是梯形的腰。
梯形的高:从梯形一条底边上的一点到它对边的垂直线段叫作梯形的高。
两腰相等的梯形是等腰梯形。
多边形内角和=180°×(边数-2)。
(根据三角形的内角和推算出来)【典例讲解】例1.等腰三角形中有一个内角是80°,另外两个角()A.都是50°B.分别是20°和80C.分别是20°和80°或都是50°【分析】等腰三角形这个80°的内角可能是顶角,也可能是底角.根据等腰三角形的内角和定理(三角形三个内角之和是180°)及等腰三角形两个底角相等的性质,即可分别计算出当这个角是顶角时的底角度数、当这个角是底角时顶角的度数.【解答】解:当等腰三角形的顶角是80°时它的两个底角:(180°﹣80°)÷2=100°÷2=50°当当等腰三角形的底角是80°时180°﹣80°×2=180°﹣160°=20°答:另外两个角分别是20°和80°或都是50°.故选:C.【点评】解答此题的关键是三角形内角定理及等腰三角形性质的应用.例2.一个三角形中,有两个角的度数分别是32°和46°,第三个内角为102°,这个三角形是钝角三角形.(按角分类)【分析】根据三角形内角和定理,三角形三个内角之和是180°,已知这个三角形的两个角的度数,用180°减这两个角的度数之和就是第三个角的度数.由前面计算可知,这个三角形的第三个角是102°,是钝角,根据钝角三角形的意义,有一个角是钝角的三角形是钝角三角形,这个三角形是钝角三角形.【解答】解:180°﹣(32°+46°)=180°﹣78°=102°这个三角形有一个角是钝角,是钝角三角形答:第三个内角为102°,这个三角形是钝角三角形.故答案为:102,钝角.【点评】此题考查的知识有三角形内角和定理的应用、三角形的分类(按角分类).例3.三角形的三边长分别是3cm、4cm、5cm,这样的三角形的形状只有一种.√(判断对错)【分析】三角形的三边长分别是3cm、4cm、5cm,因为三条边是确定的,三角形的形状就是确定的,所以这样的三角形的形状只有一种,那就是直角三角形.【解答】解:三角形的三边长分别是3cm、4cm、5cm,这样的三角形的形状只有直角三角形一种.故原题说法正确.故答案为:√.【点评】解决此题还可以利用三角板画出图,然后直观判断.例4.在三角形ABC中,∠1=65°,∠2=20°,求∠4的度数.【分析】利用三角形内角和定理:三角形内角和是180°,∠3=180°﹣90°﹣20°=70°,∠4=180°﹣70°﹣65°=45°.据此解答.【解答】解:∠3=180°﹣90°﹣20°=70°∠4=180°﹣70°﹣65°=45°答:∠4=45°.【点评】本题主要考查三角形的内角和,关键是利用三角形内角和定理做题.例5.红红家有一块三角形的小菜园,菜园的最大角是120°,且最大角的度数是最小角的4倍,这块三角形菜地其他角的度数是多少?这块地的形状是一个什么三角形?【分析】这块三角形菜园的最大角是120°,且最大角的度数是最小角的4倍,用120°除以4就是最小角的度数;再根据三角形内角和定理(三角形三个内角之和是180°)即可求出另一个角的度数.这个三角形中最大角是120°,属于钝角,根据钝角三角形的意义,有一个角是钝角的三角形是钝角三角形,此三角形为钝角三角形.【解答】解:120°÷4=30°180°﹣120°﹣30°=30°这个三角形的最大角是钝角,它是一个钝角三角形答:这块三角形菜地其他角的度数都是30°,这块地的形状是一个钝角三角形.【点评】此题考查的知识有三角形内角和定理、三角形(按角)分类.【同步测试】一.选择题(共10小题)1.根据下列描述,一定是锐角三角形的是()A.有一个内角是85°的三角形B.有两个内角都是锐角的三角形C.其中最大的内角小于90°D.等腰三角形2.下面的说法正确的是()A.有一组对边平行的四边形是梯形B.平行四边形和梯形都是四边形C.在梯形中,平行的一组对边叫做梯形的腰3.一个三角形的底不变,要使面积扩大2倍,高要扩大()A.2倍B.4倍C.6倍D.8倍4.小明用小棒摆三角形,应该选取()组小棒.A.12cm,12cm,24cm B.12cm,15cm;27cmC.12cm,15cm,24cm D.15cm,15cm,31cm5.一个三角形两个角的度数分别是50°和65°.这个三角形一定是()A.等腰的锐角三角形B.等边的锐角三角形C.等腰的钝角三角形D.三边不等的锐角三角形6.小明在研究平行四边形的面积时,想把一个平行四边形转化成一个长方形.下面的四种剪法中不能拼成长方形的是图()A.B.C.D.7.一个三角形与一个平行四边形的面积相等,底也相等.三角形的高是2分米,平行四边形的高是()分米.A.1B.2C.3D.48.如图中,平行四边形的高是28cm,它的对应底是()A.36cm B.20cm C.25cm D.28cm9.张浩将梯形ABCD通过割补的方法,转化成三角形ABF(过程如图).已知三角形ABF的面积是24cm2,则CF的长是()cm.A.2B.4C.6D.1210.一个等腰三角形的两条边是10厘米和4厘米,它的周长是()厘米.A.18B.14C.24D.20二.填空题(共8小题)11.一个平行四边形的底是13分米,高是70厘米,面积是平方分米.12.在锐角三角形中,任何两个内角的度数之和都90°.13.等腰三角形ABC,其中AB等于AC,∠B=,∠A=.14.两组对边分别平行的四边形是或.15.在一个三角形中,有两个角分别是28°和62°,另一个角是,这是一个三角形.16.把一个平行四边形的底扩大到原来的2倍,高扩大到原来的3倍,得到的平行四边形的面积是原来的倍.17.一个平行四边形的面积是60dm2,底是5dm,这条底边对应的高是dm.18.一个等腰直角三角形两条直角边的长度和是18cm,它的面积是cm2.三.判断题(共5小题)19.两个三角形的面积相等,它们的底和高不一定相等.(判断对错)20.在梯形里画一条线段,分成两个图形,这两个图形不可能是平行四边形.(判断对错)21.一个三角形的周长是30cm,它的最长边的长一定不小于15厘米.(判断对错)22.一个等腰三角形的周长是21cm,其中一条边长5cm,它的另外两条边可能是5cm和11cm.(判断对错)23.一个平行四边形的面积是24cm2,将它的底增加2cm,高减少2cm,得到的平行四边形的面积一定仍是24cm2.(判断对错)四.计算题(共2小题)24.求平行四边形的面积(单位:厘米)25.计算下面图形的周长.五.应用题(共6小题)26.把一根长25米的彩带剪成三段,第一段长5米,第二段长8米,这三段能围成一个三角形吗?为什么?27.有5根小棒,长度分别是3厘米、3厘米、3厘米、4厘米、6厘米,可以摆成几种不同的三角形?请你列举出来.28.如图,一个长方形框架拉成平行四边形后,面积是18dm2,长方形框架的周长是多少分米?29.一个三角形的面积是12cm2,底边长6cm,这条底边上的高是多少cm?30.在一块平行四边形空地(如图)上种草坪,1平方米草坪的价格是10元.种这块草坪需要多少钱?31.一块平行四边形玻璃,底长150厘米,高比底少50厘米,刘阿姨买这块玻璃用了90元钱.每平方米玻璃的价钱是多少?参考答案与试题解析一.选择题(共10小题)1.【分析】根据角的分类、三角形按角的大小分类情况,小于90度的角叫做锐角;等于90度的角叫做直角;大于90度小于180度的角叫做钝角;有一个角是钝角的三角形,叫做钝角三角形;有一个角是直角的三角形,叫做直角三角形;三个角都是锐角的三角形,叫做锐角三角形;据此解答.【解答】解:根据锐角三角形的特征,锐角三角形的三个角都是锐角,由此可知,三角形中最大角小于90度的三角形一定是锐角三角形.故选:C.【点评】此题考查的目的是理解掌握角的分类、三角形按照角的大小分类及应用.2.【分析】有且只有一组对边平行的四边形是梯形,A错误;平行四边形和梯形都是四边形,B正确;在梯形中,平行的一组对边叫做梯形的上底和下底,C错误;据此解答即可.【解答】解:有且只有一组对边平行的四边形是梯形,A错误;平行四边形和梯形都是四边形,B正确;在梯形中,平行的一组对边叫做梯形的上底和下底,C错误;只有B正确;故选:B.【点评】此题考查了梯形的特征,要熟练掌握.3.【分析】三角形的面积=底×高÷2,若底不变,要使面积扩大2倍,高要扩大2倍.【解答】解:因为三角形的面积=底×高÷2,若底不变,要使面积扩大2倍,高要扩大2倍.故选:A.【点评】此题主要考查三角形的面积公式的灵活运用.4.【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行依次分析、进而得出结论.【解答】解:A、因为12+12=24,不能组成三角形,不符合题意;B、因为12+15=27,不能组成三角形,不符合题意;C、12+15>24,所以能组成三角形,符合题意;D、15+15<31,所以不能组成三角形,不符合题意;故选:C.【点评】解答此题的关键是根据三角形的特性进行分析、解答即可.5.【分析】三角形的两个内角的度数已知,依据三角形的内角和是180°,即可求出第三个内角的度数,从而可以判定这个三角形的类别.【解答】解:180°﹣50°﹣65°=130°﹣65°=65°因为三角形三个内角都是锐角,且有两个角相等,所以这个三角形是等腰的锐角三角形.故选:A.【点评】解答此题的主要依据是:三角形的内角和是180度以及三角形的分类方法.6.【分析】选项A:图形中是沿着高剪得,有直角,把剪下的左边图形平移到右边可以得到一个长方形.选项B:图形中不是沿着高剪得,没有直角,把剪下的上面图形平移到下面不能得到一个长方形.选项C,沿平行四边形的一边中点分别剪下了个直角三角形,通过旋转、平移后能够拼成一个长方形.选项D,沿平行四边形的高剪开后,可以平成一个长方形,据此解答.【解答】解:根据长方形的特征,长方形的对边平行且相等,选项A:图形中是沿着高剪得,有直角,把剪下的左边图形平移到右边可以得到一个长方形.选项B:图形中不是沿着高剪得,没有直角,把剪下的上面图形平移到下面不能得到一个长方形.选项C,沿平行四边形的一边中点分别剪下了个直角三角形,通过旋转、平移后能够拼成一个长方形.选项D,沿平行四边形的高剪开后,可以平成一个长方形.故选:B.【点评】此题主要考查平行四边形面积公式的推导过程及应用.7.【分析】由题意可知:一个三角形和一个平行四边形的面积相等,底也相等,由两种图形的面积公式可得,平行四边形的高应是三角形高的一半,三角形的高是2分米,所以用三角形的高除以2即可解答.【解答】解:2÷2=1(分米)答:平行四边形的高是1分米.故选:A.【点评】此题主要考查三角形和平行四边形的面积公式的灵活运用.8.【分析】根据平行四边形高的意义,从平行四边形的一个顶点向对边作垂线,顶点到垂足的距离叫做平行四边形的高,通过观察图形可知,高28厘米对应的底是25厘米.据此解答即可.【解答】解:如图中,平行四边形的高是28cm,它的对应底25cm.故选:C.【点评】此题考查的目的是理解掌握平行四边形高的意义及应用.9.【分析】CF的长就是梯形的上底,24平方厘米是梯形的面积,梯形的下底是8厘米,高是4厘米,根据梯形的面积=(上底+下底)×高÷2,则上底=梯形的面积×2÷高﹣下底,据此即可解答.【解答】解:24×2÷4=8=12﹣8=4(厘米)答:CF的长是4cm.故选:B.【点评】本题考查了梯形面积公式的灵活运用情况.10.【分析】求等腰三角形的周长,就要确定等腰三角形的腰与底的长;题目给出等腰三角形有两条边长为10厘米和4厘米,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若4厘米为腰长,10厘米为底边长,由于4+4=8,两边之和不大于第三边,则三角形不存在;(2)若10厘米为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为10+10+4=24(厘米).故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.二.填空题(共8小题)11.【分析】根据平行四边形的面积公式:S=ah,把数据代入公式解答.【解答】解:70厘米=7分米,13×7=91(平方分米)答:它的面积是91平方分米.故答案为:91.【点评】此题需要考查平行四边形面积公式的灵活运用,关键是熟记公式.12.【分析】根据锐角三角形的性质和三角形内角和是180°解答即可.【解答】解:锐角三角形中,三个角都是锐角,因为三角形的内角和是180°,所以任意两个锐角之和都大于90°.故答案为:大于.【点评】此题是考查了三角形内角和以及锐角三角形的性质的灵活应用.13.【分析】已知角为145°,它的补角是等腰三角形的一个底角,可求出底角度数为180°﹣145°=35°,两底角度数相等,三角形内角和是180°,则顶角度数为180°﹣35°﹣35°=110°.【解答】解:∠B=∠C=180°﹣145°=35°∠A=180°﹣35°﹣35°=110°故答案为:35°,110°.【点评】本题考查了三角形内角和定理,属于基础题,关键是掌握三角形内角和为180度.14.【分析】两组对边分别平行的四边形是平行四边形.平行四边形包括一般平行四边形或特殊平行四边形.特殊平行四边形即正方形、长方形、菱形等.【解答】解:两组对边分别平行的四边形是一般平行四边形或特殊平行四边形.故答案为:一般平行四边形,特殊平行四边形.【点评】此题考查了平行四边形的判定方法和分类.15.【分析】根据三角形的内角和定理:三角形内角和是180°,用180°减掉两个已知角的度数,就是第三个角的度数;根据三角形按角分率的标准,判断三角形的分类即可.【解答】解:180°﹣28°﹣62°=90°答:另一个角是90°,这是一个直角三角形.故答案为:90°;直角.【点评】本题主要考查三角形的内角和,关键是利用三角形内角和定理做题.16.【分析】根据平行四边形的面积公式:S=ah,再根据因数与积的变化规律,积扩大的倍数等于因数扩大倍数的乘积.据此解答.【解答】解:2×3=6答:平行四边形的面积是原来的6倍.故答案为:6.【点评】此题考查的目的是理解掌握平行四边形的面积公式、因数与积的变化规律及应用.17.【分析】根据平行四边形的面积公式:S=ah,那么h=S÷a,把数据代入公式解答.【解答】解:60÷5=12(分米)答:这条底边对应的高是12分米.故答案为:12.【点评】此题主要考查平行四边形面积公式的灵活运用,关键是熟记公式.18.【分析】由条件“一个等腰直角三角形两条直角边的长度和是18cm”可知,此三角形的直角边为18÷2=9cm,再利用三角形的面积公式:三角形面积=底×高÷2即可求得结果.【解答】解:18÷2=9(cm)9×9÷2=40.5(cm2)答:它的面积是40.5cm2.故答案为:40.5.【点评】此题主要考查三角形的面积公式:三角形面积=底×高÷2,将数据代入公式即可求得结果.三.判断题(共5小题)19.【分析】两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的底和高不一定相等;比如,底和高分别是4、3,6、2的两个三角形的面积相等,但底和高不相等,判断即可.【解答】解:因为两个三角形的面积相等,则两个三角形面积的2倍也相等,也就是底乘高相等;比如,底和高分别是4、3,6、2的两个三角形的面积相等,但底和高不相等,所以说“两个三角形的面积相等,它们的底和高不一定相等”是正确的.故答案为:√.【点评】掌握三角形的面积公式是解题的关键.20.【分析】(1)过上底上的除两个端点外的任意一点做腰的一条平行线,把梯形分成两个图形:一个平行四边形和一个梯形;(2)过上底上的除两个端点外的任意一点做底的一条垂线,把梯形分成两个图形:两个梯形;(3)连接梯形的对角线,可以得到两个三角形.(4)这不是一个直角梯形,得不到一个长方形和一个梯形,由此求解.【解答】解:根据分析画图如下:(1)一个平行四边形和一个梯形(2)两个梯形(3)一个三角形(4)一个三角形和梯形得不到两个平行四边形.所以本题说法正确;故答案为:√.【点评】本题主要考查了学生根据三角形、平行四边形、梯形的定义来对图形进行分割的能力.21.【分析】根据三角形的特性:任意两边之和大于第三边,三角形的任意两边的差一定小于第三边;进行解答即可.【解答】解:如果三边长分别为14cm、7cm、9cm,周长是30cm,符合7+9>14,能组成三角形,但最长边是14cm,14<15,故原题说法错误;故答案为:×.【点评】此题是考查三角形的特性,应灵活掌握和运用.22.【分析】首先根据等腰三角形的性质可分为两种情况讨论:5cm为腰长、5cm为底的长度.然后看是否能围成三角形,由此解答即可.【解答】解:当5厘米是腰时,底边是21﹣5×2=11(厘米),5+5<11,这种情况不成立;如果5厘米是底边,则腰长为:(21﹣5)÷2=8(厘米),5+8>8,所以能围成三角形;所以其中一条边长5cm,它的另外两条边不可能是5cm和11cm.故原题说法错误;故答案为:×.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.23.【分析】根据平行四边形的面积公式:S=ah,可以通过举例证明.假如原来平行四边形的底是3厘米,高是8厘米,底增加2厘米后是5厘米,高减少2厘米后是6厘米,分别求出原来和增加后的面积,然后进行比较即可.【解答】解:假如原来平行四边形的底是3厘米,高是8厘米,底增加2厘米后是5厘米,高减少2厘米后是6厘米,原来的面积:3×8=24(平方厘米);增加后的面积:(3+2)×(8﹣2)=5×6=30(平方厘米);24平方厘米<30平方厘米,答:所得到的平行四边行面积比原来平行四边形面积大.因此,所得到的平行四边行面积与原来平行四边形面积相等,这种说法是错误的.故答案为:×.【点评】此题主要考查平行四边形面积公式的灵活运用,关键是熟记公式.四.计算题(共2小题)24.【分析】根据题意,如图,这个平行四边形的底是3cm,高是2.8cm.根据面积公式:S=ah,把数据代入公式解答.【解答】解:3×2.8=8.4(平方厘米)答:它的面积是8.4平方厘米.【点评】此题主要考查平行四边形面积公式的灵活运用,关键是熟记公式.25.【分析】根据三角形的周长=三条边的和,用8+8+10计算即可得到三角形的周长;根据长方形的周长=(长+宽)×2,用(15+7)×2计算即可得到长方形的周长.【解答】解:8+8+10=26(厘米)答:三角形的周长是26厘米;(15+7)×2=22×2=44(厘米)答:长方形的周长是44厘米.【点评】本题考查长方形的周长、三角形的周长,明确长方形的周长=(长+宽)×2、三角形的周长=三条边的和是解答本题的关键.五.应用题(共6小题)26.【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可.【解答】解:因为25﹣5﹣8=12(米)且5+8=13>12所以这三段能围成一个三角形,因为两边之和大于第三边.【点评】此题主要依据三角形的两边之和大于第三边的特点和减法的意义解决问题.27.【分析】根据三角形边的特征,在三角形中任意两边之和大于第三边,由此解答.【解答】解:根据分析知,共有以下情况,①3厘米,3厘米,3厘米;②3厘米,3厘米,4厘米;③3厘米,4厘米,6厘米;答:一共可以拼成3个不同的三角形.【点评】此题主要根据三角形的任意两边之和大于第三边解决问题.28.【分析】由题意可知:平行四边形的高已知,面积已知,利用平行四边形的面积公式,即可求出平行四边形的底,也就是长方形的长,从而利用长方形的周长公式就能求出长方形框架的周长.【解答】解:18÷3=6(dm)(6+4)×2=10×2=20(dm)答:长方形框架的周长是20分米.【点评】本题主要考查了长方形的周长计算以及平行四边形面积公式的实际应用.29.【分析】根据三角形的面积=底×高÷2,则三角形的面积×2÷底=高,把数据代入即可求解.【解答】解:12×2÷6=24÷6=4(厘米)答:这条底边上的高是4厘米.【点评】本题考查了三角形的面积=底×高÷2的灵活应用.30.【分析】先利用平行四边形的面积S=ah求出这块空地的面积,再用草坪的面积乘单位面积草坪的价格,就是种这块草坪需要多少钱.【解答】解:15×12×10=180×10=1800(元)答:种这块草坪需要1800元.【点评】此题主要考查平行四边形的面积的计算方法,在实际生活中的应用.31.【分析】根据平行四边形的面积公式:S=ah,已知底是150厘米,高比底少50厘米,那么高是150﹣50=100厘米,把数据代入公式求出这块玻璃的面积,然后根据已知总价和数量求单价,用除法解答.【解答】解:150×(150﹣50)=150×100=15000(平方厘米)15000平方厘米=1.5平方米90÷1.5=60(元)答:每平方米玻璃的价钱是60元.【点评】此题主要考查平行四边形面积公式的灵活运用,以及总价、数量、单价三者之间关系的应用.。
人教版四年级数学下册第五单元知识点归纳整理学习资料
人教版四年级数学下册第五单元知识点归纳整理第五单元《三角形》一、三角形的认识及特性1、三角形的定义:由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2、三角形的特点:三角形有3条边、3个角和3个顶点。
3、三角形的底和高:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
例如:从三角形的一个顶点到它的对边作一条垂线,如图所示:顶点顶点 边AB4、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,上面的三角形可以表示成三角形ABC。
5、三角形的特性:三角形具有稳定性。
6、两点间的距离:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。
7、三角形三条边的关系:三角形任意两边的和大于第三边。
8、判断3条线段能否围城三角形,只要把较短的两条线段相加的和与最长的线段比较,大于最长的线段就能围成三角形,反之则不能。
二、三角形的分类1、三角形按角分为:锐角三角形、直角三角形和钝角三角形。
①、三个角都是锐角的三角形叫做锐角三角形;②、有一个角是直角的三角形叫做直角三角形;③、有一个角是钝角的三角形叫做钝角三角形。
用集合图形表示为:2、直角三角形的特性:3、三角形按边分为:不等边三角形和等腰三角形(等腰三角形包括等边三角形)用集合图形表示为:直角边直角边4、认识等腰三角形:在等腰三角形中,相等的两条边叫做腰,另一条边叫底;两腰的夹角叫做顶角,两腰与底边的两个夹角底温馨提示:等腰三角形可以是锐角三角形、直角三角形或钝角三角形。
在直角三角形中,如果两条直角边相等,这个直角三角形叫做等腰直角三角形,它的两个底角分别是45°.5、认识等边三角形:三条边相等的三角形叫做等边三角形(也叫正三角形)。
①、等边三角形的特点:3条边都相等,3个角都相等,每个角都是60°。
②、与等腰三角形的关系:等边三角形是特殊的等腰三角形,当等腰三角形的两条腰与底边相等时,这个等腰三角形就是等边三角形。
人教版四年级数学下第二单元知识点及试题
第二单元:三角形“空间与图形”知识一、认识图形①按平面图形和立体图形分;②把平面图形按图形是否由线段围成来分,分为两大类。
一类是由曲线围成的,一类是由线段围成的。
③按图形的边数来分。
2、平行四边形和三角形的性质:三角形具有稳定性,平行四边形具有易变形(不稳定性)的特点。
二、三角形分类1、把三角形按照不同的标准分类,并说明分类依据。
(1)按角分:直角三角形、锐角三角形、钝角三角形。
①三个角都是锐角的三角形是锐角三角形。
②有一个角是直角的三角形是直角三角形。
③有一个角是钝角的三角形是钝角三角形。
(2)按边分:等腰三角形、等边三角形、任意三角形。
①有两条边相等的三角形是等腰三角形。
②三条边都相等的三角形是等边三角形。
2、通过分类发现:等边三角形是特殊的等腰三角形。
三、三角形内角和、三角形边的关系1、任意一个三角形内角和等于180度。
2、三角形任意两边之和大于第三边。
3、能应用三角形内角和的性质和三角形边的关系解决一些简单的问题。
4、四边形的内角和是360°5、用2个相同的三角形可以拼成一个平行四边形。
6、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。
7、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。
一个大的等腰的直角的三角形。
四、四边形的分类1、由四条线段围成的封闭图形叫作四边形。
四边形中有两组对边分别平行的四边形是平行四边形,只由一组对边平行的四边形是梯形。
2、长方形、正方形是特殊的平行四边形。
正方形是特殊的长方形。
3、正方形、长方形、等腰梯形、菱形、等腰三角形、等边三角形、圆形是轴对称图形。
①正方形有4条对称轴。
②长方形有2条对称轴。
菱形有2条对称轴。
③等腰梯形有1条对称轴。
④等边三角形有3条对称轴。
⑤圆有无数条对称轴。
五、图案欣赏1、通过欣赏图案,体会图形排列的规律,感受图案的美。
2、利用对称、平移和旋转,设计简单的图案。
一、“对号入座”我会填:1、按角的大小,三角形可以分为()三角形、()三角形、()三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级数学三角形的知识点
四年级数学有关三角形的知识点
在平凡的学习生活中,大家都背过各种知识点吧?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。
你知道哪些知识点是真正对我们有帮助的吗?下面是店铺为大家收集的四年级数学有关三角形的知识点,欢迎大家分享。
四年级数学三角形的知识点
1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。
三角形只有3条高。
重点:三角形高的画法。
3、三角形的物理特性:稳定性。
如:自行车的三角架,电线杆上的三角架。
4、边的特性:任意两边之和大于第三边。
5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
6、三角形的分类:
按照角大小来分:锐角三角形,直角三角形,钝角三角形。
按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。
等边△的三边相等,每个角是60度。
(顶角、底角、腰、底的概念)
7、三个角都是锐角的三角形叫做锐角三角形。
8、有一个角是直角的三角形叫做直角三角形。
9、有一个角是钝角的三角形叫做钝角三角形。
10、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。
11、两条边相等的三角形叫做等腰三角形。
12、三条边都相等的三角形叫等边三角形,也叫正三角形。
13、等边三角形是特殊的等腰三角形
14、三角形的内角和等于180度。
四边形的内角和是360有关度数的计算以及格式。
15、图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形。
16、用2个相同的三角形可以拼成一个平行四边形。
17、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。
18、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。
一个大的等腰的直角的三角形。
19、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。
四年级数学三角形的知识点
1.由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2.三角形有3个角、3条边、3个顶点。
3.从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条边叫做三角形的底。
4.为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
5.三角形具有稳定性。
6.三角形的任意两边的和大于第三边。
7.三角形按角分成:
(1)锐角三角形(三个内角都是锐角的三角形)
(2)直角三角形(有一个角是直角的三角形)
(3)钝角三角形(有一个角是钝角的三角形)
8.三角形按边分成:
(1)等腰三角形(有两条边相等,相等的两条边叫做三角形的腰;有两个角相等,相等的两个角叫做底角。
)
(2)等边三角形(三边相等,三个内角相等都是60°)
(3)一般三角形
9.三角形中只能有一个直角;三角形中只能有一个钝角;
三角形中至少有两个锐角,最多有三个锐角。
10.三角形的内角和是180°。
11.最少用2个相同直角三角形可以拼一个平行四边形。
最少用3个相同等边三角形可以拼一个梯形。
最少用2个相同等边三角形可以拼一个平行四边形。
最少用2个相同等腰直角三角形可以拼一个正方形。
最少用2个相同直角三角形可以拼一个长方形。
12.无论是什么形状的图形,没有重叠,没有空隙地铺在平面上,就是密铺。
数学万级数的读法法则
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
小学数学必背公式
关系表达式
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
单位间进率
1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1平方米=100平方分米1平方分米=100平方厘米1平方厘米
=100平方毫米
1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
1吨=1000千克1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米1亩=666.666平方米
1升=1立方分米=1000毫升1毫升=1立方厘米。