2020-2021学年上海市黄浦区格致中学高一(上)期末数学试卷
2024年上海市黄浦区格致中学高三数学第一学期期末综合测试模拟试题含解析
2024年上海市黄浦区格致中学高三数学第一学期期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )A .30i >?B .40i >?C .50i >?D .60i >?2.设等比数列{}n a 的前n 项和为n S ,则“1322a a a +<”是“210n S -<”的( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要3.已知在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若函数()3222111()324f x x bx a c ac x =+++-存在极值,则角B 的取值范围是( )A .0,3π⎛⎫ ⎪⎝⎭B .,63ππ⎛⎫ ⎪⎝⎭C .,3π⎛⎫π ⎪⎝⎭D .,6π⎛⎫π ⎪⎝⎭4.函数的图象可能是下列哪一个?( )A .B .C .D .5.一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是( ).A .26B .4C .23D .22 6.已知a ,b ∈R ,3(21)ai b a i +=--,则( )A .b =3aB .b =6aC .b =9aD .b =12a7.已知33a b ==,且(2)(4)a b a b -⊥+,则2a b -在a 方向上的投影为( )A .73B .14C .203D .78.已知ABC 中,2,3,60,2,AB BC ABC BD DC AE EC ==∠=︒==,则AD BE ⋅=( )A .1B .2-C .12D .12- 9.在棱长为a 的正方体1111ABCD A B C D -中,E 、F 、M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 、11A D 上,且11(0)A P AQ m m a ==<<,设平面MEF 平面MPQ l =,则下列结论中不成立的是( )A .//l 平面11BDD BB .l MC ⊥ C .当2a m =时,平面MPQ MEF ⊥D .当m 变化时,直线l 的位置不变 10.若()()613x a x -+的展开式中3x 的系数为-45,则实数a 的值为( )A .23B .2C .14D .1311.已知函数()ln f x x ax b =++的图象在点(1,)a b +处的切线方程是32y x =-,则a b -=( )A .2B .3C .-2D .-312.已知z 的共轭复数是z ,且12z z i =+-(i 为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题:本题共4小题,每小题5分,共20分。
2020-2021学年上海市黄浦区格致中学高一(上)期末数学试卷
2020-2021学年上海市黄浦区格致中学高一(上)期末数学试卷试题数:20,总分:01.(填空题,0分)已知集合A={-3,-2,-1,0,1,2,3},B={x||x-1|≤1},则A∩B=___ .2.(填空题,0分)函数f(x)= log2(x−1)x−2的定义域为 ___ .3.(填空题,0分)若指数函数y=f(x)的图像经过点(12,2)则函数y=f(x)-2x+1的零点为 ___ .4.(填空题,0分)不等式1|x|<x的解集为 ___ .5.(填空题,0分)已知log62=a,用a表示log412=___ .6.(填空题,0分)已知函数y=(log2a)x在R上是严格减函数,则实数a的取值范围是___ .7.(填空题,0分)定义区间[a,b](a<b)的长度为b-a,若关于x的不等式x2-4x+m≤0的解集区间长度为2,则实数m的值为 ___ .8.(填空题,0分)设x,y∈(1,+∞),若log2x、log2y的算术平均值为1,则2x、2y的几何平均值的最小值为 ___ .9.(填空题,0分)已知函数y=f(x)是R上的奇函数,且是(-∞,0)上的严格减函数,若f(1)=0,则满足不等式(x-1)f(x)≥0的x的取值范围为 ___ .10.(填空题,0分)已知a∈{-2,-1,13,23,43,2},当x∈(-1,0)∪(0,1)时,不等式x a>|x|恒成立,则满足条件的a形成的集合为 ___ .11.(填空题,0分)函数y=f(x)(x<0)的反函数为y=f-1(x),且函数g(x)={f(x),x<0log2(x+1),x≥0是奇函数,则不等式f-1(x)≥-2的解集为 ___ .12.(填空题,0分)已知函数f(x)=|2x-1|,若函数g(x)=f2(x)+mf(x)+ 14有4个零点,则实数m的取值范围为 ___ .13.(单选题,0分)已知陈述句α是β的必要非充分条件,集合M={x|x满足α},集合N={x|x满足β},则M与N之间的关系为()A.M⊂NB.M⊃NC.M=ND.M∩N=∅14.(单选题,0分)若log3m<log3n且log m3<log n3,则实数m、n满足的关系式为()A.0<m<n<1B.0<n<m<1C.0<m<1<nD.1<m<n15.(单选题,0分)设a1、a2、b1、b2、c1、c2都是非零实数,不等式a1x2+b1x+c1>0的解集为A,不等式a2x2+b2x+c2>0的解集为B,则“A=B是“ a1a2=b1b2=c1c2>0”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件16.(单选题,0分)定义在R上的函数y=f(x)的表达式为f(x)= {x2,x∈Qx,x∈Q,给出下列3个判断:(1)函数y=f(x)是非奇非偶函数;(2)当a<0且a∈Q时,方程f(x)=a无解;(3)当a>0时,方程f(x)=a至少有一解;其中正确的判断有()A.0个B.1个C.2个D.3个17.(问答题,0分)已知集合A={x||x-a|≤2},不等式2x−1x+2≥1的解集为B.(1)用区间表示B;(2)若全集U=R,且A∩ B =A,求实数a的取值范围.18.(问答题,0分)已知a、b都是正实数,且ba=b-a.(1)求证:a>1;(2)求b的最小值.19.(问答题,0分)设函数y=f(x)的表达式为f(x)=x2+|x-a|,其中a为实常数.(1)判断函数y=f(x)的奇偶性,并说明理由;在区间(0,a]上为严格减函数,求实数a的最大值.(2)设a>0,函数g(x)= f(x)x20.(问答题,0分)已知非空集合S的元素都是整数,且满足:对于任意给定的x,y∈S(x、y可以相同),有x+y∈S且x-y∈S.(1)集合S能否为有限集,若能,求出所有有限集,若不能,请说明理由;(2)证明:若3∈S且5∈S,则S=Z.2020-2021学年上海市黄浦区格致中学高一(上)期末数学试卷参考答案与试题解析试题数:20,总分:01.(填空题,0分)已知集合A={-3,-2,-1,0,1,2,3},B={x||x-1|≤1},则A∩B=___ . 【正确答案】:[1]{0,1,2}【解析】:求出集合B ,利用交集定义能求出A∩B .【解答】:解:∵集合A={-3,-2,-1,0,1,2,3}, B={x||x-1|≤1}={x|0≤x≤2}, ∴A∩B={0,1,2}, 故答案为:{0,1,2}.【点评】:本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题. 2.(填空题,0分)函数f (x )=log 2(x−1)x−2的定义域为 ___ . 【正确答案】:[1](1,2)∪(2,+∞) 【解析】:根据使得函数f (x )= log 2(x−1)x−2的表达式有意义即可解决此题.【解答】:解:要使得函数f (x )=log 2(x−1)x−2的表达式有意义, 则 {x −1>0x −2≠0 ,解得x∈(1,2)∪(2,+∞).∴函数定义域为(1,2)∪(2,+∞). 故答案为:(1,2)∪(2,+∞).【点评】:本题考查函数定义域求法,考查数学运算能力,属于基础题.3.(填空题,0分)若指数函数y=f (x )的图像经过点( 12 ,2)则函数y=f (x )-2x+1的零点为 ___ .【正确答案】:[1]x=1【解析】:利用待定系数法求出f (x )=4x ,再利用零点的定义求解即可.【解答】:解:设指数函数y=a x ,∵图像经过点( 12,2),∴ a 12 =2,解得a=4,∴f (x )=4x , ∴y=f (x )-2x+1=4x -2x+1,令y=0,则4x =2x+1,∴2x=x+1,∴x=1, 故答案为:x=1.【点评】:本题考查了待定系数法求的应用,零点的求法,是基础题. 4.(填空题,0分)不等式 1|x| <x 的解集为 ___ . 【正确答案】:[1](1,+∞)【解析】:结合x 的范围分类讨论,转化为二次不等式进行求解即可.【解答】:解:由题意得, {x |x |>1x ≠0 ,即 {x >0x 2>1 或 {−x 2>1x <0,解得,x >1,所以原不等式的解集(1,+∞). 故答案为:(1,+∞).【点评】:本题主要考查了分式不等式的求解,体现了转化思想的应用,属于基础题. 5.(填空题,0分)已知log 62=a ,用a 表示log 412=___ . 【正确答案】:[1] 1+a2a【解析】:利用换底公式以及对数的运算性质求解.【解答】:解:log 412= log 612log 64 = log 62+12log 62 = 1+a2a, 故答案为: 1+a2a .【点评】:本题主要考查了对数的运算性质以及换底公式的应用,是基础题.6.(填空题,0分)已知函数y=(log 2a )x 在R 上是严格减函数,则实数a 的取值范围是 ___ . 【正确答案】:[1](1,2)【解析】:根据指数函数的单调性,可得0<log2a<1,结合对数函数的图象和性质,可得实数a的取值范围.【解答】:解:∵函数y=(log2a)x在R上是严格减函数,∴0<log2a<1,∴1<a<2,故答案为:(1,2).【点评】:本题考查的知识点是指数函数的图象和性质,对数函数的图象和性质,属于基础题.7.(填空题,0分)定义区间[a,b](a<b)的长度为b-a,若关于x的不等式x2-4x+m≤0的解集区间长度为2,则实数m的值为 ___ .【正确答案】:[1]3【解析】:根据题意利用根与系数的关系,以及解集区间长度为2得到关于m的方程,再求出m即可.【解答】:解:因为不等式x2-4x+m≤0的解集区间长度为2,所以Δ=16-4m>0,解得m<4;设方程x2-4x+m=0的解是x1,x2,则x1+x2=4,x1x2=m,因为|x1-x2|=2,所以√(x1+x2)2−4x1x2 =2,所以16-4m=4,解得m=3,所以实数m的值为3.故答案为:3.【点评】:本题考查了不等式与对应方程的应用问题,也考查了根与系数的关系以及转化思想和方程思想,是基础题.8.(填空题,0分)设x,y∈(1,+∞),若log2x、log2y的算术平均值为1,则2x、2y的几何平均值的最小值为 ___ .【正确答案】:[1]4【解析】:由已知结合对数运算性质可求xy,然后结合基本不等式求出x+y的最小值,再由指数运算性质可求.【解答】:解:由题意得,log2x+log2y=2,所以xy=4,所以x+y ≥2√xy =4,当且仅当x=y=2时取等号,则√2x•2y = √2x+y≥4.故答案为:4.【点评】:本题主要考查了对数与指数的运算性质,考查了算术平均数与几何平均数的概念,还考查了利用基本不等式求解最值,属于基础题.9.(填空题,0分)已知函数y=f(x)是R上的奇函数,且是(-∞,0)上的严格减函数,若f(1)=0,则满足不等式(x-1)f(x)≥0的x的取值范围为 ___ .【正确答案】:[1][-1,0]∪{1}【解析】:偶数形结合分类讨论x<1和x≥1即可求解.【解答】:解:函数f(x)是定义在R上的奇函数,且是(-∞,0)上的严格减函数,f(1)=0,可得f(0)=0,f(-1)=0,f(x)在(0,+∞)上单调递增,由于(x-1)f(x)≥0,当x<1时,f(x)≤0,所以-1≤x≤0,当x≥1时,f(x)≥0,所以x=1,综上所述,x的取值范围是[-1,0]∪{1}.故答案为:[-1,0]∪{1}.【点评】:本题主要考查函数奇偶性与单调性的综合,考查不等式的解法,考查分类讨论与数形结合思想的应用,考查运算求解能力,属于基础题.10.(填空题,0分)已知a∈{-2,-1,13,23,43,2},当x∈(-1,0)∪(0,1)时,不等式x a>|x|恒成立,则满足条件的a形成的集合为 ___ .【正确答案】:[1] {−2,23}【解析】:直接利用幂函数的性质进行分类讨论,即可得到答案.【解答】:解:令f(x)=x a,因为当x∈(-1,0)∪(0,1)时,不等式x a>|x|恒成立,则当x∈(-1,0)∪(0,1)时,幂函数f(x)的图象在y=|x|的图象的上方,如果函数f(x)为奇函数,则第三象限有图象,故f(x)不是奇函数,所以a=-1,a= 13不符合题意;当x∈(0,1)时,函数f(x)=x a>x,即1>x1-a,所以1-a>0,解得a<1,所以a= 43,a=2不符合题意.综上所述,满足条件的a形成的集合为{−2,23}.故答案为:{−2,23}.【点评】:本题考查了函数恒成立问题,幂函数图象与性质的应用,要掌握不等式恒成立问题的一般求解方法:参变量分离法、数形结合法、最值法等,属于中档题.11.(填空题,0分)函数y=f(x)(x<0)的反函数为y=f-1(x),且函数g(x)={f(x),x<0log2(x+1),x≥0是奇函数,则不等式f-1(x)≥-2的解集为 ___ .【正确答案】:[1][-log23,0)【解析】:当x<0时-x>0,所以g(-x)=log2(-x+1),再利用函数g(x)的奇偶性可求出f(x)的解析式,进而求出f-1(x)的解析式,注意不要忽视定义域,从而求出不等式f-1(x)≥-2的解集.【解答】:解:当x<0时,-x>0,∴g(-x)=log2(-x+1),又∵g(x)是奇函数,∴g(-x)=-g(x),∴-g(x)=log2(-x+1),即g(x)=-log2(-x+1),∴f(x)=-log2(-x+1)(x<0),令y=-log2(-x+1),x<0,则y<0,∴-x+1=2-y,∴x=1-2-y,∴f-1(x)=1-2-x(x<0),∴1-2-x≥-2,即2-x≤3,∴-x≤log23,∴x≥-log23,又∵x<0,∴-log23≤x<0,即不等式f-1(x)≥-2的解集为[-log23,0),故答案为:[-log 23,0).【点评】:本题主要考查了利用函数的奇偶性求解析式,考查了求反函数,以及解指数不等式,是中档题.12.(填空题,0分)已知函数f (x )=|2x -1|,若函数g (x )=f 2(x )+mf (x )+ 14 有4个零点,则实数m 的取值范围为 ___ . 【正确答案】:[1](- 54,-1)【解析】:由函数解析式画出函数图象,再令t=f (x ),将g (x )转化为t 的函数,再由图象求m 的范围即可.【解答】:解:由函数f (x )=|2x -1|,如图所示;令t=f (x ), 则h (t )=t 2+mt+ 14, 则h (t )=0,t 最多有两解, 而t=f (x )关于x 最多有两解,故g (x )=0有4解时,必对应h (t )与f (x )均有2解, f (x )=t 有两解,如图, 只要t∈(0,1)即可,故原问题转化为h (t )=0的根t 1,t 2∈(0,1),且t 1≠t 2, 由于h (t )过(0, 14 ), 对称轴t=- m2 必在(0,1)内, 且顶点处h (t )<0,且h (1)>0, 即 {0<−m 2<1ℎ(−m 2)=1−m 24<0ℎ(1)=54+m >0 ,即- 54 <m <-1,,-1).故答案为:(- 54【点评】:本题考查函数的零点与方程的关系,属于中档题.13.(单选题,0分)已知陈述句α是β的必要非充分条件,集合M={x|x满足α},集合N={x|x满足β},则M与N之间的关系为()A.M⊂NB.M⊃NC.M=ND.M∩N=∅【正确答案】:B【解析】:利用充要条件与集合间关系的转化即可求解.【解答】:解:∵α是β的必要非充分条件,集合M={x|x满足α},集合N={x|x满足β},∴N⫋M,故选:B.【点评】:本题考查了充要条件与集合间关系的转化,考查了推理能力与计算能力,属于基础题.14.(单选题,0分)若log3m<log3n且log m3<log n3,则实数m、n满足的关系式为()A.0<m<n<1B.0<n<m<1C.0<m<1<nD.1<m<n【正确答案】:C【解析】:根据对数函数的图象和性质即可判断.【解答】:解:∵log3m<log3n,∴0<m<n,∵log m3<log n3,∴0<m<1,n>1,∴0<m<1<n.故选:C.【点评】:本题考查了对数函数的图象和性质,属于基础题.15.(单选题,0分)设a1、a2、b1、b2、c1、c2都是非零实数,不等式a1x2+b1x+c1>0的解集为A,不等式a2x2+b2x+c2>0的解集为B,则“A=B是“ a1a2=b1b2=c1c2>0”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件【正确答案】:B【解析】:根据不等式的基本性质,充分必要条件的定义判断即可.【解答】:解:① 当A=B=∅时,不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0可能是不同的不等式,则a1a2=b1b2=c1c2>0不一定成立,∴充分性不成立,② 若a1a2=b1b2=c1c2=k>0时,则不等式a1x2+b1x+c1>0⇔ka2x2+kb2x+kc2>0⇔a2x2+b2x+c2>0,∴A=B,∴必要性成立,∴A=B是a1a2=b1b2=c1c2>0的必要不充分条件,故选:B.【点评】:本题考查充要条件的判断,不等式的基本性质,属于中档题.16.(单选题,0分)定义在R上的函数y=f(x)的表达式为f(x)= {x2,x∈Qx,x∈Q,给出下列3个判断:(1)函数y=f(x)是非奇非偶函数;(2)当a<0且a∈Q时,方程f(x)=a无解;(3)当a>0时,方程f(x)=a至少有一解;其中正确的判断有()A.0个B.1个C.2个D.3个【正确答案】:C【解析】:根据函数表达式,分别讨论变量是有理数和无理数,即可得到结论.【解答】:解:(1)若x∈Q,则-x∈Q,则f(-x)=x2=f(x),此时为偶函数,若x∈ Q,则-x∈ Q,则f(-x)=-x=-f(x),此时为奇函数,综上y=f(x)是非奇非偶函数,故(1)正确,(2)当a<0且a∈Q时,f(x)=x2≥0,则方程f(x)=a无解,故(2)正确,(3)当a>0时,若a∈Q,则由f(x)=a2=a,得a=1,若a∈ Q,则由f(x)=x=a,得x=a只有一解,故(3)错误,故选:C.【点评】:本题主要考查命题的真假判断,根据分段函数的表达式,利用分类讨论思想进行判断是解决本题的关键,是中档题.17.(问答题,0分)已知集合A={x||x-a|≤2},不等式2x−1x+2≥1的解集为B.(1)用区间表示B;(2)若全集U=R,且A∩ B =A,求实数a的取值范围.【正确答案】:【解析】:(1)根据题意,分析可得2x−1x+2≥1⇔ x−3x+2≥0⇔(x-3)(x+2)≥0且x+2≠0,解可得集合B,即可得答案;(2)根据题意,求出集合A以及B,由A∩ B =A可得A⊆ B,由此分析可得答案.【解答】:解:(1)根据题意,2x−1x+2≥1⇔ x−3x+2≥0⇔(x-3)(x+2)≥0且x+2≠0,解可得:x<-2或x≥3,即B=(-∞,-2)∪[3,+∞);(2)由(1)的结论,B=(-∞,-2)∪[3,+∞),则B =[-2,3),A={x||x-a|≤2}=[a-2,a+2],若A∩ B =A,则A⊆ B,则有-2≤a-2<a+2<3,解可得:0≤a<1,即a的取值范围为[0,1).【点评】:本题考查不等式的解法,涉及集合之间的关系,属于基础题.18.(问答题,0分)已知a 、b 都是正实数,且 b a =b-a .(1)求证:a >1;(2)求b 的最小值.【正确答案】:【解析】:(1)根据已知条件,结合不等式的性质,即可求解.(2)根据已知条件,结合换元法和基本不等式的公式,即可求解.【解答】:证明:(1)∵ b a =b-a ,∴ b (1−1a )=a ,又∵a ,b 都是正实数,∴ (1−1a )>0 ,∴ 1a <1 ,又∵a >0,∴a <1,即得证.(2)∵ b a =b-a ,∴ b (1−1a )=a ,∵a >1,∴ b =a 2a−1 ,令t=a-1(t >0),则b= a 2a−1 = (t+1)2t =t +1t +2≥2√t •1t +2=4 , 当且仅当t=a-1=1,即a=2时,取得最小值,所以a=2时,b 的最小值为4.【点评】:本题主要考查不等式的证明,掌握基本不等式是解本题的关键,属于基础题.19.(问答题,0分)设函数y=f (x )的表达式为f (x )=x 2+|x-a|,其中a 为实常数.(1)判断函数y=f (x )的奇偶性,并说明理由;(2)设a >0,函数g (x )=f (x )x 在区间(0,a]上为严格减函数,求实数a 的最大值.【正确答案】:【解析】:(1)利用奇函数与偶函数的定义,分a=0和a≠0两种情况讨论即可;(2)利用函数单调性的定义分析,列出关于a 的不等式组,求解即可.【解答】:解:(1)函数f (x )=x 2+|x-a|的定义域为R ,关于原点对称,f (-x )=(-x )2+|-x-a|=x 2+|x+a|,当a=0时,f (-x )=f (x ),则f (x )为偶函数,当a≠0时,f (-x )≠f (x )且f (-x )≠-f (x ),则f (x )为非奇非偶函数.(2)当x∈(0,a]时, g (x )=f (x )x =x 2+|x−a|x =x +a x −1 , 设0<x 1<x 2≤a ,则 g (x 1)−g (x 2)=x 1+a x 1−x 2−a x 2 = (x 1−x 2)(x 1x 2−a )x 1x 2 ,因为0<x 1<x 2≤a ,所以x 1-x 2<0且0<x 1x 2<a 2,因为函数g (x )在区间(0,a]上为严格减函数,所以x 1x 2-a <0恒成立,即a >x 1x 2恒成立,所以 {a ≥a 2a >0,解得0<a≤1, 故a 的最大值为1.【点评】:本题考查了奇偶性的判断,函数单调性的应用,函数单调性定义的理解与应用,判断函数奇偶性时要先判断函数的定义域是否关于原点对称,考查了逻辑推理能力与化简运算能力,属于中档题.20.(问答题,0分)已知非空集合S 的元素都是整数,且满足:对于任意给定的x ,y∈S (x 、y 可以相同),有x+y∈S 且x-y∈S .(1)集合S能否为有限集,若能,求出所有有限集,若不能,请说明理由;(2)证明:若3∈S且5∈S,则S=Z.【正确答案】:【解析】:(1)分a∈S,且a≠0和a∈S,且a=0两种情况分别验证即可;(2)结合条件,由5∈S,3∈S,首先证得2的所有整数倍的数都是S中的元素,又3-2=1∈S,所以x=2k+l,k∈Z也是集合S中的元素,即{x|x=2k+1,k=Z}⫋S,所以有{x|x=2k,k∈Z}U{x|x=2k+1,k∈Z}=Z,即证得S=Z.【解答】:解:(1)能,理由如下:若a∈S,且a≠0,由题意知a的所有整数倍的数都是S中的元素,所以S是无限集;若a∈S,且a=0,则S={0},x+y∈S,x-y∈S符合题意,且S={0}是有限集,所以集合S能为有限集,即S={0};(2)证明:因为非空集合S的元素都是整数,且x+y∈Z,x-y∈Z,由5∈S,3∈S,所以5-3=2∈S,所以3-2=l∈S,所以1+1=2∈S,1+2=3∈S,1+3=4∈S,…,1-1=0∈S,0-1=-1∈S,-1-1=-2∈S,-2-1=-3∈S…,所以非空集合S是所有整数构成的集合,由5∈S,3∈S,所以5-3=2∈S,因为x+y∈S,x-y∈S,所以2+2=4∈S,2-2=0∈S,2+4=6∈S,2-4=-2∈S,2+6=8∈S,2-6=-4∈S,…,所以2的所有整数倍的数都是S中的元素,即{x|x=2k,k∈Z}⫋S,且3-2=1∈S,所以x=2k+l,k∈Z也是集合S中的元素,即{x|x=2k+1,k=Z}⫋S,{x|x=2k,k∈Z}U{x|x=2k+1,k∈Z}=Z,综上所述,S=Z.【点评】:本题考查了元素与集合的关系,属于难题.。
上海市黄浦区格致中学2020-2-21学年第一学期高一数学上学期复习卷(答案版)
沪教版2020年高一数学上学期试卷一、填空题1. 函数()f x =____________2. 集合},1{a A =与},1{2a B =相等,则=a3.已知2{|4,},{,||}P x x x Q a a =≥∈=R ,若P Q P =,则a 的取值范围是4.下列命题:①b c a c b a -<-⇒>;②bc a c c b a <⇒>>0,;③22bc ac b a >⇒>;④b a b a >⇒>33,其中正确的命题个数是5. 若函数()2,12,1x x f x x x ⎧≥=⎨-<⎩,则()3f f -=⎡⎤⎣⎦____________ 6.设非空集合{|2135}A x a x a =+≤≤-,{|322}B x x =≤≤,且满足A AB ⊆,则实数a 的取值范围是 .7.已知关于x 的不等式0<-b ax 的解集为),1(+∞-,则关于x 的不等式02<+bx ax 的解集是8. 若函数243y x x a =-+-有两个零点,则实数a 的取值范围是____________9.方程23100x x k ++=有两个不相等的负实数根的充要条件是 .10.定义集合运算”“⨯:},),{(B y A x y x B A ∈∈=⨯,称为B A ,两个集合的“卡氏积”,若},02{2N x x x x A ∈≤-=,}3,2,1{=B ,则=⨯⋂⨯)()(A B B A11. 已知函数()f x =,若对于任意不相等的实数(]12,0,1x x ∈,都有()()12120f x f x x x -<-成立,则实数a 的取值范围是____________二、选择题12.设{1,2,3,4},{2,4}A B ==,如果S A ⊆且SB ≠∅那么符合条件的集合S 的个数是()A .4B .10C .11D .12 13.不等式2-≤+ab b a 成立的条件是( ) R b a A ∈,. 0.≠ab B 0.>ab C 0.<ab D14.“a c b d +>+”是“a b >且c d >”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件15. 已知函数234y x x =--的定义域是[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范围是( )A . 3,2⎡⎫+∞⎪⎢⎣⎭B . (]0,4C . 3,42⎡⎤⎢⎥⎣⎦D . 3,32⎡⎤⎢⎥⎣⎦ 16.设集合}032{2>-+=x x x A ,集合}0,012{2>≤--=a ax x x B ,若B A ⋂中恰有一个整数,则实数a 的取值范围是( ))43,0.(A )34,43.[B )2,43.[C ),1.(+∞D三、解答题17. 已知集合5|02x M x x -⎧⎫=<⎨⎬+⎩⎭,集合{}|2N x x m =-< (1)当m =4时,求M N ⋃;(2)当N M ⊆时,求实数m 的取值范围.18.设集合2{|(23)30,}A x x a x a a =+--=∈R ,22{|(3)30,}B x x a x a a a =+-+-=∈R ,若集合,A B A B ≠≠∅,试用列举法表示集合A B19.已知全集U=R,非空集合A=2220,0(31)x x a x B x x a x a ⎧⎫⎧⎫---⎪⎪<=<⎨⎬⎨⎬-+-⎪⎪⎩⎭⎩⎭ 1(1)a )2U B A =⋂当时,求(:,:,p q p x A q x B ∈∈(2)若若是的充分条件,求实数a 的取值范围。
2020-2021学年上海市格致中学高一上学期10月月考数学试题解析版
2020-2021学年上海市格致中学高一上学期10月月考数学试题一、单选题1.若,a b ∈R ,且0ab ≠,则“a b >”是“11a b<”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】D【解析】根据充分必要条件的定义分别进行判断即可. 【详解】 当0a b >>时,11a b<不成立;当110a b <<时,a b >不成立,所以“a b >”是“11a b<”的既不充分也不必要条件.故选D . 【点睛】本题考查了充分必要条件,考查了不等式的性质,是一道基础题.2.如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()UM P S ⋂⋂D .()()UM P S ⋂⋃【答案】C【解析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可. 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题.3.直角坐标平面中除去两点(1,1)A 、(2,2)B -可用集合表示为( ) A .{(,)|1,1,2,2}x y x y x y ≠≠≠≠-B .1{(,)|1x x y y ≠⎧⎨≠⎩或2}2x y ≠⎧⎨≠-⎩C .2222{(,)|[(1)(1)][(2)(2)]0}x y x y x y -+--++≠D .2222{(,)|[(1)(1)][(2)(2)]0}x y x y x y -+-+-++≠ 【答案】C【解析】直角坐标平面中除去两点(1,1)A 、(2,2)B -,其余的点全部在集合中,逐一排除法. 【详解】直角坐标平面中除去两点(1,1)A 、(2,2)B -,其余的点全部在集合中,A 选项中除去的是四条线1,1,2,2x y x y ====-;B 选项中除去的是(1,1)A 或除去(2,2)B -或者同时除去两个点,共有三种情况,不符合题意;C 选项2222{(,)|[(1)(1)][(2)(2)]0}x y x y x y -+--++≠,则22(1)(1)0x y -+-≠且22(2)(2)0x y -++≠,即除去两点(1,1)A 、(2,2)B -,符合题意;D 选项2222{(,)|[(1)(1)][(2)(2)]0}x y x y x y -+-+-++≠,则任意点(),x y 都不能2222[(1)(1)][(2)(2)]0x y x y -+-+-++=,即不能同时排除A ,B 两点.故选:C 【点睛】本题考查了集合的基本概念,考查学生对集合的识别,属于中档题.4.已知关于x 的不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩仅有一个整数解,则k 的取值范围为( ) A .(5,3)(4,5)- B .[5,3)(4,5]-C .(5,3][4,5)-D .[5,3][4,5]-【答案】B【解析】求出第一个不等式的解,讨论k 的范围得出第二个不等式的解,根据不等式组只含有一个整数得出第二个不等式解的端点的范围,从而得出k 的范围. 【详解】解:解不等式2280x x -->得2x <-或4x >, 解方程22(27)70x k x k +++=得172x ,2x k =-. (1)若72k -<-即72k >时,不等式22(27)70x k x k +++<的解集是7(,)2k --,若不等式组只有1个整数解,则54k --<-,解得:45k <,(2)若72k ->-即72k <时,不等式22(27)70x k x k +++<的解集是7(2-,)k -,若不等式组只有1个整数解,则35k -<-,解得:53k -<,综上,k 的取值范围是[5-,3)(4⋃,5],故选:B . 【点睛】本题考查了一元二次不等式的解法,分类讨论思想,借助数轴可方便得出区间端点的范围,属于中档题.二、填空题5.若{}2,2,3,4A =-,{}2|,B x x t t A ==∈,用列举法表示B = .【答案】{}4,9,16【解析】解决该试题的关键是对于t 令值,分别得到x 的值,然后列举法表示. 【详解】因为集合{}2,2,3,4A =-,而集合B 中的元素是将集合A 中的元素一一代入,通过平方得到的集合,即{}2|,B x x t t A ==∈,2,4t x ∴=±=;3,9t x ==;4,16t x ==,{}4,9,16B ∴=,那么用列举法表示B ={}4,9,16.本试题主要是考查了集合的描述法与列举法的准确运用,属于基础题.6.方程组2354x y x y -=⎧⎨+=⎩的解集为___________.【答案】{(1,1)}-【解析】由二元一次方程,应用消元法或逆矩阵解方程组求解即可. 【详解】法一:由2354x y x y -=⎧⎨+=⎩,得231028x y x y -=⎧⎨+=⎩,∴两式相加得:1111x =,1x =, 代入23x y -=,得1y =-,法二:由原方程组知:1251A -⎡⎤=⎢⎥⎣⎦,x X y ⎡⎤=⎢⎥⎣⎦,34B ⎡⎤=⎢⎥⎣⎦,∴12||11051A -==≠,即A 可逆,∴1121111511111A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦,有11231111151411111X A B -⎡⎤⎢⎥⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦ ∴1x =,1y =- 故答案为:{(1,1)}- 【点睛】本题考查了二元一次方程组的解法,分别可用消元法、逆矩阵求解,属于简单题. 7.{|||1,}A y y x x ==-∈R ,2{|28,}B y y x x x ==-++∈R ,A B =___________.【答案】[1,9]-【解析】结合绝对值和二次函数的性质分别求出两函数的值域,从而可求出两集合的交集. 【详解】解:因为0x ≥,所以||11y x =-≥-,即[)1,A =-+∞,因为()2228199y x x x =-++=--+≤,所以(],9B =-∞,所以AB =[1,9]-,故答案为: [1,9]-. 【点睛】本题考查了集合的交集运算,属于基础题.本题的关键是分别化简两集合.8.写出2a >的一个必要非充分条件___________. 【答案】1a >【解析】根据必要非充分条件的定义,知:21a a >⇒>,而1a >不一定有2a >,即1a >是2a >的一个必要非充分条件. 【详解】∵21a a >⇒>,而2a >⇏1a >, ∴1a >是2a >的一个必要非充分条件. 故答案为:1a > 【点睛】本题考查了必要非充分条件,根据定义法写出一个必要非充分条件,属于简单题. 9.已知全集{4,3,1,2,0,1}U =---,2{,1,3}A a a =+-,2{3,21,1}B a a a =--+,若{3}A B ⋂=-,则UA B =___________.【答案】{3,1,0,1}--【解析】根据集合交集的定义,结合集合元素的互异性、集合并集和补集的定义分类讨论进行求解即可. 【详解】因为{3}A B ⋂=-,所以有33a -=-或213a -=-或213a +=-,当33a -=-时,解得0a =,此时{0,1,3}A =-,{3,1,1}B =--,而{3,1}A B ⋂=-,这与已知矛盾,故不符合题意,舍去;当213a -=-时,解得1a =-,此时{0,1,3}A =-,{4,23,}B =--,符合题意,故1a =-;当213a +=-时,此方程无实根,综上所述:1a =-, 所以UAB ={3,1,0,1}--.故答案为:{3,1,0,1}-- 【点睛】本题考查了已知集合交集的结果求参数问题,考查了集合并集和补集的运算,考查了数学运算能力.10.不等式2117x x+≤-的解集为___________.【答案】(,2](7,)-∞+∞【解析】对不等式移项通分,利用公式可得出不等式的解集. 【详解】2117x x +≤-等价于21-107x x +≤-,即3607x x-≤- 化简得()()270x x x --≥,不等于7 则原不等式的解集为(,2](7,)-∞+∞ 故答案为:(,2](7,)-∞+∞ 【点睛】本题考查分式不等式的解集,考查学生计算能力,属于基础题. 11.已知集合{2,1}A =-,{|2,B x ax ==其中,}x a ∈R ,若A B B =,则a 的取值集合为___________. 【答案】{}1,0,2- 【解析】根据A B B =得到,A B 之间的关系,由此确定出可取的a 的值.【详解】 因为AB B =,所以B A ⊆,当B =∅时,0a =;当B ≠∅时,若{}2B =-,则22a -=,所以1a =-;若{}1B =,则2a =. 综上可知:a 的取值集合为{}1,0,2-, 故答案为:{}1,0,2-. 【点睛】本题考查根据集合间的包含关系求解参数,难度一般.分析集合间的子集关系时,注意分析空集的存在.12.已知关于x 的不等式210ax bx +-≥的解集为11[,]23--,则不等式20x bx a --<的解集为___________. 【答案】(3,2)--【解析】由题意知-12,-13是方程210+-=ax bx 的两根,求出65a b =-⎧⎨=⎩,再解不等式得解. 【详解】 由题意知-12,-13是方程210+-=ax bx 的两根, 所以由根与系数的关系得11()23111()23b aa ⎧-+-=-⎪⎪⎨⎪-⨯-=-⎪⎩,解得65a b =-⎧⎨=-⎩. 不等式20x bx a --<即为2560x x ++<, 所以(2)(3)0x x ++< 所以解集为(3,2)--. 故答案为:(3,2)-- 【点睛】本题主要考查一元二次不等式的解法,考查根据一元二次不等式的解集求参数,意在考查学生对这些知识的理解掌握水平.13.若关于x 的不等式2(2)3m x x m +>-+的解集是(3,)+∞,则m 的值为___________. 【答案】5【解析】由题意可得10m ->,22331m m m --=-,由此求得m 的值.【详解】解:关于x 的不等式2(2)3m x x m +>-+的,即2(1)32m x m m ->--,它解集是(3,)+∞,故10m ->,22331m m m --=-,求得5m =,故答案为:5. 【点睛】本题主要考查含参数的一次不等式的解法,属于中档题.14.已知集合2{|()(1)0}M x x a x ax a =--+-=各元素之和等于3,则实数a =___________.【答案】2或32【解析】由题意知M 中各元素为描述中方程的解,由集合的性质讨论23,x x 是否相等即可求实数a . 【详解】由题意知:2{|()(1)0}M x x a x ax a =--+-=中元素,即为2()(1)0x a x ax a --+-=的解,∴0x a -=或210x ax a -+-=,可知:1x a =或23x x a += ∴当23x x ≠时,23a =;当23x x =时,332a =, ∴2a =或32a =, 故答案为:2或32【点睛】本题考查了集合的性质,根据集合描述及元素之和,结合互异性讨论求参数,属于基础题.15.若三个关于x 的方程24430x x a +-+=,225(1)04a x a x ++-+=,2210x ax ++=中至少有一个方程有实根,则实数a 的取值范围为___________.【答案】1(,1][,)4-∞--+∞【解析】结合判别式求出当三个方程都没有实根时的实数a 的取值范围,进而可求出所求答案. 【详解】解:若三个方程都没有实根,则()()2222444316405142404440a a a a a a ⎧∆=--+=+<⎪+⎪∆=--⋅=--<⎨⎪∆=-<⎪⎩,解得114a -<<-,所以当至少有一个方程有实根时,1a ≤-或14a ≥-,故答案为: 1(,1][,)4-∞--+∞. 【点睛】本题考查了方程的实数解的问题,将至少有一个方程转化为都没有实根再求解是解题的关键.16.设数集4{|}5M x m x m =≤≤+,1{|}4N x n x n =-≤≤,且集合M 、N 都是集合{|01}U x x =≤≤的子集,如果把b a -称为非空集合{|}x a x b ≤≤的“长度”,那么集合M N ⋂的“长度”的取值范围为___________. 【答案】11[,]204【解析】根据“长度”定义确定集合,M N 的“长度”,由M N ⋂“长度”最小时,两集合位于集合I 左右两端即可确定结果. 【详解】由“长度”的定义可知:集合M 的长度为45,集合N 的长度为14; 若集合M N ⋂的“长度”最小,则M 与N 分别位于集合I 的左右两端,MN ∴的“长度”的最小值为45411120+-=若集合M N ⋂的“长度”最大,则M 与N 分别重合的部分最多,MN ∴的“长度”的最大值为14则集合M N ⋂的“长度”的取值范围为11[,]204故答案为:11[,]204【点睛】本题考查集合中的新定义运算问题的求解,解题关键是能够确定“长度”最小时,两集合的位置.三、解答题17.已知集合2{|8160,,}A x kx x k x =-+=∈∈R R .(1)若A 只有一个元素,试求实数k 的值,并用列举法表示集合A ; (2)若A 至多有两个子集,试求实数k 的取值范围.【答案】(1)0k =,{2}A =;1k =,{4}A =;(2){}[)01,+∞.【解析】(1)当0k =时,易知符合题意,当0k ≠时,利用0∆=即可求出k 的值; (2)由A 至多有两个子集,可知集合A 中元素个数最多1个,再分0k =和0k ≠两种情况讨论,即可求出实数k 的取值范围. 【详解】(1)①当0k =时,方程化为:8160x -+=,解得2x =, 此时集合{2}A =,满足题意; ②当0k ≠时,方程28160kx x -+=有一个根,∴∆2(8)4160k =--⨯=,解得:1k =,此时方程为28160x x -+=,解得4x =,∴集合{4}A =,符合题意,综上所述,0k =时集合{2}A =;1k =时集合{4}A =; (2)A 至多有两个子集,∴集合A 中元素个数最多1个,①当0k ≠时,一元二次方程28160kx x -+=最多有1个实数根,∴∆2(8)4160k =--⨯,解得1k ,②当0k =时,由(1)可知,集合{2}A =符合题意, 综上所述,实数k 的取值范围为:{}[)01,+∞.【点睛】本题主要考查了集合的表示方法,考查了集合的元素个数,属于基础题. 18.已知a ∈R ,求关于x 的不等式2(21)20ax a x --->的解集. 【答案】见解析【解析】当0a =时,求解一次不等式,当0a ≠时,求出对应方程的根11x a=-,22x ,从而对a 分类讨论一元二次不等式的解集. 【详解】当0a =时,20x ->,∴2x >,则2(21)20ax a x --->的解集为(2,)+∞ 当0a ≠时,解2(21)20ax a x ---=,得11x a =-,22x ①当0a >时,12a-<,则2(21)20ax a x --->的解集为1(,)(2,)a -∞-+∞. ②当0a <时,(1)12a -=,即12a =-,则2(21)20ax a x --->可化简为()220x -<,无解;(2)12a ->,即102a >>-,则2(21)20ax a x --->的解集为1(2,)a -; (3)12a -<,即12a <-,则2(21)20ax a x --->的解集为1(,2)a-; 综上:(1)0a =时,解集为(2,)+∞;(2)当0a >时,解集为1(,)(2,)a -∞-+∞;(3)当12a =-时,无解; (4)当102a >>-时,解集为1(2,)a -; (5)当12a <-时,解集为1(,2)a-. 【点睛】 本题考查含参不等式的求解,涉及一元一次不等式,含参数的一元二次不等式分类讨论,属于基础题.19.已知集合{|2134}A x m x m =+≤≤+,{|17}B x x =≤≤.(1)若A B ⊂,求实数m 的取值范围;(2)若C B Z =,求C 的所有子集中所有元素的和.【答案】(1)(,3)[0,1]-∞-;(2)1792.【解析】(1)根据集合的包含关系求m 的取值范围即可;(2)首先确定子集的个数为72128=,根据元素与集合的关系判断每一个元素存在于多少个子集中,即可求和.【详解】(1)由A B ⊂,知:当A =∅时,2134m m +>+,解得3m <-;当A ≠∅时,2113473421m m m m +≥⎧⎪+≤⎨⎪+≥+⎩,解得01m ≤≤;∴综上,有(,3)[0,1]-∞-.(2){1,2,3,4,5,6,7}C B Z ==,由C 的所有子集的个数为72128=,而对于任意元素子集:在任意子集中存在或不存在,即每一个元素都存在于64个子集中, ∴(1234567)641792++++++⨯=【点睛】本题考查了根据集合包含关系求参数,由元素个数求所有子集中元素之和,利用元素与集合的关系判断元素存在的子集个数,属于基础题.20.设二次函数2()f x ax bx c =++,其中a 、b 、R c ∈. (1)若2(1)b a =+,94c a =+,且关于x 的不等式28200()x x f x -+<的解集为R ,求a 的取值范围;(2)若a 、b 、c Z ∈,且(0)f 、(1)f 均为奇数,求证:方程()0f x =无整数根; (3)若1a =,21b k =-,2c k =,求证:方程()0f x =有两个大于1的根的充要条件是2k <-.【答案】(1)1(,)2-∞-;(2)证明见解析;(3)证明见解析. 【解析】(1)根据不等式解集为R ,结合分式、二次函数的性质即可求参数a 的范围;(2)利用反证法,分类讨论12,x x 都为整数、1x 为整数,2x 不为整数,结合a 、b 的奇偶性即可证明;(3)根据二次方程根的分布列条件求解证明即可.【详解】(1)由28200()x x f x -+<知:2282000x x ax bx c ⎧-+>⎨++<⎩且解集为R , ∴2040a b ac <⎧⎨∆=-<⎩即208210a a a <⎧⎨+->⎩,解得:12a <-. (2)(0)f c =,(1)f abc =++均为奇数,知:+a b 为偶数,∴2()0f x ax bx c =++=有两根为12,x x ,则12b x x a +=-,12c x x a=,1、当a 、b 为偶数时,若12,x x 都为整数,则b 、c 必须同时可被a 整除,显然不成立;若1x 为整数,2x 不为整数,211,ax bx 都为偶数,则2110ax bx c ++≠与题设矛盾;2、当a 、b 为奇数时,若12,x x 都为整数,12b x x a +=-必为奇数,则12,x x 必有一奇一偶,12x x 必为偶数,而c a为奇数,不成立;若1x =11()x ax b c +=-,当1x 为奇数时,1ax b +为偶数,则c 为偶数,与题设矛盾;当1x 为偶数时,1ax b +为奇数,则c 为偶数,与题设矛盾;综上,知:方程()0f x =无整数根;(3)由题意,知:22()(21)f x x k x k =+-+,若()0f x =有两个大于1的根时,有2121220k k k -⎧>⎪⎨⎪+>⎩,解得2k <-;若2k <-时,有()f x 开口向上且对称轴为12522k x -=>,2(1)20f k k =+>,22(21)4149k k k ∆=--=->,所以()0f x =有两个大于1的根;综上,有:方程()0f x =有两个大于1的根的充要条件是2k <-.【点睛】本题考查了根据分式不等式、二次函数的性质求参数范围,应用反证法证明存在性问题,以及定义法证明条件间的充要性.。
2023-2021学年上海市格致中学高一上学期期末数学试题及答案
2023-2021学年上海市格致中学高一上学期期末数学试题及答案标题:2023-2021学年上海市格致中学高一上学期期末数学试题及答案解析引言:数学是一门充满挑战和乐趣的学科,通过解题可以锻炼我们的逻辑思维和问题解决能力。
下面将为大家介绍2023-2021学年上海市格致中学高一上学期期末数学试题及答案解析。
希望本文能对大家巩固数学知识,提升解题技巧有所帮助。
一、选择题解析:1. 题目:已知函数 f(x) = 2x - 3,求 f(4) 的值。
答案:将 x 替换为 4,得到 f(4) = 2 * 4 - 3 = 5。
2. 题目:已知等差数列的前 n 项和为 Sn = 3n^2 + 2n,求该等差数列的公差。
答案:根据等差数列前 n 项和公式 Sn = n * (a1 + an) / 2,将 Sn 代入得:3n^2 + 2n = n * (a1 + an) / 2。
化简得:a1 + an = 6n + 4。
由于等差数列的通项公式为 an = a1 + (n-1)d,其中 d 为公差,则代入得:a1 + a1 + (n-1)d = 6n + 4。
化简得:2a1 + (n-1)d =6n + 4。
而 a1 + an = 6n + 4,所以 2a1 + (n-1)d = a1 + an。
可得 d = a1 + an - 2a1 = an - a1。
因此,该等差数列的公差为 an - a1 = 6。
3. 题目:已知正方形 ABCD,点 E 为 AB 上一动点,且 AE = 2EB。
若 AE 和 CD 的交点为 F,则三角形 CFE 的面积与正方形 ABCD 的面积之比为多少?答案:连接 FC,ED 分别与 AF 交于 G、H。
由于 AE = 2EB,所以 AG = GH。
又因为三角形 AGH 和三角形 FCE 是全等三角形(AAA),所以它们的面积之比等于底边之比的平方,即 S(AGH) / S(FCE) = AH^2 /CF^2 = 1 / 4。
2020_2021学年上海浦东新区高一上学期期末数学试卷(答案版)
2020~2021学年上海浦东新区高一上学期期末数学试卷(详解)一、填空题(本大题共12小题,每小题3分,共36分)1.【答案】【解析】【踩分点】设集合,且,则 .集合,且,则.2.【答案】【解析】【踩分点】若点在幂函数的图象上,则该幂函数的表达式为 .把点代入得,解得.则该幂函数的表达式为.3.【答案】【解析】【踩分点】不等式的解集是 .∵不等式,,解得,∴不等式的解集为:.4.已知,则 .【答案】【解析】【踩分点】由可得,故.5.【答案】【解析】【踩分点】函数的反函数是 .,则,,故反函数为.6.【答案】【解析】【踩分点】设函数(且),则该函数的图象恒过定点的坐标是 .当时,,故该函数的图象恒过定点.7.【答案】【解析】【踩分点】已知,则的最小值为 .,当且仅当,即时等号成立,取得最小值.8.【答案】【解析】已知函数,,则此函数的值域是 .易知该函数在上单调递减,【踩分点】所以当时,取得最大值,当时,取得最小值,故该函数在上的值域为.9.【答案】【解析】【踩分点】若不等式在上有解,则实数的取值范围为 .令,当时,,当时,,当时,.综上,最小值为.要使在上有解,则.∴的取值范围为.10.【答案】【解析】【踩分点】已知函数在区间上是减函数,则实数的取值范围是 .二次函数的图象开口向上,对称轴为直线,若函数在区间上是减函数,则,解得,即实数的取值范围是.11.定义在上的奇函数在上的图象如图所示,则不等式的解集是 .yO x【答案】【解析】【踩分点】依题意,时,,时,,∵为奇函数,∴当时,,当时,,∴若,则,∴解集为.12.【答案】【解析】【踩分点】已知函数,若关于的方程有两个不同的实根,则实数的取值范围是 .单调递减且值域为,单调递增且值域为,有两个不同的实根,则实数的取值范围是.二、选择题(本大题共4小题,每小题3分,共12分)13.A.B.C.D.【答案】A 选项:B 选项:【解析】若实数,满足,则下列不等式成立的是( ).B举反例:取,,满足,但是,因此不正确;∵,∴,因此正确;C 选项:D 选项:,分子,的符号无法确定,因此不正确;,当时,取等号,因此不正确.故选 B .14.A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件【答案】【解析】“函数与均是定义域为的奇函数”是“函数是偶函数”的( ).A ∵与均是定义域为的奇函数,则有,,∴,∴函数为偶函数,故充分性成立.当,时,为偶函数.但与均为非奇非偶函数,故必要性不成立.∴“函数与均是定义域为的奇函数”是“函数是偶函数”的充分非必要条件.故选.15.A.B.C.D.【答案】A 选项:【解析】下列不等式中,解集相同的是( ).与与与与C 等价于或,B 选项:C 选项:D 选项:解得或,而等价于,故不正确;由,解得:且,,故不正确;,等价于且,等价于,等价于,故正确;,等价于且,与取值范围不一致,故不正确.故选 C .16.A. B.C.D.【答案】【解析】已知函数,若,则的取值范围是( ).C 当时,不等式,所以,解得,这与不符,故此时不等式无解;当时,不等式为,所以,故此时不等式的解集为.综上,不等式的解集为.故选.三、解答题(本大题共5小题,共51分)18.(1)(2)(1)(2)【答案】(1)(2)【解析】【踩分点】设函数为的定义域为,不等式的解集为.求集合、.已知全集,求.或;..要使有意义,需满足,解得或,故或;,解得,故.,.故.19.【答案】【解析】已知函数的表达式为.讨论函数的奇偶性,并说明理由.当时,函数为偶函数;当时,函数为非奇非偶函数.证明见解析.函数的定义域关于原点对称17.【答案】【解析】【踩分点】设、为实数,比较与的值的大小.,,所以,当且仅当,时等号成立.【踩分点】①当时,,对任意,,∴为偶函数;②当时,,取,得,,∴,,∴函数既不是奇函数,也不是偶函数.综上所述,当时,函数为偶函数;当时,函数为非奇非偶函数.20.(1)(2)(1)(2)【答案】(1)(2)【解析】某商品销售价格和销售量与销售天数有关,第天的销售价格(元百斤),第天的销售量(百斤).(销售收入销售价格销售量)求第天销售该商品的销售收入是多少?这天中,哪一天的销售收入最大?最大值为多少?元.第天该商品的销售收入最大,最大值为元.由已知得第天的销售价格(元百斤),销售量(百斤).∴第天的销售收入(元),答:第天的销售收入为元.设第天的销售收入为,则.当时,,当时取最大值,当时,,当时取最大值,【踩分点】由于,答:第天该商品的销售收入最大,最大值为元.21.(1)(2)(1)(2)【答案】(1)(2)【解析】已知函数.当时,求证:在上是严格减函数.若对任意的,不等式恒成立,求实数的取值范围.证明见解析..当时,,任取,则:,又,所以,,所以,则有,即,故当时,在上是严格减函数.由得对任意的恒成立,变形为对任意的恒成立,即对任意的恒成立,当即时,,所以.【踩分点】。
2020_2021学年上海黄浦区上海市敬业中学高一上学期期末数学试卷(答案版)
2020~2021学年上海黄浦区上海市敬业中学高一上学期期末数学试卷(详解)一、填空题(本大题共12小题,每小题3分,共36分)1.【答案】【解析】【踩分点】已知全集,集合,则 ..2.【答案】【解析】【踩分点】已知函数,,则函数的最大值为 .因为,所以在上单调递减,故当时,.故答案为:.3.【答案】【解析】【踩分点】若(,且),则 .∵,∴,∴,∴.4.已知,,,则的最大值是 .【答案】【解析】【踩分点】∵设,,∴,化为,当且仅当时取等号,∴的最大值为.故答案为:.5.【答案】【解析】【踩分点】已知函数 ,记 ,满足,则的取值范围是 .由知为上的严格增函数,则若.6.【答案】【解析】【踩分点】有以下各组函数:①与;②与;③,与,.其中表示同一函数的序号为 .②对于①,的定义域为,的定义域为,两函数定义域不同,不表示同一函数;对于②,的定义域为,的定义域为,两函数定义域和对应关系都相同,表示同一函数;对于③,,与,对应关系不同,不表示同一函数,故答案为:②.7.【答案】函数的单调增区间为 .【解析】【踩分点】由已知可得作出函数的图象,由图可知函数在上为增函数,故答案为:.8.【答案】【解析】【踩分点】若,化简: ..9.【答案】【解析】【踩分点】已知且,若,且,则实数的取值范围 .令,且,因为时,,所以:是单调递减函数,又因为当时,为单调递减函数,所以:,所以:实数的取值范围是.10.根据下表,用二分法求在上严格增函数在区间上的零点的近似值(精确度【答案】【解析】【踩分点】),下一步需要计算 时的函数值.因为,,即,所以该函数的零点应在之间,由二分法的原理知:下一个需要计算的函数值对应的值为:.故答案为:.11.【答案】【解析】【踩分点】若、为方程的两个实数解,则 .-1解:,根据指数函数的单调性可知,所以、为的两个根,即的两个根分别为、,根据根与系数的关系可知,故答案为.12.【答案】若定义在上的奇函数和偶函数满足,则.【解析】【踩分点】由题意,,与条件联立可得,,,∴.故答案为:.二、选择题(本大题共4小题,每小题4分,共16分)13.A.B.C.D.【答案】A 选项:B 选项:C 选项:D 选项:【解析】若,则下列命题中正确的是( ).B∵,∴,故错误;∵,,∴,故正确;∵,由,则,∴,故错误;∵,,∴.故错误.故选 B .14.A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】【解析】已知函数,则“函数是奇函数”是“”的( ).A 函数为奇函数,则;若,满足,但函数不是奇函数,即“函数是奇函数”是“”充分不必要条件.故选.,15.A.B.C.D.【答案】【解析】若,下列命题为假命题的个数是( ).()若,,则:()若,,则;()当,均为正整数时,可以把等价地定义为;()当且,,,均为正整数时,总成立C 把看成为底数,为指数的指数函数,可知()()均为真命题.()当时,若为偶数,则无意义,故为假命题.()如:,取,无意义,但,故为假命题.∴只有()()两个假命题.故选.16.A.B.C.D.【答案】【解析】设,若函数有个零点,则的最大值为( ).C ,即,令,则当时,,当时,,作出图象如下:yx由图可知,当,即时,根的数量最多,此时有个根,即最多有个零点,故选.三、解答题(本大题共5小题,共48分)17.(1)(2)(1)(2)【答案】(1)(2)【解析】已知集合,.求集合.若,求的取值范围.或.的取值范围为.∵集合或,∴或.∵,或,【踩分点】,∴当时,,当时,,,则,当时,,,则无解,∴的取值范围为.19.(1)(2)(1)【答案】某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品,已知该单位每月的处理量最少为吨,最多为吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为元.该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?该单位每月处理量为吨时,才能使每吨的平均处理成本最低.18.(1)(2)(1)(2)【答案】(1)(2)【解析】【踩分点】已知函数.判断该函数的奇偶性,并证明.解不等式.偶函数,证明见解析..∵,,,∴函数为偶函数.∵,,即,解得或,∴不等式的解集为.(2)(1)(2)【解析】【踩分点】该单位每月不能获利,国家至少需要补贴元才能使该单位不亏损.由题意可知,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,所以,每吨二氧化碳的平均处理成本为,由基本不等式可得(元),当且仅当时,即当时,等号成立,因此,该单位每月处理量为吨时,才能使每吨的平均处理成本最低.令,∵,函数在区间上单调递减,当时,函数取得最大值,即.所以,该单位每月不能获利,国家至少需要补贴元才能使该单位不亏损.20.(1)(2)(3)(1)(2)(3)【答案】(1)【解析】已知是定义在上的奇函数,且.求,的值.用定义证明在上为严格增函数.若对恒成立,求的取值范围..证明见解析..是定义在上的奇函数,可得,即,解得.又,即,解得,则,,可得为奇函数,故.(2)(3)【踩分点】设,,由,可得,,即,则,即,即,所以在上为增函数.若对恒成立,即为,由在递增,可得的最大值为,则,即,则的取值范围是.21.(1)(2)(3)(1)(2)(3)【答案】(1)(2)【解析】函数的定义域为,若存在常数,使得对一切实数均成立,则称为“圆锥托底型”函数.判断函数是否为“圆锥托底型”函数?并说明理由.若函数是“圆锥托底型”函数,求出的最大值.当时,判断函数是否是“圆锥托底型”函数.是“圆锥托底型”函数,证明见解析..仅当,时,是“圆锥托底型”函数.∵,即对于一切实数使得成立,∴是“圆锥托底型”函数.∵是“圆锥托底型”函数,故存在,使得对于任意实数恒成立,∴当时,,此时当时,取得最小值,∴,而当时,也成立,(3)【踩分点】∴的最大值等于.①当,时,,对于任意有,此时可取,∴是“圆锥托底型”函数;②当,时,,无论取何正数,取,有,∴不是“圆锥托底型”函数.由上可得,仅当,时,是“圆锥托底型”函数.。
上海市2020-2021学年高一上学期期末数学试题人教新课标A版
上海市2020-2021学年高一上学期期末数学试题一、填空题1. 已知函数的图象如图所示,则该函数的值域为________.2. 已知集合,,则________.(结果用区间表示)3. 已知函数,则它的反函数________________.4. 已知函数,满足,且当时,,则________.5. 已知是奇函数,满足,且在区间内是严格增函数,则不等式的解集是________.(结果用区间表示)6. 已知,函数是定义在上的偶函数,则的值是________.7. 函数,的最小值是________.8. 设方程的解为,的解为,则________.二、解答题若方程的三个根可以作为一个三角形的三条边的长,则实数的取值范围是________.三、填空题对于实数、,定义,设,且关于的方程为恰有三个互不相等的实数根、、,则的取值范围为________.四、单选题下列四组函数中,同组的两个函数是相同函数的是()A.与B.与C.与D.与函数f(x)=的零点所在的一个区间是A.(−2, −1)B.(−1, 0)C.(0, 1)D.(1, 2)已知,则“”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件设函数若,,则关于的方程的解的个数为()A.1B.2C.3D.4五、解答题已知实数,判断函数的奇偶性,并说明理由.已知命题:幂函数的图象过原点;命题:函数在区间上不是单调函数. 若命题和命题只有一个为真命题,求实数的取值范围.已知函数.(1)判断函数的单调性,并证明;(2)用函数观点解不等式:. 经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2018年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足(其中,a为正常数).已知生产该产品还需投入成本万元(不含促销费用),每一件产品的销售价格定为元,假定厂家的生产能力完全能满足市场的销售需求.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.定义:如果函数在定义域内给定区间上存在实数,满足,那么称函数是区间上的“平均值函数”,是它的一个均值点.(1)判断函数是否是区间上的“平均值函数”,并说明理由;(2)若函数是区间上的“平均值函数”,求实数的取值范围;(3)若函数是区间上的“平均值函数”,且是函数的一个均值点,求所有满足条件的有序数对.参考答案与试题解析上海市2020-2021学年高一上学期期末数学试题一、填空题1.【答案】[加加){1,3,4)【考点】函数的值域及其求法函数的定义域及其求法【解析】由图象可得函数值,得值域.【解答】由图象可知函数值有1,3,4,即值域为{1,3,4}故答案为:{1,3,4}2.【答案】I≤加)(1,4)【考点】分式不等式的解法【解析】先求出集合A,B,再根据交集的定义即可求出.【解答】∵A={x||x−1|<3}={x|−2<x<4}B={x|x−1x−5<0}={x|1<x<5}A∩B={x|1<x≤4}=(1,4)故答案为:(1,4)3.【答案】[加加]√x+13【考点】反函数函数的值域及其求法函数奇偶性的性质【解析】由y=x3−1求得后交换xy的位置可得反函数,同时注意求原函数的值域,即反函数的定义域.【解答】由y=x3−1知y∈Rx3=y+1,所以x=√y+13所以f−1(x)=√x+13x∈R故答案为:√x+134.【答案】2【考点】函数的概念及其构成要素伪代码判断两个函数是否为同一函数【解析】根据函数的周期性直接求解.【解答】由函数y=f(x),满足f(x)=f(x+2)即f(x)=f(x−2)得f(92)=f(52)=f(12)=4×12=2故答案为:2.5.【答案】[加加](−1,0)∪(0,1)【考点】奇偶性与单调性的综合函数单调性的性质函数奇偶性的性质【解析】由奇函数性质得f(−1)=0,在(−∞,0)上函数也是递增的,从而可求得不等式的解.【解答】由题意f(−1)=0,且f(x)在(−∞,0)上函数是递增的,f(x)x<0⇒{f(x)<0x>0或{f(x)>0x<0,所以0<x<1或−1<x<0故答案为:(−1,0)∪(0,1)6.【答案】−5【考点】函数的对称性【解析】根据偶函数及绝对值函数性质直接求解即可.【解答】由已知y=|x−n|+2是定义在[4m,m2−5)上的偶函数,故4m+m2−5=0,即m=1,或m=−5,且函数图象关于!轴对称,又4m<m2−5,故m=−5因为y=|x−n|+2关于直线x=n对称,故n=0m+n=−5故答案为:−57.【答案】2【考点】与二次函数相关的复合函数问题【解析】令t=log3x,可得y=t(1+t)=(t+12)2−14,即可求出最小值.【解答】∵y=log3x⋅log33x=log3x⋅(1+log3x)令t=log3x.x∈[3,9],t∈[1,2]则y=t(1+t)=(t+12)2−14当t=1时,y加加=2故答案为:2.8.【答案】【答2.【考点】进位制三角函数值的符号集合的确定性、互异性、无序性【解析】由反函数对称性质即可求解.【解答】由x+log2x=2的解为x1,得log2x1=−x1+2同理x+24=2的解为x2,得2x=−x2+2又函数y=log2x与函数y=2x互为反函数,图象关于直线y=x对称,且y=−x+2与y=x互相垂直,且交点为(1,1)则函数y=log2x与函数y=−x+2的交点A(x1,y1),函数y=2x与函数y=−x+2的交点B(x2,y2),关于直线y=x对称,即A(x1,y1)与B(x2,y2)关于点(1,1)对称,即x1+x2=2故答案为:2.二、解答题【答案】(3,4]【考点】根的存在性及根的个数判断区间与无穷的概念函数的零点与方程根的关系【解析】方程(x−2)(x2−4x+m)=0的三根是一个三角形三边的长,则方程有一根是2,即三角形的一边是2,另两边是方程x2−4x+m=0的两个根,根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.则方程x2−4x+m=0的两个根设是x x和x3,一定是两个正数,且一定有|x1−x3|<2<x2+x3,结合根与系数的关系,以及根的判别式即可确定”的范围.【解答】解::方程(x−2)(x2−4x+m)=0有三根,x1=2x2−4x+m=0有根,方程x2−4x+m=0的Δ=16−4m>0,得m≤4又:原方程有三根,且为三角形的三边和长.有x2+x3>x1=2|x2−x3|<x1=2,而x2+x3=4>2已成立;当|x2−x3|<2时,两边平方得:(x2+x3)2−4x2x3<4即:16−4m<4.解得m>33≤m≤4故答案为:(3,4]三、填空题【答案】【3加加(5−√34,1)【考点】根的存在性及根的个数判断 函数的零点与方程根的关系一元二次方程的根的分布与系数的关系【解析】化简得出函数y =f (x )的解析式,不妨设x 1<x 2<x 3,作出函数y =f (x )的图象,可知当0<m <14时,直线y =m 与函数y =f (x )的图象有三个交点,由对称性可求得x 2+x 3的值,由f (x 1)=(0,14)可解得x 1的取值范围,进而可求得 x 1+x 2+x 3的取值范围. 【解答】当2x −1≤x −1时,即当x ≤0时,f (x )=(2x −1)2−(2x −1)(x −1)=2x 2−x 当2x −1>x −1时,即当x >0时,f (x )=(x −1)2−(2x −1)(x −1)=x −x 2 f (x )={2x 2−x,x ≤0x −x 2,,,,,,作出函数y =f (x )的图象如下图所示:设x 1<x 2<x 3,可知点(x 2,m )与点(x 3,m )关于直线x =12对称,则x 1+x 3=1当x >0时,f (x )=x −x 2=−(x −12)2+14≤14由图象可知,当0∴m <14时,直线y =m 与函数y =f (x )的图象有三个交点,由f (x 1)=2x 12−x 1∈(0,14),可得0<2x 12−x 1∴14∵x 1<0,解得1−√34<x 1<0,所以,5−√34<x 1+x 2+x 3<1因此,x 1+x 2+x 3的取值范围为(5−√34,1)故答案为:(5−√34,1)四、单选题 【答案】 D【考点】对数函数的图象与性质判断两个函数是否为同一函数【解析】判断函数的定义域与对应法则,两者均相同的为同一函数. 【解答】A .两函数定义域都是R ,但对应法则不相同,一个是y =x ,一个是y =|x|,不是同一函数;B .前一函数定义域是[1,+∞), 后一函数定义域是(−∞,−1]∪[1,+∞),不是同一函数;C .前一函数定义域是R ,后一函数定义域是(0,+∞),不是同一函数;D .两函数定义域相同,后一函数,计算x =1时,y =1x =2时,y =1,对应法则相同,值域也相同,是同一函数. 故选:D . 【答案】 B【考点】函数零点的判定定理 【解析】试题分析:因为函数f (x )=223x 在其定义域内是递增的,那么根据f (−1)=12−3=−52<0,f (0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(−1,0),选B . 【解答】此题暂无解答 【答案】 D【考点】必要条件、充分条件与充要条件的判断 充分条件、必要条件、充要条件 运用诱导公式化简求值【解析】分别对充分性和必要性进行判断,对于不能推出的情况举一个反例就可以. 【解答】4a >43⇔a >b充分性:取a =0,b =−1,但是04≤(−1)4,即不能推出a 4>b 4,所以充分性不满足; 必要性:取a =−1,b =0,符合a 4>b 4,但是4−1<4∘,即不能推出4a >4”,必要性不满足.综上:“4a >4y ”是a 4>b 4”的既非充分又非必要条件 故选:D 【答案】 C【考点】 函数的求值 求函数的值运用诱导公式化简求值【解析】由题意求得b 、c 的值,可得函数f (x )的解析式.再分类讨论解方程,从而得到关于》的方程f (x )=x 的解的个数. 【解答】解:由f (−4)=f (0)得16−4b +c =c ,① 由f (−2)=−2得4−2b +c =−2,③ 由①②得b =4c =2所以f (x )={x 2+4x +2(x ≤0),2(x >0),当x ≤0时,由f (x )=x 得方程x 2+4x +2=x ,解得x 1=−1x 2=−2 当x >0时,由f (x )=x 得x =2 故方程共有3个解. 故选:C 五、解答题【答案】【答a =1时,f (x )为奇函数;a ≠1时,f (x )为非奇非偶函数.【考点】函数奇偶性的性质 函数奇偶性的判断 函数单调性的判断与证明【解析】根据定义域讨论a =1和a ≠1时利用定义判断. 【解答】由题可得24−a ≠0当a =1时,x ≠0,即f (x )的定义域为{x|x ≠0},关于原点对称, f (−x )=2−x +12−x −1=1+2x1−2x =−f (x )f (x )为奇函数,当a ≠1时,f (x )的定义域不关于原点对称,则f (x )为非奇非偶函数. 【答案】加加加)0,1]][4,+∞)【考点】命题的真假判断与应用 奇偶性与单调性的综合 复合命题及其真假判断【解析】通过两个命题求出α的范围,然后通过当?真4假时,当Р假♀真时即可求解 【解答】若?为真命题,则a −1>0,解得a >1 若♀为真命题,则{a >0√a <2,解得0<a <4因为命题?和命题4只有一个为真命题,所以a ∈(0,1]∪[4,+∞) 【答案】(1)增函数,证明见解析; (2)(2,+∞)). 【考点】函数单调性的判断与证明 奇偶性与单调性的综合 函数单调性的性质【解析】(1)任取对、x 2∈(0,+x )且x 1>x 2,通过作差、因式分解、判断差值符号,可证得函数f (x )在(0,+x )上的单调性;(2)由已知条件可得出f (x )>f (2),结合(1)中的结论可解原不等式. 【解答】(1)任取x 1,x 2∈(0,+∞)且x 1>x 2,即x 1>x 2>0f (x 1)−f (x 2)=(x 12−2x 1−3)−(x 22−2x 1−3)=(x 12−x 22)+(2x 2−2x 1) =(x 1−x 2)(x 1+x 2)+2(x 1−x 2)x 1x 2=(x 1−x 2)(x 1+x 2+2x 1x 2)因为x 1>x 2>0,则x 1−x 2>0,x 1+x 2+2x 1x 2>0f (x 1)−f (x 2)>0所以函数f (x )=x 2−2x −3在区间(0,+∞)上是严格增函数;(2)由(1)可知函数f (x )=x 2−2x −3在区间(0,+∞)上是严格增函数,且f (2)=0因此由f (x )>0=f (2)可得x >2因此,不等式f (x )>0的解集为(2,+∞) 【答案】(1)y =16−4x+1−x (0≤x ≥a );(2)当a ≥1时,促销费用投入1万元,厂家的利润最大,为16−41+1−1=13万元 ;当a <1时,促销费用投入a万元,厂家的利润最大,为16−4a+1−a 万元. 【考点】函数模型的选择与应用根据实际问题选择函数类型 概率的应用【解析】(1)根据产品的利润三销售额一产品的成本建立函数关系; (2)利用导数可求出该函数的最值. 【解答】(1)由题意知,y =(4+20p)p −x −(10+2p )将p =3−2x+1代入化简得:y =16−4x+1−x (0≤x ≥a ) (2)y ′=−1−−4(x+1)2=−(x+1)2+4(x+1)2=−x 2+2x−3(x+1)2=−(x+3)(x−1)(x+1)2(i)当a ≥1时,①当x ∈(0,1)时,y >0,所以函数y =16−4x+1−x 在(0,1)上单调递增,②当x ∈(1,a )时,y <0,所以函数y =16−4x+1−x 在(1,a )上单调递减,从而促销费用投入1万元时,厂家的利润最大;(ii)当a <1时,因为函数y =16−4x+1−x 在(0,1)上单调递增, 所以在[0,a ]上单调递增,故当x =a 时,函数有最大值,即促销费用投入a万元时,厂家的利润最大综上,当a ≥1时,促销费用投入1万元,厂家的利润最大,为16−41+1−1=13万元; 当a <1时,促销费用投入a万元,厂家的利润最大,为16−4a+1−a 万元.【答案】(1)是,理由见解析; (2)(1,+∞); (3)(4,2)【考点】奇偶性与单调性的综合函数解析式的求解及常用方法 函数恒成立问题【解析】(1)根据平均值函数的定义,由函数解析式,得到f (x 0)=0,求出x 0,即可判断出结果;(2)由题意,根据平均值函数的定义,得到存在0<x 0<1,使m ⋅(2x −1)=4x 3,利用换元法,结合指数函数的性质 ,即可求出结果;(3)先由题意,得到f (1)=k (t −2)+1,推出t =3−4k ,结合题中条件,即可得出结果.【解答】(1)由“平均值函数”的定义, 存在0∈(−1,1),满足f (0)=0=f (1)−f (−1)1−(−1)因此f (x )=x 4是区间[−1,1]上的“平均值函数”.(2)若函数g (x )=m ⋅2x −1是区间[0,1]上的“平均值函数”, 则存在x ∈(0,1),满足m ⋅2x −1=g (1)−g (0)1−0=m即关于》的方程m ⋅24−1=m 在区间(0,1)内有解.参变分离,将方程转化为m =12x −1,x ∈(0,1)函数y =12x −1,x ∈(0,1)的值域为(1,+∞) 因此m ∈(1,+∞)(3)若函数ℎ(x )=kx 2+x −4(k ≥1,k ∈N )是区间[−2,1],t ∈Nt ∈N)上的“平均 值函数”,且1是函数ℎ(x )的一个均值点, 则ℎ(1)=ℎ(t )−ℎ(−2)t−(−2) 即k −3=k+t 2+t−4−(4k−6)t+2=k (t −2)+1得到k =43−t ,其中k ≥1,k ∈N,t,t ∈N 满足条件的解为{k =4t =2即所有满足条件的有序数对(k,t )为(4,2)。
2020-2021上海市高一数学上期末试卷(及答案)
2020-2021上海市高一数学上期末试卷(及答案)一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则AB =( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,23.若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( ) A .()1,+∞B .(1,8)C .(4,8)D .[4,8)4.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>5.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞,6.若函数ya >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1B .2C .3D .47.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .1ln||y x = B .3y x = C .||2x y =D .cos y x =8.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .59.若0.33a =,log 3b π=,0.3log c e =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>10.若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( ) A .13B .14C .3D .411.下列函数中,在区间(1,1)-上为减函数的是A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.已知函数()22f x mx x m =-+的值域为[0,)+∞,则实数m 的值为__________ 14.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.15.已知函数2()log f x x =,定义()(1)()f x f x f x ∆=+-,则函数()()(1)F x f x f x =∆++的值域为___________.16.已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____.17.已知11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,若幂函数()af x x =为奇函数,且在()0,∞+上递减,则a的取值集合为______. 18.若函数()242xx f x aa =+-(0a >,1a ≠)在区间[]1,1-的最大值为10,则a =______.19.已知函数1,0()ln 1,0x x f x x x ⎧+≤=⎨->⎩,若方程()()f x m m R =∈恰有三个不同的实数解()a b c a b c <<、、,则()a b c +的取值范围为______;20.已知函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,其中0a >且1a ≠,若()f x 的值域为[)3,+∞,则实数a 的取值范围是______.三、解答题21.已知函数()log (12)a f x x =+,()log (2)a g x x =-,其中0a >且1a ≠,设()()()h x f x g x =-.(1)求函数()h x 的定义域;(2)若312f ⎛⎫=-⎪⎝⎭,求使()0h x <成立的x 的集合. 22.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a =++-. (1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围. 23.已知函数sin ωφf x A x B (0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x 取得最大值2,当23x π=时,()f x 取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间.(2)将函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.24.随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式.最新调查表明,人们对于投资理财的兴趣逐步提高.某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下: ①投资A 产品的收益与投资额的算术平方根成正比; ②投资B 产品的收益与投资额成正比.公司提供了投资1万元时两种产品的收益,分别是0.2万元和0.4万元.(1)分别求出A 产品的收益()f x 、B 产品的收益()g x 与投资额x 的函数关系式; (2)假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少? 25.计算或化简:(1)112320412730.1log 321664π-⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭;(2)6log 332log log 2log 36⋅-- 26.已知函数()xf x a =(0a >,且1a ≠),且(5)8(2)f f =. (1)若(23)(2)f m f m -<+,求实数m 的取值范围; (2)若方程|()1|f x t -=有两个解,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.A解析:A 【解析】 【分析】 【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .解析:D 【解析】 【分析】根据分段函数单调性列不等式,解得结果. 【详解】因为函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 所以140482422a a a aa ⎧⎪>⎪⎪->∴≤<⎨⎪⎪-+≤⎪⎩故选:D 【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题.4.D解析:D 【解析】 【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :2y x =的值域为[)0,+∞;对于B :20x ≥,211x ∴+≥,21011x ∴<≤+, 211y x ∴=+的值域为(]0,1; 对于C :2xy =-的值域为(),0-∞; 对于D :0x >,11x ∴+>,()lg 10x ∴+>,()lg 1y x ∴=+的值域为()0,+∞;故选:D . 【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题.5.D解析:D试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立;∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.6.C解析:C 【解析】 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y [0,1]上单调递减,值域是[0,1],所以f (0)1,f (1)=0, 所以a =2,所log a56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.解析:A 【解析】本题考察函数的单调性与奇偶性 由函数的奇偶性定义易得1ln||y x =,||2x y =,cos y x =是偶函数,3y x =是奇函数 cos y x =是周期为2π的周期函数,单调区间为[2,(21)]()k k k z ππ+∈0x >时,||2x y =变形为2x y =,由于2>1,所以在区间(0,)+∞上单调递增 0x >时,1ln||y x =变形为1ln y x =,可看成1ln ,y t t x==的复合,易知ln (0)y t t =>为增函数,1(0)t x x=>为减函数,所以1ln ||y x =在区间(0,)+∞上单调递减的函数故选择A8.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。
2020-2021学年上海市某校高一(上)期末数学试卷
2020-2021学年上海市某校高一(上)期末数学试卷一、填空题(每小题3分,共36分)1. 已知f(x −2)=2x −5,且f(a)=5,则a 的值为________.2. 若m ,n ∈R ,则“m +n ≥0”是“m ≥0且n ≥0”的________条件.3. 设集合,则A ∩B =________.4. 设lg 2=a ,lg 7=b ,则log 714=________(用含a ,b 的式子表示).5. 已知集合A ={x ∈N|y =lg (4−x)},则A 的子集个数为________.6. 已知全集为R ,A ={x|x 2+px −6=0},B ={x|x 2+qx +2=0},且,则p +q =________.7. 幂函数f(x)的图象过点(2,√2),则函数g(x)=af(x −3)+1(a ∈R, a ≠0)的图象经过定点________.8. 已知函数f(x)=2log 2(x +1),,则y =f(x)的反函数为y =________.9. 方程在x ∈(0, +∞)上有解,则实数a 的取值范围是________.10. 已知函数f(x)={log 2(−x +5),x ≤12x −m,x >1 在R 上存在最小值,则m 的取值范围是________.11. 已知x 1是函数f(x)=x log 2x −3的一个零点,x 2是函数f(x)=x ⋅2x −3的一个零点,则x 1⋅x 2=________.12. 设二次函数f(x)=ax 2+bx +c (a ,b ,c 为常数).若不等式f(x)≥2ax +b 的解集为R ,则的最大值为________.二、选择题(本大题共4题,满分20分,每题5分)如果x +y <0,且y >0,那么下列不等式成立的是( ) A.y 2>x 2>xy B.x 2>y 2>−xy C.x 2<−xy <y 2 D.x 2>−xy >y 2已知函数g(x)=3x +t 的图象不经过第二象限,则t 的取值范围为( )A.t ≤−1B.t <−1C.t ≤−3D.t ≥−3对于函数①,②f(x)=(x −2)2,③f(x)=2|x−2|,判断下列三个命题的真假:命题甲:f(x +2)是偶函数;命题乙:f(x)在(−∞, 2)上是严格减函数,在(2, +∞)上是严格增函数;命题丙:f(x +2)−f(x)在(−∞, +∞)上是严格增函数.能使命题甲、乙、丙均为真的所有函数的序号是( )A.①②B.②③C.②D.①③已知函数f(x)满足f(x +1)=1+√2f(x)−f 2(x)(x ∈R),则f(1)+f(2020)的最大值是( ) A.2−√2B.2C.2+√2D.4三、解答题(本大题共5题,满分76分)已知函数f(x)=x 2−(a +b)x +a .(1)若关于x 的不等式f(x)<0的解集为(1, 2),求a ,b 的值;(2)当b =1时,解关于x 的不等式f(x)>0.已知函数f(x)=log 21+ax x−1(a 为常数)是奇函数.(Ⅰ)求a 的值与函数 f(x)的定义域;(Ⅱ)若当x ∈(1, +∞) 时,f(x)+log 2(x −1)>m 恒成立.求实数m 的取值范围.某心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p 与听课时间t 之间的关系满足如图所示的曲线.当t ∈(0, 14]时,曲线是二次函数图象的一部分,当t ∈[14, 40]时,曲线是函数y =log a (t −5)+83(a >0,且a ≠1)图象的一部分.根据专家研究,当注意力指数p 大于等于80时听课效果最佳.(1)试求p =f(t)的函数关系式;(2)一道数学难题,讲解需要22分钟,问老师能否经过合理安排在学生听课效果最佳时讲完?请说明理由.设f(x)是定义在[−1, 1]上的奇函数,且对任意的a ,b ∈[−1, 1],当a +b ≠0时,都有f(a)+f(b)a+b>0.(1)若a >b ,试比较f(a)与f(b)的大小;(2)解不等式f(x −12)<f(x −14);(3)如果g(x)=f(x −c)和ℎ(x)=f(x −c 2)这两个函数的定义域的交集是空集,求c 的取值范围.已知x ∈R ,定义:f(x)表示不小于x 的最小整数,例如:f ()=2,f(−0.6)=0(1)若f(x)=2018,求实数x 的取值范围;(2)若x >0,且f (3x +f(x))=f(6+),求实数x 的取值范围;(3)设g(x)=x +a •−2,ℎ(x)=,若对于任意的x 1、x 2、x 3∈(2, 4],都有g(x 1)>|ℎ(x 2)−ℎ(x 3)|,求实数a 的取值范围.参考答案与试题解析2020-2021学年上海市某校高一(上)期末数学试卷一、填空题(每小题3分,共36分)1.【答案】3【考点】函数解析式的求解及常用方法【解析】根据题意,令t=x−2,利用换元法可得f(x)的解析式,则有f(a)=2a−1=5,求出a的值,即可得答案.【解答】根据题意,令t=x−2,则x=t+2,则有f(t)=2t−1,则f(a)=2a−1=5,解可得a=3,2.【答案】必要不充分【考点】充分条件、必要条件、充要条件【解析】结合不等式的性质,利用充分条件和必要条件的定义进行判断即可.【解答】当m=−1,n=2时,满足m+n≥0但“m≥0且n≥0”不成立,当“m≥0且n≥0”时,m+n≥0一定成立,即m+n≥0是m≥0且n≥0成立的必要不充分条件,3.【答案】={x|−1<x<2}【考点】交集及其运算【解析】先分别求出集合A,B,由此能求出A∩B.【解答】∵集合,∴A={x|x>−1},B={x|−1≤x<2},∴A∩B={x|−1<x<2}.4.【答案】【考点】对数的运算性质【解析】进行对数的运算,得出,代入lg2=a,lg7=b即可.【解答】∵lg2=a,lg7=b,∴.5.【答案】16【考点】子集与真子集【解析】可以求出集合A,根据集合A的元素个数即可得出A的子集个数.【解答】∵A={x∈N|x<4}={0, 1, 2, 3},∴A的子集个数为24=16.6.【答案】【考点】交集及其运算【解析】由,知2∈A,求出p=1,从而集合A={x|x2+x−6=0}={2, −3},进而得−3∈B,求出q=,由此能求出结果.【解答】由,知2∈A,代入得:4+2p−6=0,解得p=1,所以集合A={x|x2+x−6=0}={2, −3},从而得−3∈B,代入得,所以.7.【答案】(3, 1)【考点】幂函数的概念、解析式、定义域、值域【解析】由题意求出幂函数f(x)的解析式,再化简函数g(x),求出g(x)的图象经过的定点.【解答】设幂函数y=f(x)=xα,图象过点(2,√2),则2α=√2,α=12;∴f(x)=x12,x≥0;∴函数g(x)=af(x−3)+1=a(x−3)12+1=a√x−3+1,其中a∈R,且a≠0;令x−3=0,得x=3,此时y=1;∴函数g(x)的图象经过定点(3, 1).8.【答案】【考点】反函数【解析】由y=f(x)反解出x,然后求出原函数的值域,得到反函数的定义域,从而得到y=f(x)的反函数.【解答】因为y=2log2(x+1),所以,即,又因f(x)在上单调递增,所以f(x)∈[−2, 2],所以y=f(x)的反函数为y=−1,x∈[−2, 2].9.【答案】[4, +∞)【考点】函数与方程的综合运用函数的零点【解析】设f(x)=4x+x,原问题等价于当x>0时,函数f(x)=4x+x与直线y=a有交点,求出f(x)的值域,即可得答案.【解答】根据题意,设f(x)=4x+x,方程即a=4x+x∈(0, +∞)上有解,则当x>0时,函数f(x)=4x+x与直线y=a有交点,当x>0时,f(x)=4x+≥2=4,当且仅当x=时等号成立,即f(x)的值域为[4, +∞),则必有a≥4,即a的取值范围为[4, +∞),10.【答案】(−∞, 0].【考点】函数的最值及其几何意义【解析】利用函数的单调性,分别求出两段的值域即可.【解答】函数y=log2(−x+5)在(−∞, 1]单调递减,即可得x≤1时,f(x)≥f(1)=2.当x>1时,f(x)>2−n.要使函数f(x)={log2(−x+5),x≤12x−m,x>1在R上存在最小值,只需2−m≥2,即m≤0.11.【答案】3【考点】函数的零点与方程根的关系【解析】利用函数的对称性,设出A、B坐标,转化求解即可.【解答】由题意得,又y=log2x和y=2x图象关于y=x对称,且图象也关于y=x对称,不妨设,所以A,B也关于y=x对称,所以log2x1=x2,又log2x1=,所以x1x2=3.12.【答案】【考点】二次函数的性质二次函数的图象【解析】由已知结合二次函数的性质b2≤4ac−4a2,然后对已知不等式进行赋值可得c≥a>0,然后进行换元,结合基本不等式即可求解.【解答】由f(x)≥2ax+b的解集为R,可得ax2+(b−2a)x+c−b≥0恒成立,∴a>0且△=(b−2a)2−4a(c−b)≤0,即b2≤4ac−4a2,令x=1可得a+b−2a+c−b≥0,即c≥a>0,∴=,令t=−1,则t≥0,∴====,当且仅当t=即t=2时取等号,二、选择题(本大题共4题,满分20分,每题5分)【答案】D【考点】不等式的基本性质【解析】由x+y<0,且y>0,可得x<−y<0.再利用不等式的基本性质即可得出x2>−xy,xy<−y2.【解答】解:∵x+y<0,且y>0,∴x<−y<0.∴x2>−xy,xy<−y2,因此x2>−xy>y2.故选:D.【答案】A【考点】指数函数的图象与性质【解析】根据指数函数的性质,求出恒过坐标,即可得出t的取值范围.【解答】由指数函数的性质,可得函数g(x)=3x+t恒过点坐标为(0, 1+t),函数g(x)是增函数,图象不经过第二象限,∴1+t≤0,解得:t≤−1.【答案】B【考点】命题的真假判断与应用【解析】求复合函数判断命题甲,用复合函数法判断命题乙丙.【解答】对命题甲,分别求出f(x+2),①,②f(x+2)=(x)2,③f(x+2)=2|x|,则命题甲均真;对命题乙,由复合函数单调性知,①f(x)在(−∞, 2)上是严格增函数,在(2, +∞)上是严格减函数,②f(x)在(−∞, 2)上是严格减函数,在(2, +∞)上是严格增函数,③f(x)在(−∞, 2)上是严格减函数,在(2, +∞)上是严格增函数,所以①命题乙为假,②和③命题乙为真;此时排除AD,由于B②③,C②,所以只需判断③命题丙是否为真;对命题丙,③f(x+2)=2|x|−2|x−2|==,用复合函数单调性判断法知,f(x+2)在每个区间断都严格增加,且在端点处不间断,所以在R上严格增加,则命题丙为真;【答案】C【考点】函数的最值及其几何意义 【解析】将条件进行平方,利用作差法构造函数g(x)=2f(x)−f 2(x),然后利用基本不等式的性质,转化为关于f(1)+f(2020)的一元二次不等式,进行求解即可. 【解答】由f(x +1)=1+√2f(x)−f 2(x)(x ∈R), 得2f(x)−f 2(x)≥0,得0≤f(x)≤2,平方得f 2(x +1)=1+2√2f(x)−f 2(x)+2f(x)−f 2(x),① ∴ 2f(x +1)=2+2√2f(x)−f 2(x) ②②-①得2f(x +1)−f 2(x +1)=2+2√2f(x)−f 2(x)−[1+2√2f(x)−f 2(x)+2f(x)−f 2(x)] =1−[2f(x)−f 2(x)],即2f(x +1)−f 2(x +1)+2f(x)−f 2(x)=1,③ 设g(x)=2f(x)−f 2(x),则③等价为g(x +1)+g(x)=1,即g(x +2)+g(x +1)=g(x +1)+g(x)=1, ∴ g(x +2)=g(x),则g(0)=g(2)=g(4)=...=g(2020),g(1)=g(3)=g(5)=...=g(2021), 则g(1)+g(2020)=g(1)+g(0)=1,∴ 2f(1)−f 2(1)+2f(2020)−f 2(2020)=1, 即2[f(1)+f(2020)]−[f 2(1)+f 2(2020)]=1即2[f(1)+f(2020)]−{[f(1)+f(2020)]2−2f(1)f(2020)]}=1 2f(1)f(2020)=1+[f(1)+f(2020)]2−2[f(1)+f(2020)]≤2×[f(1)+f(2020)2]2=12[f(1)+f(2020)]2,设t =f(1)+f(2020), 则不等式等价为1+t 2−2t ≤12t 2, 整理得t 2−4t +2≤0,得2−√2≤t ≤2+√2,即2−√2≤f(1)+f(2020)≤2+√2, 则f(1)+f(2020)的最大值为2+√2, 故选:C .三、解答题(本大题共5题,满分76分)【答案】由函数f(x)=x 2−(a +b)x +a ,不等式f(x)<0化为x 2−(a +b)x +a <0, 由不等式的解集为(1, 2),所以方程x 2−(a +b)x +a =0的两根为1和2,由根与系数的关系知:,解得a =2,b =1;b =1时不等式f(x)>0可化为x 2−(a +1)x +a >0, 即(x −a)(x −1)>0;当a >1时,解不等式得x <1或x >a ; 当a =1时,解不等式得x ≠1;当a <1时,解不等式得x <a 或x >1.所以a >1时,不等式的解集为{x|x <1或x >a}; a =1时,不等式的解集为{x|x ≠1};a <1时,不等式的解集为{x|x <a 或x >1}.【考点】一元二次不等式的应用 【解析】(1)由不等式f(x)<0的解集得出对应方程的实数根,利用根与系数的关系求出a 、b 的值; (2)b =1时不等式可化为(x −a)(x −1)>0,讨论a 与1的大小,从而求出不等式的解集. 【解答】由函数f(x)=x 2−(a +b)x +a ,不等式f(x)<0化为x 2−(a +b)x +a <0, 由不等式的解集为(1, 2),所以方程x 2−(a +b)x +a =0的两根为1和2,由根与系数的关系知:,解得a =2,b =1;b =1时不等式f(x)>0可化为x 2−(a +1)x +a >0, 即(x −a)(x −1)>0;当a >1时,解不等式得x <1或x >a ; 当a =1时,解不等式得x ≠1;当a <1时,解不等式得x <a 或x >1.所以a >1时,不等式的解集为{x|x <1或x >a}; a =1时,不等式的解集为{x|x ≠1}; a <1时,不等式的解集为{x|x <a 或x >1}. 【答案】(1)∵ 知函数f(x)=log 21+ax x−1是奇函数,∴ f(−x)=−f(x), ∴ log 21−ax−x−1=−log 21+ax x−1,即log 2ax−1x+1=log 2x−11+ax ,∴ a =1.令1+xx−1>0,解得:x <−1或x >1.∴ 函数的定义域为:{x|x <−1或x >1}; (2)f(x)+log 2(x −1)=log 2(1+x), 当x >1时,x +1>2, ∴ log 2(1+x)>log 22=1,∵ x ∈(1, +∞),f(x)+log 2(x −1)>m 恒成立, ∴ m ≤1,m 的取值范围是(−∞, 1]. 【考点】函数的定义域及其求法 函数恒成立问题【解析】(Ⅰ)直接由奇函数的定义列式求解a 的值,然后由对数式的真数大于0求解x 的取值集合得答案; (Ⅱ)化简f(x)+log (x −1)为log 2(1+x),由x 的范围求其值域得答案.【解答】(1)∵知函数f(x)=log21+axx−1是奇函数,∴f(−x)=−f(x),∴log21−ax−x−1=−log21+axx−1,即log2ax−1x+1=log2x−11+ax,∴a=1.令1+xx−1>0,解得:x<−1或x>1.∴函数的定义域为:{x|x<−1或x>1};(2)f(x)+log2(x−1)=log2(1+x),当x>1时,x+1>2,∴log2(1+x)>log22=1,∵x∈(1, +∞),f(x)+log2(x−1)>m恒成立,∴m≤1,m的取值范围是(−∞, 1].【答案】当t∈(0, 14]时,设p=f(t)=c(t−12)2+82(c<0),将点(14, 81)代入得c=−14,∴当t∈(0, 14]时,p=f(t)=−14(t−12)2+82;当t∈(14, 40]时,将点(14, 81)代入y=loga (t−5)+83,得a=13,所以p=f(t)={−14(t−12)2+82,t∈(0,14] log13(t−5)+83,t∈(14,40];当t∈(0, 14]时,−14(t−12)2+82≥80,解得12−2√2≤t≤12+2√2,所以t∈[12−2√2, 14],当t∈(14, 40]时,log_13(t−5)+83≥80,解得5<t≤32,所以t∈(14, 32],综上t∈[12−2√2, 32]时学生听课效果最佳,此时△t=32−(12−2√2)=20+2√2>22,所以,教师能够合理安排时间讲完题目.【考点】根据实际问题选择函数类型【解析】(1)利用待定系数法求函数第一段的解析式,代入特殊点求函数第二段的解析式即可;(2)分段求出效果最佳的t的范围,验证即可.【解答】当t∈(0, 14]时,设p=f(t)=c(t−12)2+82(c<0),将点(14, 81)代入得c=−14,∴当t∈(0, 14]时,p=f(t)=−14(t−12)2+82;当t∈(14, 40]时,将点(14, 81)代入y=loga(t−5)+83,得a=13,所以p=f(t)={−14(t−12)2+82,t∈(0,14]log13(t−5)+83,t∈(14,40];当t∈(0, 14]时,−14(t−12)2+82≥80,解得12−2√2≤t≤12+2√2,所以t∈[12−2√2, 14],当t∈(14, 40]时,log_13(t−5)+83≥80,解得5<t≤32,所以t∈(14, 32],综上t∈[12−2√2, 32]时学生听课效果最佳,此时△t=32−(12−2√2)=20+2√2>22,所以,教师能够合理安排时间讲完题目.【答案】解:(1)设−1≤x1<x2≤1,由奇函数的定义和题设条件,得f(x2)−f(x1)=f(x2)+f(−x1)=f(x2)+f(−x1)x2+(−x1)(x2−x1)>0,∴f(x)在[−1, 1]上是增函数.∵a,b∈[−1, 1],且a>b,∴f(a)>f(b).(2)∵f(x)是[−1, 1]上的增函数,∴不等式f(x−12)<f(x−14)等价于{−1≤x−12≤1−1≤x−14≤1x−12<x−14⇔{−12≤x≤32−34≤x≤54解得−12≤x≤54∴原不等式的解集是{x|−12≤x≤54}.(3)设函数g(x),ℎ(x)的定义域分别是P和Q,则P={x|−1≤x−c≤1}=x|c−1≤x≤c+1},Q={x|−1≤x−c2≤1}={x|c2−1≤x≤c2+1}.由P∩Q=⌀可得c+1<c2−1或c2+1<c−1.解得c的取值范围是(−∞, −1)∪(2, +∞).【考点】奇偶性与单调性的综合集合关系中的参数取值问题【解析】(1)由题意,可先证明函数的单调性,由奇定义和题设条件易得函数是增函数,由单调性比较两个函数值的大小即可;(2)(1)由(1)函数f(x)是[−1, 1]上的增函数上的增函数,可将不等式f(x −12)<f(x −14)转化为{−1≤x −12≤1−1≤x −14≤1x −12<x −14,解出它的解集即可得到不等式的解集; (3)由题意,要先解出两个函数的定义域,得P ={x|−1≤x −c ≤1}=x|c −1≤x ≤c +1},Q ={x|−1≤x −c 2≤1}={x|c 2−1≤x ≤c 2+1}. 由于此两个集合的解集是空集,比较两个集合的端点,得到关于参数c 的不等式,解出c 的取值范围.【解答】 解:(1)设−1≤x 1<x 2≤1,由奇函数的定义和题设条件,得 f(x 2)−f(x 1)=f(x 2)+f(−x 1)=f(x 2)+f(−x 1)x 2+(−x 1)(x 2−x 1)>0,∴ f(x)在[−1, 1]上是增函数. ∵ a ,b ∈[−1, 1],且a >b , ∴ f(a)>f(b).(2)∵ f(x)是[−1, 1]上的增函数, ∴ 不等式f(x −12)<f(x −14)等价于{−1≤x −12≤1−1≤x −14≤1x −12<x −14⇔{−12≤x ≤32−34≤x ≤54解得−12≤x ≤54 ∴ 原不等式的解集是{x|−12≤x ≤54}.(3)设函数g(x),ℎ(x)的定义域分别是P 和Q ,则P ={x|−1≤x −c ≤1}=x|c −1≤x ≤c +1}, Q ={x|−1≤x −c 2≤1}={x|c 2−1≤x ≤c 2+1}. 由P ∩Q =⌀可得c +1<c 2−1或c 2+1<c −1. 解得c 的取值范围是(−∞, −1)∪(2, +∞). 【答案】f(x)表示不小于x 的最小整数,可得f(x)=2018的x 的范围是(2017, 2018];若x >0,可得0<<,又f (3x +f(x))=f(6+),则f(6+)=7,即有6<3x +f(x)≤7,即6−3x <f(x)≤7−3x ,x =1时,f(x)=4;x =2时,f(x)=8, 显然不成立;由1<x <2,可得f(x)=2, 则6−3x <2≤7−3x ,解得<x ≤;ℎ(x)===−4+在(2, 2.5)递增,在[2.5, 4]递减,可得ℎ(x)的最小值为ℎ(4)=−4+2=−2; 最大值为ℎ(2.5)=4,则|ℎ(x 2)−ℎ(x 3)|≤4+2=6,由题意可得g(x 1)>6在(2, 4]恒成立, 即有a ⋅f(x)>x(8−x)在(2, 4]恒成立,当x ∈(2, 3]时,3a >−(x −4)2+16恒成立, 可得x(8−x)的最大值为3×5=15, 即有a >5;当x ∈(3, 4]时,4a >−(x −4)2+16恒成立, 可得x(8−x)的最大值为4×4=16, 即有a >4,综上可得,a 的范围是(5, +∞).【考点】函数与方程的综合运用 【解析】(1)由f(x)表示不小于x 的最小整数,可得x 的范围是(2017, 2018];(2)由指数函数的单调性,可得0<<,则f(6+)=7,即有6<3x +f(x)≤7,考虑1<x <2,解不等式即可得到所求范围;(3)化简ℎ(x)=−4+在(2, 2.5)递增,在[2.5, 4]递减,求得ℎ(x)的最值,可得g(x 1)>6在(2, 4]恒成立,讨论当x ∈(2, 3]时,当x ∈(3, 4]时,由新定义和二次函数的最值求法,即可得到所求a 的范围.【解答】f(x)表示不小于x 的最小整数,可得f(x)=2018的x 的范围是(2017, 2018];若x >0,可得0<<,又f(3x+f(x))=f(6+),则f(6+)=7,即有6<3x+f(x)≤7,即6−3x<f(x)≤7−3x,x=1时,f(x)=4;x=2时,f(x)=8,显然不成立;由1<x<2,可得f(x)=2,则6−3x<2≤7−3x,解得<x≤;ℎ(x)===−4+在(2, 2.5)递增,在[2.5, 4]递减,可得ℎ(x)的最小值为ℎ(4)=−4+2=−2;最大值为ℎ(2.5)=4,则|ℎ(x2)−ℎ(x3)|≤4+2=6,由题意可得g(x1)>6在(2, 4]恒成立,即有a⋅f(x)>x(8−x)在(2, 4]恒成立,当x∈(2, 3]时,3a>−(x−4)2+16恒成立,可得x(8−x)的最大值为3×5=15,即有a>5;当x∈(3, 4]时,4a>−(x−4)2+16恒成立,可得x(8−x)的最大值为4×4=16,即有a>4,综上可得,a的范围是(5, +∞).。
2020-2021上海所在地区高一数学上期末试题带答案
2020-2021 上海所在地域高一数学上期末试题带答案一、选择题1.已知 f ( x) 在 R 上是奇函数,且 f ( x 4) f ( x),当 x(0, 2)时, f ( x) 2x 2 ,则 f (7)A . -2B . 2C . -98D . 98log 2 x , x ,2. 已知函数 f ( x)f ( x) m, m R ,有四个不一样的实数x 2 2x, x 对于 x 的方程0.解 x 1 , x 2 , x 3 , x 4 ,则 x 1 x 2 +x 3 x 4 的取值范围为( )A .(0,+ )1 3 D . (1,+ )B . 0,C . 1,223. 已知 a 42123 ,b 33 , c 253,则A . b a cB . a b cC . bc aD . ca b4. 函数 y a |x|( )= (a>1) 的图像是A .B .C .D .5. 已知二次函数f x的二次项系数为 a ,且不等式 fx2x 的解集为 1,3 ,若方程f x6a 0 ,有两个相等的根,则实数 a ()1B . 1C . 1或-11 A .-5D . 1或- 556. 若 x 0= cosx 0,则( )A . x 0∈(3 , ) B . x 0∈(4 , ) C . x 0 ∈( , ) D . x 0∈( 0, )236 467. 依占有关资料,围棋状态空间复杂度的上限 M 约为 3361,而可观察宇宙中一般物质的原子总数 N 约为 1080. 则以下各数中与M最靠近的是N(参照数据: lg3 ≈0.48 )33B .10 53A . 107393C . 10D . 108. 已知 0 a 1 ,则方程 a x log a x 根的个数为()A .1 个B .2 个C .3 个D .1个或 2个或 3根f x )是定义在 R 上的偶函数,在 ∞ 0 ] 上是减函数且 f 2 ) =0 f x ) 9.函数 (( - , ( ,则使 ( <0 的 x 的取值范围( )A .(- ∞, 2)B .( 2, +∞)C .( -∞, - 2)∪( 2,+∞)D .( -2, 2)10. 函数 y =1 , 3] 上的最小值为 ()在 [2 x1A . 21B .211C .D .-3211. 已知全集 U={1, 2, 3,4, 5, 6},会合 P={1, 3,5}, Q={1,2, 4},则 (e U P) Q =A . {1}B . {3,5}C . {1, 2, 4,6}D . {1, 2 , 3, 4, 5}12. 已知定义在 R 上的函数 f x 在, 2 上是减函数,若g xf x2 是奇函数,且 g 2 0 ,则不等式 xf x0 的解集是()A . , 2 2,B . 4, 2 0,C ., 42,D .,40,二、填空题144)13f ( x),( x.若对于 x 的方程, f ( x)k 有两个不一样的实.已知函数log 2 x,(0 x 4)根,则实数 k 的取值范围是 ____________.14. 已知函数 f x知足 2 fx 1fx 11x ,此中 xR 且 x 0 ,则函数 f xxx的分析式为 __________15. 若对于 x 的方程 4x 2xa 有两个根,则 a 的取值范围是 _________16. 设 x, y, z R,知足 2x3y6z,则 2x1 1 的最小值为 __________.z y17. 若函数 f xa 2x4a x2 ( a 0 , a1)在区间 1,1 的最大值为 10,则a ______.18. 已知函数 f ( x)x 1 , x 0 f ( x)m( m R) 恰有三个不一样的实数解1,x,若方程ln x 0a 、b 、 c(a bc) ,则 ( a b)c 的取值范围为 ______;19. 已知函数fx log 1 mx 2m 2 x m 2 ,若 fx 有最大值或最小值,则 m2的取值范围为 ______.20. 高斯是德国的有名数学家,近代数学奠定者之一,享有 “数学王子 ”的称呼,他和阿基米德 ?牛顿并列为世界三大数学家,用其名字命名的“高斯函数 ”为:设 x R ,用 x 表示 不超出 x 的最大整数,则 y x 称为高斯函数,比如: [ 3,4]4 , [2,7]2 已知函数.f ( x)2e x1,则函数 y[ f (x)] 的值域是_________.1 e x5三、解答题21.已知函数f ( x)ln( x2ax3).(1) 若 f (x) 在(,1] 上单一递减,务实数 a 的取值范围;(2) 当a 3 时,解不等式 f (e x )x .22.已知函数f x lg x1x2.(1)判断函数f x的奇偶性;(2)若 f 1m f2m 10 ,务实数m的取值范围.23.已知函数f ( x)log 2 (3x)log 2 ( x1) .(1)求该函数的定义域;(2)若函数 y f (x)m 仅存在两个零点x1 , x2,试比较x1x2与 m 的大小关系. 24.设函数f x log 2 a x b x,且 f11, f 2 log2 12.(1)求a,b的值;(2)求函数f x的零点;(3)设g x a x b x,求 g x 在 0,4上的值域 .25.“”“”活水围网养鱼技术拥有养殖密度高、经济效益好的特色.研究表示:活水围网养鱼时,某种鱼在必定的条件下,每尾鱼的均匀生长速度v (单位:千克/年)是养殖密度x/x 不超出4/立方米)时,v 的值为2(千克/年);当(单位:尾立方米)的函数.当(尾/v 的值4 x 20 时,v是x的一次函数;当x达到 20 (尾立方米)时,因缺氧等原由,为 0 (千克 /年).(1)当0 x20时,求函数 v( x) 的表达式;(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/ 立方米)f ( x) x v( x)能够达到最大,并求出最大值.26.设全集U R,会合A x 1 x 3 , B x 2 x 4 x 2.(1)求A C U B ;(2)若函数f (x)lg(2 x a) 的定义域为会合C,知足 A C ,务实数a的取值范围.【参照答案】 *** 试卷办理标志,请不要删除一、选择题1.A分析:A【分析】 ∵f(x+ 4) = f(x),∴ f(x)是以 4 为周期的周期函数,∴ f(2 019) =f(504 ×4+3) = f(3)=f(-1).又f(x)为奇函数,∴f(-1) =- f(1)=- 2×12=-2,即f(2 019) =- 2.应选 A2.B分析: B【分析】【剖析】由题意作函数 yf ( x) 与 ym 的图象,从而可得 x 1 x 2 2 , 0 log 2 x 4, 2 ,x 3 gx 4 1 ,从而得解【详解】log 2 x , x ,解:因为 f ( x) 0 ,可作函数图象以下所示:x 22x, x 0.依题意对于 x 的方程 f ( x) m, m R ,有四个不一样的实数解 x 1, x 2 , x 3 , x 4 ,即函数y f (x) 与 y m 的图象有四个不一样的交点,由图可知令x 11 x 21 x 3 1 x 42 ,2则 x 1x 22 , log 2 x 3log 2 x 4 ,即 log 2 x 3 log 2 x 4 0 ,因此 x x1,则3 4 x 311,2, x 4x 4因此 x 1x 2 x 3 x 42 1x 4 , x 4 1,2x 4因为 y1 1,2 上单一递加,因此 y5 1 x 4 5 x ,在 x 2,,即2,x2x 42x 1 x 2 x 3x 42 1x 40,1x 42应选: B【点睛】此题考察了数形联合的思想应用及分段函数的应用.属于中档题3.A分析: A【分析】【剖析】【详解】42222在 (0,) 上单一递加,因此 b<a<c.因为 a23 =4 3 , b 33 , c 53 ,且幂函数 y x 3 应选 A.点睛:此题主要考察幂函数的单一性及比较大小问题,解答比较大小问题,常有思路有两个:一是判断出各个数值所在区间(一般是看三个区间,0 , 0,1 , 1,);二是利用函数的单一性直接解答;数值比许多的比大小问题也能够两种方法综合应用;三是借助于中间变量比较大小 .4.B分析: B 【分析】因为 | x | 0 ,因此 ax) 上曲线向下曲折的单一递加函数,应选答案B .1,且在 (0,5.A分析: A【分析】【剖析】设 f xax 2bxc ,可知1、 3 为方程 f x2x0 的两根,且a0 ,利用韦达定理可将b 、c 用 a表示,再由方程f x6a0 有两个相等的根,由0 求出实数a 的值.【详解】因为不等式f x2x 的解集为 1,3,即对于 x 的二次不等式ax2b2x c0 的解集为1,3,则 a0 .由题意可知,1、 3为对于x 的二次方程ax2b 2 x c0 的两根,由韦达定理得b23 4 ,c13 3 ,b4a 2 , c3a,1aaf x ax24a 2 x3a,由题意知,对于x 的二次方程f x6a0 有两相等的根,24a 2 x9a0 有两相等的根,即对于 x 的二次方程ax则4a2236a210a222a0 ,Q a0,解得 a1,应选: A.5【点睛】此题考察二次不等式、二次方程有关知识,考察二次不等式解集与方程之间的关系,解题的重点就是将问题中波及的知识点进行等价办理,考察剖析问题和解决问题的能力,属于中等题 .6.C分析: C【分析】【剖析】画出 y x, y cos x 的图像判断出两个函数图像只有一个交点,结构函数f x x cosx ,利用零点存在性定理,判断出 f x 零点x0所在的区间【详解】画出 y x, y cosx 的图像以以下图所示,由图可知,两个函数图像只有一个交点,结构函数 f x x cosx , f30.866 0.343 0 ,60.52362f20.7850.7070.078 0 ,依据零点存在性定理可知, f x的独一424零点 x0在区间,.64应选: C【点睛】本小题主要考察方程的根,函数的零点问题的求解,考察零点存在性定理的运用,考察数形联合的数学思想方法,属于中档题.7.D分析: D【分析】试题剖析:设M3361Nx1080,两边取对数,lg x lg 3361lg3 361 lg10 80 361 lg3 80 93.28 ,因此 x1093.28 ,即M最靠近1080N10 93 ,应选 D.【名师点睛】此题考察了转变与化归能力,此题以实质问题的形式给出,但实质就是对数3361的运算关系,以及指数与对数运算的关系,难点是令x,并想到两边同时取对数进8010行求解,对数运算公式包括log a M log a N log a MN , log a M log a N log a M,Nlog a M n n log a M .8.B分析: B【分析】【剖析】在同一平面直角坐标系中作出f xa x 与 g xlog a x 的图象,图象的交点数量即为xlog a x 根的个数 .方程 a【详解】作出 f xx log a x 图象以以下图:a , g x由图象可知: f x , g x 有两个交点,因此方程 a x log a x 根的个数为2.应选: B.【点睛】此题考察函数与方程的应用,侧重考察了数形联合的思想,难度一般.(1) 函数h x f x g x 的零点数方程f x g x 根的个数 f x 与 g x 图象的交点数;(2)利用数形联合可解决零点个数、方程根个数、函数性质研究、求不等式解集或参数范围等问题 .9.D分析: D【分析】【剖析】依据偶函数的性质,x 0∞ 0] 上的解集 , 再依据对称性即可得出答案 .求出函数 f在(-,【详解】由函数 f,2 f 20,∞ 0]是减函数 ,所x 为偶函数因此 f又因为函数 f x 在(-,以函数 f x0 在(-∞,0]上的解集为2,0, 由偶函数的性质图像对于y 轴对称,可得在(0,+∞x0 的解集为(0,2),综上可得 ,f x 0 的解集为(-2,2). ) 上f应选 :D.【点睛】此题考察了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题 . 10.B分析: B【分析】y=1在[2 , 3] 上单一递减,因此x=3 时取最小值为1,选 B.x1211.C分析: C【分析】试题剖析:依据补集的运算得痧UP2,4,6 ,( UP)Q2,4,61,2,41,2,4,6.应选 C.【考点】补集的运算.【易错点睛】解此题时要看清楚是求“ ”仍是求“”,不然很简单出现错误;必定要注意会合中元素的互异性,防备出现错误.12.C分析: C【分析】【剖析】由 g x f x2是奇函数,可得f x 的图像对于 2,0中心对称,再由已知可得函数 f x的三个零点为-4 -20.,,,画出 f x 的大概形状,数形联合得出答案【详解】由 g x f x2是把函数 f x向右平移 2 个单位获得的,且g 2g 00 ,f4g2g 20 , f2g 0 0 ,画出 f x 的大概形状联合函数的图像可知,当x 4 或 x 2 时, xf x0 ,应选 C.【点睛】此题主要考察了函数性质的应用,作出函数简图,考察了学生数形联合的能力,属于中档题.二、填空题13.【分析】作出函数的图象以下图当时单一递减且当时单一递加且因此函数的图象与直线有两个交点时有分析: (1,2)【分析】作出函数 f (x) 的 象,如 所示,当 x4 1 14 x 4 , f ( x) log 2 x4 , f (x) 1减,且2,当 0xx增,且 f ( x) log 2 x2 ,因此函数f ( x) 的 象与直 y k 有两个交点 ,有1 k2 .14.【分析】【剖析】用代 可得 立方程 求得再 合 元法即可求解【解】由 意用代 分析式中的可得⋯⋯(1)与已知方程⋯⋯( 2) 立( 1)( 2)的方程 可得令 因此因此故答案 :【点睛】本 主要考 了函11分析: fx ( x 1)【分析】 【剖析】用x 1 x 1 1 x , 立方程 ,求得x 代 x ,可得 2 ffxxfx 1 1 .xx ,再 合 元法,即可求解3【 解】由 意,用x 代 分析式中的x ,可得 2 fx 1x1xf1 x , ⋯⋯.( 1)x与已知方程 2 fx1fx 1 , ⋯⋯ (2)xx 1 x立( 1)( 2)的方程 ,可得x1 1 x ,f3x令 tx 1, t 1, x = 1 ,因此 ft1 t 1 ,xt - 13 1因此 f11( x 1) .xx3 1故答案 : fx1 1 ( x 1) .3 x 1【点睛】此题主要考察了函数分析式的求解,解答顶用x 代换 x ,联立方程组,求得x 11f x 是解答的重点,侧重考察了函数与方程思想,以及换元思想的应用,属x3于中档试题 .15.【分析】【剖析】令可化为从而求有两个正根即可【详解】令则方程化为 : 方程有两个根即有两个正根解得 :故答案为 :【点睛】此题考察复合函数所对应的方程根的问题重点换元法的使用难度一般分析:( 1 ,0) 4【分析】【剖析】令t2x0, 4x2x a ,可化为t2t a0 ,从而求 t 2t a0 有两个正根即可.【详解】令t2x0,则方程化为 : t2t a0Q 方程4x2x a有两个根 , 即t2t a0 有两个正根,14a0x1x210x1x2a0故答案为 : ( 1 ,0)4【点睛】1, 解得 :a0 .4.此题考察复合函数所对应的方程根的问题,重点换元法的使用,难度一般 .16.【分析】【剖析】令将用表示转变为求对于函数的最值【详解】令则当且仅当时等号成立故答案为 :【点睛】此题考察指对数间的关系以及对数换底公式注意基本不等式的应用属于中档题分析:22【分析】【剖析】令 2x3y6z t,将 x, y, z 用t表示,转变为求对于t 函数的最值.【详解】x, y, z R ,令 2x3y6z t 1,则 x log 2 t, y log 3 t , z log 6 t ,1log t 3,1log t 6 ,y z112log 2 t log t 2 2 2 ,2xyz当且仅当x2时等号成立 . 2故答案为 :2 2 .【点睛】此题考察指对数间的关系,以及对数换底公式,注意基本不等式的应用,属于中档题. 17.2 或【分析】【剖析】将函数化为分和两种状况议论在区间上的最大值进而求【详解】时最大值为解得时最大值为解得故答案为:或 2【点睛】此题考察已知函数最值求参答题时需要联合指数函数与二次函数性质求解分析: 2或12【分析】【剖析】将函数化为 f ( x)a x26,分0 a 1和a1,1 上的21两种状况议论 f ( x) 在区间最大值 ,从而求a .【详解】f x a2 x4a x2a x22 6 ,Q 1 x 1,0 a 1时,a a x a 1,f ( x) 最大值为f (1) a 12610 ,解得a122 a1时,a1 a x a ,f x 最大值为 f (1) a 2210 ,解得a2,6故答案为 :1或 2. 2【点睛】此题考察已知函数最值求参,答题时需要联合指数函数与二次函数性质求解.18.【分析】【剖析】画出的图像依据图像求出以及的取值范围由此求得的取值范围【详解】函数的图像以以下图所示由图可知令令因此因此故答案为:【点睛】本小题主要考察分段函数的图像与性质考察数形联合的数学思想方法属分析:2e2 ,2e【分析】【剖析】画出 f x 的图像,依据图像求出 a b以及c的取值范围,由此求得(a b)c 的取值范围.【详解】函数 f x 的图像以以下图所示,由图可知a b1,a b 2 .令 ln x 1 1, x e2,令2ln x 10, x e ,因此 e c e2,因此 (a b)c2c2e2 , 2e.故答案为:2e2 , 2e【点睛】本小题主要考察分段函数的图像与性质,考察数形联合的数学思想方法,属于基础题.19.或【分析】【剖析】分类议论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数如有最大值或最小值则函数有最大值或最小值且取最值时当时因为没有最值故也没有最值不知足题意当时函数有最小值没分析: { m | m 2或 m2}3【分析】【剖析】分类议论 m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围.【详解】解:∵函数f xlog 1 mx2m 2 x m2,若 f x有最大值或最小值,2则函数 y mx2( m2) x m 2 有最大值或最小值,且y 取最值时,y 0.当 m0时, y2x 2 ,因为y没有最值,故f x也没有最值,不知足题意 .当 m0 时,函数y有最小值,没有最大值,f x有最大值,没有最小值 .故 y 的最小值为4m(m2) (m2)2,且 4m( m2)( m2) 20,4m4m求得 m 2 ;当 m0时,函数 y 有最大值,没有最小值,f x有最小值,没有最大值 .故 y 的最大值为4m(m 2) (m2)2,且 4m( m 2) ( m 2)20,4m4m求得 m 2 . 3综上, m 的取值范围为{ m | m2 2 或 m} .3故答案为: { m | m22或 m} .3【点睛】此题主要考察复合函数的单一性,二次函数、对数函数的性质,二次函数的最值,属于中档题 .20.【分析】【剖析】求出函数的值域由高斯函数的定义即可得解【详解】因此故答案为:【点睛】此题主要考察了函数值域的求法属于中档题分析:1,0,1【分析】【剖析】求出函数 f (x) 的值域,由高斯函数的定义即可得解.【详解】Q f ( x)2(1e x ) 2 12 1 92,1 e x21 e x 5 5 1 e x5Q 1 e x 1 ,01 1 ,e x1220 ,1 e x19119 ,55e x5因此 f ( x) 1 , 9,55[ f ( x)]1,0,1,故答案为:1,0,1【点睛】此题主要考察了函数值域的求法,属于中档题.三、解答题21. (1) 2 a 4 ;(2)x x0 或x ln3【分析】【剖析】(1)依据复合函数单一性的性质,联合二次函数性质即可求得 a 的取值范围.(2)将a 3 代入函数分析式,联合不等式可变形为对于e x的不等式,解不等式即可求解.【详解】(1)Q f ( x) 在 (,1] 上单一递减,依据复合函数单一性的性质可知y x2ax 3需单一a1递减则21a30解得2a 4 .(2)将a 3 代入函数分析式可得 f (x) ln( x23x3)则由f (ex )x,代入可得ln e2 x3e x3x同取对数可得e2x3e x3e x即(e x)24e x30 ,因此 (e x1) e x30即 e x1或e x3x0或 x ln 3 ,因此原不等式的解集为x x0或 x ln3【点睛】此题考察了对数型复合函数单一性与二次函数单一性的综合应用,对数不等式与指数不等式的解法,属于中档题.22.( 1)奇函数;(2), 2【分析】【剖析】(1)依据函数奇偶性的定义,求出函数的定义域及f (2)由( 1)知函数 f x 是奇函数,将原不等式化简为x 与 ff 1 mx 的关系,可得答案;f 2m 1 ,判断出f x 的单一性,可得对于m的不等式,可得m的取值范围.【详解】1f x 的定义域是 R ,因为 f x lg x1x2解:()函数,因此 f x f x lg x1x2lg x1x2lg10,即 f x f x,因此函数f x是奇函数 .(2)由( 1)知函数 f x 是奇函数,因此 f 1m f2m1 f 2m 1 ,设y lg u ,u x 1 x2, x R .因为y lg u是增函数,由定义法可证u x 1 x2在 R 上是增函数,则函数 f x 是R 上的增函数.因此 1 m 2m1,解得 m 2,故实数 m 的取值范围是, 2 .【点睛】此题主要考察函数的单一性、奇偶性的综合应用,属于中档题.23.( 1)( 1,3)(2)x1x2m【分析】【剖析】(1)依据对数真数大于零列不等式组,解不等式组求得函数的定义域.(2)化简 f x 表达式为对数函数与二次函数联合的形式,联合二次函数的性质,求得x1x2以及m 的取值范围,从而比较出x1x2与 m 的大小关系.【详解】(1)依题意可知3x01x 3 ,故该函数的定义域为( 1,3) ;x10(2) f ( x)log 2 (x22x3)log 2 (( x 1) 24) ,故函数对于直线 x 1 成轴对称且最大值为log2 4 2 ,∴ x1 x2 2 , m 2 ,∴x1x2m .【点睛】本小题主要考察函数定义域的求法,考察对数型复合函数对称性和最值,属于基础题.14,b 2log 215g x0,24024.()a 2 ()x2( 3)【分析】【剖析】(1)由f 11, f2log 2 12 解出即可(2)令 f (x) = 0得 4x2x1,即 2x22x 10 ,而后解出即可(3) g x4x2x,令2x t ,转变为二次函数【详解】(1f1log2a b1a b2)由已知得f2log2a2b2,即a2b2,log 2 1212解得 a 4,b 2 ;(2)由( 1)知f x log24x2x,令f (x) = 0 得4x2x1,即 2x2 2x 1 0 ,解得 2x12 5 ,又 2x0, 2x12 5,解得 xlog 2 12 5 ;(3)由( 1)知 g x4x2x ,令 2xt,21, t则g tt 2tt 11,16 ,2 4因为 g(t ) 在 t1,16 上单一递加 因此 g x0,240 ,2, 0 x4, x N *1={ 1 5*25.( ),4 x 20, xN8x2( 2 )当养殖密度为 10 尾 /立方米时,鱼的年生长量能够达到最大,最大值约为 12.5千克/立方米.【分析】【剖析】【详解】( 1 )由题意:当 0 x 4 时, v x2 ;当 4 x 20 时,设,明显在 [4,20] 是减函数,20aba 18由已知得 {b2 ,解得 {54ab2故函数2,0 x4, x N *= { 1 x 5 ,4 x20, x N *822x,x 4, xN *( 2)依题意并由(1{15)可得x 2 x,4 x 20, x N *.82当 0 x 4时,为增函数,故fmaxxf (4) 4 2 8 ;当4 x20 时, f x1 x2 5 x 1 (x 2 20x) 1 ( x 10)2 100 2 ,82888f max x f (10) 12.5.因此,当 0 x20时,的最大值为 12.5.当养殖密度为 10尾 /立方米时,鱼的年生长量能够达到最大,最大值约为12.5千克/立方米.26.( 1)x 2x 3 ()2,2【分析】【剖析】(1)先化简会合 B ,再依据会合的交并补运算求解即可;(2)函数f (x)lg(2 x a) 定义域对应会合可化简为 C x x a,又 A C ,故2由包括关系成立不等式即可求解;【详解】(1)由题知,B x x 2 , C U B x x2Q A x 1 x3A C UB x 2 x3(2)函数f (x)lg(2 x a) 的定义域为会合 C x x a ,2Q AaC ,1,2a 2 .故实数 a 的取值范围为2,.【点睛】此题考察会合的交并补的混淆运算,由会合的包括关系求参数范围,属于基础题。
上海市上海中学2020-2021学年高一上学期期末数学试题 答案和解析
故选:B.
【点睛】
本题考查方程的解的个数问题,解题关键是把方程变形后利用函数的单调性确定解的个数.
5.A
【分析】
利用奇偶性确定函数的单调性,然后问题转化为方程 的解的问题.
【详解】
易知函数 是奇函数,
时, 单调递增,因此 在 上也是单调递增,从而 在 上单调递增.
①当 时,函数 在 上为单调减函数,
函数 在 上的最大值与最小值分别为 ;
又函数 在 上的最大值与最小值和为3 ,
,解得 (舍去);
上海市上海中学【最新】高一上学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知函数 是定义在R上的函数, ,则“ 均为偶函数”是“ 为偶函数”的()
A.充要条件B.充分而不必要的条件
C.必要而不充分的条件D.既不充分也不必要的条件
而函数 都不是偶函数,
所以 , 均为偶函数是 为偶函数的充分而不必要的条件.
故选B.
【点睛】
本题主要考查了充分条件、必要条件的判定,以及函数的奇偶性的判定及应用,其中解答中熟记函数的奇偶性的定义和判定方法,以及合理利用举例说明是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.
2.A
【分析】
由 为偶函数,得到 图象关于直线 对称,从而可得 在 是的单调性,并比较函数值大小.
【详解】
由 为偶函数,即它的图象关于 轴对称,把它图象向右平移8个单位得 的图象,∴ 图象关于直线 对称,
∵ 在 上单调递增,∴ 在 上单调递减.
上海市格致中学高一数学上学期期末考试试题(含解析)
【答案】
【解析】
【分析】
利用复合函数的单调性,结合函数的对称性,即可求出结果.
【详解】因为函数 的对称轴为 ,
所以函数 在 上是增函数;
又函数 在 上是增函数,所以 .
故答案为: .
【点睛】本题考查复合函数的单调性的判断与应用,属于基础题.
满足: ,则 的最小值为_____.
故答案为: .
【点睛】本题考查函数的定义域,充分理解函数 和 的定义域是解决问题的关键.
4.若“ ”是“ “的充分不必要条件,则实数 的取值范围是_____.
【答案】
【解析】
【分析】
根据充分不必要条件的含义,即可求出结果.
【详解】因为“ ”是“ ”的充分不必要条件,∴ .
故答案为: .
【点睛】本题考查了不等式的意义、充分、必要条件的判定方法,考查了推理能力与计算能力,属于基础题.
(2)由(1)中的表达式可知利用基本不等式求最小值.
【详解】(1)设船速为 ,则每小时燃料费 ,根据题意有 ,故 , ,
则从甲地到乙地所需时间为 小时.
故总费用 .
又最大航速是 海里小时故
(2)由(1) ;
故 ,
当且仅当 即 时取得最小值.
故当船速为每小时36海里时,船从甲地到乙地所需的总费用最少为4800元
【详解】(1)是,理由如下:
任取 ,且 ,
则 成立,
故函数 是“ 函数”.
(2)证明:事实上,任取 ,且 ,
则 成立,即得证;
(3)函数 在 上的零点个数可以为0、1或2个.
例如, 是 函数,如图,
其零点个数为0;
是 函数,如图,
其零点个数为1;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年上海市黄浦区格致中学高一(上)期末数学试卷
1.(填空)已知集合A={-3,-2,-1,0,1,2,3},B={x||x-1|≤1},则A∩B=___ .
2.(填空)函数f(x)= log2(x−1)
x−2
的定义域为 ___ .
3.(填空)若指数函数y=f(x)的图像经过点(1
2
,2)则函数y=f(x)-2x+1的零点为 ___ .
4.(填空)不等式1
|x|
<x的解集为 ___ .
5.(填空)已知log62=a,用a表示log412=___ .
6.(填空)已知函数y=(log2a)x在R上是严格减函数,则实数a的取值范围是 ___ .
7.(填空)定义区间[a,b](a<b)的长度为b-a,若关于x的不等式x2-4x+m≤0的解集区间长度为2,则实数m的值为 ___ .
8.(填空)设x,y∈(1,+∞),若log2x、log2y的算术平均值为1,则2x、2y的几何平均值的最小值为 ___ .
9.(填空)已知函数y=f(x)是R上的奇函数,且是(-∞,0)上的严格减函数,若f(1)=0,则满足不等式(x-1)f(x)≥0的x的取值范围为 ___ .
10.(填空)已知a∈{-2,-1,1
3,2
3
,4
3
,2},当x∈(-1,0)∪(0,1)时,不等式x a>|x|
恒成立,则满足条件的a形成的集合为 ___ .
11.(填空)函数y=f(x)(x<0)的反函数为y=f-1(x),且函数g(x)=
{f(x),x<0
log2(x+1),x≥0
是奇函数,则不等式f-1(x)≥-2的解集为 ___ .
12.(填空)已知函数f(x)=|2x-1|,若函数g(x)=f2(x)+mf(x)+ 1
4
有4个零点,则实数m的取值范围为 ___ .
13.(单选)已知陈述句α是β的必要非充分条件,集合M={x|x满足α},集合N={x|x满足β},则M与N之间的关系为()
A.M⊂N
B.M⊃N
C.M=N
D.M∩N=∅
14.(单选)若log3m<log3n且log m3<log n3,则实数m、n满足的关系式为()
A.0<m<n<1
B.0<n<m<1
C.0<m<1<n
D.1<m<n
15.(单选)设a1、a2、b1、b2、c1、c2都是非零实数,不等式a1x2+b1x+c1>0的解集为A,
不等式a2x2+b2x+c2>0的解集为B,则“A=B是“ a1
a2=b1
b2
=c1
c2
>0”的()
A.充分非必要条件
B.必要非充分条件
C.充分必要条件
D.既非充分又非必要条件
16.(单选)定义在R上的函数y=f(x)的表达式为f(x)= {x2,x∈Q
x,x∈Q
,给出下列3个
判断:
(1)函数y=f(x)是非奇非偶函数;
(2)当a<0且a∈Q时,方程f(x)=a无解;
(3)当a>0时,方程f(x)=a至少有一解;
其中正确的判断有()
A.0个
B.1个
C.2个
D.3个
17.(问答)已知集合A={x||x-a|≤2},不等式2x−1
x+2
≥1的解集为B.(1)用区间表示B;
(2)若全集U=R,且A∩ B =A,求实数a的取值范围.
18.(问答)已知a、b都是正实数,且b
a
=b-a.
(1)求证:a>1;
(2)求b的最小值.
19.(问答)设函数y=f(x)的表达式为f(x)=x2+|x-a|,其中a为实常数.
(1)判断函数y=f(x)的奇偶性,并说明理由;
在区间(0,a]上为严格减函数,求实数a的最大值.
(2)设a>0,函数g(x)= f(x)
x
20.(问答)已知非空集合S的元素都是整数,且满足:对于任意给定的x,y∈S(x、y可以相同),有x+y∈S且x-y∈S.
(1)集合S能否为有限集,若能,求出所有有限集,若不能,请说明理由;
(2)证明:若3∈S且5∈S,则S=Z.。