高考数学选择题方法6.割补法
中学数学解题思想方法:割补法
E D
F
C
A
B
图3-1
由前面的知识我们不难发现既可以用“补形法”,如图
3-2所示,也可以用“分割法”如图3-3所示来求解.
E
E
D
G
D
F
C
A
B
图3-2
H
G
F
C
A
B
图3-3
解:由几何体的三视图还原成直观图如图3-1,可知
DA 平面 ABC , AD//CE//BF , AC AB ,AD CE 5 ,BF 2
Q AA 底面ABC
AA 底面DBE
AA BF
A'
C'
F
D
E
又Q AA DE D BF 平面DECA
B'
A
C
B
V
= B DEC A
1 3 SDECA
BF
1 3
1 2
( AD
CE)
DE
BF
12
图1-4
所以所求几何体的体积为 V V BDECA ABCDBE 24
评析:本题解法一采取的解题方法为补形法,解法二所采取 的解题方法为分割法.两种方法都比较自然,由于题目所给条 件,本题采用解法一较为简捷.
例2 如图2-1, AA 底面ABC,AA//BB//CC//DD, 四边形 ABCD为正方形, AB AA CC 2,
BB 1,DD 3 ,求几何体 ABCD-ABCD 的体积.
BC
AD
48
所以原几何体的体积为24 .
备战2024高考数学二轮复习讲义第3讲-割补思想在立体几何中的应用
第3讲割补思想在立体几何中的应用割补法是数学中最重要的思想方法之一,主要分为割形与补行,是将复杂的,不规则的不易认识的几何体或几何图形,分割或补充成简单的、规则的、易于认识的几何体或图形,从而达到解决问题的目的。
割补法重在割与补,巧妙对几何体过几何图形实割与补,变整体的为局部,化不规则为规则,化陌生为熟悉,化抽象为直观。
割补法在立体几何中体现的主要的题型就是几何体的切等问题。
【应用一】割的思想在多面体的体积及几何体的内切球中的运用割的思想主要体现两种题型:一是求复杂几何体的体积、表面积等问题,此类问题通过割把复杂的几何体割成几个简单的几何体。
二是求几何体内切球的半径、体积等问题。
此类问题主要是通过球心与几何体的各点割成锥,然后运用等积法求半径。
【例1.1】已知一个三棱锥的所有棱长均为2,则该三棱锥的内切球的体积为________.【例1.2】【2020年新课标3卷理科】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【思维提升】以三棱锥P -ABC 为例,求其内切球的半径.方法:等体积法,三棱锥P -ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先求出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ⇒V P -ABC =13△ABC ·r +13S△PAB·r +13S △PAC ·r +13S △PBC ·r =13(S △ABC +S △PAB +S △PAC +S △PBC )·r ;第三步:解出r =3V P -ABC S O -ABC +S O -PAB +S O -PAC +S O -PBC =3VS 表.秒杀公式(万能公式):r =3V S 表【例1.3】(2023·河北唐山·统考三模)(多选)《九章算术》是我国古代的数学名著,书中提到底面为长方形的屋状的楔体(图示的五面体)EF ABCD -.底面长方形ABCD 中3BC =,4AB =,上棱长2EF =,且EF 平面ABCD ,高(即EF 到平面ABCD 的距离)为1,O 是底面的中心,则()A .EO 平面BCF【变式1.1】(2023·辽宁·辽宁实验中学校考模拟预测)如图①,在平行四边形ABCD中,AB ===ABD △沿BD 折起,使得点A 到达点P 处(如图②),=PC P BCD -的内切球半径为______.【变式1.2】(2023·辽宁沈阳·东北育才学校校考模拟预测)已知一正四面体棱长为4,其内部放置有一正方体,且正方体可以在正四面体内部绕一点任意转动,则正方体在转动过程中占据的空间体积最大为__________.【变式1.3】(2022·江苏通州·高三期末)将正方形ABCD 沿对角线BD 折成直二面角A ′-BD -C ,设三棱锥A ′-BDC 的外接球和内切球的半径分别为r 1,r 2,球心分别为O 1,O 2.若正方形ABCD 的边长为1,则21r r =________;O 1O 2=__________.【应用二】补的思想在立体几何中几何体外接球中的应用解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.2.记住几个常用的结论:(1)正方体的棱长为a,球的半径为R.①对于正方体的外接球,2R;②对于正方体的内切球,2R=a;③对于球与正方体的各棱相切,2R.(2)在长方体的同一顶点的三条棱长分别为a,b,c,球的半径为R,则2R=.(3)正四面体的外接球与内切球的半径之比为3∶1.3.构造法在定几何体外接球球心中的应用(1)正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥,可将三棱锥补形成长方体或正方体;(2)同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,可将三棱锥补形成长方体或正方体;(3)若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方体;(4)若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正方体【例2.1】(2022·广东潮州·高三期末)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A-BCD中,AB⊥平面BCD,CD⊥AD,AB=BD,已知动点E从C点出发,沿外表面经过棱AD上一点到点B,则该棱锥的外接球的表面积为_________.【思维提升】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R =a 2+b 2+c 2.),秒杀公式:R 2=a 2+b 2+c 24.可求出球的半径从而解决问题.有以下四种类型:【例2.2】(2022·广东·铁一中学高三期末)已知四面体A BCD -中,5AB CD ==,10AC BD ==,13BC AD ==,则其外接球的体积为______.【思维提升】棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即2222R a b c =++(长方体的长、宽、高分别为a、b、c).秒杀公式:R2=x2+y2+z28(三棱锥的三组对棱长分别为x、y、z).可求出球的半径从而解决问题.【变式2.1】(2023·湖南邵阳·统考三模)三棱锥-P ABC 中,PA ⊥平面ABC ,4,223,PA AC AB AC AB ===⊥,则三棱锥-P ABC 外接球的表面积为__________.【变式2.2】已知三棱锥A BCD -,三组对棱两两相等,且1AB CD ==,3AD BC ==,若三棱锥A BCD -的外接球表面积为92π.则AC =________.【变式2.3】已知三棱锥A -BCD 的四个顶点A ,B ,C ,D 都在球O 的表面上,AC ⊥平面BCD ,BC ⊥CD ,且AC =3,BC =2,CD =5,则球O 的表面积为()A .12πB .7πC .9πD .8π【变式2.4】(2019全国Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为().A.62πD.6π8πB.64πC.6巩固练习1、【2019年新课标2卷理科】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.2、(2022·湖北江岸·高三期末)如图,该几何体是由正方体截去八个一样的四面体得到的,若被截的正方体棱长为2,则该几何体的表面积为()A.1233++D.63+C.633+B.12433、(2023·山西临汾·统考一模)《九章算术·商功》提及一种称之为“羡除”的几何体,刘徽对此几何体作注:“羡除,隧道也其所穿地,上平下邪.似两鳖臑夹一堑堵,即羡除之形.”羡除即为:三个面为梯形或平行四边形(至多一个侧面是平行四边形),其余两个面为三角形的五面几何体.现有羡除ABCDEF如图所示,底面ABCD为正方形,4EF=,其余棱长为2,则羡除外接球体积与羡除体积之比为()A.22πB.42πC.82πD.2π3A .18B .275、正四面体的各条棱长都为.6、在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥BCD A -外接球的表面积为________.7、在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的体积为____.8、(2023·湖南郴州·统考三模)已知三棱锥-P ABC 的棱长均为4,先在三棱锥-P ABC 内放入一个内切球1O ,然后再放入一个球2O ,使得球2O 与球1O 及三棱锥-P ABC 的三个侧面都相切,则球2O 的表面积为__________.第3讲割补思想在立体几何中的应用割补法是数学中最重要的思想方法之一,主要分为割形与补行,是将复杂的,不规则的不易认识的几何体或几何图形,分割或补充成简单的、规则的、易于认识的几何体或图形,从而达到解决问题的目的。
1学生用高考数学选择题的解题策略
第1讲 高考数学选择题的解题策略一、知识整合1.高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大.解答选择题的基本要求是四个字——准确、迅速.2.选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面. 解答选择题的基本策略是:要充分利用题设和选择支两方面提供的信息作出判断。
一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接解;对于明显可以否定的选择应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。
解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
3.解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题的方法.二、方法技巧 1、直接法:直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法.例1.若sin 2x >cos 2x ,则x 的取值范围是( )(A ){x |2k π-34π<x <2k π+π4,k ∈Z } (B ) {x |2k π+π4<x <2k π+54π,k ∈Z }(C ) {x |k π-π4<x <k π+π4,k ∈Z } (D ) {x |k π+π4<x <k π+34π,k ∈Z }例2.设f (x )是(-∞,∞)是的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于( )(A ) 0.5 (B ) -0.5 (C ) 1.5 (D ) -1.5例3.七人并排站成一行,如果甲、乙两人必需不相邻,那么不同的排法的种数是( ) (A ) 1440 (B ) 3600 (C ) 4320 (D ) 4800直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解.直接法适用的范围很广,只要运算正确必能得出正确的答案.提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建在扎实掌握“三基”的基础上,否则一味求快则会快中出错.2、特例法:用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.例4.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(44,0),1x 2,tan x θ<<若则的取值范围是( ) (A ))1,31( (B ))32,31((C ))21,52((D ))32,52(例5.如果n 是正偶数,则C n 0+C n 2+…+C n n -2+C nn =( ) (A ) 2n (B ) 2n -1 (C ) 2n -2 (D ) (n -1)2n -1例6.等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ) (A )130 (B )170 (C )210 (D )260例7.若1>>b a ,P =b a lg lg ⋅,Q =()b a lg lg 21+,R =⎪⎭⎫⎝⎛+2lg b a ,则( ) (A )R <P <Q (B )P <Q <R(C )Q <P <R (D )P <R <Q当正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略.近几年高考选择题中可用或结合特例法解答的约占30%左右.3、筛选法:从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断.例8.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( ) (A )(0,1) (B )(1,2) (C )(0,2) (D ) [2,+∞)例9.过抛物线y 2=4x 的焦点,作直线与此抛物线相交于两点P 和Q ,那么线段PQ 中点的轨迹方程是( )(A ) y 2=2x -1 (B ) y 2=2x -2(C ) y 2=-2x +1 (D ) y 2=-2x +2筛选法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选择支中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小的选择支的范围那找出矛盾,这样逐步筛选,直到得出正确的选择.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中约占40%.4、代入法:将各个选择项逐一代入题设进行检验,从而获得正确的判断.即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案.例10.函数y =sin(π3-2x )+sin2x 的最小正周期是( )(A )π2(B ) π (C ) 2π (D ) 4π例11.函数y =sin (2x +25π)的图象的一条对称轴的方程是( )(A )x =-2π(B )x =-4π(C )x =8π(D )x =45π代入法适应于题设复杂,结论简单的选择题。
2022年高考数学必刷压轴题专题55割补法与等积变换求解体积问题含解析
专题55 割补法与等积变换求解体积问题【方法点拨】1. 利用等积变换求解三棱锥的体积问题,归根结底就是“换顶点(或换底面)”,换顶点的常用方法有二.一是直接换,即从四个顶点选择一个点作为顶点,选择的基本原则是点面距易求,如出现线面垂直等;二是利用线面平行更换顶点,由于该直线上任意一点到平面的距离均相等,换完后依然是便于求出点面距.当然,有时还会遇到利用与平面相交的直线上的点换顶点等不一而足.2. 利用求体积可以求点面距,其数学方法是“算两次”. 【典型题示例】例1 在正方体AAAA −A 1A 1A 1A 1中,动点E 在棱AA 1上,动点F 在线段A 1A 1上,O 为底面ABCD 的中心,若AA =A ,A 1A =A ,则四面体A −AAA 的体积( )A. 与x ,y 都有关B. 与x ,y 都无关C. 与x 有关,与y 无关D. 与y 有关,与x 无关【答案】B【分析】利用线面平行换顶点,化动为静.【解析】易知,11A C 平面AOE ,故四面体O AEF -即四面体F AOE -与四面体1A AOE -同底等高,即1=O AEF A AOE V V --四面体四面体同理,1BB 平面1AA O ,故四面体1A AOE -即四面体1E AA O -与四面体1B AA O -同底等高,即11=A AOE B AA O V V --四面体四面体所以11==O AEF B B AA O O AA V V V ---四面体四面体四面体,故与x ,y 都无关.例2 如图所示,在多面体ABCDEF 中,已知四边形ABCD 是边长为1的正方形,且ADE ∆、BCF ∆均为正三角形,//EF AB ,2EF =,则该多面体的体积为( )A .3B .3C .23D .43【答案】A【分析】将物体切割成一个三棱柱,两个三棱锥分别计算体积. 【解析】在EF 上取点,M N 使12EM FN ==,连接,,,AM DM BN CN , ABCD 是边长为1的正方形,且ADE 、BCF △均为正三角形,EF AB ∥,所以四边形ABFE 为等腰梯形,2EF =,1MN =,根据等腰梯形性质,,,,AM EF DM EF BN EF CN EF ⊥⊥⊥⊥,,AM DM 是平面AMD 内两条相交直线,,BN CN 是平面BNC 内两条相交直线,所以EF ⊥平面AMD ,EF ⊥平面BNC ,2MA MD NB NC ====, 几何体体积为2E AMD AMD BNC V V V --=+1111121132223=⨯⨯⨯+⨯=, 故选:A例 3 如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥D D BB A 11-的体积为 cm 3.【答案】36cm【解析】如图所示,连结AC 交BD 于点O ,因为 平面D D BB ABCD 11⊥,又因为BD AC ⊥,所以,D D BB AC 11平面⊥, 所以四棱锥D D BB A 11-的高为AO , 根据题意3cm AB AD ==,所以223=AO , 又因为32cm BD =,12cm AA =,故矩形D D BB 11的面积为262cm , 从而四棱锥D D BB A 11-的体积3132626cm 32V =⨯⨯=. 例4 如下图,四棱锥ABCD P -中,⊥PD 平面ABCD ,,2,1====AB BC DC PD︒=∠90,//BCD DC AB ,则点A 到平面PBC 的距离为 .【答案】.2【分析】先证明BC PC ⊥,而所求点A 到平面PBC 的距离,需利用“算两次”,求出三棱锥ABC P -的体积即可.【解析】因为⊥PD 平面ABCD ,⊂BC 平面ABCD ,所以BC PD ⊥.由 90=∠BCD ,得.DC BC ⊥又D DC PD = ,⊂PD 平面PCD ,⊂DC 平面PCD ,所以⊥BC 平面PCD , 因为⊂PC 平面PCD ,所以BC PC ⊥. 连结AC .设点A 到平面PBC 的距离为h .因为DC AB //, 90=∠BCD ,所以.90 =∠ABC 从而由1,2==BC AB , 得ABC ∆的面积1=∆ABC S .由⊥PD 平面ABCD 及1=PD ,得三棱锥ABC P - 的体积⋅=⋅=∆3131PD S V ABC 因为⊥PD 平面⊂DC ABCD ,平面ABCD , 所以DC PD ⊥,又1==DC PD ,所以222=+=DC PD PC由BC PC ⊥,1=BC ,得PBC ∆的面积22=∆PBC S , 由h S V PBC ∆=313122.31=⋅=h ,得.2=h 因此.点A 到平面PBC 的距离为.2BA CD 1B 1A 1C 1D EF【巩固训练】1.如下图,在长方体1111ABCD A B C D -中,AB =3 cm ,AD =2 cm ,1AA =1 cm ,则三棱锥11B ABD -的体积为 cm 32.如图,在正方体1111ABCD A B C D -中,2cm AB =,E 为11C D 的中点,则三棱锥1E A BC -的体积为 cm 3.1111ABCD A B C D -的体积为3.如图,已知正四棱柱36,点E ,F 分别为棱1B B ,1C C 上的点(异于端点),且//EF BC ,则四棱锥1A AEFD -的体积为 .4.如图,三棱锥BCD A -中,E 是AC 中点,F 在AD 上,且FD AF =2,若三棱锥BEF A -的体积是2,则四棱锥ECDF B -的体积为 .5.如图,正三棱柱ABC —A 1B 1C 1中,AB =4,AA 1=AA 1 B不C不B 1不C 1不D 1不D不F ED CB A6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥A —A 1EF 的体积是 .6.如图,在三棱柱中,分别是的中点,设三棱锥的体积为,三棱柱的体积为,则 .7.在直三棱柱111 ABC A B C -中,1AB =,2BC =,3AC =,11AA =.则1B 到面1 A BC 的距离为 .ABC C B A -111F E D ,,1AA AC AB ,,ADE F -1V ABC C B A -1112V =21:V VABCA 1B 1FC 1E ABC1ADE F1B1C【答案与提示】1.【答案】1【提示】直接使用等体积法. 2.【答案】23【提示】直接使用等体积法. 3.【答案】12【解析一】特殊位置法,转化为求四棱锥1A ABCD -的体积;【解析二】连接DE ,则三菱锥1A ADE -与三菱锥1A DEF -体积相等,所以1112=2A AEFD A ADE E A AD V V V ---=,因为111111=6E A AD ABCD A B C D V V --,所以112A AEFD V -=.【解析三】补体,如右图. 4.【答案】10【解析】补体,转化为三菱锥BEF A -与三棱锥BCD A -的体积比,实施等积变换.A BEFB AEF AEF A BCDB ACDACDV V S V V S----==,因为1sin 1216sin 2AEF ACDAE AF AS SAC AD A⋅⋅==⋅⋅,V =总612A BEF V -=,则四棱锥B ECDF -的体积为10. 5.【答案】38【提示】直接使用等体积法. 6. 【答案】1:24【解析】三棱锥与三棱锥的相似比为1:2,故体积之比为1:8. 又因三棱锥与三棱柱的体积之比为1:3.所以,三棱锥ADE F -ABC A -1ABC A -1ABC C B A -111ADEF -与三棱柱的体积之比为1:24. 7.. 【解析】因为三棱锥1 C A AB -与三棱锥11 C A BB -的底面积相等()111A ABA B BSS=,高也相等(点C 到平面11ABB A 的距离); 所以三棱锥1 C A AB -与三棱锥11 C A B B -的体积相等.又11111133C A AB A ABC ABC V V S AA --==⋅==所以1111C A B B B A BC V V --==. 设1 B 到面1 A BC 的距离为H ,则11113B A BC A BC V S H -==,解得H =. ABC C B A -111。
高中物理解题方法例话割补法
7割补法就是对研究对象进行适当的分割、补充来处理问题的一种方法。
下面举例说明。
[例题1]如果将质量为m 的铅球放于地心处,再在地球内部距地心R/2(R 为地球半径)处挖去质量为M 的球体,如图所示,则铅球受到地球引力的大小为多少?解析:如果将挖去质量为M 的球体补上,这一个完整的球体,一个完整的质量均匀的球体放入其中心处的铅球的引力为0,由此可见挖去的质量为M 球体对铅球的力与剩下部分对铅球的力相平衡,即224)2(R GMmR Mm GF F ===挖去剩下 方向为沿挖去小球与地球球心连线向左。
[例题2]现有半球形导体材料,接成如图所示的两种形式,则两种接法的电阻之比为多少?解析:如果将a 、b 图中的两半球平分,如图所示,设1/4球形材料的电阻为R ,a 是两个1/4球形材料的并联,所以2RR a =而b 是两个1/4球形材料的串联,所以R R b 2=,所以4:1:=b a R R[例题3]一带电粒子以速度V 沿半径为a 的圆形磁场的半径方向射入磁场,穿越磁场的时间为1t ;该粒子又以相同的速度V 从边长为a 的正方形磁场一边的中点垂直于该边射入磁场,穿越磁场的时间为2t ,则1t 2t 的大小关系为( )A 、1t =2tB 、1t 〉2tC 、1t 〈2tD 、都有可能解析:如果将b 图中正方形磁场挖去一个半径为a 的圆形磁场,再将a 图中的半径为a 的圆形磁场补上,如图c 所示,假设电荷带负电,如果从切点射出,则时间相同1t =2t ,如果不从切点射出,则时间相同1t 〈2t ,正确的选项为A 、C8对称法故事链接:1928年,英国物理学家狄拉克在解自由电子相对性波动方程时,由于开平方根而得出电子的能量有正负两个解,按照通常的观念,负能解通常被舍去,但是狄拉克为了保持数学上的对称美,将这个似乎没有意义的量描述的是带正电荷的电子,也就是电子的反粒子。
正电子预言不久后就被美国的另一位物理学家安德森发现。
几何证题方法探讲——割补法
几何证题方法探讲——割补法作者:余熳炜张勇超来源:《中学生数理化·教研版》2009年第07期在求解平面几何问题时,根据问题的题设和结论,合理适当地将原来的图形割去一部分,或补上一部分,变成一个特殊的、简单的、整体的、熟悉的图形,使原来问题的本质得到充分显示,通过对新图形的分析,探索原来问题的答案,我们把这种方法称之为割补法.一、补出直角三角形如果图形中有直角或者相邻两角互余的情况,可考虑通过整形,补出或补成直角三角形来解题.二、补出等腰三角形如果图形涉及三角形或四边形某角的平分线,或三角形一边上的中线(或高)与角平分线联系,可考虑补出等腰三角形来.例1 如图1,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,且AE=12BD,求证:BD平分∠ABC.三、补出正三角形如果多边形有一个内角为60°或120°,涉及到等线段,可考虑将图形补成一个正三角形.例2如图2,AA′、BB′、CC′交于点O,且AA′=BB′=CC′=1,∠AOC′=∠BOA′=∠COB′=60°.(1)求证:△△△COB′<34;(2)求证:△AOC′、△BOA′、△COB′ 中至少有一个不大于316. 证明:(1)延长AA′至E,使A′E=OA.延长B′B至D,使BD=BO′,连DE.在DE上截取F,使EF=OC′.易证△ODE为正三角形,DF=OC.则△AOC′≌△A′EF,△B′OC≌△BDF.∵△A'EF+△BOA'+△BDF<正△ODE,∴△AOC'+△BOA'+△COB'<正△ODE.又△ODE=34,则△AOC'+△BOA'+△COB'<34.(2)设OA=a,OB=b,OC=c,则OA'=1-a,OB'=1-b,OC'=1-c.∵△AOC'=34a(1-c),△BOA'=34b(1-a),△B'OC=34c(1-b). ∴△AOC'-△BOA'-△∵-a+14≥0 ,∴a(1-a)≤14.同理b(1-b)≤14,c(1-c)≤14.则△AOC'-△BOA'-△∴△AOC'、△BOA'、△COB'中至少有一个不大于316.四、补出平行四边形例3 如图3,凸六边形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,FA -CD=3,求BC+DE.解:由题意知,AF∥CD,BC∥EF,则可将六边形补成平行四边形MCNF.△ABM、△DEN均为等边三角形.MC=AB+BC=11. ①FA=MF-AM=CN-AB=CD+DE-AB.于是FA-CD=DE-AB=3.则DE-AB=3. ②①+②得DE+BC=14.五、补出正方形例4 如图4,在△ABC中,AD⊥BC于D,∠CAB=45°,BC=3,CD=2,求△ABC.解:将△ACD沿直线AC翻折得△ACF.将△ABD沿直线AB翻折得△ABE.分别延长FC、EB交于G,可证出AEGF为正方形.设AF=AD=AE=x,则CG=x-2,BG=x-3.在Rt△BCG中,=+∴(2+=(x-+(x-解得x=6(舍去负值).则△ABC=15.五、补出圆已知共顶点的两条相等线段、角之间的关系,可以公共顶点为圆心补圆,以较方便转化角、转化线段之间的关系.例5 如图5,若PA=PB,∠APB=2∠ACBAC与PB交于点D,且PB=4,PD=3,则AD•DC=.A.6B.7C.12D.16解:以P为圆心,PB长为半径作圆.∵PA=PB,∠APB=2∠ACB.∴点A、点C都在圆上,延长BP交⊙P于点E,则BE=8.∵PD=3∴BD=1,DE=7,由相交弦定理知:AD•DC=7.。
割补法求面积PPT课件
❖ 方法二:也可以把右上角的长方形补完整,用大长方形的面 积减去阴影部分周围的三个三角形的面积和。
❖ (7+4)×7-[(7+4)×(7-4)÷2+4×4÷2+7×7÷2]=28 (平方厘米)
❖ 答:阴影部分面积是28平方厘米。
画龙点睛
❖ “割”是一种最常见的求面积的辅助方法,即把要 求面积的图形分割成若干小块,并且每一小块的面 积都可以直接用公式算出,最后求和;“补”也是 一种辅助解决问题的好办法,它能得到的一个更加 完整的图形,使要求面积的图形包含在整个图形之 中,解法二就是利用的此思路。
举一反三
❖ 1.求图形阴影部分的面积。(单位:厘米)
5 5
3 3
❖ 2.如图:AB=8厘米,CE=12厘米,CD=10厘米,
AF=9厘米,求四边形ABCD的面积。
B
E
A
F
D
C
❖ 3.如图:直角三角形中有一个矩形,求矩形 的面积。(单位:厘米)
4
6经Leabharlann 例题下图中ABCD和DEFG都是正方形,求阴影部分的 面积。(单位:厘米)
B
7
A
F
4
C
D
E
解题策略
❖ 方法一:题中所求是阴影部分的面积,实际是求三 角形BDF的面积,此三角形的底和高都是未知的,我 们无法直接用公式来计算,但是,如果把阴影部分 分割成△BGF、 △DFG和△BDG这三块,先分别求出 这三个小三角形的面积,再把它们相加起来,就能 得到阴影部分的面积。
割补法解三角形的精髓,就是使题目便于解答.doc
割补法解三角形的精髓,就是使题目便于解
答
一般题目涉及到几何图形,都会先画一个图,从图中更直观的感觉题目所给已知条件之间的关系,再选择方法和解题技巧。
割补法是数学中重要的思想方法之一,主要分为“割形”与“补形”,是将复杂的、不规则的、不易认识的几何体或几何图形,切割或补充成简单的、规则的、易于认识的几何体或图形,从而达到解决问题的目的. 割补法重在割与补,巧妙地对几何体或几何图形实施割与补,变整体为局部,化不规则为规则,化陌生为熟悉,化抽象为直观.
割补法在解几何问题中还是非常巧妙的,补法就是把图形补成一个规则图形,使题目便于解答;割补法就是同样把图形割成几个规则图形,使题目便于解答,此题中的四边形补成一个等腰三角形,等腰三角形的性质就可以使用来解题了。
文科立体几何中的割补法教学 2019年精选文档
文科立体几何中的“割补法”教学立体几何是高中数学知识体系的重要知识模块之一,它也是历年高考必考的重点内容,且题型、难度与分值比例长期保持相对稳定,主要是集中考查空间位置关系的形化和量化,尤其是文科的教学中更关注空间中平行与垂直的关系。
但在教学实践中,我发现文科学生对垂直的证明,如线线垂直、线面垂直的证明或一些相关的计算题,如一类三棱锥的外接球的表面积、体积的计算往往不尽如人意,常常在这方面失分。
那么,如何更好掌握相关知识呢?结合教学实际,我提倡使用“割补法”,即以正方体或长方体为载体,在其中“裁剪”,找出合适的线线、线面、面面位置关系加以研究。
一、从“形”上割补1.割。
正方体是空间各种位置关系的“集合体”,通常可以通过将不规则或者特殊图形切割,构造为正方体关系,由此将题目难度降低。
例1(2010安徽)一个几何体的三视图如图,该几何体的表面积是(B)(A)372(B)360(C)292(D)280分析:由三视图可知该几何体是两个叠加的长方体,只需割成两个长方体即可,要注意其长宽高。
.例2(2010福建)如图,在长方体ABCD-A1B1C1D1中,E,H分别是棱A1B1,D1C1上的点(点E与B1不重合),且EH//A1D1。
过EH的平面与棱BB1,CC1相交,交点分别为F,G。
(2)设AB=2AA1=2a。
在长方体ABCD-A1B1C1D1内随机选取一点,记该点取自于几何体A1ABFE-D1DCGH内的概率为p。
当点E,F分别在棱A1B1, B1B上运动且满足EF=a时,求p的最小值。
分析:第(2)问是借考几何概形来考察几何体的体积,也即P=,而A1ABFE-D1DCGH=VABCD-A1B1C1D1-VBEF-C1HG,即把所求几何体的体积看成长方体的体积割去三棱柱的体积,而该三棱柱是倒放的。
当且仅当时等号成立所以,p的最小值等于2.补。
高考试卷中考查的立体几何图形,大多可以还原为立体几何图形,通过辅助方法,将不熟悉的图形还原为正方体关系,可找出相应题型要求。
高考数学选择题、填空题的六大解题方法和技巧
高考数学选择题、填空题的六大解题方法和技巧方法一:直接法直接法就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,得出正确结论,此法是解选择题和填空题最基本、最常用的方法.【典例1】(1)(2021·新高考Ⅱ卷)在复平面内,复数2-i 1-3i对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】选A.因为2-i1-3i =(2-i )(1+3i )(1-3i )(1+3i ) =5+5i 10 =12 +12 i ,所以复数2-i 1-3i 对应的点位于第一象限.(2)(2021·烟台二模)已知双曲线C :x 2a 2 -y 2b 2 =1(a>0,b>0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若2F A ·2F B =0,且|2F A |=|2F B |,则C 的离心率为( ) A . 2 B . 3 C . 6 D .7【解析】选B.由F 2A·F 2B =0且|2F A |=|2F B |知:△ABF 2为等腰直角三角形且 ∠AF 2B =π2 、∠BAF 2=π4 ,即|AB|= 2 |2F A |= 2 |2F B |, 因为⎩⎪⎨⎪⎧|F 1A|-|F 2A|=2a ,|F 2B|-|F 1B|=2a ,|AB|=|F 1A|-|F 1B|,所以|AB|=4a ,故|F 2A|=|F 2B|=2 2 a ,则|F 1A|=2( 2 +1)a ,而在△AF 1F 2中,|F 1F 2|2=|F 2A|2+|F 1A|2-2|F 2A||F 1A|cos ∠BAF 2, 所以4c 2=8a 2+4(3+2 2 )a 2-8( 2 +1)a 2,则c 2=3a 2,故e =ca = 3 . 【变式训练】1.(2021·北京高考)在复平面内,复数z 满足(1-i)z =2,则z =( ) A .1 B .i C .1-i D .1+i【解析】选D.方法一:z =21-i =2(1+i )(1-i )(1+i )=1+i.方法二:设z =a +bi ,则(a +b)+(b -a)i =2,联立⎩⎪⎨⎪⎧a +b =2,b -a =0, 解得a =b =1,所以z =1+i.2.(2021·郑州二模)已知梯形ABCD 中,以AB 中点O 为坐标原点建立如图所示的平面直角坐标系.|AB|=2|CD|,点E 在线段AC 上,且AE→ =23 EC → ,若以A ,B 为焦点的双曲线过C ,D ,E 三点,则该双曲线的离心率为( )A .10B .7C . 6D . 2【解析】选B.设双曲线方程为x 2a 2 -y 2b 2 =1,由题中的条件可知|CD|=c , 且CD 所在直线平行于x 轴, 设C ⎝ ⎛⎭⎪⎫c 2,y 0 ,A(-c ,0),E(x ,y),所以AE → =(x +c ,y),EC →=⎝ ⎛⎭⎪⎫c 2-x ,y 0-y ,c 24a 2 -y 20 b 2 =1,由AE → =23 EC →,可得⎩⎪⎨⎪⎧x =-25c y =25y 0,所以E ⎝ ⎛⎭⎪⎫-25c ,25y 0 ,因为点E 的坐标满足双曲线方程,所以4c 225a 2 -4y 2025b 2 =1, 即4c 225a 2 -425 ⎝ ⎛⎭⎪⎫c 24a 2-1 =1,即3c 225a 2 =2125 ,解得e =7 .方法二:特例法从题干出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或特殊图形或特殊位置,进行判断.特例法是“小题小做”的重要策略,要注意在怎样的情况下才可以使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.【典例2】(1)(2021·郑州三模)在矩形ABCD 中,其中AB =3,AD =1,AB 上的点E 满足AE +2BE =0,F 为AD 上任意一点,则EB ·BF =( ) A .1 B .3 C .-1 D .-3 【解析】选D.(直接法)如图,因为AE +2BE =0, 所以EB =13 AB , 设AF =λAD ,则BF =BA +λAD =-AB +λAD ,所以EB ·BF =13 AB ·(-AB +λAD )=-13 |AB |2+13 λAB ·AD =-3+0=-3.(特例法)该题中,“F为AD上任意一点”,且选项均为定值,不妨取点A为F. 因为AE+2BE=0,所以EB=13AB.故EB·BF=13AB·(-AB)=-132 AB=-13×32=-3.(2)(2021·成都三模)在△ABC中,内角A,B,C成等差数列,则sin2A+sin2C-sin A sin C=________.【解析】(方法一:直接法)由内角A,B,C成等差数列,知:2B=A+C,而A+B+C=π,所以B=π3,而由余弦定理知:b2=a2+c2-2ac cos B=a2+c2-ac,结合正弦定理得:sin2B=sin2A+sin2C-sin A sin C=3 4.(方法二:特例法)该题中只有“内角A,B,C成等差数列”的限制条件,故可取特殊的三角形——等边三角形代入求值.不妨取A=B=C=π3,则sin 2A+sin2C-sin A sin C=sin2π3+sin2π3-sinπ3sinπ3=34.(也可以取A=π6,B=π3,C=π2代入求值.)答案:34【变式训练】设四边形ABCD为平行四边形,|AB→|=6,|AD→|=4,若点M,N满足BM→=3MC→,DN→=2NC → ,则AM → ·NM → 等于( ) A .20 B .15 C .9 D .6【解析】选C.若四边形ABCD 为矩形,建系如图,由BM → =3MC → ,DN → =2NC→ ,知M(6,3),N(4,4),所以AM → =(6,3),NM → =(2,-1),所以AM → ·NM → =6×2+3×(-1)=9.方法三:数形结合法对于一些含有几何背景的问题,往往可以借助图形的直观性,迅速作出判断解决相应的问题.如Veen 图、三角函数线、函数图象以及方程的曲线等,都是常用的图形.【典例3】已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C . 2D .22【解析】选C.如图,设OA→ =a ,OB → =b ,则|OA → |=|OB → |=1,OA → ⊥OB → ,设OC → =c ,则a-c =CA → ,b -c =CB → ,(a -c )·(b -c )=0,即CA → ·CB → =0.所以CA → ⊥CB → .点C 在以AB 为直径的圆上,圆的直径长是|AB→ |= 2 ,|c |=|OC → |,|OC → |的最大值是圆的直径,长为 2 .【变式训练】1.设直线l :3x +2y -6=0,P(m ,n)为直线l 上动点,则(m -1)2+n 2的最小值为( ) A .913 B .313 C .31313 D .1313【解析】选A.(m -1)2+n 2表示点P(m ,n)到点A(1,0)距离的平方,该距离的最小值为点A(1,0)到直线l 的距离,即|3-6|13 =313,则(m -1)2+n 2的最小值为913 .2.(2021·河南联考)已知函数f(x)=⎩⎪⎨⎪⎧x ln x -2x (x>0),x 2+1(x≤0), 若f(x)的图象上有且仅有2个不同的点关于直线y =-32 的对称点在直线kx -y -3=0上,则实数k 的取值是________. 【解析】直线kx -y -3=0关于直线y =-32 对称的直线l 的方程为kx +y =0,对应的函数为y =-kx ,其图象与函数y =f(x)的图象有2个交点.对于一次函数y =-kx ,当x =0时,y =0,由f(x)≠0知不符合题意. 当x≠0时,令-kx =f(x),可得-k =f (x )x ,此时, 令g(x)=f (x )x =⎩⎨⎧ln x -2(x>0),x +1x (x<0).当x>0时,g(x)为增函数,g(x)∈R ,当x<0时,g(x)为先增再减函数,g(x)∈(-∞,-2]. 结合图象,直线y =-k 与函数y =g(x)有2个交点, 因此,实数-k =-2,即k =2. 答案:2方法四:排除法排除法也叫筛选法、淘汰法,它是充分利用单选题有且只有一个正确的选项这一特征,通过分析、推理、计算、判断,排除不符合要求的选项,从而确定正确选项.【典例4】(1)(2021·郑州二模)函数f(x)=sin x ln π-xπ+x在(-π,π)的图象大致为()【解析】选A.根据题意,函数f(x)=sin x ln π-xπ+x,x∈(-π,π),f(-x)=sin (-x)ln π+xπ-x=sin x lnπ-xπ+x=f(x),则f(x)在区间(-π,π)上为偶函数,所以排除B,C,又由f ⎝ ⎛⎭⎪⎫π2 =sin π2 ln π23π2=ln 13 <0,所以排除D.(2)(2021·太原二模)已知函数y =f(x)部分图象的大致形状如图所示,则y =f(x)的解析式最可能是( )A .f(x)=cos x e x -e -xB .f(x)=sin x e x -e -xC .f(x)=cos x e x +e -xD .f(x)=sin x e x +e -x 【解析】选A.由图象可知,f(2)<0,f(-1)<0, 对于B ,f(2)=sin 2e 2-e -2>0,故B 不正确;对于C ,f(-1)=cos (-1)e -1+e=cos 1e -1+e>0,故C 不正确; 对于D ,f(2)=sin 2e 2+e -2 >0,故D 不正确.【变式训练】1.(2021·嘉兴二模)函数f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x 的图象可能是()【解析】选C.由f(-x)=⎝⎛⎭⎪⎫1-x -1+1-x +1 cos (-x) =-⎝ ⎛⎭⎪⎫1x -1+1x +1 cos x =-f(x)知, 函数f(x)为奇函数,故排除B.又f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x =2x x 2-1 cos x , 当x ∈(0,1)时,2xx 2-1 <0,cos x>0⇒f(x)<0.故排除A ,D.2.(2021·石家庄一模)甲、乙、丙三人从红、黄、蓝三种颜色的帽子中各选一顶戴在头上,每人帽子的颜色互不相同,乙比戴蓝帽的人个头高,丙和戴红帽的人身高不同,戴红帽的人比甲个头小,则甲、乙、丙所戴帽子的颜色分别为( ) A .红、黄、蓝 B .黄、红、蓝 C .蓝、红、黄 D .蓝、黄、红【解析】选B.丙和戴红帽的人身高不同,戴红帽的人比甲个头小,故戴红帽的人为乙,即乙比甲的个头小;乙比戴蓝帽的人个头高,故戴蓝帽的人是丙. 综上,甲、乙、丙所戴帽子的颜色分别为黄、红、蓝.方法五:构造法构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等模型转化为熟悉的问题求解.【典例5】(1)(2021·昆明三模)已知函数f(x)=e x -a -ln x x -1有两个不同的零点,则实数a 的取值范围是( )A .(e ,+∞)B .⎝ ⎛⎭⎪⎫e 2,+∞C .⎝ ⎛⎭⎪⎫12,+∞ D .(1,+∞)【解析】选D.方法一(切线构造):函数f(x)=e x -a -ln xx -1有两个不同的零点, 则e x -a -1=ln xx 有两个解, 令g(x)=e x -a -1,h(x)=ln xx (x>0),则g(x)与h(x)有2个交点,h′(x)=1-ln xx 2 (x>0), 当x>e 时h′(x)<0,h(x)单调递减, 当0<x<e 时h′(x)>0,h(x)单调递增, 由g′(x)=e x -a (x>0)得g(x)单调递增, 图象如下,当g(x)与h(x)相切时,设切点为⎝ ⎛⎭⎪⎫x 0,ln x 0x 0 , h′(x 0)=1-ln x 0x 2=g′(x 0)=0x ae -, 同时ln x 0x 0 =ex 0-a -1,得ln x 0x 0 +1=1-ln x 0x 2,即x0ln x0+x20=1-ln x0,(x0+1)ln x0=-(x0+1)(x0-1),又x0>0,ln x0=1-x0,所以x0=1,此时1=e1-a,所以a=1,当a>1时,可看作g(x)=e x-1-1的图象向右平移,此时g(x)与h(x)必有2个交点,当a<1时,图象向左平移二者必然无交点,综上a>1.方法二(分离参数):由题意,方程e x-a-ln xx-1=0有两个不同的解,即e-a=ln xx+1e x有两个不同的解,所以直线y=e-a与g(x)=ln xx+1e x的图象有两个交点.g′(x)=⎝⎛⎭⎪⎫ln xx+1′×e x-(e x)′×⎝⎛⎭⎪⎫ln xx+1(e x)2=-(x+1)(ln x+x-1)x2e x.记h(x)=ln x+x-1.显然该函数在(0,+∞)上单调递增,且h(1)=0,所以0<x<1时,h(x)<0,即g′(x)>0,函数单调递增;所以x>1时,h(x)>0,即g′(x)<0,函数单调递减.所以g(x)≤g(1)=ln 11+1e1=1e.又x→0时,g(x)→0;x→+∞时,g(x)→0.由直线y=e a与g(x)=ln xx+1e x的图象有两个交点,可得e -a <1e =e -1,即-a<-1,解得a>1.方法三:由题意,方程e x -a -ln x x -1=0有两个不同的解,即e x -a =ln x x +1,也就是1e a (xe x )=x +ln x =ln (xe x ).设t =xe x (x>0),则方程为1e a t =ln t ,所以1e a =ln t t .由题意,该方程有两个不同的解.设p(x)=xe x (x>0),则p′(x)=(x +1)e x (x>0),显然p′(x)>0,所以p(x)单调递增,所以t =p(x)>p(0)=0.记q(t)=ln t t (t>0),则q′(t)=1-ln t t 2 .当0<t<e 时,q′(t)>0,函数单调递增;当t>e 时,q′(t)<0,函数单调递减.所以q(t)≤q(e)=ln e e =1e .又t→0时,q(t)→0;t→+∞时,q(t)→0.由方程1e a =ln t t 有两个不同的解,可得0<1e a <1e ,解得a>1.(2)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P-ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π【解析】选C.将三棱锥P-ABC 放入长方体中,如图,三棱锥P-ABC 的外接球就是长方体的外接球.因为PA =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22 =2 3 .设外接球的半径为R ,依题意可得(2R)2=22+22+(2 3 )2=20,故R 2=5,则球O 的表面积为4πR 2=20π.【变式训练】1.已知2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),则( )A .a<b<cB .b<a<cC .c<b<aD .c<a<b【解析】选D.因为2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),化为:ln a a =ln 22 ,ln b b =ln 33 ,ln c c =ln 55 ,令f(x)=ln x x ,x ∈(0,e),f′(x)=1-ln x x 2 ,可得函数f(x)在(0,e)上单调递增,在(e ,+∞)上单调递减,f(c)-f(a)=ln 55 -ln 22 =2ln 5-5ln 210=ln 253210 <0,且a ,c ∈(0,e), 所以c<a ,同理可得a<b.所以c<a<b.2.(2021·汕头三模)已知定义在R 上的函数f(x)的导函数为f′(x),且满足f′(x)-f(x)>0,f(2 021)=e 2 021,则不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 的解集为( ) A .(e 2 021,+∞)B .(0,e 2 021)C .(e 2 021e ,+∞)D .(0,e 2 021e )【解析】选D.令t =1e ln x ,则x =e et ,所以不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 等价转化为不等式f(t)<e e et =e t ,即f (t )e t <1 构造函数g(t)=f (t )e t ,则g′(t)=f′(t )-f (t )e t, 由题意,g′(t)=f′(t )-f (t )e t>0, 所以g(t)为R 上的增函数,又f(2 021)=e 2 021,所以g(2 021)=f (2 021)e 2 021 =1,所以g(t)=f (t )e t <1=g(2 021),解得t<2 021,即1e ln x<2 021,所以0<x<e 2 021e .方法六:估算法估算法就是不需要计算出准确数值,可根据变量变化的趋势或极值的取值情况估算出大致取值范围,从而解决相应问题的方法.【典例6】(2019·全国Ⅰ卷)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12 (5-12 ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12 .若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A.165 cm B.175 cmC.185 cm D.190 cm【解析】选B.头顶至脖子下端的长度为26 cm,可得咽喉至肚脐的长度小于42 cm,肚脐至足底的长度小于110 cm,则该人的身高小于178 cm,又由肚脐至足底的长度大于105 cm,可得头顶至肚脐的长度大于65 cm,则该人的身高大于170 cm,所以该人的身高在170~178 cm之间.【变式训练】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9 3 ,则三棱锥D-ABC体积的最大值为()A.12 3 B.18 3C.24 3 D.54 3【解析】选B.等边三角形ABC的面积为9 3 ,显然球心不是此三角形的中心,所以三棱锥的体积最大时,三棱锥的高h应满足h∈(4,8),所以13×9 3 ×4<V三棱锥D-ABC <13×9 3 ×8,即12 3 <V三棱锥D-ABC<24 3 .。
例谈“割补法”的应用
- 1 - 例谈“割补法”的应用后宗新(安徽省芜湖县实验学校 241100)利用等效思维将一个物体分成几个部分、或将物体的某个部分进行移动,以及将物体几个部分合成一个整体,这样的方法统称为“割补法”。
具体可分为“割开法”、“移动法”、“补全法”三种。
使用“割补法”,往往能使解题变得简洁方便,请看:例1 如图1所示,质量分布均匀地圆柱体对水平地面地压强为p ,如果沿图中虚线切开,拿走部分Ⅱ或部分Ⅰ,剩下的部分对地面的压强如何变化?解析:在压力和受力面积同时变化且不成比例时,无法确定压强的变化。
【补全法】把Ⅰ补上Ⅲ,使之成为一个新的圆柱体,如图2所示,与原来圆柱体进行比较,由于压力和受力面积成比例减小,所以Ⅰ、Ⅲ组合体的压强不变。
Ⅰ与Ⅰ、Ⅲ组合体比较,受力面积相同,压力小,所以Ⅰ对地面的压强会变小。
【割开法】将Ⅱ分成A 、B 两部分,如图3所示,同理,与原来进行比较,A 对地面的压强不变,Ⅱ与A 比较,受力面积相同,压力大,所以Ⅱ对地面的压强会变大。
例2 如图4,三个完全相同的容器中分别倒入质量相等的水银、水、酒精,则容器底受到的压强是( )A .p A >pB >pC B .p A <p B <p C C .p A =p B =p CD .无法确定解析:液体对容器底部压强与液体的密度、深度有关,此题中三者密度不等,深度也不相同,而且密度大的深度小,无法比较压强的大小。
由于容器的形状不是柱形,压力的大小不等于重力,所以也不能用重力除以底面积来计算。
【移动法】 如图5所示,把容器沿着AC 直线分割成两部分,再把割下的部分ACE 移动到FDB ,此时成了一个圆柱形的容器,变化前后液体对容器底部的压强相等,即p 前=p 后=F/S =G/S ,而装的液体密度越小,体积越大,深度越大,移动后形成的柱形容器的底面积就越大。
三种液体的质量相等,重力相等,所以密度小的压强小。
正确答案选择A 。
结论:如此形状的容器,在质量一定的情况下,所盛液体密度越小(体积越大),对底部的压强越小。
高三数学选择题解题技巧方法PPT课件
0),开口向右,由此排除答案A、C、D,所以选(B);
另解:(直接法)设过焦点的直线y=k(x-1),则,
y k x消y1得:kx-2(k+2)x+k=0,
中 y点2 坐 4标x 有
x
x1
2
x2
,k 2 消 2 k得y=2x-2,选B.
k2
y
k2 k( k2
2
1)
2 k
小结:
筛选法适应于定性型或不易直接求解的选择题.当题目中的条 件多于一个时,先根据某些条件在选择支中找出明显与之矛 盾的,予以否定,再根据另一些条件在缩小的选择支的范围 那找出矛盾,这样逐步筛选,直到得出正确的选择.它与特例 法、图解法等结合使用是解选择题的常用方法,近几年高考 选择题中约占40%.
三.3
(D)4
本题如果图象画得不准确,很容易误选(B);答案为
(C)。
小结:
数形结合,借助几何图形的直观性,迅速作正确的判断是高 考考查的重点之一;历年高考选择题直接与图形有关或可以 用数形结合思想求解的题目约占50%左右。
六.割补法:
“能割善补”是解决几何问题常用的 方法,巧妙地利用割补法,可以将不 规则的图形转化为规则的图形,这样 可以使问题得到简化,从而简化解题 过程。
二.特例法:
用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特 殊结论,对各个选项进行检验,从而作出正确的判断.常用 的特例有特殊数值、特殊数列、特殊函数、特殊图形、特 殊角、特殊位置等.
例4.已知长方形的四个项点A(0,0),B(2,0),C(2,
1)和D(0,1),一质点从AB的中点P0沿与AB夹角为θ的方 向射到BC上的点P1后,依次反射到CD、DA和AB上的点P2、 P3和P4(入射角等于反射角),设P4坐标为(x4,0),若 1<x4<2,则tanθ的取值范C围是( ) (解A:)考( 虑13 ,由1()PB0射)到B(C13 的, 32中() 点C)上,这( 52样, 依12() 次D)反射最( 52终, 23回) 到P0, 此tan时≠容易,求排出除tAa、nθB=、1 D,,由故题选设C.条件知,1<x4<2,则 另解:(1 直接法)注意2 入射角等于反射角,……,所以选C.
巧用割补的数学思维解题
1+2+3+…+62=1953<2008<1+2+…+62+63=2016,说明前62行共有1953个真分数;从而第2008个真分数应该是第63行的第55个数,其分母是64,分子是55,即第2008个真分数是 。
方法总结:根据数量关系恰当进行分组,找出其规律,这是解决本题的关键,也是这类题型解法的精髓。
例1:“幸福”商店开张,为吸引顾客,进行如下的优惠活动:凡在本商店购买汽水,可用3只空瓶换1瓶汽水。甲、乙、丙三人共买10瓶汽水,他们喝完后,最后不剩空瓶,平均每人喝几瓶汽水。
思路分析:每次用3个空瓶换1瓶汽水,则非常麻烦,难得到答案,用分组法,问题就迎刃而解。
解:因为3只空瓶换1瓶汽水,所以2瓶汽水就能喝到2瓶汽水, 10瓶汽水能喝15瓶汽水,平均每水喝3瓶汽水。
方法总结:根据题意巧妙进行分组,寻找规律,是解决本题的关键,也是这类题型解法的精髓。
二、面积中的割补
面积中使用割补思维,它通常包含两种解题方法:割形法、补形法。
例2:在动画片蓝猫淘气三千问中,蓝猫问了小灰熊一个有趣的问题:如图,每个小正方形边长为单位1,求图中四边形ABCD的面积,你能帮小灰熊解决这个问题吗?
解:能
如图C(-2,0),B(0,1),联立一次函数y=x+2,y=2x+1得方程组
解方程组得:
∴A(1,3),BD=1
∴S△ABC=S△BDC+S△ADB= + =1.5
方法总结:在直角体系中求三角形的面积,一般选用坐标轴上线段为底,再结合割补思维,就出奇制胜,简化计算!
三、计算中的割补
例6:计算:
例12:有这样一个正方形,面积为18.75平方厘米,在正方形内有两条平行于对角线的线段把正方形的面积三等分,求这两条平行线段的长。
立体几何割补法
立体几何割补法立体几何中的割补法解题技巧邹启文※ 高考提示立体几何中常用割补法解题.特别是高考中的立体几何题很多可用割补法解,有时解起来还比较容易.※ 解题钥匙例1 (2005湖南高考,理5)如图,正方体ABCD—ABCD的棱长为1,O是底面ABCD11111111的中心,则O到平面ACD的距离为( ) 112231A、 B、 C、 D、 4222分析:求点到面的距离通常是过点做面的垂线,而由于该图的局限性显然不太好做垂线,考虑O为AC的中点,故将要求的距离 11与A到面ACD的距离挂钩,从而与棱锥知识挂钩,所以可在该 111图中割出一个三棱锥A—ACD而进行解题。
111解:连AC,可得到三棱锥A—ACD,我们把这个正方体的其 1111它部分都割去就只剩下这个三棱锥,可以知道所求的距离正好为这个三棱锥的高的一半。
这个三棱锥底面为直角边为1与的直 2角三角形。
这个三棱维又可视为三棱锥C—AAC,后者高为1,底为腰是1的等腰直角三角111 2形,利用体积相等,立即可求得原三棱锥的高为,故应选B。
2例2 (2007湖南高考,理8)棱长为1的正方体ABCD—ABCD1111 的8个顶点都在球O的表面上,E,F分别是棱AA、DD的中点, 11则直线EF被球O截得的线段长为( )22A、 B、1 C、1+ D、 222分析:在该题中我们若再在正方体上加上一个球,则该图形变得复杂而烦琐,而又考虑到面AADD截得的球的截面为圆,且EF 11在截面内,故可连接球心抽出一个圆锥来。
解:如图,正方体ABCD—ABCD,依题O亦为此正方体的中心,补侧面 1111 可得圆锥0—AD(如下图), AD为平面AD,球0截平面A D1111其底面圆心正为线段AD之中点,亦为线段EF之中点,割去正方体和球 1 的其它部分,只看这个圆锥,容易看出球O截直线EF所得线段长就等于这个圆锥底面圆的直径AD之长,故选D。
1例3 (2005全国高考I,理5)如图,在多面体ABCDEF中,已知 ABCD是边长为1的正方形,且?ADE、?BCF均为正三角形。
探究高考数学中的割补法
探究高考数学中的割补法作者:童其林来源:《中学数学杂志(高中版)》2017年第02期《考试说明》指出,一般认为,中学数学涉及的数学思想方法主要有:函数与方程的思想、数形结合的思想、分类与整合的思想、化归与转化的思想、特殊与一般的思想、有限与无限的思想、必然与或然的思想等.数学的基本方法主要有:待定系数法、换元法、配方法、割补法等.数学逻辑方法或思维方法主要有:分析与综合、归纳与演绎、比较与类比、具体与抽象等.它们是理解、思考、分析与解决数学问题的普遍方法,对数学思想与方法的考查要结合数学知识多层次进行.其中的割补法在2016年的高考中就有所体现,我们先来看看2016年全国Ⅰ卷11题:点评本题考查了平面的截面问题,面面平行的性质定理,异面直线所成的角. 求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.点评此题知识点涉及平面基本性质、平行公理、面面平行的判定定理、直线所成的角、正方体的性质等.能力点考查到位,空间想象,化归转化,计算求解能力体现得淋漓尽致.另外,此题与2015年新课标Ⅱ卷立体几何解答题19题可谓同源,作图是求解的关键.该题是一道好题.这是最近两年全国卷运用割补法解决问题的具体例子,其实,割补法在各地的高考中也有体现.那什么是割补法?如何运用割补法解决问题呢?下面我们再作一番探讨,希望对复习备考有帮助.1割补法的含义立体几何是高中数学的重要组成部分,是培养学生空间想象力和逻辑推理能力的必不可少的内容,也是高考的重点之一.立体几何中需要将几何体进行分割或添补,以便得到解决问题的方法,分别叫做分割法和补形法,统称为割补法.割与补的方法是数学中常用的一种独特方法,通过对几何体的割、补,能发现未知几何体与已知几何体的内在联系,这种方法蕴含了化归思想.使生疏化成熟悉,复杂化成简单,抽象化成直观,含糊化成明朗.解决一个问题,是割是补?这要看问题的性质,宜补就补,宜割就割,不可割补就不割补,就是宜割补,也要讲究如何割补,不要盲目行动,否则就会导致麻烦,使问题复杂化,适得其反,甚至问题还不能解决.图32割补法的常见问题2.1分割法解析求点到面的距离通常是过点做面的垂线,而由于该图的局限性显然不太好做垂线,考虑O为A1C1的中点,故将要求的距离与A1到面AC1D1的距离挂钩,从而与棱锥知识挂钩,所以可在该图中割出一个三棱锥A1—AC1D1而进行解题.连AC1,可得到三棱锥A1—AC1D1,我们把这个正方体的其它部分都割去就只剩下这个三棱锥,可以知道所求的距离正好为这个三棱锥的高的一半.这个三棱锥底面为直角边为1与2的直角三角形.这个三棱锥又可视为三棱锥C1—AA1D1,后者高为1,底为腰是1的等腰直角三角形,利用体积相等,立即可求得原三棱锥的高为解析在该题中我们若再在正方体上加上一个球,则该图形变得复杂而繁琐,而又考虑到面A1ADD1截得的球的截面为圆,且EF在截面内,故可连接球心抽出一个圆锥来.如图5,依题O亦为此正方体的中心,补侧面AD1为平面AD1,球O截平面A D1可得圆锥0—AD1,其底面圆心正为线段AD1的中点,亦为线段EF的中点,割去正方体和球的其它部分,只看这个圆锥,容易看出球O截直线EF所得线段长就等于这个圆锥底面圆的直径AD1之长,故选D.解析显然,该图不是我们所熟悉的棱柱或棱锥,所以我们在此可以考虑将该图分解成我们所熟悉的棱柱或棱锥,故可采用分割的方法.将已知图形割为一个直棱柱与两个全等的三棱锥,先分别求体积,然后求要求的几何体体积.立体几何解题中,很多时候需将三棱柱补成平行六面体,将三棱锥补成三棱柱,将三棱柱割分为三棱锥等等,其实,割补法不仅仅使用于立体几何,将上述概念中的几何体或图形改为代数式,那么在数学的其它方面使用割补法也就很多了,比如运算中的添项减项,重新组合另行考虑,考虑问题的对立面等等均可视为割补法,因此,割补法不只是一种方法,可把它上升为一种思想——一种数学思想.总之,割补法是解答有关立体几何问题的有效方法,是会算,会少算,也要会不算的重要途径.。
高考数学选择题解题技巧方法
例3.七人并排站成一行,如果甲、乙两人必需不相邻,那么不同的排法的种数是( ) (A) 1440 (B) 3600 (C) 4320 (D) 4800 解一:(用排除法)七人并排站成一行,总的排法有 ,其中甲、乙两人相邻的排法有2× 种.因此,甲、乙两人必需不相邻的排法种数有: -2× =3600,对照后应选B; 解二:(用插空法) × =3600.
B
小结: 当正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略.近几年高考选择题中可用或结合特例法解答的约占30%左右.
筛选法: 从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断.
C
例5.如果n是正偶数,则C +C +…+C =( ) 2 (B) 2 (C) 2 (D) (n-1)2n-1 解:(特值法)当n=2时,代入得C +C =2,排除答案A、C;当n=4时,代入得C +C +C =8,排除答案D.所以选B. 另解:(直接法)由二项展开式系数的性质有C +C+…+C =2n-1,选B.
C
例7.若 ,P = ,Q = , R = ,则( ) (A)R<P<Q (B)P<Q< R (C)Q<P<R (D)P<R<Q 解:取a=100,b=10,此时P= ,Q= =lg ,R=lg55=lg ,比较可知 P<Q<R,故选(B)
例14.设函数 ,若 ,则x0的取值范围是( ) (A)(-1 ,1) (B)(-1 ,+∞ ) (C)(-∞ ,-1)(0,+ ∞ ) (D)(-∞,-1)(1,+∞) 解:(图解法)在同一直角坐标系中,作出函数 的图象和直线y=1,它们相交于(-1,1) 和(1,1)两点,由 ,得 或 。
浅谈解高考数学选择题的常用方法
浅谈解高考数学选择题的常用方法马兴奎(云南省文山州砚山一中)近几年来,全国高考数学试题中选择题大部分省都稳定在12题,分值60分,占总分的40%。
高考选择题注重多个知识点的小型综合,渗透各种数学思想和方法,能充分考查学生灵活应用基础知识解决数学问题的能力。
既考查基础又考查能力的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。
因此能否在选择题上获取高分,对高考数学成绩影响重大。
一般地,解答选择题的策略是以直接思路肯定为主,间接思路否定为辅,准确、快捷、巧解是解选择题的基本要求;要在巧字上做文章,配合使用多种解题方法,尽量避免“小题大做”。
下面举例说明:供同学们学习时参考。
一、直接法有些选择题是由计算题、应用题、证明题、判断题改编而成的。
这类题型可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法叫直接法。
例1:(1996高考)双曲线12222=-by a x )0(>>a b 的半焦距为c ,直线l 过)0,(a , ),0(b 两点,已知原点到直线l 的距离为c 43,则双曲线的离心率于 ( )(A )2 (B )332 或2 (C )332 ( D )2 解:∵0>>a b ⇒22a b > 即 222a c a -< ∴222c a < 从而22>e到此就应该停笔,结合答案很快就选A 。
点拨:直接法是解答选择题最常用的基本方法,经过统计研究表明,大部分选择题的解答用的是此法。
但解答中也要注意结合选项特点灵活做题,注意题目的隐含条件,争取少算。
这样既节约了时间,又提高了命中率。
二、特值法:用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.例2:(2007陕西)各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14, 则S 4n 等于 ( )(A )80 (B )30 (C )26 (D )16解:取1=n 则211==S a 又143=S 即14321=++a a a∴142111=++q a q a a 即14)1(21=++q q a ∴712=++q q 解之得:3-=q (舍去),2=q 故所求为301)1(414=--=qq a S 故选B 点拨:特例法就是用符合已知条件的特例或考虑特殊情况、特殊位置,检验选择支或化简已知条件,得出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学选择题技巧与方法
6.割补法
“能割善补”是解决几何问题常用的方法,巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题长度.
例1.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为( )
(A )3π (B )4π (C )3π3 (D )6π
解:如图,将正四面体ABCD 补形成正方体,则正四面体、正方体的中
心与其外接球的球心共一点.因为正四面体棱长为2,所以正方体棱长为1,
从而外接球半径R =
2
3.故S 球=3π. 直接法(略)
例 2. 如图,是一个平面截长方体的剩余部分,已知12,8,5,3,4=====CG BF AE BC AB ,则几何体EFGH ABCD -的体积为( )
(A )100 (B )102 (C )106 (D )108
【解析】
【割补法】首先通过梯形BFHD ACGE ,的中位线重合,我们可以求得9=DH ,分别延长DH CG BF AE ,,,到','','D C B A ,使得17''''====DD CC BB AA ,则我们可得8',5',9',12'====HD GC FB EA ,
故长方体''''D C B A ABCD -的体积是几何体EFGH ABCD -的二倍. 故10217432
121''''=⋅⋅⋅==--D C B A ABCD EFGH ABCD V V
我们在初中学习平面几何时,经常用到“割补法”,在立体几何推导锥体的体积公式时又一次用到了“割补法”,这些蕴涵在课本上的方法当然是各类考试的重点内容.因此,当我们遇到不规则的几何图形或几何体时,自然要想到“割补法”.
、用割补法求柱体(柱体的一部分)体积
例3【2005湖南高考,理5】如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面AC
1D 1的距离为( )
A 、21
B 、42
C 、22
D 、2
3 【答案】B
【分析】求点到面的距离通常是过点做面的垂线,而由于该图的局限性
显然不太好做垂线,考虑O 为A 1C 1的中点,故将要求的距离与A 1到面
AC 1D 1的距离挂钩,从而与棱锥知识挂钩,所以可在该图中割出一个三
棱锥A 1—AC 1D 1而进行解题。
【解析】连AC 1,可得到三棱锥A 1—AC 1D 1,我们把这个正方体的其它部
分都割去就只剩下这个三棱锥,可以知道所求的距离正好为这个三棱锥的高的一半。
这个三棱锥底面为直角边为1与2的直角三角形。
这个三棱维又可视为三棱锥C 1—AA 1C 1,后者高为1,底为腰是1的等腰直角三角形,利用体积相等,立即可求得原三棱锥的高为2
2,故应选B 。
例4【2005全国高考1,理5】如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形. EF ‖AB ,EF=2,则多面体的体积为( )
A 、32
B 、3
3 C 、3
4 D 、23 【答案】A
【分析】显然在该图不是我们所熟悉的棱柱或棱锥,所以我们在此可以考虑将该图
分解成我们所熟悉的棱柱或棱锥,故在此可采用分割的方法。
将已知图形割为一个
直棱柱与两个全等的三棱维,先分别求体积,然后求要求的几何体体积。
【解析】如下图,过AD 和BC 做分别EF 的直截面ADM 及截面BCG ,面ADM ‖面
BCG ,O 为BC 的中点,在△BCF 中求得FO=23,又可推得FG= 21,又OG ⊥EF ,∴GO= 22 S △BCG =4
2 ∴V BCG-ADM =
42 , 2V F-BCG =12
2
∴V ABCDEF =42+122=32,故选A.。