数学分析(1)期末试题A
数学分析期末考试复习题及参考答案
数学分析 --复习资料一、单选题1、设 f (x) = x (x + 1)(x + 2) … (x +2004) , 则 f ' (0) = ( )A. 0B. 2003!C. 2004!D. 2005!参考答案: C2、设,则交换积分次序后为 ( )。
A.B.C.D.参考答案: A3、( )A. -2B. 2C. 0D. 发散参考答案: D4、幂级数的收敛域为( )。
A.B.C.D.参考答案: B5、 f (x) 在 x0 点连续的充分条件是( )。
A. f (x0 +0) 、f (x0 - 0) 存在B. f (x) 在 x0 点的极限存在C. f-' (x0 ) 、f+' (x0 ) 存在D. f (x) 在 x0 点的某空心邻域内连续参考答案: C6、已知,f (x) = ( )A.B.C.D.参考答案: C7、积分=A. 1;B. ;C. ;D. 。
参考答案: D8、已知, 则( );A.B.C.D.参考答案: D9、设,则( )。
A.B.C.D.参考答案: C10、下面广义积分发散的一个是A. ;B. ;C. ;D. 。
参考答案: C11、使函数序列一致收敛的区域为A. ;B. ;C. ;D. 。
其中。
参考答案: B12、锥面被柱面所截部分的面积是( )。
A.B.C.D.参考答案: B13、( );A.B.C.D.参考答案: C14、幂级数的收敛域为( );A. (-1,1)B.C.D.参考答案: B15、函数连续,则在[a,b]上=( )A.B.C.D.参考答案: B16、级数为( )级数。
A. 收敛B. 绝对收敛C. 条件收敛D. 发散参考答案: B17、 f (x) 在 x0 点连续,则下列命题不成立的是( )。
A. f (x0 +0) 、f (x0 - 0) 存在B. f (x) 在 x0 点的极限存在C. f (x) 在 x0 点的某邻域内有界D. f (x) 在 x0 点的某空心邻域内连续参考答案: D18、函数在 [a,b] 上可积的充要条件是( )A."e>0,$ s>0和d>0使得对任一分法D,当l(D)<d时,对应于wi³e的那些区间Dxi长度之和∑Dxi< s B."e>0,s>0, d>0使得对某一分法D,当l(D)<d时,对应于wi³e的那些区间Dxi长度之和∑Dxi< s C."e>0,$d>0使得对任一分法D,当l(D)D."e>0, s>0,$ d>0使得对任一分法D,当l(D)参考答案: D19、已知, 则( );A.B.C.D.参考答案: C20、幂级数的收敛半径为A. ;B. 1;C. 2;D.参考答案: D21、A. AB. BC. CD. D参考答案: C22、函数f (x) = ln (ln x) 的定义域是( )A. x > 0B. x ≥ 0C. x > 1D. x ≥ 1参考答案: C23、( );A.B.C.D.参考答案: C24、下列反常积分收敛的是( )。
数学分析(1)期末试题集(计算题部分)
2.设 求 的极值.
解:当 时, .令 ,得稳定点 .
当 时, ;当 时, ,故 为极小值点,极小值为 ;
当 时, ,所以 在 内严格单调增,无极值.
而在 的邻域内,左边函数单调增,右边函数单调减,故 为极大值点,函数的极大值为 .
3.设函数 满足 .讨论 是否为 的极值点.
解若 ,由极值的必要条件知, 不是 的极值点.
当 时, , 单调减少.当 时, , 单调增加.于是 为 在 内唯一的极小值,也为最小值.因此函数 的零点个数与 的符号有关.
当 ,即 时, 在 恒为正值函数,无零点;
当 ,即 时, 在 内只有一个零点,即 ;
当当 ,即 时,因为 ,由连续函数的零点定理知, 和 ,使得 ,且由函数的单调性知, 在 和 内最多各有一个零点,所以当 时, 在 有且只有两个零点.
(4)因为
所以 是偶函数.
(5) .所以 是奇函数.
7.求函数 的值域.
解因为反函数 的定义域为 ,所以函数 的值域为 .
8.设有方程 其中 .求解 与 .
解由方程组得 ,代入 ,所以 .
9.若函数 的图形有对称中心 及 ,试证 为周期函数,并求出周期 .
解由于 的图形有对称中心 及 ,于是有
.
进而有 且 ,令 ,由上式便得到 .由周期函数的定义,注意到 ,因此 是以 为周期的周期函数.
10、设函数 在 内有定义,且对任意的实数 ,有 ,求 .
解由于 ,且 .
11、若函数 对其定义域内的一切 ,恒有 ,则称函数 对称于 .证明:如果函数 对称于 及 ,则 必定是周期函数.
证若 及
所以 是以 为最小周期的周期函数.
12.若 的图形有对称轴 和对称中心 ,求证 为周期函数.
数学分析试卷及答案6套
数学分析-1样题(一)一. (8分)用数列极限的N ε-定义证明1n =.二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x ag x b →=;(2) 0()x U a ∀∈,有0()()g x U b ∈ (3) lim ()u bf u A →=用εδ-定义证明, lim [()]x af g x A →=.三. (10分)证明数列{}n x :cos1cos 2cos 1223(1)n nx n n =+++⋅⋅⋅+L 收敛. 四. (12分)证明函数1()f x x=在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b使lim )0x ax b →+∞-=.八. (14分)求函数32()2912f x x x x =-+在15[,]42-的最大值与最小值.九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使24()()()()f f b f a b a ζ''≥--.数学分析-1样题(二)一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常数, 证明{}n a 收敛,并求其极限.二. (10分)设0lim ()0x x f x b →=≠, 用εδ-定义证明011lim()x x f x b→=.三. (10分)设0n a >,且1lim1nn n a l a →∞+=>, 证明lim 0n n a →∞=.四. (10分)证明函数()f x 在开区间(,)a b 一致连续⇔()f x 在(,)a b 连续,且lim ()x a f x +→,lim ()x bf x -→存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.六. (12分)证明:若函数在连续,且()0f a ≠,而函数2[()]f x 在a 可导,则函数()f x 在a 可导. 七. (12分)求函数()1f x x x ααα=-+-在的最大值,其中01α<<.八. (12分)设f 在上是凸函数,且在(,)a b 可微,则对任意1x ,2x (,)a b ∈, 12x x <,都有12()()f x f x ''≤.九. (12分)设(),0()0,0g x x f x x x ⎧ ≠⎪=⎨⎪ =⎩ 且(0)(0)0g g '==, (0)3g ''=, 求(0)f '.数学分析-2样题(一)一.(各5分,共20分)求下列不定积分与定积分: 1. arctan x x dx ⎰2. xe dx -⎰3.ln 0⎰4.20sin 1cos x xdx xπ+⎰二.(10分)设()f x 是上的非负连续函数, ()0baf x dx =⎰.证明()0f x = ([,])x a b ∈.三. (10分)证明20sin 0xdx xπ>⎰. 四. (15分)证明函数级数(1)nn x x∞=-∑在不一致收敛, 在[0,]δ(其中)一致收敛.五. (10分)将函数,0(),0x x f x x x ππππ+ ≤≤⎧=⎨- <≤⎩展成傅立叶级数.六. (10分)设22220(,)0,0xy x y f x y x y ⎧ +≠⎪=⎨⎪ +=⎩证明: (1) (0,0)x f ', (0,0)y f '存在; (2) (,)x f x y ',(,)y f x y '在(0,0)不连续;(3) (,)f x y 在(0,0)可微.七. (10分)用钢板制造容积为V 的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板? 八. (15分)设01σ<<, 证明111(1)n n n σσ∞=<+∑. 数学分析-2样题(二)一. (各5分,共20分)求下列不定积分与定积分:1.(0)a >2.1172815714x x dx x x++⎰3.10arcsin x dx ⎰4.1000π⎰二. (各5分,共10分)求下列数列与函数极限: 1. 221limnn k nn k→∞=+∑2. 20lim1xt xx x e dt e →-⎰三.(10分)设函数在[,]a b 连续,对任意[,]a b 上的连续函数()g x , ()()0g a g b ==,有()()0baf xg x dx =⎰.证明()0f x = ([,])x a b ∈.四. (15分)定义[0,1]上的函数列 证明{()}n f x 在[0,1]不一致收敛. 五. (10分)求幂级数(1)nn n x∞=+∑的和函数.六. (10分)用εδ-定义证明2(,)(2,1)lim (43)19x y x y →+=.七. (12分)求函数22(2)(2)(0)u ax x by y ab =-- ≠的极值.八. (13分)设正项级数1nn a∞=∑收敛,且1()n n a a n N ++≥ ∈.证明lim 0n n na →∞=.数学分析-3样题(一)一 (10分) 证明方程11(, )0F x zy y zx --++=所确定的隐函数(, )z z x y =满足方程.z z xy z xy x y∂∂+=-∂∂二 (10分) 设n 个正数12, , , n x x x L 之和是a ,求函数u =.三 (14分) 设无穷积分() af x dx +∞⎰收敛,函数()f x 在[, )a +∞单调,证明四 (10分) 求函数1220() ln() F y x y dx =+⎰的导数(0).y >五 (14分) 计算六 (10分) 求半径为a 的球面的面积S . 七 (10分) 求六个平面所围的平行六面体V 的体积I ,其中, , , i i i i a b c h 都是常数,且0 (1, 2, 3).i h i >= 八 (12分) 求22C xdy ydx x y -+⎰Ñ,其中C 是光滑的不通过原点的正向闭曲线.九 (10分) 求dS z ∑⎰⎰,其中∑是球面2222x y z a ++=被平面 (0)z h h a =<<所截的顶部. 数学分析-3样题(二)一 (10分) 求曲面2233, , x u v y u v z u v =+=+=+在点(0, 2)对应曲面上的点的切平面与法线方程.二 (10分) 求在两个曲面2221x xy y z -+-=与221x y +=交线上到原点最近的点. 三 (14分) 设函数()f x 在[1, )+∞单调减少,且lim ()0x f x →+∞=,证明无穷积分1() f x dx +∞⎰与级数1001()n f n =∑同时收敛或同时发散.四 (12分) 证明ln (0).ax bx e e bdx a b x a--+∞-=<<⎰五 (12分) 设函数()f x 在[, ]a A 连续,证明 [, ]x a A ∀∈,有六 (10分) 求椭圆区域221112221221: ()() 1 (0)R a x b y c a x b y c a b a b +++++≤-≠的面积A .七 (10分) 设222()() VF t f xy z dx dy dz =++⎰⎰⎰,其中2222: (0)V x y z t t ++≤≥,f 是连续函数,求'()F t .八 (10分) 应用曲线积分求(2sin )(cos )x y dx x y dy ++的原函数. 九 (12分) 计算 Sxyz dx dy ⎰⎰,其中S 是球面2221x y z ++=在0, 0x y ≥≥部分并取球面外侧.。
数学分析(1)期末模拟考试题(证明部分新)
数列极限类 1. 证明: 112111lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n . 证 因为11211122222+≤⎪⎪⎭⎫ ⎝⎛++++++≤+n n n n n n n n n又11limlim22=+=+∞→∞→n n nn n n n ,由迫敛原理得112111lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n . 2. 设() ,2,121,1111=⎪⎪⎭⎫ ⎝⎛+=>=+n a a a a a a n n n ,证明{}n a 有极限,并求此极限的值. 证 由均值不等式得a a a a a a a a n n n n n =⎥⎦⎤⎢⎣⎡⋅≥⎪⎪⎭⎫ ⎝⎛+=+2212111,即{}n a 有下界. 又0212121=-⎪⎪⎭⎫ ⎝⎛+≤-⎪⎪⎭⎫ ⎝⎛+=-+n n n n n n n n n a a a a a a a a a a ,即{}n a 单调减,于是A a n n =∞→lim 存在,且由极限的保号性可得1≥A .对已知递推公式,令∞→n 和极限的唯一性得⎪⎭⎫⎝⎛+=A a A A 21, 解得a A =(负根舍去),即有a a n n =∞→lim .单调性的证明也可如下完成:11211212221=⎪⎪⎭⎫ ⎝⎛+≤⎪⎪⎭⎫ ⎝⎛+=+n n n n n a a a a a a ,或n n n n n a a a a a =⎪⎪⎭⎫ ⎝⎛+≤+2121. 3. 设() ,2,16,1011=+==+n x x x n n ,试证数列{}n x 存在极限,并求此极限.证 由4166,10121==+==x x x 知, 21x x >.假设1+>k k x x ,则21166+++=+>+=k k k k x x x x ,由归纳法知{}n x 为单调下降数列.又显然有0>n x ,所以{}n x 有下界.由单调有界原理知,数列{}n x 收敛.所以可令a x n n =∞→lim ,对n n x x +=+61两边取极限得0662=--⇒+=a a a a ,解得3=a 或2-=a (舍去),故3lim =∞→n n x .4. 设+N ∈∃N ,当N n >时,有n n b A a ≤≤且()0lim =-∞→n n n a b .求证极限n n a ∞→lim 与n n b ∞→lim 存在且等于A .证 由n n b A a ≤≤得n n n a b a A -≤-≤0,由迫敛原理得A a n n =∞→lim ,再由()0lim =-∞→n n n a b 及A a n n =∞→lim 可得n n b ∞→lim 存在且等于A .5. 设()n n n n n n y x y y x x b y a x +==>=>=++21,,0,01111.求证: (1) {}n x 与{}n y 均有极限; (2) n n n n y x ∞→∞→=lim lim .证 因为()1121++=+≤=n n n n n n y y x y x x ,所以()()n n n n n n y y y y x y =+≤+=+21211,即{}n y 单调减少有下界,而n n n n n n n x x x y x x y y =≥=≥≥++111,即{}n x 单调增加有上界.所以{}n x 与{}n y 都收敛.在()121+=+n n n y y x 两边取极限得n n n n y x ∞→∞→=lim lim .6. 设0>n a ,且1lim1<=+∞→q a a nn n ,求证{}n a 收敛且0lim =∞→n n a .证 因为1lim1<=+∞→q a a nn n ,对给定的+N ∈∃>-=00,021N qε,当0N n >时,有()n n n n n n a a r r q q q a a q q q q a a <⇒<=+=-+<<--⇒-<-+++111121212121, 所以,当0N n >时,有112210a r a r ra a n n n n ---<<<<< ,由迫敛原理得0lim =∞→n n a .闭区间上连续函数的性质7. 证明方程01sin =++x x 在⎪⎭⎫⎝⎛-2,2ππ内至少有一个根. 证 令()1sin ++=x x x f ,则()x f 在⎥⎦⎤⎢⎣⎡-2,2ππ上连续,且22ππ-=⎪⎭⎫ ⎝⎛-f ,222ππ+=⎪⎭⎫ ⎝⎛f ,即022<⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛-ππf f .由根的存在性定理得至少存在一点∈ξ⎪⎭⎫⎝⎛-2,2ππ,使得()0=ξf ,即方程01sin =++x x 在⎪⎭⎫⎝⎛-2,2ππ内至少有一个根.8. 证明方程12=⋅xx 至少有一个小于1的正根.(10分)证 令()12-=xx x f ,则f 在[]1,0上连续且()()()011110<-=⋅-=⋅f f ,由闭区间上连续函数的零点存在定理,()1,0∈∃ξ,使得()12012=⋅⇒=-⋅=ξξξξξf .9. 设函数f 在[)+∞,0上连续,且满足()1lim =+∞→x f x .若f 在[)+∞,0上能取到负值,试证明:(1) [)+∞∈∃,00x ,使得()00=x f ; (2) f 在[)+∞,0上有负的最小值.证 由条件可设[)+∞∈',0x 且()0<'x f ,由()1lim =+∞→x f x ,存在)(0x M M '>>使得()021>>M f ,由根的存在性定理,得()[)+∞⊂'∈∃,0,0M x x ,使得()00=x f .(1)得证. (2) 由()1lim =+∞→x f x ,存在)(0x M M '>>使得当M x ≥时,有()021>>x f .又f 在[]M .0上连续,故[]M ,0∈∃ξ,使得()[](){}()0min ,0<'<=∈x f x f f M x ξ.而当[)+∞∈,M x 时,()021>>x f ,故对[)+∞∈∀,0x 有()≥x f ()[](){}()0min ,0<'<=∈x f x f f M x ξ.所以结论成立.10. 设n 为正整数,n a a a 221,,, 为n 2个实常数,且02<n a .求证多项式函数()n n n n n a x a x a x x P 21212122++++=--在()+∞∞-,内至少有两个零点.证 因为()0022<=n n a P ,又()()+∞=+∞=+∞→-∞→x P x P n x n x 22lim ,lim ,所以存在0>M ,使得()()0,022>>-M P M P n n ,又n P 2在[]0,M -和[]M ,0上都连续,由根的存在性定理,()0,1M -∈∃ξ和()M ,02∈∃ξ,使得()()02212==ξξn n P P ,所以,结论成立.11. 设()xt x x t x t x f sin sin sin sin lim -→⎪⎭⎫⎝⎛=,求()x f 的表达式,并指明()x f 的间断点及其类型.解: ()xx xx x t x x t xt xx t ex x t x t x f sin sin sin sin sin sin sin sin sin sin 1lim sin sin lim =⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛=-→-→,所以0=x 为第一类可去间断点;() ,2,1±±==k k x π为第二类无穷间断点.12. 设()x f 在[]b a ,上连续,且满足()b x f a <<,求证:()b a x ,0∈∃,使得()00x x f =.证明:令()()x x f x F -=,则()x F 在[]b a ,上连续,()()()()()()0<-⋅-=⋅b b f a a f b F a F .由连续函数的零点定理,必存在()b a x ,0∈∃,使得()00=x F ,故()b a x ,0∈∃使得()00x x f =.13. 设()x f 是[]a 2,0上的连续函数,且满足条件()()a f f 20=.证明存在[]a x ,00∈,使得()()a x f x f +=00.证明: 令()()()a x f x f x F +-=,则()x F 在[]a ,0上连续,且()()()a f f F -=00,()()()()()()()02002=-=+⇒-=a f f a F F a f a f a F .若()()00==a F F ,则存在00=x 或a x =0使得()()a x f x f +=00.若()0F 与()a F 都不为零,则()()00<⋅a F F由连续函数的零点定理,必存在()a x ,00∈∃,使得()00=x F ,故()a x ,00∈∃使得()()a x f x f +=00.(注:两个数的和为零,则这两个数要么同时为零,要么,它们异号).14. 设函数()x f 在[)+∞,0上连续,且满足()1lim =+∞→x f x ,若存在()+∞∈,00x ,使得()00<x f ,求证:(1) ()+∞∈∃,0ξ使得()0=ξf ; (2) ()x f 在[)+∞,0上有负的最小值.证明: (1) 因为()1lim =+∞→x f x ,由函数的局部保不等式性,存在充分大的0>M (不妨设0x M >),使得M x >时,有()21>x f ,所以当M x >1时,()x f 在[]10,x x 上连续且()()010<⋅x f x f ,由连续函数的零点存在定理,存在[]()+∞⊂∈∃,0,10x x ξ使得()0=ξf .(2) 又()x f 在[]0,0x 上连续,故由最值定理,存在[]1,0x ∈η,使当[]1,0x x ∈时,()()ηf x f ≥,而()()00<≤x f f η,且[)+∞∈,1x x 时,()()ηf x f >>>021.所以()x f 在[)+∞,0上有负的最小值()ηf .15. 设()nx a x a x a x f n sin 2sin sin 21+++= ,若()x x f sin ≤,求证1221≤+++n na a a .证法1(用导数定义)因为 ()()n n na a a f nx na x a x a x f +++='⇒+++=' 212120cos 2cos 2cos . 又()()0000sin 0=⇒=≤f f ,所以()()()()1sin lim lim 00lim0000=≤=--='→→→xx x x f x f x f f x x x ,所以1221≤+++n na a a .证法2(用重要极限1)()1sin lim sin lim 2sin lim sin lim lim 0002010=≤+++=→→→→→xx x nxa x x a x x a x x f x x n x x x 所以1sin lim 2021=≤+++→xx na a a x n .导数与微分证明16. 设()⎪⎩⎪⎨⎧=≠=.0,0,0,1sin 3x x xx x f 证明: ()x f 在0=x 处可微; ()x f '在0=x 处不可微 证 因为()()()01sin lim 00lim0200==--='→→xx x f x f f x x ,所以函数()x f 在处可导,由可导与可微的关系知()x f 在0=x 处可微;又当0≠x 时, ()xx x x x f 1cos 1sin32-=', 而()()⎪⎭⎫ ⎝⎛-=-'-'→→x x x x f x f x x 1cos 1sin 3lim 00lim00极限不存在,故()x f '在0=x 处不可导, 由可导与可微的关系知()x f '在0=x 处不可微; 17. 设()0x f ''存在,证明: ()()()()0200002limx f hx f h x f h x f h ''=--++→ 证:()()()()()()()()()()()[]()0000000000020000)21lim 212lim 2limx f x f x f h x f h x f h x f h x f h h x f h x f h x f h x f h x f h h h ''=''+''=⎥⎦⎤⎢⎣⎡-'--'+'-+'=-'-+'=--++→→→ 18. 设()x f 为()+∞∞-,内的可导函数,周期为T .求证:()x f '也是以T 为周期的函数.证明:因为()()()()x f T x f x f T x f '=+'⇒=+,所以()x f '也是以T 为周期的函数. 中值定理的应用 19. 设01210=++++n a a a n ,证明多项式()n n x a x a a x f +++= 10在()1,0内至少有一个零点.证 作辅助函数()12101121+++++=n n x a n x a x a x F ,则()x F 在闭区间[]1,0满足罗尔中值定理的三个条件,故存在()1,0∈ξ使得()010=+++='n n a a a F ξξξ ,故()n n x a x a a x f +++= 10在()1,0内至少有一个零点.20. 设g f ,都是可导函数,且()()x g x f '<',证明当a x >时,()()()()a g x g a f x f -<-证 因为()()⇒'<'≤x g x f 0()x g 严格单调增.当a x >时, ()()a g x g >. 又由柯西中值定理得,存在()x a ,∈ξ使得()()()()()()()()()()()()()()()()a g x g a f x f g f a g x g a f x f g f a g x g a f x f -<-⇒<''=--⇒''=--1ξξξξ.21. 对任意的[)+∞∈,0x ,有()x x ≤+1ln ,且等号只在0=x 时成立.证明: 令()()(),001ln =⇒-+=f x x x f 存在()x ,0∈ξ,使得()()x f x f ξ'=,而()()001<⇒<+-='x f f ξξξ,当且仅当0=x 时()00=f ,所以结论成立.22. 设()x f 在[]a ,0上连续,在()a ,0内可导,且满足()()00==a f f ,求证:存在()a ,0∈ξ,使得()()02='+ξξξf f .提示:令()()x f x x F 2=,用罗尔中值定理可证.23. 设函数f 在[]b a ,上连续,在()b a ,内二阶可导,连结点()()a f a A ,与点()()()b f b B ,的直线交曲线()x f y =于点()()c f c M ,,其中b c a <<.证明:存在()b a ,∈ξ,使得()0=''ξf .证 因为B M A ,,三点共线,所以()()()()()()cb c f b f a c a f c f a b a f b f --=--=--. 在[]c a ,及[]b c ,上分别应用中值定理得: 存在()c a ,1∈η,使()()()a c a f c f f --='1η;存在()b c ,2∈η,使()()()cb c f b f f --='2η,即()()21ηηf f '='.由于f 二阶可导,故函数f '在区间[]21,ηη上满足罗尔中值定理的条件,故()()b a ,,21⊂∈∃ηηξ,使得()0=''ξf .24. 设10<<<b a ,证明不等式:abab a b 2arctan arctan -<-. 提示:在[]b a ,上用拉格朗日中值定理,注意将分母放大!25. 设b a <<0,证明不等式aba b a b b a a 1ln ln 222<--<+.26. 设()1,0∈x ,证明不等式()x x x x 2arctan 1ln <++<. 证 将要证的不等式变形为()2arctan 1ln 1<++<xxx ,令()()x x x f arctan 1ln ++=,则()()()x f x f ,1,0,00∈∀=在[]x ,0上满足拉格朗日中值定理的条件,于是()(),01,0⊂∈∃x ξ使得()211110arctan 1ln ξξ+++=-++x x x , 又由x +11与211x +在[]1,0上的连续性与单调性可得11121,111212<+<<+<ξξ,所以 ()2arctan 1ln 1<++<xxx ,故要证的不等式成立.27. 已知()x f 在0=x 的某邻域内有二阶连续导数,且()()()00,00,00≠''≠'≠f f f ,证明:存在唯一的一组实数321,,λλλ,使当0→h 时,()()()()032321f h f h f h f -++λλλ是比2h 高阶的无穷小量.证法1 (洛比达法则)()()()()()()()()()()()()0942123924lim 23322lim032lim3213210321023210f h f h f h f h h f h f h f h f h f h f h f h h h ''++=''+''+'''+'+'=-++→→→λλλλλλλλλλλλ令()()009421321=''++f λλλ,并由要证可知,前三式的分子的极限都应是零,可得到 ⎪⎩⎪⎨⎧=++=++=++0940321321321321λλλλλλλλλ (2) 因为0941321111≠,故(2)有唯一非零解.故结论成立.28. 设函数f 在),(+∞a 内可导,且()x f x +∞→lim 及()x f x '+∞→lim 都存在.证明()0lim ='+∞→x f x .证 当a x >时,由条件知,函数f 在区间[]1,+x x 上连续可导,故()1,+∈∃x x ξ,使得()()()ξf x f x f '=-+1.因为()x f x +∞→lim 及()x f x '+∞→lim 都存在,所以()x f x '+∞→lim =()()()[]()()0lim 1lim 1lim lim =-+=-+='+∞→+∞→+∞→+∞→x f x f x f x f f x x x ξξ.29. 证明;当2021π<<<x x 时,1212tan tan x x x x >证 令()x x x f tan =,则 ()xx xx x xx x x f 2222cos 2sin 21tan sec -=-='. 令()()⎪⎭⎫⎝⎛∈>-='⇒-=2,0,02cos 12sin 21πx x x g x x x g ,所以()x g 在⎪⎭⎫ ⎝⎛2,0π内单调增,则当0>x 时, ()()00=>g x g ,从而()0>'x f ,所以()x f 在⎪⎭⎫⎝⎛2,0π内单调增, 则当2021π<<<x x 时, ()()1212112212tan tan tan tan x x x x x x x x x f x f >⇒>⇒>.用单调性证明不等式30. 证明;当0>x 时, ()xx x +>+1arctan 1ln证 令()()()x x x x f arctan 1ln 1-++=,()()()()2221211;111ln 1x xx x f x x x f +++=''+-++=',当0>x 时,()0>''x f ,所以()x f '在()+∞,0内单调增,故当0>x 时, ()()00='>'f x f 因而得()x f 在()+∞,0内单调增, 故当0>x 时, ()()()xxx f x f +>+⇒=>1arctan 1ln 00. 31. 设e x 31≤≤,证明不等式:()1ln ln 23ln 122≤-≤-x x .32. 设0>x ,证明不等式11≤--xe x。
数学分析期末考试试题
数学分析期末考试试题一、选择题(每题2分,共20分)1. 函数f(x)=x^2-3x+2在区间[1,3]上的最大值是:A. 0B. 2C. 4D. 62. 以下哪个选项不是闭区间[a, b]上连续函数的性质?A. 有界性B. 保号性C. 介值性D. 可微性3. 函数f(x)=sin(x)在x=0处的导数是:A. 0B. 1C. -1D. 24. 函数f(x)=x^3+2x^2-3x+1在x=-1处的泰勒展开式(展开到x^2项)是:A. -1+2x-x^2B. 1-2x+x^2C. -1+2x+x^2D. 1+2x-x^25. 以下哪个级数是发散的?A. 1 - 1/2 + 1/3 - 1/4 + ...B. 1^2 + 1/2^2 + 1/3^2 + ...C. 1 - 1/2 + 1/4 - 1/8 + ...D. 1 - 1/2^2 + 1/3^2 - 1/4^2 + ...6. 函数f(x)=x^2在x=1处的高阶导数f^(n)(x)(n≥2)是:A. 0B. 1C. 2D. 47. 函数f(x)=e^x的原函数是:A. e^x + CB. ln(x) + CC. sin(e^x) + CD. cos(e^x) + C8. 函数f(x)=x^2在[0,1]上的定积分是:A. 1/3B. 1/2C. 1D. 2/39. 函数f(x)=|x|在x=0处的导数是:A. 1B. -1C. 0D. 不存在10. 以下哪个函数是周期函数?A. f(x)=x^2B. f(x)=e^xC. f(x)=sin(x)D. f(x)=ln(x)二、填空题(每题2分,共10分)11. 若函数f(x)=x^3-6x^2+11x-6在x=2处取得极小值,则f'(2)=_________。
12. 若函数f(x)=x^3+bx^2+cx+d在x=-1处取得最大值,则b=_________。
13. 函数f(x)=ln(x)的原函数是_________。
《数学分析1》期末考试试卷2
《数学分析1》期末考试试卷(闭卷 120分钟)一.判断题(每小题2分,共20分)1、max SupA A SupA A ∈⇔=2、设A B ,为非空数集, A B inf A inf B ⊂≤,则.3、若()f x 无下界,则存在{}()n x D f ⊂,使得lim ()n n f x →∞=-∞4、若0lim ()x x f x →存在的充要条件是当00()()0x x y x f x f y →→-→,时,5、若单调数列{}n x 有收敛子列,则{}n x 收敛6、若()()f x g x ,在0x x =均不连续,则()()f x g x ±在0x 也不连续7、()f x 在0x x =可导,()g x 在0x x =不可导,则()()f x g x ±在0x x =不可导 8、21lim sin0x x x →= 9、若0()0f x '=,则0x 一定是()f x 的极值点10、()f x 在[)a +∞,上一致连续,则2()f x 在[)a +∞,上也一致连续二.求极限(每题5分,共20分)1、lim xx nx→∞(1+)2、0(1)1lim(0)ln(1)x x x αα→+-≠+ 3、2lim (arctan )x x x π→+∞ 4、22011lim()sin x x x→-三.计算题(每题5分,共20分)1、用导数定义求'2、y dy =3、ln(cos dy y x dx=+,求 4、求()(ln(1))n x -四.证明题(每题5分,共20分)1、设0lim ()0x f x a →=≠.证明:011lim()x f x a→= 2、lim 0n n x →∞=,{}n y 有界,证明lim()0n n n x y →∞=.3、证明:()ln f x x =在[)1∞,+内一致收敛4、设()()x x f g ,是凸函数,求证: ()()x x f g +也是凸函数五.确定21()1x f x x +=+的单调区间.(5分)六.()f x 在[,]a b 上连续,且[][],,()0,()x a b f x f x ∀∈≠则在a,b 上不变号(5分) 七.设对,x x R '''∀∈,()()()f x x f x f x ''''''+=+且()f x 在0x =连续,证明:()f x 在R 内一致连续.(5分)八.求证:f在区间(,)a b 内可微,(0)(0)f a f b +=-,则(,)a b ξ∃∈.()0f ξ'=使得 .(5分)。
数学分析期末试题A答案doc
数学分析期末试题A答案doc2024年数学分析期末试题A及答案一、选择题1、以下哪个函数在 x = 0 处连续? A. $f(x) = x^2$ B. $f(x) = \frac{1}{x}$ C. $f(x) = sin x$ D. $f(x) = e^x$ 答案:D解析:在 x = 0 处,只有选项 D 中的函数 e^x 是连续的。
因此,答案为 D。
2、设 $f(x) = x^2$,则 $f(3x - 2) =$ __________。
A. $x^2$ B. $(3x - 2)^2$ C. $(3x - 2)^3$ D. $(3x - 2)^2 + 1$ 答案:B解析:将 $x$ 替换为 $3x - 2$,得 $f(3x - 2) = (3x - 2)^2$。
因此,答案为 B。
3、下列等式中,错误的是: A. $\int_{0}^{1}x^2dx =\frac{1}{3}x^3|{0}^{1}$ B. $\int{0}^{\pi}\sin xdx = \cosx|{0}^{\pi}$ C. $\int{0}^{2\pi}\sin xdx = 0$ D.$\int_{0}^{1}(2x + 1)dx = (x^2 + x)|_{0}^{1}$ 答案:A解析:等式两边取极限,只有 A 选项等式两边不相等,因此 A 选项是错误的。
4、下列哪个导数是常数函数? A. $y = x^3$ B. $y = \sin x$ C. $y = e^x$ D. $y = log_a(x)$ 答案:C解析:常数函数的导数为零。
在选项中,只有 C 中的函数 e^x 的导数为常数函数,其导数为 $e^x$。
因此,答案为 C。
高一生物期末考试试题及答案doc高一生物期末考试试题及答案doc高一生物期末考试是一次重要的学业水平测试,旨在考察学生在本学期学习生物课程的效果。
以下是本次考试的部分试题及其答案,供大家参考。
一、选择题1、下列哪一种生物不是由细胞构成的? A. 细菌 B. 植物 C. 动物D. 病毒答案:D2、哪一个器官属于消化系统? A. 口腔 B. 食道 C. 胃 D. 大肠答案:C3、在光合作用中,哪一个物质是植物从空气中吸收的? A. 氧气 B. 二氧化碳 C. 葡萄糖 D. 水答案:B二、填空题1、病毒是一种生物,但它不能 _______ 和保持生命活动,必须_______ 在细胞内。
最新数学分析1-期末考试试卷(A卷)
数学分析1 期末考试试卷(A 卷)一、填空题(本题共5个小题,每小题3分,满分15分)1、设 82lim =⎪⎭⎫⎝⎛-+∞→xx a x a x , 则 =a 。
2、设函数)2(1)(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点是 。
3、设)1ln(2x x y ++=,则=dy 。
4、设)(x f 是连续函数,且dt t f x x f )(2)(10⎰+=,则=)(x f 。
5、xdx arctan 1⎰= 。
二、单项选择题(本题共5个小题,每小题3分,满分15分)1、设数列n x 与数列n y 满足0lim =∞→n n n y x ,则下列断言正确的是( )。
(A )若n x 发散,则n y 必发散。
(B )若n x 无界,则n y 必无界。
(C )若n x 有界,则n y 必为无穷小。
(D )若nx 1为无穷小,则n y 必为无穷小。
2、设函数x x x f =)(,则)0(f '为( )。
(A ) 1。
(B )不存在。
(C ) 0。
(D ) -1。
3、若),()()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则)(x f 在),0(+∞内有( )。
(A )0)(,0)(<''>'x f x f 。
(B )0)(,0)(>''>'x f x f 。
(C )0)(,0)(<''<'x f x f 。
(D )0)(,0)(>''<'x f x f 。
4、设)(x f 是连续函数,且⎰-=dt t f x F x e x)()(,则)(x F '等于( )。
(A )())(x f e f e x x ----。
数学分析期末试题(值得下载)
数学分析考试题一、 判断题(每小题2分,共20分)1.开域是非空连通开集,闭域是非空连通闭集. ( )2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( )3.连续函数的全增量等于偏增量之和. ( )4.xy y x f =),(在原点不可微. ( )5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( )6.dy y x xyy )1(sin 21+⎰+∞在)1,0(内不一致收敛. ( ) 7.平面图形都是可求面积的. ( ) 8.学过的各种积分都可以以一种统一的形式来定义. ( )9.第二型曲面积分也有与之相对应的“积分中值定理”. ( ) 10.二重积分定义中分割T 的细度T 不能用}{max 1i ni σ∆≤≤来代替. ( )二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy +=,则其全微分=dz .2.设32),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度=)(0P grad .3.设L 为沿抛物线22x y =,从)0,0(O 到)2,1(B 的一段,则⎰=+Lydx xdy .4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于.5.曲面273222=-+z y x 在点(3,1,1)处的法线方程为 . 三、计算题(每小题5分,共20分) 1.求极限xy y x y x )(lim 22)0,0(),(+→.2. 设),(y x z z =是由方程ze z y x =++所确定的隐函数,求xy z .3.设]1,0[]1,0[⨯=A ,求⎰⎰++=Ay x ydxdyI 2322)1(. 4.计算抛物线)0()(2>=+a axy x 与x 轴所围的面积.四、(10分)密度22),,(y x z y x +=ρ的物体V 由曲面222y x z +=与2=z 所围成,求该物体关于z 轴的转动惯量. 五、(10分)求第二类曲面积分⎰⎰++Sdxdy z dzdx y dydz x222其中S 是球面2222)()()(R c z b y a x =-+-+-并取外侧为正向. 六、(第1小题8分,第2小题7分,共15分).1.求曲线6222=++z y x ,22y x z +=在点(1,1,2)处的切线方程和法平面方程. 2.证明:22114π=+⎰+∞dx x . 七、(10分)应用积分号下的积分法,求积分)0(ln )1cos(ln 10>>-⎰a b dx xx x x ab .第三学期数学分析参考答案及评分标准一、 判断题(每小题2分,共20分)1.开域是非空连通开集,闭域是非空连通闭集. (⨯) 2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( √ ) 3.连续函数的全增量等于偏增量之和. ( ⨯) 4.xy y x f =),(在原点不可微. ( √ )5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( ⨯)6.dy y x xyy )1(sin 21+⎰+∞在)1,0(内不一致收敛. ( √ )7.平面图形都是可求面积的. ( ⨯) 8.学过的各种积分都可以以一种统一的形式来定义. ( √ )9.第二型曲面积分也有与之相对应的“积分中值定理”. (⨯)10.二重积分定义中分割T 的细度T 不能用}{max 1i ni σ∆≤≤来代替. ( √ ) 二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy +=,则其全微分=dzdy y x y x x e dx y x y x y e xy xy )]cos()sin([)]cos()sin([+++++++.2.设32),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度=)(0P grad (1,-3,-3).3.设L 为沿抛物线22x y =,从)0,0(O 到)2,1(B 的一段,则⎰=+Lydx xdy 2.4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于b a 532. 5.曲面273222=-+z y x 在点(3,1,1)处的法线方程为111193--=-=-z y x . 三、计算题(每小题5分,共20分) 1.解:先求其对数的极限)ln(lim22)0,0(),(y x xy y x +→.由于)0,(0ln )ln(2222222+→=+→≤+r r y x r r y x xy 令,所以)ln(lim22)0,0(),(y x xy y x +→=0,故xy y x y x )(lim 22)0,0(),(+→=1.2.解:方程ze z y x =++两边对x ,y 求偏导数,得x z e x z z ∂∂=∂∂+1yze y z z ∂∂=∂∂+1 解得 11-=∂∂=∂∂z e y z x z 32)1()1()11(-=∂∂⋅--=-∂∂=zzz z z xy e e y z e e e y z 。
高数期末试题
2 1
f ( x)dx 1 , 证明在(0,3)内存在
, 使 f ( ) f ( ) 0.
九 . (8 分) 设 f ( x) 有连续导数 , 且 lim
x 0
f ( x) f ( x) 2, ex 1
f (0) 0, 证明 x 0 是 f ( x) 的
x 0
____________ .
2.
I1
ln 2 x dx 与 I 2 x
dx 中 收 敛 的 为 _____________, 其 值 等 于 x ln 3 x
___________. 3.
1
1
3 1 x 2 dx _____________,
1
1
x 1 x 2 dx _____________ .
2x 1 x2
( x 1) 是否恒为常数.
y 1 dy d 2 y 2 2 六. (9 分) 设 arctan ln( x y ) 确定函数 y y ( x) , 求 , 2 . x 2 dx dx
信息与电子二学部学生会学习部整理
七. (10 分) 求下列反常积分. (1)
1
二. (9 分) 求极限 lim(cos x x sin x) .
x2 x 0
三. (9 分) 求不定积分 ( x arctan x
1 x e )dx . x2
1
四. (9 分) 求 f ( x) 3 ( x 2 2 x) 2 在区间 [1,3] 上的最大值和最小值.
五. (8 分) 判断 f ( x) arctan x arcsin
0
x
是 f ( x) 的极值点, 并判断 f (0) 是极大值还是极小值.
华东师范大学大一数学分析期末考试题
xx0 g(x)
xx0 g (x)
xx0 g(x)
A、必要条件 B、充分条件 C、充分必要条件
三、计算题(每小题 6 分,共 30 分)
D、既非充分也非必要条件
14、 lim (1 a)(1 a2 )(1 a2n ),(| a | 1) n
15、求函数 y 2x 的单调区间 1 x2
16、 lim xln(1 x) ln x x
学院: 数学与计算机科学学院 适用班级:
题号 一 二 三 四 五 六 七 八 九
分数
总分
评卷人
一、填空题(每空 2 分,共 20 分)
1、函数 f (x) ln 1 x 的定义域是 1 x
2、 lim sin 5x x0 3x
第
1
3、 lim
n
1n
4、若 f 可导,且 y f (2x), 则 dy =
17、已知 y ln(arccos 1 ) 求 y x
18、求 d
x 1
x2
四、证明题(每小题 10 分,共 20 分)
19、已知数列xn ,它由递推公式
xn1
1 2
(xn
a xn
) 确定, a
0 ,且 x1 可取任意正实数,
证明:数列
x
n
收敛,并求
lim
n
xn
20、 ex 1 x , (x 0)
五、综合题(15 分)
21、并作图
学号
班级
专业
C、 f (x) 在 x 0的左右极限存在但不相等 D、 f (x) 在 x 0的左右极限不存在
页
n n 1
5、设 f (x) 在 x0 点可导,且在 x0 点取极大值,则 f (x0 ) =
北京理工大学2015工科数学分析期末试题(答案)
课程编号:MTH17003 北京理工大学2015-2016学年第一学期工科数学分析期末试题(A 卷)评分标准一. 填空题(每小题4分, 共20分) 1、1-; 2、23、24π4、2y x π=-5、11(,())x f x ,(0,(0))f二、解: (1)当1x ≠时,222222(1)22()1(1)x x xf x x x +-⋅'=++ 2222212(1)1|1|(1)x x x x -=+⋅+-+ ………………(2分) 当1x >时,2222212(1)()011(1)x f x x x x -'=+⋅=+-+, ………………(3分) 当01x <<时,22222212(1)4()11(1)1x f x x x x x -'=+⋅=+-++, ………………(4分) 又 (1)0f +'=,214(1)lim 21x f x--→'==+,所以(1)f '不存在。
………………(6分) (2)由(1)知,当1≥x 时,()0f x '=,所以()f x 恒等于常数,………………(7分)又2(1)2arctan1arcsin11f =++π=, 所以当1≥x 时,22()2arctan arcsin =1xf x x xπ=++。
………………(8分)三. 解:当10x -≤<时,1()()xF x f t dt -=⎰1(1)xt dt -=+⎰21(1)2x =+, ……………(2分)当01x ≤≤时,1()()x F x f t dt -=⎰01()()xf t dt f t dt -=+⎰⎰10(1)xt dt tdt -=++⎰⎰2122x =+ ………………(6分)即 221(1)102()10122x x F x x x ⎧+-≤<⎪⎪=⎨⎪+≤≤⎪⎩,又01lim ()lim ()2x x F x F x +-→→==,故()F x 在[1,1]-上连续。
陕西师范大一数学分析期末考试题
A、N 是唯一的 C、前 N 项有 | x n − a |≥ ε
B、N 是 ε 的函数 D、必有对任何 N, | x n − a |< ε
学院: 适用班级: 学院: 数学与计算机科学学院 适用班级: 一 二 三 四 五 六 七 八 九 总分
11、当 x → 0 时, sec x − 1 是 A、高阶无穷小 12、 lim n + 3
π π , 上满足罗尔定理的点 ξ = 4 4
,凸性区间是 17、证明不等式:当 x > 0 时, 1 + x ln( x + 1 + x 2 ) > 1 + x 2 18、若 f (x ) 在区间 I 上存在有界导数,即 ∀x ∈ I , | f ′( x ) |≤ M ,则 f ′(x ) 在 I 上一致连续。
B、 1 −
A、 1 −
1 cos y 2
1 cos x 2
C、
2 2 − cos y
D、
2 2 − cos x
8、曲线 y = ln(e −
1 ) 具有 x
B、一条斜渐近线 C、两条垂直渐近线 D、两条斜渐近线
A、一条垂直渐近线 9、 lim
2x = x →0 | x |
B、-2 C、0 D、不存在
A、2
iiiiii4lncosxy?在???????44??上满足罗尔定理的点?5曲线xxy12??的拐点是凸性区间是6曲线xxy1??与x轴交点处的切线方程为二单项选择题每小题3分共15分7设xxysin21??则?dydxaycos211?bxcos211?cycos22?dxcos22?8曲线1lnxey??具有a一条垂直渐近线b一条斜渐近线c两条垂直渐近线d两条斜渐近线9??2lim0xxxa2b2c0d不存在10在数列极限axnn???lim的n??定义中an是唯一的bn是?的函数c前n项有???axnd必有对任何n???axn11当0?x时sec1x?是22x的a高阶无穷小b低阶无穷小c同阶无穷小c等价无穷小三计算题每小题6分共30分12nnxn3lim3???13xxxarctan2lim???141??xxy求y?1521arcsinxy??求dy16xxyarctan?求yd2四证明题每小题10分共20分17证明不等式
数学分析1期末考试试卷A卷
数学分析1 期末考试试卷(A 卷)一、填空题(本题共5个小题,每小题3分,满分15分)1、设 82lim =⎪⎭⎫⎝⎛-+∞→xx a x a x , 则 =a 。
2、设函数)2(1)(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点是 。
3、设)1ln(2x x y ++=,则=dy 。
4、设)(x f 是连续函数,且dt t f x x f )(2)(10⎰+=,则=)(x f 。
5、xdx arctan 1⎰= 。
二、单项选择题(本题共5个小题,每小题3分,满分15分)1、设数列n x 与数列n y 满足0lim =∞→n n n y x ,则下列断言正确的是( )。
(A )若n x 发散,则n y 必发散。
(B )若n x 无界,则n y 必无界。
(C )若n x 有界,则n y 必为无穷小。
(D )若nx 1为无穷小,则n y 必为无穷小。
2、设函数x x x f =)(,则)0(f '为( )。
(A ) 1。
(B )不存在。
(C ) 0。
(D ) -1。
3、若),()()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则)(x f 在),0(+∞内有( )。
(A )0)(,0)(<''>'x f x f 。
(B )0)(,0)(>''>'x f x f 。
(C )0)(,0)(<''<'x f x f 。
(D )0)(,0)(>''<'x f x f 。
4、设)(x f 是连续函数,且⎰-=dt t f x F x e x)()(,则)(x F '等于( )。
(A )())(x f e f e x x ----。
华南理工大学期末考试《工科数学分析》上-试卷(A)(附解答) (1)(word文档良心出品)
《工科数学分析》2014—2015学年第一学期期末考试试卷诚信应考,考试作弊将带来严重后果!华南理工大学本科生期末考试 《工科数学分析》2014—2015学年第一学期期末考试试卷(A )卷注意事项:1. 开考前请将密封线内各项信息填写清楚;2. 所有答案请直接答在试卷上(或答题纸上);3.考试形式:闭卷; 4. 本试卷共 5个 大题,满分100分, 考试时间120分钟。
《工科数学分析》2014—2015学年第一学期期末考试试卷一、填空题(每小题3分,共15分) 1. 函数()1212x xe ef x e e+=-的间断点及其类型为0x =是跳跃间断点,12x =是无穷间断点;2. 已知函数()y y x =由方程yxx y =所确定,则曲线()y y x =在点()1,1处的切《工科数学分析》2014—2015学年第一学期期末考试试卷线方程为0x y -= ;3. 设xy xe =,则()n d y =()xnx n e dx + ;4. 220x t d e dt dx -⎛⎫= ⎪⎝⎭⎰42x xe - ;5. 反常积分()22ln dx x x +∞=⎰1ln 2.二、计算下列各题(每小题8分,共16分) 1. 求极限()11limxx x ex→+-《工科数学分析》2014—2015学年第一学期期末考试试卷解:()()()()()()()11ln 101ln 12001limlim1ln 1lim 41ln 1lim 6282x xxx x x x x x x eeexxx x x e x x x e x e +→→+→→+--=-++=⋅+-+==-分分分或()()()1ln 1110020011lim lim ln 1lim 4111lim 6282x x x x x x x e e x e x xx x e x x e x e +-→→→→⎡⎤-⎢⎥+-⎣⎦=+-=-+==-分分分2.计算定积分21dxx ⎰ 解:2321434tan,sec,cos4sin16sin t83x t dx tdttdttππππ===⎰⎰令则分=-分分三、解答下列各题(每小题10分,共40分)1.设()1110,1,2,,nx x n+===试证明数列{}n x收敛,并求lim.nnx→∞证明:(1)()1110343,3,1,2,nx x x n=≥=≥≥=,用归纳法可证,即数列{}nx有下界;3分(2)1320,n n nx xx x x+-+-==<即,数列{}n x 单调减少。
数学分析B1期末考试题及答案
数学分析B1期末考试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是实数集的子集?A. 有理数集B. 整数集C. 无理数集D. 复数集2. 若函数f(x)在点x=a处连续,则下列哪个选项不正确?A. 极限lim(x→a) f(x) = f(a)B. f(a)存在C. f(x)在x=a的邻域内不一定有界D. f(x)在x=a的邻域内不一定连续3. 函数f(x)=x^2在区间[-1,1]上的最大值是:A. 0B. 1C. 4D. 不存在4. 若f(x)=sin(x),x∈[0,2π],则f(x)的原函数F(x)是:A. -cos(x) + CB. cos(x) + CC. -sin(x) + CD. sin(x) + C5. 函数f(x)=ln(x)的导数是:A. 1/xB. xC. ln(x)D. 1/ln(x)答案:1.D 2.C 3.B 4.A 5.A二、填空题(每题2分,共10分)6. 若函数f(x)在[a,b]上连续,则______存在。
7. 函数f(x)=x^3-3x^2+2的一阶导数为______。
8. 函数f(x)=1/x在点x=1处的导数为______。
9. 若f(x)=x^2+2x+1,则f'(1)=______。
10. 函数f(x)=sin(x)+cos(x)的周期为______。
答案:6. 原函数 7. 3x^2-6x 8. -1 9. 5 10. 2π三、简答题(每题10分,共20分)11. 证明:若函数f(x)在区间[a,b]上连续,并且f(a)f(b)<0,则根据介值定理,f(x)在(a,b)内至少有一个零点。
12. 解释什么是泰勒公式,并给出e^x的泰勒公式展开。
答案:11. 证明:由于f(x)在[a,b]上连续,根据连续函数的性质,f(x)在[a,b]上是闭区间上的有界函数。
设M=f(a),m=f(b),因为Mm<0,根据介值定理,存在c∈(a,b)使得f(c)=0,即f(x)在(a,b)内至少有一个零点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东师范大学2007-2008学年第一学期期末考试试题
(时间:120分钟 共100分)
课程编号: 4081101 课程名称:数学分析 适用年级: 2007 学制: 四 适用专业:数学与信息试题类别: A (A/B/C)
2分,共20分)
1. 数列{}n a 收敛的充要条件是数列{}n a 有界. ( )
2. 若0N ∃>, 当n N >时有n n n a b c ≤≤, 且lim lim n n n n a c →∞
→∞
≠, 则lim n n b →∞
不存在.
( )
3. 若0
lim ()lim ()x x x x f x g x →→>, 则存在 00(;)U x δ使当00(;)x U x δ∈时,有()()f x g x >.
( )
4. ()f x 为0x x →时的无穷大量的充分必要条件是当00(;)x U x δ∈时,()f x 为无界函数.
( )
5. 0x =为函数
sin x
x
的第一类间断点. ( ) 6. 函数()f x 在[,]a b 上的最值点必为极值点.
( )
7. 函数21,0,()0,
0x e x f x x -⎧⎪
≠=⎨⎪=⎩在0x =处可导.
( )
8. 若|()|f x 在[,]a b 上连续, 则()f x 在[,]a b 上连续.
( )
9. 设f 为区间I 上严格凸函数. 若0x I ∈为f 的极小值点,则0x 为f 在I 上唯一的极小值点. ( )
10. 任一实系数奇次方程至少有两个实根. ( )
二、
填空题(本题共8小题,每空2分,共20分)
1. 0
lim x
x x +
→=_________________. 2. 设2
,sin 2x
u e v x ==,则v d u ⎛⎫
=
⎪⎝⎭
__________________. 3. 设f 为可导函数,(())x y f f e =, 则 y '=_______________. 4. 已知3(1)f x x +=, 则 ()f x ''=_______________. 5. 设 ()sin ln f x x x =, 则()f π'=_______________ .
6. 设21,0,
(),0;
x x f x ax b x ⎧+≥=⎨+<⎩在0x =处可导, 则a =____________ , b =___________________.
7. 曲线arctan y x =在(0,0)处的切线方程为_____ ___,法线方程为 .
8. 设()f x 在0()U x 内1n +阶可导,则()f x 在0x 处带拉格朗日型余项的泰勒公式为_ __ _ 三、
计算题(本题共5小题,第1—4小题每题5分,第5小题10分,共30分) 1. 设3x
y x e =, 试求(6)
y
.
2. 试求由摆线方程(sin ),
(1cos )x a t t y a t =-⎧⎨=-⎩
所确定的函数()y f x =的二阶导数.
3. 试求2
()ln(1)f x x =+到6
x 项的带佩亚诺型余项的麦克劳林公式. 4. 试求极限 0
lim x →1
11x x e ⎛⎫- ⎪-⎝⎭
. 5. 试求函数3
2
|2912|y x x x =-+在[1,3]-上的最值和极值.
四、
证明题(本题共3小题,每小题10分, 共30分).
1. 证明不等式2
1(0)2
x
x e x x >++
>
2. 设f 为(,)-∞+∞上的连续函数,对所有,()0x f x >,且l im x →+∞
()f x l i m x →-∞
=()0f x =,证明()
f x 必能取到最大值.
3. 若函数()f x 在[0,1]上二阶可导, 且(0)0f =,(1)1f =,(0)(1)0f f ''==,则存在(0,1)c ∈使得|()|2f c ''≥.。