2021年人教版八年级数学下册第十六章《二次根式》公开课课件3.ppt

合集下载

人教版数学八下16.3二次根式的加减 课时3新课件

人教版数学八下16.3二次根式的加减 课时3新课件
子、分母都化成质因数(或最简因式)的幂的乘积的
形式.
移:把能开得尽方的因数(或因式)用它的算术平方
根代替,移到根号外,当把根号内的分母中的因式移
到根号外时,要注意依旧写在分母的位置上.
化:化去被开方数中的分母.
约:约分,化为最简二次根式.
新知探究 跟踪训练
1.判断: 下列各式中,哪些是最简二次根式?
3

5
(1) 35;
(2)
(3) 3 + 1;
(4) 16.
2.化简: 将下列各式化简为最简二次根式.
1
(2)1 3;
(1) 3 ,
解:(1)∵3 ≥ 0 ,
∴ a≥0.
∴原式 = 2 ∙ = .
(2)原式 =
4
3
=
4× 3
3× 3
=
2 3
.
3
2.化简: 将下列各式化简为最简二次根式.
4
(1) 32 ;
(2) 40 ; (3) 1.5 ; (4) .
3
解:(1) 32 = 16 × 2 = 16 × 2 = 4 2;
(2)
40 = 4 × 10 = 2 10;
(3)
1.5 =
(4)
4 4
=
3 3
3
3
3× 2
6
=
=
=
;
2
2
2
2× 2
=
4× 3
3× 3
=
2 3
.
3
3.设长方形的面积为 S,相邻两边的长分别为 a,b. 已
B. 12
12=2 3
C. 2
2=||
D.
5
3

人教版八年级下册16.1.1《二次根式》二次根式的概念课件

人教版八年级下册16.1.1《二次根式》二次根式的概念课件

m m2
2 4
有意义,求m的取值范围.
解:由题意得m-2≥0且m2-4≠0,
解得m≥2且m≠-2,m≠2,
∴m>2.
(2)无论x取任何实数,代数式 x2 6xm都有意 义,求m的取值范围.
解:由题意得x2+6x+m≥0, 即(x+3)2+m-9≥0. ∵(x+3)2≥0, ∴m-9≥0,即m≥9.
二5的次算根术式平的方被根开是方_数__非_.负
2.(1)若式子 在实数范围内有意义,则x的取值 二一((12))次般若(3根 地)二(5式,次)(的如7根)实果均式质一不是个是表数二示的次一平有根个方意式非等义. 负于,数a求,(m那的或么取式x 这值)个范1的数围算叫.术做平a方的根平.方根.
即求(二x+次3根)2式+m中-字9≥母0.的取值范围的基本依据2:
()
一定是二次根式的有
()
解:由题意得x2+6x+m≥0,
3个
B.
解:∵被开方数需大于或等于零,
16.1.1 二次根式的概念 4 已知y=
,求3x+2y的算术平方根.
解:∵被开方数需大于或等于零,
一般地,我们把形如
的式子叫做二次根式.
问题2 这些式子有什么共同特征?
注意:a可以是数,也可以是式.
x>2 B.
一定是二次根式的有 (本2)节无课论主x取要任学何习实了数二,次代根数式式的定义及被开方数都的有取意值义范,围求.m的取值范围.
(若2)式无子论为x取分任式何,实应数同,时代考数虑式分母不为零. 都有意义,求m的取值范围.
一(2)个无正论数x取有任两何个实平数方,根代;数式
都有意义,求m的取值范围.

最新人教版八年级数学下册第16章二次根式全套课件PPT(完美版)

最新人教版八年级数学下册第16章二次根式全套课件PPT(完美版)

A≥0且B≠0.
A 1有意义的条件:
B
巩固练习
2. x取何值时,下列二次根式有意义?
(1) x 1
x≥1
(4) 1 x x>0
(2) 3x
x≤0
(5) x3
x≥0
(3) 4x2
x为全体实数
(6) 1 x2 x≠0
(7)
x 1 x3

(
x

2)0
(8)
x 2 (9) x2 1
x
∴当x=1时, x2 2x 1 在实数范围内有意义. (2)∵无论x为任何实数,-x2-2x-3=-(x+1)2-2<0, ∴无论x为任何实数, x2 2x 3 在实数范围内都无意义.
归纳小结:被开方数是多项式时,需要对组成多项式的项 进行恰当分组凑成含完全平方的形式,再进行分析讨论.
探究新知
归纳总结
一般地,我们把形如 a (a 0) 的式子叫做二 次根式. “ ”称为二次根号.
注意:a可以是数,也可以是式.
两个必备特征
①外貌特征:含有“ ” ②内在特征:被开方数a ≥0
探究新知
素养考点 1 利用二次根式的定义识别二次根式
例1 下列各式中,哪些是二次根式?哪些不是?
(1) 14 ; (2)81; (3) - 0.8 ;(4)-3x (x 0)
(1) 32

(2) -12 不是
(3)3 8
(4)4 a2
不是
不是
(5) - m (m 0) 是
(8) - x2 1
不是
(6) 2a 1 不是
(9)4 2

(7) a2 2a 3

1

八年级数学二次根式课件-二次根式

八年级数学二次根式课件-二次根式

(a≥0). =ቊ-a(aa≥(a<0),0).
(3)双重非负性: a ≥ 0(a≥0).
数学
八年级 下册
人教版
第一单元
1.(1)一个数的平方是16,则这个数是 ±. 4
(2)7的平方根是 ± 7

13的算术平方根是 13
.
2.下列各式中是二次根式的是( C )
3
A. 8
B. -1 C. 3
D. x(x<0)
数学
八年级 下册
人教版
第一单元
2.下列式子中不是代数式的为( B )
A. x+2(x≥-2) B.5a+8=7
C.2 020
D.3ba+-21(a≠13)
数学
八年级 下册
人教版
第一单元
3.若x= y-3- 6-2y+2,则|x-y|的值是( B )
A.5
B.1
C.-1 D.2
数学
八年级 下册
人教版
∴y=2 022,
∴xy

2 2
002221.
数学
八年级 下册
拓展题:已知 a-17+ 17-a=b+8. (1)求a和b的值; (2)求a2-b2的平方根. 解:(1)由ቊa1-7-17a≥≥00,,解得a=17, ∴b=-8, ∴a=17,b=-8; (2)a2-b2=172-82=225, ∵225的平方根是±15, ∴a2-b2的平方根是±15.
解:∵0<x<2,∴x-2<0,x-3<0. ∴ x2-4x+4+ x-3 =2-x+3-x=5-2x.
数学
八年级 下册
人教版
第一单元
【变式2】已知y= x-2+ 2-x+ 38,求 2xy的值.
6 2

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品教学课件课件

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品教学课件课件

36
6
(2)
=(
7
49
),
4
16
(
);
5
25
6
36
(
);
49
7
a
a

b
b
活动探究
二次根式的除法法则:二次根式相除,把被开方数相除,根指数不变.
a
a

( a 0,b>0)
b
b
典例精讲
例1 计算:
(2) 3
(1) 24 ;
3
解: (1)
24
2
24
3
3
3
(2)

2
1

18
8 2 2
1 = 3 1 = 3 18
= 27 =3 3
2
18
2
18
活动探究
探究二:二次根式除法法则的逆运用

a
b

aห้องสมุดไป่ตู้
( a 0,b>0) 反过来,就得到
b
a
a

( a 0,b>0)
b
b
典例精讲
例2 化简:
(1)
3
100
解:(1)
75
27
(2)
3
=
100
75
(2) =
27
3
100
=
a
a

( a 0,b>0)
解:原式=
− × −
= ×
解:原式= − × −
= ×××
=
× ×
=
4、计算: ∙ −
原式= ∙

人教版八年级下册16.3《二次根式的加减》课件(共33张PPT)

人教版八年级下册16.3《二次根式的加减》课件(共33张PPT)

合作探究
问题2
形成知识
怎样计算
8 + 18

如果看不出 化,先看算式 3
3 2-
8 + 18 22
能否化简,我们不妨把问题简
能否化简.
2
2 =( 3 - 1 ) 2 = 2
用分配 律合并
整式 加减
你能得到这样的两个二次根式加减的方法吗? 将同类二次根式用分配律合并.
合作探究
算式
形成知识
8 + 1 8 与算式 3 22
合作探究 形成知识
例1
( ( 1)
计算:
8+ 3)
8+ 48 +
6 ;
3) 18 = 4
(4 ( 2)
6 = 8
2 -3
6 +
6) 2
3 6
2 .
解: ( 1) (
=
3+3
2;
思考:(1)中,每一步的依据是什么? 第一步的依据是:分配律或多项式乘单项式; 第二步的依据是:二次根式乘法法则; 第三步的依据是:二次根式化简.
( 48 +
2 0 )( 12 -
5 )= 4
3+2
5-2
3+
5 =2
3 +3 5
化成最简 二次根式
合并被开方 数相同的二 次根式
自主学习 复习引入
思考:二次根式加减,分为几个步骤?
二次根式的加减主要归纳为两个步骤: 第一步,先将二次根式化成最简二次根式; 第二步,再将被开方数相同的二次根式进行合并.
的结果是
B.
20 3
330 2 3
30 3
3 C.

人教版八年级数学下册第十六章16.2二次根的乘除课件(3课时,共61张PPT)

人教版八年级数学下册第十六章16.2二次根的乘除课件(3课时,共61张PPT)
求证: a b a b a 0,b 0.
证明:根据积的乘方法则,有 ( a b)2 ( a)2 ( b)2 ab.
∴ a b 就是ab算术平方根.
又∵ ab 表示ab算术平方根, ∴ a b ab (a 0,b 0.)
知识归纳
二次根式乘法法则:
例8 设长方形的面积为S,相邻两边长分别为a,b.
反之: ab = a b (a≥0,b≥0 ). (a≥0,b≥0 ).
我们可以运用它来进行二次根式的解题和化简.
解:(2)∵

(1)
___×___=____;
(a≥0,b≥0 ).
当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得
2 7= ?
精典例题
例1 计算:
(1) 16 81 ;(2) 12 ;(3) 4a2b3 . 解:(1) 16 81=36;
(3) 3x 1 xy = 3x 1 xy =x y.
3
3
目标导学三:二次根式的除法
我们知道,两个二次根式可以进行乘法运算,那 么,两个二次根式能否进行除法运算呢?
24 = _____ ; 3 1 = _____ .
3
2 18
合作探究
问题 计算下列各式,观察计算结果,你能发现 什么规律?
(1) 4 = 9
特殊化,从能开得尽方的 二次根式乘法运算开始思考!
2 7= ?
目标导学一:二次根式的乘法 计算下列各式:
(1) 4 9= __2_×_3__=__6__; 4 9 =___3_6___6__;
(2) 16 25 __4_×_5__=__2_0_; 16 25 =__4_0_0___2_0_; (3) 25 36=__5_×_6__=__3_0_; 25 36 =__9_0_0___3_0_.

二次根式初中数学原创课件

 二次根式初中数学原创课件

当a ≥ -1 时, + 在实
(3)


数范围内有意义.
例题学习1
例1
求下列二次根式中字母 a 的取值范围:
解:(2)由
(1) +
(2)
(3)




>0,得

a<

当a <

时,


.


在实

数范围内有意义.
例题学习1
例1
求下列二次根式中字母 a 的取值范围:
用 (a ≥0)表示.
平方根的性质:
① 正数有两个平方根且互为相反数;
② 0 有一个平方根就是0本身;
③ 负数没有平方根.
1. 16的平方根是什么?16的算术平方根是什么?
2. 0的平方根是什么?0的算术平方根是什么?
3. -7有没有平方根?有没有算术平方根?
新知探索
表示什么?
表示非负数a的算术平方根.
解:(3)当a 为任意实数
(1) +
时,都有 (a -3)2 ≥0.
(2)
(3)



当a为任意实数时,

− 都有意义.
跟踪练习1
1. 求下列二次根式中字母 x 的取值范围:
(1)
(2)


(3) −
解:(1) x为任意实数.
(2) x >0.
(3) x≤0.
故a的值为1.
3. 若(2x+4y)2+
− =0, 求4x - y 的值.
解:因为 (2x+4y)2 ≥ 0,
− ≥ 0,它们和为0,

人教版数学八年级下册第十六章16.3.2二次根式的混合运算课件

人教版数学八年级下册第十六章16.3.2二次根式的混合运算课件

二次根式的乘法法则是什么?
+二次根=式的混合运算顺序=与实x数y类[(似x,+即先y乘)方2-, 2xy]
将所求对称式进行适当变形,使之成为只含有x+y,
=1×[(2 3 ) -2×1]=10. (2)(中考·包头)计算:
- +( -1)0=2
同学们,今天这节课,我们就一起来学习关于二次根式的混合运算的相关知识。
号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,
则 x 不可能是( C )
A. 3+1
B. 3-1
C. 2 3
D. 1- 3
【点拨】A.( 3+1)-( 3+1)=0,故本选项不合题意;B.( 3+
1)×( 3-1)=2,故本选项不合题意;C.( 3+1)与 2 3无论是相 加,相减,相乘,相除,结果都是无理数,故本选项符合题意;
C. 6 到 7 之间
D. 7 到 8 之间
5. (2020·荆门)下列等式中成立的是( D )
A. (-3x2y)3=-9x6y3
B. x2=x+2 12-x-2 12
C.

1+ 2
13=2+
6
D. (x+1)1(x+2)=x+1 1-x+1 2
6. 计算:
(1)(2019·泰州) 8-
1 2×
人教版数学八年级下册
第十六章
16.3.2 二次根式的混合运算
复习旧知
1.二次根式的乘法法则是什么? 2.二次根式的除法法则是什么? 3.怎样进行二次根式的加减运算?
导入新知
同学们,今天这节课,我们就一 起来学习关于二次根式的混合运算的 相关知识。
二次根式的混合运算
学习目标
1.含有二次根式的式子实行乘除运算和含有二 次根式的多项式乘法公式的应用.

人教版八年级数学下册第十六章《二次根式的加减乘除混合运算》公开课课件

人教版八年级数学下册第十六章《二次根式的加减乘除混合运算》公开课课件

四、课堂小结 本节课应掌握利用整式运算的规律进行二次根式的乘除、乘方等运 算.
1.情境引入,复习整式运算的知识,旨在迁移到利用乘法公式进行含二 次根式算式的运算,培养学生继续探究的兴趣.
2.例题的设计,旨在帮助学生理解乘法公式在二次根式运算中的应用.
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年3月28日星期一2022/3/282022/3/282022/3/28 •书籍是屹立在时间的汪洋大海中的灯塔。2022年3月2022/3/282022/3/282022/3/283/28/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/3/282022/3/28March 28, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
【例 2】计算: (1)( 2+3)( 2-5); (2)( 5+ 3)( 5- 3); (3)( 3- 2)2. 分析:第(1)题可类比多项式乘以多项式法则来计算,第(2)题把 5当作 a, 3当作 b,就可以类比(a+b)(a-b)=a2-b2,第(3)题可类比(a-b)2=a2-2ab+ b2 来计算. 解:(1)( 2+3)( 2-5)=( 2)2+3 2-5 2-15=2+3 2-5 2-15
16.3 二次根式的加减 第2课时 二次根式的加减乘除混合运算
含有二次根式的式子进行加减乘除混合运算和含有二次根式的 多项式乘法公式的应用根式的运算.
一、复习导入 (学生活动):请同学们完成下列各题. 计算: (1)(3x2+2x+2)·4x; (2)(4x2-2xy)÷(-2xy); (3)(3a+2b)(3a-2b); (4)(2x+1)2+(2x-1)2. 二、新课教授 由于整式运算中的x,y,a,b是字母,它的意义十分广泛,可 以代表一切,当然也可以代表二次根式,因此整式中的运算规律 也适用于二次根式,下面我们就使用这些规律来进行计算.

人教版八年级数学(下)课件:16_3 二次根式的加减(第1课时)

人教版八年级数学(下)课件:16_3 二次根式的加减(第1课时)
归纳总结 将二次根式化成最简二次根式,如果被开方数相同, 则这样的二次根式可以合并. 注意:1.判断几个二次根式是否可以合并,一定都要化 为最简二次根式再判断; 2.合并的方法与合并同类项类似,把根号外的因数(式) 相加,根指数和被开方数(式)不变.如:
m a n a m n a
巩固练习
下列各式中,与 3 是同类二次根式的是( D )
解:原式 2 6 2 2 6
24
3 6 2 .
4
探究新知 考 点 3 二次根式的综合性题目
有一个等腰三角形的两边长分别为5 2,2 6 ,求其周长.
解:①当腰长为
时,
∵ 5 2 5 2 10 2>2 6, ∴此时能构成三角形,周长为
②当腰长为
时,
∵2 6 2 6 4 6>5 2, ∴此时能构成三角形,周长为
18 3 2 5,5 2 7.5,
∴在这块木板上可以截出两个分别是8dm2和18dm2的正 方形木板.
探究新知
二次根 式性质
整式加 分配律 减法则
8+ 18=2 2+3 2 =(2+3) 2=5 2
化为最简 用分配 整式 二次根式 律合并 加减
依据:二次根式的性质、分配律和整式加减法则.
基本思想:把二次根式加减问题转化为整式加减问题.
27
33
9
巩固练习
下列计算正确的是 ( C )
A. 2 2 2
B. 3 2 3 2
C. 12 3 3 D. 3 2 5
已知一个矩形的长为 48 ,宽为 12 ,则其周
长为__1_2__3_.
探究新知
考 点 2 二次根式的加减混合运算
计算: (1)2 12 - 6 1 3 48 ; (2)( 12 20)( 3 - 5).

人教版八年级数学下册第十六章《二次根式的乘除(第三课时)》公开课课件

人教版八年级数学下册第十六章《二次根式的乘除(第三课时)》公开课课件

设 a 0 ,b 0 ,化简下列二次根式。
1 72
2 8a2b3
解:1 72 98 3222232 2 6 2
或 72 362 62 2 6 2
2 8a2b3 2•22•a2•b2•b2ab 2b
在化简时,一定要把被开方式中所有平方因子 全部移到根号外,否则未完成化简。
强化练习
下列二次根式的化简正确吗?
解:1 9a3b
32•a2•a•b
3a ab
2 4b212 ab 2
4b213a
2b 13a
一般步骤: ①先把被开方式分解成平方 因子和其它因子相乘的形式。
②再根据积的算术平方根的 性质和a2 a(a 0) 把平方因 子移到根号外。
当被开方式是多项式时,先 因式分解化为积的形式。
尝试练习
探究
下列根式中,哪些是最简二次根式?
12a, 18, x2 9, 5x3y, 27abc,
×× √
××
2
x2 y,
ab,
3xy ,
5(a2 b2)
25

×√

练习:把下列各式化简(分母有理化):
(1)- 3 6
(2) 3 40
(3) 5a 10 a
2y2 (4)
4 xy
(5) 5 3 4 12
练习:把下列各式化简(分母有理化):

- 1)
4
2
37
( 2) 2a a+ b
( 3) 2 3 40
解:(
- 1)
4
2 =-4 2 •
7
= -4
14 ;
37
3 7• 7
21
(2) 2a = a+b
2a a+b

16-1二次根式(课件)人教版八年级数学下册

16-1二次根式(课件)人教版八年级数学下册
(5) (x1)2
(3) x2 1
(6) 1 x
(7) 1 x 1
解:(1) x 2 0, x 2
(2) -a 0, a 0
(3) x2 0, x2 1 0
x取全体实数
(6) 1 0, x
x 0
(4) x3 0,
x 0
(5)(x1)2 0,
x可取全体实数
(7)分式有意义 x 1 0 x 1
02 (0) 0
(2)2 (4)
3
9
2 3
(-2)2 (4) 2
(-0.1)2 (0.)01 0.1
02 (0) 0
(-
2)2 3
(4) 9
2 3
a
a
a(a 0) a(a 0)
11
当堂训练
1.若二次根式
m2 m2 4
有意义,求m的取值范围.
解:由题意得m-2≥0且m2-4≠0,
a2 =a (a ≥0).
拓展性质
a2 a (a为全体实数)
形如 a (a 0)的式子叫做二次根式.
1.表示a的算术平方根 2. a可以是数,也可以是式. 3. 形式上含有二次根号 4.既可表示开方运算,也可表示运算的结果. 5. a≥0, a ≥0 ( 双重非负性)
5
例题讲解
例1 下列各式中,哪些是二次根式?哪些不是?
1 38 ; 26; 3 -16 ; 4 - m(m 0)
因为( 5)2 5,所以5的算数平方根是
因为( 1 )2 1,所以1的算数平方根是
33
3
5 ,所以( 5)2 5
1 3
,所以( 1)2 1 33
因为( a)2 a,所以a的算数平方根是 a ,所以( a)2 a

《最简二次根式》二次根式PPT课件

《最简二次根式》二次根式PPT课件

2.被开方数是分数的二次根式化简
例 2 化简 1125. 分析:因为,125=5×5×5=52×5,所以,只需 分子、分母同乘以 5 就可以了.
解法一: 1125= 513××55=255.
3.被开方数是小数的二次根式化简
例 3 化简 1.5.
分析:被开方数是小数时,常把小数化成相 应的分数,然后进行求解.
1 8x3
x
0
0.8 4 45 2 5 5 55 5
4 1 9 92 3 2 2 2 22 2
20a2b 4a2 5b c 2 a 5bc 2a 5bc
c
cc
c
c
x2
1 8x3
x2
1 2x x2 8x3 2x 4x2
2x
2x 4
1.最简二次根式的概念.
满足下列条件的二次根式,叫做最简二次根式。
(2) 1 6x 9x2 (x 1) 3
(2)3x 1
(3) x 32 1 x2 1 x 3 (3)2
2、如果 a3 a2 a a 1, 那么a的取值范围是 ( D )
A. a 0 C. a 1
B. a 1
D. 1 a 0
3.化简 1 x3 x
错解:原式 1 x x2 x
18
32
被开方数不 含开得尽方 的因数
a 3
b2
(b 0)
9a
3a 3
ba
(b 0)
3a
被开方数 不含分母
(1)被开方数各因式的指数都为1. (2)被开方数不含分母.
被开方数满足上述两个条件的二次根式,叫 做最简二次根式.
如:1 x2 y √
4
6m(a2 b2 ) √
1 4
x2 y x 4

人教版八年级数学下册第十六章《二次根式1》优课件 (3)

人教版八年级数学下册第十六章《二次根式1》优课件 (3)
课件说明
• 本课通过现实问题提出二次根式要研究的问题,通 过用字母表示算术平方根中的被开方数,把算术平 方根一般化,得到二次根式的概念、二次根式有意 义的条件、二次根式的非负性.
• 学习目标: 1.根据算术平方根的意义了解二次根式的概念;知 道被开方数必须是非负数的理由; 2.能用二次根式表示实际问题中的数量和数量关系.
a
_第_二__象限.
4、2+ 3- X的最小值为_2,此时x=_3_
5.已知: a-b+ 6 、 a+ b-8互为相反数.
则a=_1_,b=_7__.
6.要使下列式子有意义,x需要满足 什么条件?
(1) 3 - x (2) x+3+8-x
(3) 1
2x -5
(4) x-2+2-x
(5) x2-2x+1 (6)
1-x
(7 )x+ 5+3-2+ x (+ x 20)
求二次根式中字母的取值范围的基本依据:
①被开方数不小于零;
②分母中有字母时,要保证分母不为零。
你会做
1.若 a-2+2b-7=0,则 a+2b = _3__
2.已知a、b为实数,且满足
a=2 b-1+1-2 b+ 1则a+b
=1_21_
3、已知 - 1 有意义,则A(a, - a )在
请你说说对二次根式 a 的认识!
1. a 表示a的算术平方根.
2. a可以是数,也可以是式.
3. 形式上含有二次根号 4.二次根式有意义的条件是被开方数 (式)大于等于零.
性质1:非负双重性a≥0, a ≥0
1.下列各式是二次根式吗?

新人教版《二次根式的乘除》课件公开课PPT

新人教版《二次根式的乘除》课件公开课PPT

n(n2-1)+n n2-1

综设上AE所的述长,符为合m,条△件AD的E点的P面只积有为一S个,求,其S关坐于标m为的(2函,-2数√(关"3系" )式). ,并写出自变量m的取值范围;
"(i∴)当△四C边DE形的C最DM大N面是积平为行" 四"8边1"形/",8∵" M,此向时下A平E=移m4=个"9单" /"位2"得"N,B,∴E=NA的B-坐A标E=为" ("39+"n/,"n2-"2).,
按团体票一次性购买16张门票需要35×60%×16=336(元).
示为( B ) ②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.
解:由题意,得:①甲组单独施工12天完成,商店需付装修费用3 600元;乙组单独施工24天完成,商店需付装修费用3 360元,比较可 知,甲组比乙组早12天完工,商店早开业12天可盈利200×12=2 400(元). 知识点四 列一元一次不等式解应用题
A. 13
B. 12
C. a3
D.
5 3
8.把下列二次根式化成最简二次根式:
(1) 3.5 ;
解:原式=
14 2
(2)
4 15

解:原式=35 5
(3)
27 3x

(4) 16x3+32x2 (x>0).
解:原式=3x x
解:原式=4x x+2
∴(的2)A函点B数E=从9关9,O点系.CA式=(出9绵,.并发写阳,沿出x中轴自向变考点量Bm)运等的动取式(值点范E与围xx点; - +A,B31不重=合),过点xxE作- +直31线l平成行立于B的C,交xAC的于点取D.设值AE范的长围为在m,△数AD轴E的上面积可为S表,求S关于m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b3
h
2
5
表示一些正数的算术平方根.
形如 a (a 0) 的式子叫做二次根式.
a
被开方数
二次根号
读作“根号 a ”
形 如 a ( a 0 ) 的 式 子 叫 做 二 次 根 式 .
1.表示a的算术平方根 2. a可以是数,也可以是式. 3. 形式上含有二次根号 4. a≥0, a ≥0 ( 双重非负性) 5.既可表示开方运算,也可表示运算的结果.
3.实数a、b、c在数轴上的位置如图所示,化简
ab c
(ab)2(bc)2ca
4.已知a,b,c为△ABC的三边长,化简:
(bca)2 + (cab)2 - (bca)2
再议 a的双重非负性
非负数的算术平方根仍然是非负数。
性质 1: a ≥0 (a≥0) (双重非负性)
思考:到现在为止,我们已学过哪些数非负数形式?
第16章 二次根式
16.1 二次根式
导入
1.如图所示的值表示正方形的
面积,则正方形的边长是 b 3 b-3
2.要修建一个面积为6.28m2的圆形喷水池,
它的半径为 2 m( 取3.14);
3、关系式中h 5t 2,用含有h的式子
表示t,则t为 h 。
5
新授:
你认为所得的各代数式有哪些共同特点?
42 _4___,6 22
3
___8_.
(7) 数_.
a
-2 -1 0 1
例2 求下列二次根式的值:
(1) (3)2;
(2) x22x1,其 中 x3.
小结:
1.怎样的式子叫二次根式?
形如 a (a 0)的式子叫做二次根式 .
2.怎样判断一个式子是不是二次根式?
x2
(1)3.2x0x3 (2).x为全体实数
2 ( 3 )x .3 0 且 x 2 x 3 且 x 2
2.当x__=_0__时, 3x 3x 有意义.
练一练: x2-6x+9 + x2+2x+1 ( -1<x<3 )
思考:若m(m m 24)28m 416m4, 则m的取值范围是 _________
1.若 (1x)2 1x,则x的取值范围为 ( A )
(A) x≤1 (B) x≥1 (C) 0≤x≤1 (D)一切有理数
2.下列式子一定是二次根式的是( C ) A. x 2 B. x C. x 2 2 D. x 2 2
①被开方数不小于零;
②分母中有字母时,要保证分母不为零。
探究1
2
2
2 4
2 17
2
1 3
2
0
2是2的算术平方根, 术根 平据 方算 根的意义
有(2) 2 2.
归纳
( a)2 a (a≥0)
即:非负数的算术平方根的平方等于它的本身.
性质1:
参考图1-2,完成以下填空:
2 2 _____;
2
7 _____;
1 2 2_____.
面积 a
a
一般地,二次根式有下面的性质:
a
2
a aa0
1
32______,2
22 7
______,3
2132________,
4 52________,5 232________.
? 一般地,二次根式有下面的性质:
性质1: a 2a (a0) 1149a765
例题讲解
例1 x为何值时,下列各式在实数范围内有意义。
(1) x 5 (2) 1 x2 (3) 1 x 3 x
例2 当x取何值时, 1 在实数范围内有意义。 x5
练习、 x取何值时,下列二次根式有意义?
(1) x1
(2) 3x
(3)4x2 1
(4)x1
(5) x3
(6) 1 x2
求二次根式中字母的取值范围的基本依据:
(1). 形式上含有二次根号 (2).被开方数a为非负数 3.如何确定二次根式中字母的取值范围?
分母不为0 被开方数大于等于0 结合数轴,写出解集来
2.化简及求值:
(1) 2 4
(2)
a4
(3) a 2 b 2 (a<0,b>0)
(4) 12aa2 其中a= 3
(5) (1 2)2 ( 21)2
a a 当 a 0 时, a2 ____ ; 当 a 0 时, a2 ____ .
一般地,二次根式有下面的性质:
性质2:
a (a 0) a2 a 0 (a 0)
a (a 0)
( a)2与 a2有区别吗 ?
1.从读法来看:
2:从运算顺序来看:
a 2 根号a的平方 a 2 先开方,后平方
a
1 32______,2 722______,3 2132________, 4 52________,5 232________.
2
探 究
22 ___,
5 2 ___,
| 2 | _ _ _ ; | 5 | _ _ _ ;
02 ___,
| 0 | _ _ _ .
请比较左右两边的式子,议一议: a 2 与 | a | 有什么关系?
a 2 根号下a平方 a 2 先平方,后开方
3.从取值范围来看:
2
a
a≥0
4.从运算结果来看:
a 2=a
a 2 a取任何实数
a (a 0)
a2
=∣a
0
(a 0)

a ( a 0 )
练习
1
12 ___1 __,2
22 5
2
___5___,3
2
3
__3 ___,
4
2
1 13
_1__13 __,5
an (n为偶数) a
a (a 0)
非负数 1.几个非负数的和、积、商、乘方及 的性质: 算术平方根仍是非负数
2.如果几个非负数的和为零,那么每一个非负数都为零. 3.根据非负数的性质,就可以确定字母的值.
若(a 2)2 3 b c 2 0,则a b c 3
6.化简: ( x 3)2 - ( 2 x )2
7.设等式 a (x a )a (y a )x a a y
在实数范围内成立,其中a, x, y 是两两不等的实数,求
3x2 xy y2
x2 xy y 2 的值。
巩固提高1:
1.分别求下列二次根式中的字母的取值范围
(1)( 3 2x )2 (2) (1 x ) 2 (3) x 3
(1) 代数式 a 是二次根式吗?
(2) 2 2 是二次根式吗?
(3) 代数式 吗?
a2(a2), 1(x0) 是二次根式 x
(4) a 1 (a≥0)是二次根式吗?
知识运用:
下列代数式中哪些是二次根式?
⑴1
2

⑶ a2 2a 2 ⑷
⑸ m 32 ⑹
16
x (x 0)
a9
a1 (a3)
相关文档
最新文档