高考物理电磁综合压轴大题汇编

合集下载

1全国第三批新高考2024-2024年物理压轴计算题汇编

1全国第三批新高考2024-2024年物理压轴计算题汇编

1全国第三批新高考2024-2024年物理压轴计算题汇编一、单项选择题:本题共8小题,每小题3分,共24分,在每小题给出的答案中,只有一个符合题目要求。

(共8题)第(1)题如下图,为“日”字形导线框,其中和均为边长为的正方形,导线、的电阻相等,其余部分电阻不计。

导线框右侧存在着宽度略小于的匀强磁场,磁感应强度为,导线框以速度匀速穿过磁场区域,运动过程中线框始终和磁场垂直且无转动。

线框穿越磁场的过程中,两点电势差随位移变化的图像正确的是()A.B.C.D.第(2)题如图为某实验小组设计的家用微型变压器的原理图,原、副线圈的匝数比,a、b两端接入正弦交流电,和是两个完全相同的灯泡,灯泡上标有“55W, 1A”字样,若两灯泡恰好正常发光,该变压器视为理想变压器,则图中理想电流的示数为( )A.0.5A B.1A C.2A D.4A第(3)题叠放在水平地面上的四个完全相同的排球如图所示,质量均为m,相互接触,球与地面间的动摩擦因数均为μ,则:A.上方球与下方3个球间均没有弹力B.下方三个球与水平地面间均没有摩擦力C.水平地面对下方三个球的支持力均为D.水平地面对下方三个球的摩擦力均为第(4)题如图所示,公园里一个小朋友在荡秋千,两根细线平行,小朋友可视为质点,空气阻力和摩擦力可忽略,重力加速度为g。

在最高点时每根细线上的张力大小等于小朋友重力的,则小朋友运动到最低点时的加速度大小为( )A.B.C.D.g第(5)题细绳拴一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连,平衡时细绳与竖直方向的夹角为53°,如图所示。

(已知cos 53°=0.6,sin 53°=0.8)以下说法正确的是( )A.小球静止时弹簧的弹力大小为mgB.小球静止时细绳的拉力大小为mgC.细线烧断瞬间小球的加速度立即为gD.细线烧断瞬间小球的加速度立即为第(6)题如图甲所示,光滑斜面上有固定挡板A,斜面上叠放着小物块B和薄木板C,木板下端位于挡板A处,整体处于静止状态。

高考物理电磁感应现象压轴题综合题附答案

高考物理电磁感应现象压轴题综合题附答案

高考物理电磁感应现象压轴题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。

导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。

空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。

质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。

【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。

由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。

一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。

ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。

重力加速度为g 。

求:(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。

【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒=线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R==线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv 线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin 302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=3.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。

2022年高考物理压轴题预测之电磁综合计算题压轴题

2022年高考物理压轴题预测之电磁综合计算题压轴题

2022年高考物理压轴题预测之电磁综合计算题压轴题物理考试注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx 分钟收取答题卡第Ⅱ卷主观题第Ⅱ卷的注释(共16题;共185分)1.(15分)如图甲所示,两条相距l=2m的水平粗糙导轨左端接一定值电阻R=1Ω,t=0s时,一质量m=2kg、阻值为r的金属杆,在水平外力的作用下由静止开始向右运动,5s末到达MN,MN右侧为一匀强磁场,磁感应强度B=0.5T,方向垂直纸面向内。

当金属杆到达MN(含MN)后,保持外力的功率P不变,金属杆进入磁场8s末开始做匀速直线运动。

整个过程金属杆的v—t图像如图乙所示若导轨电阻忽略不计,杆和导轨始终垂直且接触良好,两者之间的动摩擦因数μ=0.1,重力加速度g=10m/s2。

(1)(5分)求金属杆进入磁场后外力F的功率P;(2)(5分)若前8s回路产生的总焦耳热为51J,求金属杆在磁场中运动的位移大小;(3)(5分)求定值电阻R与金属杆的阻值r的比值。

2.(10分)(18分)平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅰ现象存在沿y轴负方向的匀强电场,如图所示。

一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y 轴的距离为到x轴距离的2倍。

粒子从坐标原点O离开电场进入电场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等。

不计粒子重力,为:(1)(5分)粒子到达O点时速度的大小和方向;(2)(5分)电场强度和磁感应强度的大小之比。

3.(15分)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。

电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。

两根固定于水平面内的光滑平行金属导轨间距为l,电阻不计。

炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。

首先开关S接1,使电容器完全充电。

2024全国高考真题物理汇编:电磁感应章节综合

2024全国高考真题物理汇编:电磁感应章节综合

2024全国高考真题物理汇编电磁感应章节综合一、单选题1.(2024甘肃高考真题)如图,相距为d 的固定平行光滑金属导轨与阻值为R 的电阻相连,处在磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中长度为L 的导体棒ab 沿导轨向右做匀速直线运动,速度大小为v 。

则导体棒ab 所受的安培力为()A .22B d v R,方向向左B .22B d v R ,方向向右C .22B L v R ,方向向左D .22B L v R,方向向右2.(2024甘肃高考真题)工业上常利用感应电炉冶炼合金,装置如图所示。

当线圈中通有交变电流时,下列说法正确的是()A .金属中产生恒定感应电流B .金属中产生交变感应电流C .若线圈匝数增加,则金属中感应电流减小D .若线圈匝数增加,则金属中感应电流不变3.(2024广东高考真题)电磁俘能器可在汽车发动机振动时利用电磁感应发电实现能量回收,结构如图甲所示。

两对永磁铁可随发动机一起上下振动,每对永磁铁间有水平方向的匀强磁场,磁感应强度大小均为B .磁场中,边长为L 的正方形线圈竖直固定在减震装置上。

某时刻磁场分布与线圈位置如图乙所示,永磁铁振动时磁场分界线不会离开线圈。

关于图乙中的线圈。

下列说法正确的是()A .穿过线圈的磁通量为2BL B .永磁铁相对线圈上升越高,线圈中感应电动势越大C .永磁铁相对线圈上升越快,线圈中感应电动势越小D .永磁铁相对线圈下降时,线圈中感应电流的方向为顺时针方向4.(2024江苏高考真题)如图所示,在绝缘的水平面上,有闭合的两个线圈a 、b ,线圈a 处在匀强磁场中,现将线圈a 从磁场中匀速拉出,线圈a 、b 中产生的感应电流方向分别是()A .顺时针,顺时针B .顺时针,逆时针C .逆时针,顺时针D .逆时针,逆时针5.(2024湖北高考真题)《梦溪笔谈》中记录了一次罕见的雷击事件:房屋被雷击后,屋内的银饰、宝刀等金属熔化了,但是漆器、刀鞘等非金属却完好(原文为:有一木格,其中杂贮诸器,其漆器银扣者,银悉熔流在地,漆器曾不焦灼。

高考物理电磁学大题练习20题Word版含答案及解析

高考物理电磁学大题练习20题Word版含答案及解析

高考物理电磁学大题练习20题Word版含答案及解析方向与图示一致。

金属棒的质量为m,棒的左端与导轨相接,右端自由。

设金属棒在磁场中的电势能为0.1)当磁场的磁感应强度为B1时,金属棒在匀强磁场区域内做匀速直线运动,求金属棒的速度和通过电阻的电流强度。

2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,求金属棒的最大速度和通过电阻的最大电流强度。

答案】(1) v=B1d/2m。

I=B1d2rR/(rL+dR) (2) vmaxBmaxd/2m。

ImaxBmaxd2rR/(rL+dR)解析】详解】(1)由洛伦兹力可知,金属棒在匀强磁场区域内受到向左的洛伦兹力,大小为F=B1IL,方向向左,又因为金属棒在匀强磁场区域内做匀速直线运动,所以受到的阻力大小为F1Fr,方向向右,所以有:B1IL=Fr解得:v=B1d/2m通过电阻的电流强度为:I=B1d2rR/(rL+dR)2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,其大小为:e=BLv所以金属棒所受的合力为:F=BLv-Fr当合力最大时,金属棒的速度最大,即:BLvmaxFr=0解得:vmaxBmaxd/2m通过电阻的电流强度为:ImaxBmaxd2rR/(rL+dR)题目一:金属棒在电动机作用下的运动一根金属棒在电动机的水平恒定牵引力作用下,从静止开始向右运动,经过一段时间后以匀速向右运动。

金属棒始终与导轨相互垂直并接触良好。

问题如下:1) 在运动开始到匀速运动之间的时间内,电阻R产生的焦耳热;2) 在匀速运动时刻,流过电阻R的电流方向、大小和电动机的输出功率。

解析:1) 运动开始到匀速运动之间的时间内,金属棒受到电动机的牵引力向右运动,电阻R中会产生电流。

根据欧姆定律和焦耳定律,可以得到电阻R产生的焦耳热为:$Q=I^2Rt$,其中I为电流强度,t为时间。

因此,我们需要求出这段时间内的电流强度。

根据电动机的牵引力和电阻R的阻值,可以得到电路中的总电动势为$E=FL$,其中F为电动机的牵引力,L为金属棒的长度。

高考物理电磁感应现象压轴题综合题

高考物理电磁感应现象压轴题综合题

高考物理电磁感应现象压轴题综合题一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求:(1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。

【答案】(1)5C ;(2)4s 【解析】 【分析】 【详解】解:(1)t=2s 内MN 杆上升的距离为21 2h at = 此段时间内MN 、EF 与导轨形成的回路内,磁通量的变化量为BLh ∆Φ=产生的平均感应电动势为E t ∆Φ=产生的平均电流为E I R=流过MN 杆的电量q It =代入数据解得25C 2BLat q R==(2)EF 杆刚要离开平台时有BIL Mg =此时回路中的电流为E I R=MN 杆切割磁场产生的电动势为E BLv =MN 杆运动的时间为v t a=代入数据解得224s MgRt B L a==2.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ = 37°角,下端连接阻值为R =2Ω的电阻.磁场方向垂直导轨平面向上,磁感应强度为0.4T .质量为0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.金属棒沿导轨由静止开始下滑.(g=10m/s 2,sin37°=0.6,cos37°=0.8)(1)判断金属棒下滑过程中产生的感应电流方向; (2)求金属棒下滑速度达到5m/s 时的加速度大小; (3)当金属棒下滑速度达到稳定时,求电阻R 消耗的功率. 【答案】(1)由a 到b (2)22/a m s =(3)8P W = 【解析】 【分析】 【详解】(1)由右手定则判断金属棒中的感应电流方向为由a 到b .(2)金属棒下滑速度达到5/m s 时产生的感应电动势为0.4152E BLv V V ==⨯⨯= 感应电流为1EI A R==,金属棒受到的安培力为0.4110.4?F BIL N N ==⨯⨯= 由牛顿第二定律得:mgsin mgcos F ma θμθ--=,解得:22/a m s =. (3)设金属棒运动达到稳定时,所受安培力为F ',棒在沿导轨方向受力平衡mgsin mgcos F θμθ=+',解得:0.8F N '=,又:F BI L '=',0.820.41F I A A BL ''===⨯电阻R 消耗的功率:28P I R W ='=. 【点睛】该题考查右手定则的应用和导体棒沿着斜面切割磁感线的运动,该类题型综合考查电磁感应中的受力分析与法拉第电磁感应定律的应用,要求的解题的思路要规范,解题的能力要求较高.3.如图(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不计,导轨间正方形区域abcd 内有方向竖直向下的匀强磁场,bd 连线与导轨垂直,长度也为L .从0时刻开始,磁感应强度B 的大小随时间t 变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s 后刚好进入磁场.若使棒在导轨上始终以速度v =1 m/s 做直线运动,求:(1)棒进入磁场前,回路中的电动势E 大小;(2)棒在运动过程中受到的最大安培力F ,以及棒通过三角形abd 区域时电流I 与时间t 的关系式.【答案】(1)0.04 V ; (2)0.04 N , I =22Bv tR;【解析】 【分析】 【详解】⑴在棒进入磁场前,由于正方形区域abcd 内磁场磁感应强度B 的变化,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,在棒进入磁场前回路中的电动势为E ==0.04V⑵当棒进入磁场时,磁场磁感应强度B =0.5T 恒定不变,此时由于导体棒做切割磁感线运动,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,回路中的电动势为:e =Blv ,当棒与bd 重合时,切割有效长度l =L ,达到最大,即感应电动势也达到最大e m =BLv =0.2V >E =0.04V根据闭合电路欧姆定律可知,回路中的感应电流最大为:i m ==0.2A根据安培力大小计算公式可知,棒在运动过程中受到的最大安培力为:F m =i m LB =0.04N 在棒通过三角形abd 区域时,切割有效长度l =2v (t -1)(其中,1s≤t≤+1s ) 综合上述分析可知,回路中的感应电流为:i ==(其中,1s≤t≤+1s )即:i =t -1(其中,1s≤t≤1.2s ) 【点睛】注意区分感生电动势与动生电动势的不同计算方法,充分理解B-t 图象的含义.4.如图所示,将边长为a 、质量为m 、电阻为R 的正方形导线框竖直向上抛出,穿过宽度为b 、磁感应强度为B 的匀强磁场区域,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进入磁场.整个运动过程中始终存在着大小恒定的空气阻力f ,且线框不发生转动.求:(1)线框在下落阶段匀速进入磁场时的速度v 2; (2)线框在上升阶段刚离开磁场时的速度v 1; (3)线框在上升阶段通过磁场过程中产生的焦耳热Q . 【答案】(1)22mg fR B a - (2)()22122Rv mg f B a =-(3)()()()2224432mR Q mg f mg f a b B a ⎡⎤=--++⎣⎦ 【解析】 【分析】(1)下落阶段匀速进入磁场说明线框所受力:重力、空气阻力及向上的安培力的合力为零.(2)对比线框离开磁场后继续上升一段高度(设为h ),然后下落相同高度h 到匀速进入磁场时两个阶段受力情况不同,合力做功不同,由动能定理:线框从离开磁场至上升到最高点的过程.(3)求解焦耳热Q ,需要特别注意的是线框向上穿过磁场是位移是a+b 而不是b ,这是易错的地方 【详解】(1)线框在下落阶段匀速进入磁场瞬间,由平衡知识有:222B a v mg f R=+解得:222()mg f Rv B a -=(2)线框从离开磁场至上升到最高点的过程,由动能定理:2110()02mg f h mv -+=- 线圈从最高点落至进入磁场瞬间:211()2mg f h mv -= 联立解得:221222()mg f Rv v mg f mg f B a+==-- (3)线框在向上通过磁场过程中,由能量守恒定律有:220111()()22Q mg f a b mv mv +++=- 而012v v =解得:222443[()]()()2mR Q mg f mg f a b B a=--++ 即线框在上升阶段通过磁场过程中产生的焦耳热为222443[()]()()2mR Q mg f mg f a b B a=--++ 【点睛】此类问题的关键是明确所研究物体运动各个阶段的受力情况,做功情况及能量转化情况,选择利用牛顿运动定律、动能定理或能的转化与守恒定律解决针对性的问题,由于过程分析不明而易出现错误.5.如图所示,宽度L =0.5 m 的光滑金属框架MNPQ 固定于水平面内,并处在磁感应强度大小B =0.4 T ,方向竖直向下的匀强磁场中,框架的电阻非均匀分布.将质量m =0.1 kg ,电阻可忽略的金属棒ab 放置在框架上,并与框架接触良好.以P 为坐标原点,PQ 方向为x 轴正方向建立坐标.金属棒从0x 1?m =处以0v 2?m /s =的初速度,沿x 轴负方向做2a 2?m /s =的匀减速直线运动,运动中金属棒仅受安培力作用.求:(1)金属棒ab 运动0.5 m ,框架产生的焦耳热Q ;(2)框架中aNPb 部分的电阻R 随金属棒ab 的位置x 变化的函数关系;(3)为求金属棒ab 沿x 轴负方向运动0.4 s 过程中通过ab 的电荷量q ,某同学解法为:先算出经过0.4 s 金属棒的运动距离x ,以及0.4 s 时回路内的电阻R ,然后代入BLxq R R∆Φ==求解.指出该同学解法的错误之处,并用正确的方法解出结果. 【答案】(1)0.1 J (2)R x =(3)0.4C 【解析】【分析】 【详解】(1)金属棒仅受安培力作用,其大小0.120.2?F ma N ⨯===金属棒运动0.5 m ,框架中产生的焦耳热等于克服安培力做的功所以0.20.50.1?Q Fx J ===⨯. (2)金属棒所受安培力为F BIL =E BLv I R R ==所以22B L RF ma v==由于棒做匀减速直线运动v所以R ===(3)错误之处是把0.4 s 时回路内的电阻R 代入BLxq R=进行计算. 正确的解法是q It = 因为F BIL ma == 所以ma 0.12q t 0.40.4?C BL 0.40.5⨯⨯⨯=== 【点睛】电磁感应中的功能关系是通过安培力做功量度外界的能量转化成电能.找两个物理量之间的关系是通过物理规律一步一步实现的.用公式进行计算时,如果计算的是过程量,我们要看这个量有没有发生改变.6.如图甲所示。

2020年高考物理电磁场压轴精选14道(答案和解析)

2020年高考物理电磁场压轴精选14道(答案和解析)

物理电磁场压轴精炼14道(有答案和精细解析)1.(16分)如图所示,直角坐标系xoy位于竖直平面内,在-3m≤x≤0的区域内有磁感应强度大小B = 4.0×10-4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E = 4N/C、方向沿y轴正方向的条形匀强电场,其宽度d = 2m。

一质量m = 6.4×10-27kg、电荷量q =--3.2×10-19C的带电粒子从P点以速度v = 4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力。

求:⑴带电粒子在磁场中运动时间;⑵当电场左边界与y轴重合时Q点的横坐标;⑶若只改变上述电场强度的大小,要求带电粒子仍能通过Q点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系。

2.(18分)如图a所示,水平直线MN下方有竖直向上的匀强电场,现将一重力不计、比荷qm=106 C/kg的正电荷置于电场中的O点由静止释放,经过15π×10-5 s后,电荷以v0=1.5×104 m/s的速度通过MN进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B按图b所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻).求:(1)匀强电场的电场强度E的大小;(保留2位有效数字)(2)图b中t=45π×10-5 s时刻电荷与O点的水平距离;(3)如果在O点右方d=68 cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板所需的时间.(sin 37°=0.60,cos 37°=0.80) (保留2位有效数字)3.(20分)一个质量m =0.1kg的正方形金属框,其电阻R=0.5Ω,金属框放在表面绝缘且光滑的斜面顶端(金属框上边与AB重合),由静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边CD平行、宽度为d的匀强磁场后滑至斜面底端(金属框下边与CD重合)。

2024届高考物理核心考点情景题压轴汇编-4电磁学

2024届高考物理核心考点情景题压轴汇编-4电磁学

2024届高考物理核心考点情景题压轴汇编-4电磁学一、单选题 (共7题)第(1)题轻杆的两端固定有可视为质点的小球A和B,不可伸长的轻质细绳两端与两小球连接,轻绳挂在光滑水平固定的细杆O上,平衡时的状态如图所示。

已知A的质量是B的质量的2倍,则OA与OB的长度之比为( )A.B.C.D.第(2)题某室内游泳馆的游泳池里的水温保持恒定,有一气泡从池底缓慢上升(气泡内空气质量、温度保持不变,可视为理想气体),则在此过程中( )A.气泡不断膨胀对外做功,内能减少B.气泡内分子间距离逐渐增大,分子平均动能减小C.气泡内气体从外界吸收能量,且吸收的热量小于气体对外界做的功D.单位时间内撞击气泡内壁单位面积上的分子数目减少第(3)题某电容式电子秤的部分结构如图所示。

将该电子秤水平放置,未测物品时,两金属板M,N平行正对,带有等量异种电荷且保持不变;当放置物品时,M板受到压力F而发生微小形变,则( )A.M、N两板间电势差变小B.M、N两板间场强处处不变C.M、N两板构成的电容器的电容变小D.M、N两板构成的电容器的电容不变第(4)题两圆环A、B置于同一水平面上,其中A为均匀带电绝缘环,B为导体环。

当A以如图示的方向绕中心转动的角速度发生变化时,B中产生如图所示方向的感应电流,下列说法正确的是()A.A可能带正电且转速减小B.A可能带负电且转速恒定C.若A带负电,B有扩张的趋势D.若A带正电,B有扩张的趋势第(5)题如图所示,交流发电机输出电压的瞬时值表达式为。

理想变压器原、副线圈匝数比为1∶4,理想电流表、的示数分别为,理想电压表的示数分别为。

下列说法正确的是( )A.时,发电机的矩形导线框与图示位置垂直B.交流电压表的示数为C.滑动变阻器的滑片向c端滑动,则电流表的示数变大D.滑动变阻器的滑片向d端滑动,不变第(6)题某同学为了研究水波的传播特点,在水面上放置波源和浮标,两者的间距为L。

时刻,波源开始从平衡位置沿y轴在竖直方向做简谐运动,产生的水波沿水平方向传播(视为简谐波),时刻传到浮标处使浮标开始振动,此时波源刚好位于正向最大位移处,波源和浮标的振动图像分别如图中的实线和虚线所示,则( )A.浮标的振动周期为B.水波的传播速度大小为C.时刻浮标沿y轴负方向运动D.水波的波长为第(7)题如图,一横截面为直角三角形ABC的玻璃砖,∠A=30°,∠B=60°,一条平行于AC边的光线从AB边上的O点射入玻璃砖,经AB边折射后打到AC边上的E点,已知AB=3L,AO=L,,光在真空传播的速度为c。

高考物理压轴题电磁场大全

高考物理压轴题电磁场大全

1、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B 。

一质量为m ,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。

⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。

⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。

求入射粒子的速度。

解:qB mv =v由平抛规律,质点进入电场时v 0=v cos φ,在电场中经历时间t=d /v 0,在电场中竖直位移221tan 2t mqE d h ⋅⋅==φ,由以上各式可得3、如图所示,在第一象限有一均强电场,场强大小为E ,方向与y 轴平行;在x 轴下方有一均强磁场,磁场方向与纸面垂直。

一质量为m 、电荷量为-q(q>0)的粒子以平行于x 轴的速度从y 轴上的P 点处射入电场,在x 轴上的Q 点处进入磁场,并从坐标原点O 离开磁场。

粒子在磁场中的运动轨迹与y 轴交于M 点。

已知OP=l ,l OQ 32=。

不计重力。

求(1)M 点与坐标原点O 间的距离;(2)粒子从P 点运动到M 点所用的时间。

【解析】(1)带电粒子在电场中做类平抛运动,在y 轴负方向上做初速度为零的匀加速运动,设加速度的大小为a ;在x 轴正方向上做匀速直线运动,设速度为0v ,粒子从P 点运动到Q 点所用的时间为1t ,进入磁场时速度方向与x 轴正方向的夹角为θ,则qEa m=① 012y t a=② 001x v t =③ 其中0023,x l y l ==。

又有1tan at v θ= ④ 联立②③④式,得30θ=︒因为M O Q 、、点在圆周上,=90MOQ ∠︒,所以MQ 为直径。

从图中的几何关系可知。

23R l = ⑥ 6MO l = ⑦(2)设粒子在磁场中运动的速度为v ,从Q 到M 点运动的时间为2t , 则有0 cos v v θ=⑧ 2Rt vπ= ⑨ 带电粒子自P 点出发到M 点所用的时间为t 为12+ t t t = ⑩联立①②③⑤⑥⑧⑨⑩式,并代入数据得32+ 1mlt qE π⎛⎫= ⎪ ⎪⎝⎭⑾4、如图所示,在0≤x≤a 、o≤y≤2a 2a范围内有垂直手xy 平面向外φOyEB A φC φd h xxy OP QMv 0的匀强磁场,磁感应强度大小为B 。

十年高考物理真题汇编(12—21年) 专题31 电学综合3 压轴大题1(原卷版+解析版)

十年高考物理真题汇编(12—21年)  专题31 电学综合3 压轴大题1(原卷版+解析版)
1.(2021全国乙)12.如图,一倾角为 的光滑固定斜面的顶端放有质量 的U型导体框,导体框的电阻忽略不计;一电阻 的金属棒 的两端置于导体框上,与导体框构成矩形回路 ; 与斜面底边平行,长度 。初始时 与 相距 ,金属棒与导体框同时由静止开始下滑,金属棒下滑距离 后进入一方向垂直于斜面的匀强磁场区域,磁场边界(图中虚线)与斜面底边平行;金属棒在磁场中做匀速运动,直至离开磁场区域。当金属棒离开磁场的瞬间,导体框的 边正好进入磁场,并在匀速运动一段距离后开始加速。已知金属棒与导体框之间始终接触良好,磁场的磁感应强度大小 ,重力加速度大小取 。求:
专题31电学综合3压轴大题1
(2012-2021)
电磁综合压轴大题1—电磁感应中的动力学与能量综合问题
1.(2021全国乙)12.如图,一倾角为 的光滑固定斜面的顶端放有质量 的U型导体框,导体框的电阻忽略不计;一电阻 的金属棒 的两端置于导体框上,与导体框构成矩形回路 ; 与斜面底边平行,长度 。初始时 与 相距 ,金属棒与导体框同时由静止开始下滑,金属棒下滑距离 后进入一方向垂直于斜面的匀强磁场区域,磁场边界(图中虚线)与斜面底边平行;金属棒在磁场中做匀速运动,直至离开磁场区域。当金属棒离开磁场的瞬间,导体框的 边正好进入磁场,并在匀速运动一段距离后开始加速。已知金属棒与导体框之间始终接触良好,磁场的磁感应强度大小 ,重力加速度大小取 。求:
由闭合回路的欧姆定律可得
则导体棒刚进入磁场时受到的安培力为
(2)金属棒进入磁场以后因为瞬间受到安培力的作用,根据楞次定律可知金属棒的安培力沿斜面向上,之后金属棒相对导体框向上运动,因此金属棒受到导体框给的沿斜面向下的滑动摩擦力,因匀速运动,可有
(1)求金属杆CD运动过程中产生的感应电动势E及运动到x=0.8 m处电势差UCD;

高考物理电磁感应现象压轴难题综合题含答案

高考物理电磁感应现象压轴难题综合题含答案

高考物理电磁感应现象压轴难题综合题含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+ 计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R =+总联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d -;(3)2B 的大小为132B ,方向沿导轨平面向上.3.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。

3全国第三批新高考2024-2024年物理压轴计算题汇编(基础必刷)

3全国第三批新高考2024-2024年物理压轴计算题汇编(基础必刷)

3全国第三批新高考2024-2024年物理压轴计算题汇编(基础必刷)一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图所示,三个完全相同的带负电的小球,b处于水平向右的匀强电场中,c处于垂直于纸面向里的匀强磁场中。

不计空气阻力,三小球从同一高度静止落下,设它们落地前瞬间的速度大小分别为,则( )A.b小球在空中做匀变速曲线运动,轨迹是一条抛物线B.三小球在落地前动量变化率恒定不变C.D.第(2)题如图所示,是博物馆珍珍藏的古代青铜“鱼洗”的复制品,注入适量水后,有节奏地摩擦鱼洗双耳,会发出嗡嗡声,盆内水花四溅。

传说,众多“鱼洗”声能汇集成千军万马之势,曾作退数十里外的敌军。

“鱼洗”反映了我国古代高超的科学制器技术下列分析正确的是( )A.水波能传播振动,水波上的各点可以随波迁移B.“鱼洗”声在空气中传播的过程中频率会逐渐减小C.手掌摩擦得越快则溅起的水花越高D.当用手以一定频率摩擦“鱼洗”的盆耳时发出的嗡嗡声特别响,这是共振现象的一个体现第(3)题如图所示,空间中存在A、B、C、D四个点恰好构成正四面体,在A、B两个顶点各固定一个电荷量为+q的点电荷,C、D两个顶点各固定一个电荷量为-q的点电荷,M、N分别为AD、BC的中点,下列说法正确的是( )A.M、N两点的场强大小相等,方向不同B.M、N两点的场强大小不等,方向不同C.M点的电势高于N点的电势D.四面体的棱上共有六个点的电势为0第(4)题将一小球从空中点自由释放,小球经过点落到点。

小球经过点时的动能和重力势能分别用表示,之间、之间距离分别用表示,选点所在水平面为零势能面,若,不计空气阻力,则以下关系式成立的是(  )A.B.C.D.第(5)题如图所示,一轻绳绕过无摩擦的两个轻质小定滑轮、,一端和质量为的小球连接,另一端与套在光滑固定直杆上质量也为的小物块连接,直杆与两定滑轮在同一竖直面内,与水平面的夹角,直杆上点与两定滑轮均在同一高度,点到定滑轮的距离为,直杆上点到点的距离也为,重力加速度为,直杆足够长,小球运动过程中不会与其他物体相碰。

2024届高考物理核心考点情景题压轴汇编-4电磁学

2024届高考物理核心考点情景题压轴汇编-4电磁学

2024届高考物理核心考点情景题压轴汇编-4电磁学一、单选题 (共7题)第(1)题如图所示,质量分别为m和3m的小物块A和B,用劲度系数为k轻质弹簧连接后放在水平地面上,A通过一根水平轻绳连接到墙上。

A、B与地面间的动摩擦因数均为μ,最大静摩擦力等于滑动摩擦力。

用水平拉力将B向右缓慢拉开一段距离,撤去拉力后,B恰好能保持静止,弹簧形变始终在弹性限度内,重力加速度大小为g。

下列判断正确的是( )A.物块B向右移动的最大距离为B.若剪断轻绳,A在随后的运动过程中相对于其初位置的最大位移大小C.若剪断轻绳,A在随后的运动过程中通过的总路程为D.若剪断轻绳,A最终会静止时弹簧处于伸长状态,其伸长量为第(2)题蹦极是一项极限运动,现将运动简化为如下模型:小球从某高度处静止下落到竖直放置的轻弹簧上并压缩弹簧,下降过程中小球的加速度随位移变化如图所示,图中,不计空气阻力,弹簧始终处于弹性限度内且忽略小球与弹簧碰撞中的能量损失。

下列说法正确的是( )A.从x1到x2过程,小球做减速运动B.从x2到过程,小球处于失重状态C.下降到时,小球的速度为零D.下降到时,小球受到的弹力是重力的2倍第(3)题轿车的“悬挂系统”是指由车身与轮胎间的弹簧及避震器组成的整个支持系统。

已知某型号轿车“悬挂系统”的固有频率是。

如图所示,这辆汽车正匀速通过某路口的条状减速带,已知相邻两条减速带间的距离为,该车经过该减速带过程中,下列说法正确的是( )A.当该轿车通过减速带时,车身上下振动的频率均为,与车速无关B.该轿车通过减速带的速度越大,车身上下颠簸得越剧烈C.当该轿车以的速度通过减速带时,车身上下颠簸得最剧烈D.当该轿车以不同速度通过减速带时,车身上下颠簸的剧烈程度一定不同第(4)题下列物理概念应用了理想模型法的是( )A.重心B.点电荷C.电场强度D.瞬时速度第(5)题图(a)为某型号家用全自动波轮洗衣机,图(b)为洗衣机内部结构剖面图,其内桶由四根相同的轻质吊杆前、后、左、右对称悬挂(悬点可自由转动),内筒静止时每根吊杆与竖直方向夹角均为α,内桶总质量为m,重力加速度大小为g,每根吊杆的拉力大小为( )A.B.C.D.第(6)题如图所示,A、B两小球从相同高度同时水平抛出,经过时间t在空中相遇,若两球的抛出速度都变为原来的2倍,则两球从抛出到相遇经过的时间为( )A.t B.C.D.第(7)题图甲是一列简谐横波在某时刻的波形图,质点M、N、P、Q分别位于介质中x=3m、x=4m、x=5m、x=10m处。

高考压轴题——电磁学大题专项训练(学生版)

高考压轴题——电磁学大题专项训练(学生版)

高考压轴题——电磁学专项训练一、解答题1.如图所示,直角坐标系中,y 轴左侧有一半径为a 的圆形匀强磁场区域,与y 轴相切于A 点,A 点坐标为⎛⎫ ⎪ ⎪⎝⎭。

第一象限内也存在着匀强磁场,两区域磁场的磁感应强度大小均为B ,方向垂直纸面向外。

圆形磁场区域下方有两长度均为2a 的金属极板M 、N ,两极板与x 轴平行放置且右端与y 轴齐平。

现仅考虑纸面平面内,在极板M 的上表面均匀分布着相同的带电粒子,每个粒子的质量为m ,电量为q +。

两极板加电压后,在板间产生的匀强电场使这些粒子从静止开始加速,并顺利从网状极板N 穿出,然后经过圆形磁场都从A 点进入第一象限。

其中部分粒子打在放置于x 轴的感光板CD 上,感光板的长度为2.8a ,厚度不计,其左端C 点坐标为1,02a ⎛⎫ ⎪⎝⎭。

打到感光板上的粒子立即被吸收,从第一象限磁场射出的粒子不再重新回到磁场中。

不计粒子的重力和相互作用,忽略粒子与感光板碰撞的时间。

(1)求两极板间的电压U ;(2)在感光板上某区域内的同一位置会先后两次接收到粒子,该区域称为“二度感光区”,求: ①“二度感光区”的长度L ;①打在“二度感光区”的粒子数1n 与打在整个感光板上的粒子数2n 的比值12:n n ;(3)改变感光板材料,让它仅对垂直打来的粒子有反弹作用(不考虑打在感光板边缘C 、D 两点的粒子),且每次反弹后速度方向相反,大小变为原来的一半,则该粒子在磁场中运动的总时间t 和总路程s 。

2.如图所示为一同位素原子核分离器的原理图。

有两种同位素,电荷量为q ,质量分别为m 1,m 2,其中12m m <。

从同一位置A 点由静止出发通过同一加速电场进入速度选择器,速度选择器中的电场强度为E ,方向向右,磁感应强度大小为B ,方向垂直纸面。

在边界线ab 下方有垂直纸面向外的匀强磁场B 1(B 1大小未知)。

忽略粒子间的相互作用力及所受重力。

若质量为m 1的原子核恰好沿直线(图中虚线)从O 点射入下方磁场。

高考物理电磁感应现象压轴难题综合题含答案解析

高考物理电磁感应现象压轴难题综合题含答案解析

高考物理电磁感应现象压轴难题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L=- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L =-3.电源是通过非静电力做功把其它形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势E 来表明电源的这种特性。

电磁感应中的综合问题- 高考物理压轴大题专题训练

电磁感应中的综合问题- 高考物理压轴大题专题训练

训练10 电磁感应中的综合问题1.(2019·浙江选考)如图所示,在间距L =0.2m 的两光滑平行水平金属导轨间存在方向垂直于纸面(向内为正)的磁场,磁感应强度为分布沿y 方向不变,沿x 方向如下:10.2{50.20.210.2Tx mB xT m x m Tx m >=-≤≤-<-导轨间通过单刀双掷开关S 连接恒流源和电容C =1F 的未充电的电容器,恒流源可为电路提供恒定电流I =2A ,电流方向如图所示。

有一质量m =0.1kg 的金属棒ab 垂直导轨静止放置于x 0=0.7m 处。

开关S 掷向1,棒ab 从静止开始运动,到达x 3=-0.2m 处时,开关S 掷向2。

已知棒ab 在运动过程中始终与导轨垂直。

求:(提示:可以用F -x 图象下的“面积”代表力F 所做的功) (1)棒ab 运动到x 1=0.2m 时的速度v 1; (2)棒ab 运动到x 2=-0.1m 时的速度v 2; (3)电容器最终所带的电荷量Q 。

【答案】(1)2 m/s (2 4.6m/s (3)2C 7【解析】(1)安培力F BIL =, 加速度F BIL a m m== 速度()10122m/s v a x x =-=(2)在区间0.2m 0.2m x -≤≤ 安培力5F xIL =,如图所示安培力做功()221252IL W x x =- 根据动能定理可得22211122W mv mv =-解得2 4.6m/s v =(3)根据动量定理可得3BLQ mv mv -=- 电荷量Q CU CBLv ==在0.2x m =-处的速度312m/s v v == 联立解得3222C 7CBLmv Q CB L m ==+ 2.(2019·江苏卷)如图所示,匀强磁场中有一个用软导线制成的单匝闭合线圈,线圈平面与磁场垂直.已知线圈的面积S =0.3 m 2、电阻R =0.6 Ω,磁场的磁感应强度B =0.2 T.现同时向两侧拉动线圈,线圈的两边在Δt =0.5 s 时间内合到一起.求线圈在上述过程中 (1)感应电动势的平均值E ;(2)感应电流的平均值I ,并在图中标出电流方向; (3)通过导线横截面的电荷量q .【答案】(1)0.12 V (2)0.2 A 电流方向见解析 (3)0.1 C 【解析】(1)感应电动势的平均值E tΦ∆=∆ 磁通量的变化B S Φ∆=∆解得B SE t∆=∆, 代入数据得E =0.12 V (2)平均电流E I R=代入数据得I =0.2 A (电流方向见图3)(3)电荷量q =I ∆t 代入数据得q =0.1 C3.(2017·江苏卷)如图所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻。

2024届高考物理情景题压轴汇编-4电磁学

2024届高考物理情景题压轴汇编-4电磁学

2024届高考物理情景题压轴汇编-4电磁学一、单选题 (共7题)第(1)题如图甲所示,是国产某型号手机无线充电装置,其工作原理图如图乙所示,其中送电线圈和受电线圈匝数比n1∶n2=5∶1。

送电线圈和受电线圈所接电阻的阻值均为R。

当ab间接上220V的正弦交变电源后,受电线圈中产生交变电流给手机快速充电,这时手机两端的电压为5V,充电电流为5A,把送电线圈和受电线圈构成的装置视为理想变压器,不计线圈及导线电阻,则下列说法正确的是( )A.送电线圈的电流为25AB.快速充电时,送电线圈所接电阻的两端电压为7.5VC.快速充电时,送电线圈的输入功率为220WD.持续进行快速充电时,充满容量为4000的电池至少需要80min第(2)题如图所示,木模A、B质量均为m,通过三根轻质竖直细线对称连接,木模B静止在水平面上。

细线a、b、c上的张力大小分别用、、表示,水平面所受的压力大小为,重力加速度大小为g。

下列说法正确的是()A.F N<2mg B.F a-F b-F c=mgC.F a+F b+F c=2mg D.F a=F b+F c第(3)题如图所示,玻璃砖的横截面为等腰梯形,梯形上底边长为,下底边长为,底角为。

一束折射率为的足够强的单色光垂直射向玻璃砖的整个下底面,对于分别从上底面、两侧面、下底面射出的单色光,其在下底面入射时的面积之比为()A.1∶1∶1B.1∶1∶3C.1∶2∶2D.1∶2∶3第(4)题某物理小组做了竖直圆环内的小球追及模型,如图所示,在竖直平面内固定半径为r的光滑圆形轨道,完全相同的两小球在某时刻恰好位于轨道的最高点和最低点,速率分别为,它们都做顺时针运动且恰好能通过最高点,则在此运动过程中,( )A.两球各自通过最高点时的速率B.两球各自通过最低点时的速率C.两球不可能在同一时刻重力势能相等D.系统的动能最小时,两球同时位于圆心上方的同一水平线上第(5)题如图所示,两个小球A、B用长为L的轻质细绳连接,B球穿在光滑细杆上。

2024届高考物理情景题压轴汇编-4电磁学

2024届高考物理情景题压轴汇编-4电磁学

2024届高考物理情景题压轴汇编-4电磁学一、单选题 (共6题)第(1)题质量为1kg的物块在水平力F的作用下由静止开始在水平地面上做直线运动,F与时间t的关系如图所示。

已知物块与地面间的动摩擦因数为0.2,取重力加速度g=10m/s2。

则( )A.3s时物块的动量为6kg·m/sB.6s时物块回到初始位置C.4s时物块的动能为8JD.0~6s时间内合力对物块所做的功为72J第(2)题如图所示,由电动机带动着倾角θ=37°的足够长的传送带以速率v=4m/s顺时针匀速转动。

一质量m=2kg的小滑块以平行于传送带向下v0=2m/s的速率滑上传送带,已知小滑块与传送带间的动摩擦因数,g取10m/s2,,,则小滑块从接触传送带到与传送带相对静止的时间内( )A.小滑块的加速度大小为0.1m/s2B.小滑块的重力势能增加了120JC.小滑块使电动机多消耗的电能为336JD.小滑块与传送带因摩擦产生的内能为84J第(3)题如图甲所示,客家人口中的“风车”也叫“谷扇”,是农民常用来精选谷物的农具。

在同一风力作用下,精谷和瘪谷(空壳)都从洞口水平飞出,结果精谷和瘪谷落地点不同,自然分开,简化装置如图乙所示。

谷粒从洞口飞出后均做平抛运动,落在点的谷粒速度方向和竖直方向的夹角为,从洞口飞出时的速度大小为;落在点的谷粒速度方向和竖直方向的夹角为,从洞口飞出时的速度大小为。

下列分析正确的是( )A.处是瘪谷B.处是精谷:C.处是瘪谷D.处是精谷第(4)题如图,“单臂大回环”是体操运动中的高难度动作,运动员单臂抓杠,以单杠为轴完成圆周运动,不考虑手和单杠之间的摩擦和空气阻力,将人视为处于重心的质点,将“单臂大回环”看成竖直平面内的圆周运动,等效半径为L,重力加速度为g,下列说法正确的是( )A.单杠对手臂只能提供拉力,不能提供支持力B.从最高点到最低点的过程中,单杠对人的作用力做正功C.若运动员恰好能够完成此圆周运动,则运动员在最低点的向心加速度大小为D.若运动员恰好能够完成此圆周运动,则运动员在最高点处时,手臂与单杠之间无支持力第(5)题地铁靠站时,列车车体和屏蔽门之间安装有光电传感器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年高考押题1.(18分)在竖直平面内,以虚线为界分布着如图所示足够大的匀强电场和匀强磁场,其中匀强电场方向竖直向下,大小为E ;匀强磁场垂直纸面向里,磁感应强度大小为B 。

虚线与水平线之间的夹角为θ=45°,一带负电粒子从O 点以速度v 0水平射入匀强磁场,已知带负电粒子电荷量为q ,质量为m ,(粒子重力忽略不计)。

(1)带电粒子从O 点开始到第1次通过虚线时所用的时间;(2)带电粒子第3次通过虚线时,粒子距O 点的距离;(3)粒子从O 点开始到第4次通过虚线时,所用的时间。

1.(18分)解:如图所示:(1)根据题意可得粒子运动轨迹如图所示。

2πm T Bq =……………………………………(2分) 因为θ=45°,根据几何关系,带电粒子从O 运动到A 为3/4圆周……(1分) 则带电粒子在磁场中运动时间为:3π2m t Bq =………………………………………………………………………………………(1分)(2)由qvB=m 2v r………………………………………………………(2分) 得带电粒子在磁场中运动半径为:0mv r Bq=,…………………………(1分) 带电粒子从O 运动到A 为3/4圆周,解得022OA mv x r Bq ==…………………(1分)带电粒子从第2次通过虚线到第3次通过虚线运动轨迹为14圆周,OA AC x x =所以粒子距O 点的距离02222OC mv x r Bq==………………………………(1分)(3)粒子从A 点进入电场,受到电场力F=qE ,则在电场中从A 到B 匀减速,再从B 到A 匀加速进入磁场。

在电场中加速度大小为:qE a m=……………………(1分) 从A 到B 的时间与从B 到A 的时间相等。

00AB v mv t a qE ==………………………(1分)带电粒子从A 到C :342T m t Bq π==……………………………………………………(1分) 带电粒子从C 点再次进入电场中做类平抛运动X=v 0t 4……………………………………………………………(1分)2412Y at =…………………………………………………………(1分) 由几何关系得:Y=X ……………………………………………………………(1分) 得042mv t qE=…………………………………………………………………………(1分) 第4次到达虚线的总时间为0134422AB mv m t t t t t qB qE π=+++=+……………(2分)2.(18分)如图所示的空间分为I 、II 、III 三个区域,边界AD 与边界AC 的夹角为30°,边界AD 与边界EF 平行,边界AC 与边界MN 平行,I 区域内存在匀强电场,电场方向垂直于边界AD ,II 、III 区域均存在磁感应强度大小为B 的匀强磁场,磁场的方向分别为垂直纸面向外和垂直纸面向里,III 区域宽度为2d 。

大量质量为m 、电荷量为+q 的相同粒子在边界EF 上的不同点由静止经电场加速后,到达边界AD 时的速度大小均为,然后,沿纸面经边界AD 进入II 区域磁场。

不计粒子的重力,不计粒子间的相互作用力。

试问:(1)边界EF 与边界AD 间的电势差。

(2)边界AD 上哪个范围内进入II 区域磁场的粒子,都能够进入III 区域的磁场?(3)对于能够进入III 区域的这些粒子而言,它们通过III 区域所用的时间不尽相同,那么通过III 区域的最短时间是多少。

3.(18分)坐标原点O 处有一点状的放射源,它向xoy 平面内的x 轴上方各个方向发射α粒子,α粒子的速度大小都是0v ,在0<y<d 的区域内分布有指向y 轴正方向的匀强电场,场强大小为qd mv E 2320=,其中q 和m 分别为α粒子的电量和质量;在d<x<4d 的区域内分布有垂直于xoy 平面的匀强磁场。

Ab 为一块很大的平面感光板,放置于y=4d 处,如图所示。

观察发现此时恰无粒子打到ab 板上。

不考虑α粒子的重力。

求:(1)α粒子刚进入磁场时的动能。

(2)磁感应强度B 的大小。

(3)将ab 板平移到什么位置时所有的粒子均能打到板上?此时ab 板上被α粒子打中的区域的长度为多少?4.(22分)如图甲所示,两平行金属板间接有如图乙所示的随时间t 变化的电压u ,板 间电场可看作是均匀的,且两板外无电场,极板长L=0.2m ,板间距离d=0.2m ,在金属板右侧有一边界为MN 的区域足够大的匀强磁场,MN 与两板中线OO′垂直,磁感应强度B=5×10-3T ,方向垂直纸面向里。

现有带正电的粒子流沿两板中线OO′连续射入电场中,已知每个粒子的速度v 0=105m/s ,比荷q/m=108C/kg ,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的。

⑴ 试求带电粒子射出电场时的最大速度。

⑵ 证明任意时刻从电场射出的带电粒子,进入磁场时在MN 上的入射点和出磁场时在MN 上的出射点间的距离为定值。

⑶ 从电场射出的带电粒子,进入磁场运动一段时间后又射出磁场。

求粒子在磁场中运动的最长时间和最短时间。

4.(22分)(1)设两板间电压为U 1时,带电粒子刚好从极板边缘射出电场,则有u /t /s -2020O 0.2 0.4 0.6 0.8 图乙 M N O v 图甲2012)(21212v L md q U at d ⋅== (2分) 代入数据解得U 1=100V (1分) 在电压低于100V 时,带电粒子才能从两板间射出,电压高于100V 时,带电粒子打在极板上,不能从两板间射出。

粒子刚好从极板边缘射出电场时,速度最大,设最大速度为v 1,则有2212112021U q mv mv ⋅+= (3分)代入数据解得s m v /10251⨯= (1分) θ θ(2)设粒子进入磁场时速度方向与OO'的夹角为θ,则速度大小 θcos 0v v = (2分) 粒子在磁场中做圆周运动的轨道半径θcos 0qB mv qB mv R == (2分) 粒子从磁场中飞出的位置与进入磁场的位置之间的距离qBmv R s 02cos 2==θ (2分)代入数据解得s=0.4m (1分) s 与θ无关,即射出电场的任何一个带电粒子进入磁场的入射点与出射点间距离恒为定值。

(3)粒子飞出电场进入磁场,在磁场中按逆时针方向做匀速圆周运动。

粒子飞出电场时的速度方向与OO'的最大夹角为α ,22cos 10==v v α,α=45° (2分)当粒子从下板边缘飞出电场再进入磁场时,在磁场中运动时间最长,s qB m T t 6max 1032343-⨯===ππ (3分) 当粒子从上板边缘飞出电场再进入磁场时,在磁场中运动时间最短,s qBm T t 6min 1024-⨯===ππ (3分) 5.两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为x 和y 轴,交点O 为原点,如图所示。

在y>0,0<x<a 的区域有垂直于纸面向内的匀强磁场,在y>0,x>a 的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B 。

在O 点出有一小孔,一束质量为m 、带电量为q (q>0)的粒子沿x 周经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。

入射粒子的速度可取从零到某一最大值之间的各种数值。

已知速度最大的粒子在0<x<a 的区域中运动的时间与在x>a 的区域中运动的时间之比为2︰5,在磁场中运动的总时间为7T/12,其中T 为该粒子在磁感应强度为B 的匀强磁场中做圆周运动的周期。

试求两个荧光屏上亮线的范围(不计重力的影响)。

5 解:对于y 轴上的光屏亮线范围的临界条件如图1所示:带电粒子的轨迹和x=a相切,此时r=a,y轴上的最高点为y=2r=2a ;对于 x轴上光屏亮线范围的临界条件如图2所示:左边界的极限情况还是和x=a 相切,此刻,带电粒子在右边的轨迹是个圆,由几何知识得到在x轴上的坐标为x=2a;速度最大的粒子是如图2中的实线,又两段圆弧组成,圆心分别是c和c’由对称性得到 c’在 x轴上,设在左右两部分磁场中运动时间分别为t1和t2,满足1 22 5tt=解得11 6t T=25 12t T=由数学关系得到:32R a=代入数据得到:3 OP=2(1+)3a所以在x 轴上的范围是3 2a x2(1+)3a ≤≤6.(18分)如图(a)所示,在xOy竖直平面直角坐标系中,有如图(b)所示的随时间变化的电场,电场范围足够大,方向与y轴平行,取竖直向上为正方向;同时也存在如图(c)所示的随时间变化的磁场,磁场分布在x1≥x≥0、y1≥y≥-y1的虚线框内,方向垂直坐标平面,并取向内为正方向。

在t=0时刻恰有一质量为m=4×10-5kg、电荷量q:1×10-4C的带正电小球以v=4m/s的初速度从坐标原点沿x轴正向射入场区,并在0.15s时间内做匀速直线运动,g取10m/s2,sin37°=0.60,cos37°=0.80。

求:(1)磁感应强度昂的大小;(2)0.3s末小球速度的大小及方向:(3)为确保小球做完整的匀速圆周运动,x1和y1的最小值是多少6.解:小球运动轨迹参见图解。

(1)设t 1=0.15s ,在t 1时间内,小球处于平衡状态,故有:00qE mg qB v += …………① (2分)解得B 0=2T …………② (2分)(2)设20.3t s ==,在t 1~t 2时间内,由图(b )、图(c )可知,小球在电场力和重力作用下,做类平抛运动,t 2时刻小球在x 方向的速度为:在y 方向,根据牛顿第二定律有:由qE mg ma +=解得220/a m s = …………③ (2分)根据运动学公式21()3/y v a t t m s =-= …………④ (1分)根据平行四边形定则,此时粒子的速度为:5/v m s = …………⑤ (1分) 设速度方向与x 轴成3,:tan 4θθ=则有 得37θ=o ………………⑥ (1分)(3)由图(b )、图(c )可知,0.3s 以后,粒子所受电场力与重力平衡,粒子在洛仑兹力作用下做匀速圆周运动,由牛顿第二定律20v qB v m R= 解得01mv R m qB == ………………⑦ (1分) 由几何知识可得粒子做匀速圆周运动的圆心坐标为002cos53 1.80x v t R m =+=o …………⑧ (3分)20211sin 53()0.5752y R a t t m =--=o ………………⑨ (3分) 所以10 2.80x x R m =+= ………………⑩(1分)10 1.575y R y m =+= ………………(11) (1分)7.(18分)如图所示,圆形匀强磁场半径R=l cm ,磁感应强度B=IT ,方向垂直纸面向里,其上方有一对水平放置的平行金属板M 、N ,间距d=1cm ,N 板中央开有小孔S 。

相关文档
最新文档