对数知识点整理
对数总结知识点
对数总结知识点一、对数的定义1.1 对数的基本概念对数是指数的倒数,它描述了某个数在底数为固定值时的指数。
设a和b是两个实数,并且a>0且a≠1,若a的x次幂等于b,即a^x=b,则称x是以a为底b的对数,记作x=loga(b)。
其中,a称为对数的底数,b称为真数,x称为指数。
对数的底数a通常取2、e或者10。
1.2 对数的特性对数有几个重要的特性:(1)当b=a^1时,对数的值为1,即loga(a)=1;(2)当b=1时,对数的值为0,即loga(1)=0;(3)当b=a^0时,对数的值不存在,即loga(0)是无意义的,因为0没有对数;(4)当b=a^(-1)时,对数的值等于-1,即loga(a^(-1))=-1;(5)当a=1时,对数不存在,因为1的任何次幂都是1,没有唯一的对数。
以上就是对数的基本概念和特性,通过这些概念,我们可以初步了解对数的意义和性质。
接下来,我们将介绍对数的性质和运算规则。
二、对数的性质和运算规则2.1 对数的性质对数具有一些重要的性质,这些性质在对数的运算中起着重要的作用。
下面我们来介绍对数的性质:(1)对数的反函数性质:指数函数和对数函数是互为反函数的,即a^loga(x)=x,loga(a^x)=x;(2)对数的除法性质:loga(x/y)=loga(x)-loga(y),即对数的商等于对数的差;(3)对数的乘法性质:loga(xy)=loga(x)+loga(y),即对数的积等于对数的和;(4)对数的幂性质:loga(x^k)=k*loga(x),即对数的幂等于指数与对数的乘积。
通过以上性质,我们可以在对数的运算中简化表达式,更方便地进行计算和推导。
接下来,我们来介绍对数的运算规则。
2.2 对数的运算规则对数的运算规则主要包括:换底公式、对数的乘除法、对数的幂运算等。
(1)换底公式:当底数相同时,不同的对数可以相互转化,即loga(b)=logc(b)/logc(a),其中a、b、c为正数,且a≠1,c≠1。
对数的知识点归纳总结
对数的知识点归纳总结一、对数的基本概念1. 对数的定义对数是指数函数的逆运算。
给定正实数a(a≠1)和正实数x,如果等式a^y=x成立,那么数y就是以a为底,x的对数,记作y=log_a(x)。
其中,a被称为对数的底,x被称为真数,y被称为对数。
对数的值可以是实数,也可以是复数。
2. 基本性质(1)对数的底为正实数且不等于1。
(2)对数的真数为正实数。
(3)对数的值可以是实数,也可以是复数。
(4)对数函数为单调增函数。
二、对数的性质1. 对数的运算性质(1)对数的乘法性质:log_a(m) + log_a(n) = log_a(mn)(2)对数的除法性质:log_a(m) - log_a(n) = log_a(m/n)(3)对数的幂运算性质:log_a(m^n) = n*log_a(m)(4)对数的换底公式:log_a(b) = log_c(b) / log_c(a)2. 对数的性质(1)log_a(a) = 1(2)log_a(1) = 0(3)log_a(m) = -log_a(1/m)(4)log_a(a^x)=x(5)a^log_a(x) = x3. 对数的常用对数和自然对数常用对数是以10为底的对数,记作log(x),常用于科学计算。
自然对数是以自然数e为底的对数,记作ln(x),在微积分和概率论中有着广泛的应用。
三、对数的应用1. 对数在科学计算中的应用对数在科学计算中有着广泛的应用,特别是在大数据处理和模型拟合中。
通过对数据取对数,可以将呈指数增长或减小的数据转化为线性增长或减小的数据,方便进行线性回归分析或模型拟合。
2. 对数在工程学中的应用对数在工程学中有着重要的应用,特别是在电路设计、信号处理和控制系统中。
对数可用于描述电压、信号和控制变量的倍增和倍减关系,方便工程师进行设计和分析。
3. 对数在经济学中的应用对数在经济学中有着广泛的应用,特别是在复利计算和经济增长模型中。
对数可用于描述资金的复利增长和经济指标的增长趋势,方便经济学家进行分析和预测。
高中数学对数的知识点总结
高中数学对数的知识点总结一、对数的定义1. 对数的概念对数是指数的逆运算。
设a为正实数且a≠1,a的正实数b的对数写作logₐb,读作“以a为底b的对数”。
其中a称为底数,b称为真数。
即logₐb=c,是等价的关系式a^c=b。
例如,log₂8=3,即等式2^3=8成立。
2. 对数的性质(1)底数为1时,b=1,a=1,log₁1=0;即logₐa=0。
(2)底数为正数时,即a>0,且a≠1时⒈对于任意正数b,1≠b,底数相等时,对数相等,即a>0,a≠1时,logₐb=logₐc,当且仅当b=c。
即对于任意正数b,0<a≠1,等式a^x=b的解是唯一的。
⒉对于任意正数a,b,c,当a>0,a≠1时,loga(b*c)=loga(b)+loga(c)。
⒊对于任意正数a,b,c,当a>0,a≠1时,loga(b/c)=loga(b)-loga(c)。
⒋对于任意正数a,b,当a>0,a≠1时,loga(b^c)=c*loga(b),其中c是常数。
3. 对数的求值对数的求值即是用对数的性质,把对数的计算用其它运算替代。
4. 对数的应用对数是一个非常重要和常见的概念,在数学中有着广泛的应用。
在科学、工程、经济和社会等领域中,对数都有着重要的作用。
例如在地震、声音、强度、音乐、语言学和政治领域等,都用到对数。
二、对数的基本概念1. 对数方程的解法对数方程的解法是通过对数的性质来解对数方程。
分为以下几种类型:(1)把一个对数方程转化为同底数的对数方程,通过对数的定义和性质,解方程找到x的值。
(2)两个底数不同的对数方程,通过换底公式进行计算,转换成相同底数的对数方程。
2. 对数不等式的解法对数不等式的解法是把对数引入不等式组成的方程中,然后进一步思考分析,解不等式。
对数不等式常见的类型有以下几种:(1)把对数不等式分解为多个对数方程,然后再求解。
3. 对数方程组的解法对数方程组的解法是将多个对数方程组合成一个方程,然后根据对数的性质和方程组的解法,求解出方程组的解集。
对数知识点总结讲解
对数知识点总结讲解一、对数的定义1. 对数的含义对数是一种数学工具,用来描述一个数与另一个数的幂之间的关系。
例如,如果一个数a 的x次方等于另一个数b,那么x就是以a为底,b为真数的对数,记作loga(b)。
2. 对数的性质对数具有以下几个基本性质:(1)对数的底数不能是0或1;(2)对数的真数不能是负数;(3)以a为底,b为真数的对数等于以10为底,b/a的对数的值乘以以10为底,a的对数的值。
3. 对数的公式表示对数的公式表示为:loga(b) = x,其中a为对数的底数,b为对数的真数,x为对数的值。
对数的值x可以是正数、负数、零。
二、对数的性质1. 对数的运算规则(1)乘法法则:loga(bc) = loga(b) + loga(c)(2)除法法则:loga(b/c) = loga(b) - loga(c)(3)幂法则:loga(b^c) = c*loga(b)(4)换底公式:loga(b) = logc(b)/logc(a)2. 对数的性质(1)loga(1) = 0;(2)loga(a) = 1;(3)a^loga(b) = b;(4)loga(a^x) = x。
三、对数的常用公式1. 对数的常用公式1(1)loga(b) = 1/logb(a)(2)loga(b) = ln(b)/ln(a)(3)loga(b) = logc(b)/logc(a)2. 对数的常用公式2(1)loga(b) + loga(c) = loga(bc)(2)loga(b) - loga(c) = loga(b/c)(3)loga(b^c) = c*loga(b)3. 对数的常用公式3(1)换底公式:loga(b) = logc(b)/logc(a)(2)对数的乘方化简:a^loga(b) = b(3)对数的乘方化简:loga(a^x) = x四、对数的应用1. 对数在数学中的应用(1)对数在指数函数的求导中的应用;(2)对数在对数函数的积分中的应用;(3)对数在数学建模中的应用。
数学对数知识点总结
数学对数知识点总结一、对数的定义对数是指数的逆运算。
设a是一个正数且不等于1,b是一个正数,则称指数y是对数a 的b的(用符号表示为y=logab),当且仅当a^y=b。
其中,a称为对数的底数,b称为真数。
对数的定义是由指数的概念推广而来的。
指数运算是将一个数乘以自身多次,而对数运算则是找到一个数是底数的多少次方。
对数的定义可以推广到任意的底数,不仅仅限于正数,也可以是复数、矩阵等。
在实际应用中,我们通常使用对数的底数为10(常用对数)或者自然对数(底数为自然常数e)。
二、对数的性质1. 对数的基本性质对数有一系列基本性质:(1)对数的底数不等于1;(2)对数的底数不能为0或者负数;(3)对数的真数必须是正数。
2. 对数的运算性质在对数运算中,有一系列运算性质:(1)对数与幂的运算法则:loga(mn)=logam+log an;对数与商的运算法则:loga(m/n)=logam−logan。
(2)换底公式:logab=logcb/logca。
(3)对数的负数和零:loga(1)=0,loga(a)=1,loga(1/a)=-1。
(4)对数的乘方法则:logaax=x。
3. 对数函数的性质对数函数是一个重要的函数类型,它有一系列的性质:(1)对数函数的图像是一条直线,斜率为1,截距为0。
(2)对数函数是单调增函数,即x1<x2时,logax1<logax2。
4. 对数的极限性质对数函数在极限计算中有一些特殊性质:(1)lim(x→+∞) logax=+∞。
(2)lim(x→0+) logax=−∞。
5. 对数的导数性质对数函数的导数性质是:(1)(logax)′=1/(xlna)。
三、对数的应用对数在数学和其他学科的应用中有着广泛的应用。
以下是对数的一些典型应用:1. 计算问题对数在计算中有很多应用。
例如在计算机科学中,对数是一种常用的数据结构。
对数的运算性质可以帮助我们在计算中简化复杂的问题,提高计算的效率。
高三数学对数知识点总结
高三数学对数知识点总结一、对数的定义和性质对数的定义:对于任意给定的正数a和大于0且不等于1的实数b,如果满足a^x=b,那么x就是以a为底,b为真数的对数,记为x=loga(b)。
其中,a为底数,b为真数,x为对数。
对数的性质:1. 对数的底数a必须大于0且不等于1。
2. 对于任意的正数a,都有loga(a)=1,即以a为底a的对数等于1。
3. 对于任意的正数a,都有loga(1)=0,即以a为底1的对数等于0。
4. 对于任意的正数a,都有loga(a^x)=x,即同一个底数下,对数和指数可以互相转化。
5. 对数运算中,底数相同的对数可以化简为一个对数,即loga(b) + loga(c) = loga(bc)。
6. 对数运算中,幂可以移到对数的外部,即loga(b^x) = xloga(b)。
二、对数的换底公式对数的换底公式是用来将以任意给定底数的对数转化为以另一个底数的对数表示。
换底公式:若a、b和c为正数,且a和b不等于1,则有:loga(b) = logc(b) / logc(a)换底公式的应用能够简化对数计算,特别适用于求解复杂对数方程和不同底数之间的对数转换。
三、常用对数与自然对数常用对数:以10为底的对数,记为log10,简写为lg。
自然对数:以常数e(自然对数的底数,约等于2.71828)为底的对数,记为ln。
常用对数和自然对数的关系:log10(x) = ln(x) / ln(10) ≈ 2.3026 * ln(x)常用对数和自然对数在计算中经常被使用,可以相互转化,并且与其他底数的对数之间也可以利用换底公式进行换算。
四、对数运算与对数方程1. 对数运算:对数运算有以下几种常见形式:(1) 对数乘法:loga(b) + loga(c) = loga(bc)(2) 对数除法:loga(b) - loga(c) = loga(b/c)(3) 对数幂:loga(b^x) = xloga(b)2. 对数方程:对数方程是指方程中包含对数的方程。
对数计算知识点归纳总结
对数计算知识点归纳总结一、基本概念1. 对数的定义对数的定义可以从指数函数的逆函数出发。
设a>0且a≠1,a的x次幂函数y=a^x是严格增函数和满射的,对数函数y=log_a x是a^y=x的逆函数。
其中,a称为底数,x称为真数,y称为对数。
如果底数未标明,则默认情况下一般为10,即log=lg。
2. 底数、真数和对数在对数的定义中,底数指的是指数函数的底数,真数指的是指数函数的结果值,对数指的是幂函数的幂指数。
例如,在对数表达式log28中,2是底数,8是真数,3是对数。
3. 对数的符号与数值对数的数值是实数,在常见对数中,对数的值是无理数。
在实际应用中,对数的值往往是无限循环小数。
4. 对数的常见类型对数按照底数的不同可以分为常用对数(底数为10)和自然对数(底数为e)等不同类型。
常用对数在实际应用中使用率较高,自然对数在微积分等领域具有特殊的作用。
二、性质1. 对数函数的图像对数函数的图像是一条渐进线(一条直线和坐标轴所组成的图像),且对数函数是严格递增的。
对数函数的图像有着特殊的凹陷形状。
2. 对数函数的定义域和值域对数函数的定义域是真数的取值范围,是所有正实数的集合。
对数函数的值域是对数的取值范围,是所有实数的集合。
3. 对数函数的性质(1)对数函数是严格递增函数;(2)对数函数的图像是一条渐进线;(3)对数函数的定义域是正实数的集合;(4)对数函数的值域是实数的集合。
4. 对数与指数的关系对数和指数是互为逆运算的关系,即a^log_a x = x,log_a(a^x)=x。
对数和指数的关系在数学推导和实际问题中有着重要的应用。
三、运算规则1. 对数的运算性质对数具有一系列的运算规则,包括等式变形、对数运算、对数化简等。
对数的运算规则可以帮助简化复杂的计算和推导过程。
2. 对数乘除法规则(1)log a mn = log a m + log a n(对数乘法规则);(2)log a (m/n) = log a m - log a n(对数除法规则)。
对数相关知识点总结
对数相关知识点总结一、对数的概念1. 对数的定义对数是一种数学运算,用来表示一个数在指数运算中的幂。
例如,如果a^x = b,那么x称为以a为底b的对数,记作x= log(a)b。
2. 对数的性质(1) log(a)1 = 0(2) log(a)a = 1(3) log(b)a = 1/log(a)b(4) log(a)b + log(a)c = log(a)(b*c)(5) log(a)b - log(a)c = log(a)(b/c)3. 对数的底常见的对数底有自然对数底e和常用对数底10。
自然对数底e约等于2.71828,常用对数底10。
二、对数的运用1. 对数的应用对数在数学中有着广泛的应用,尤其在指数函数、微积分、概率统计等领域中有着重要作用。
2. 对数方程对数方程是指含有对数的方程,例如log(x+2) = 2。
对数方程的解法通常是先化为指数方程,然后解出方程的根。
3. 对数不等式对数不等式是指含有对数的不等式,例如log(x+2) < 2。
对数不等式的解法通常是先将其转化为指数形式,然后求出解。
4. 对数函数对数函数是指以对数为自变量的函数,例如y = log(x)。
对数函数的图像通常为单调增加的曲线,与指数函数互为反函数。
三、常用对数和自然对数1. 常用对数对数底为10的对数称为常用对数,通常用log表示,例如log(x)。
常用对数在计算中有着广泛的应用。
2. 自然对数对数底为e的对数称为自然对数,通常用ln表示,例如ln(x)。
自然对数在微积分、概率统计等领域中有着重要作用。
3. 常用对数和自然对数的换底公式常用对数和自然对数的换底公式是log(a)b = ln(b)/ln(a)。
利用换底公式可以方便地转化对数的底。
四、对数的运算1. 对数的加减法对数的加减法规则是log(a)b + log(a)c = log(a)(b*c)、log(a)b - log(a)c = log(a)(b/c)。
对数知识点归纳总结
对数知识点归纳总结一、对数的基本概念1. 对数的定义对数是求指数运算逆运算的一种数学运算。
如果a^x=b,则称x是以a为底b的对数,记作x=loga(b)。
其中,a称为底数,b称为真数,x称为对数。
2. 对数的性质(1)对数的底数必须大于0且不等于1;(2)对数的真数必须大于0;(3)对数的底数为10时,称为常用对数,一般写为lg;(4)对数的底数为e时,称为自然对数,一般写为ln。
3. 对数的表示在一般情况下,对数用loga(b)表示,其中a为底数,b为真数,x为对数。
特别地,我们也会使用lg、ln分别表示以10和自然常数e为底的对数。
例如,log2(8)=3,lg100=2,ln(e)=1。
二、对数的基本运算1. 对数的性质(1)对数与指数的关系如果a^x=b,则x=loga(b);如果loga(b)=c,则a^c=b。
(2)对数的乘法法则loga(bc)=loga(b)+loga(c);例子:log2(8)=log2(2*2*2)=log2(2)+log2(2)+log2(2)=3log2(2)=3。
(3)对数的除法法则loga(b/c)=loga(b)-loga(c);例子:log2(8/2)=log2(4)=log2(2*2)=log2(2)+log2(2)=2log2(2)=2。
(4)对数的幂法则loga(b^c)=c*loga(b);例子:log10(1000^2)=2log10(1000)=2*3=6。
2. 对数的运算规则(1)对数化简当对数式中存在加、减、乘、除运算时,可以根据对数的运算法则化简为简单的形式。
例如:化简log2(8*16)=log2(2^3*2^4)=log2(2^(3+4))=log2(2^7)=7。
(2)对数的运算可以利用对数的性质将复杂的指数运算转化为简单的加减乘除运算,从而简化运算步骤。
三、常用对数和自然对数1. 常用对数常用对数是以10为底的对数,一般表示为lg。
对数知识点的总结
对数知识点的总结一、对数的基本概念1. 对数的定义在数学中,对数是指以一个数为底的指数运算的逆运算。
设a和b是两个正数,且a≠1,那么可以确定一个数x使得a^x=b,那么x就是以a为底,b为幂的对数,记作loga b=x。
其中,a称为对数的底数,b称为真数,x称为对数。
2. 对数的性质(1)对数的底数不能是0或1,且对数不能是负数。
(2)对数的真数必须大于0。
(3)对数是指数运算的逆运算,即a^loga b=b(a>0,a≠1,b>0)。
(4)对数运算是具有单调性的,即如果b1>b2,则loga b1>loga b2。
(5)对数运算具有对数的性质,即loga b=loga c,当且仅当b=c。
二、对数的计算方法1. 对数的换底公式对数的换底公式是指对数计算中,可以通过不同底数的对数之间的转换来简化计算。
对于任意底数a、b和c,有以下换底公式:loga c=logb c/logb a2. 对数的性质(1)对数的运算法则对数的运算法则包括对数的加减法、乘除法和幂运算法则。
在对数计算中,可以通过运用这些法则来简化对数的计算过程。
(2)对数的常用公式对数的计算中有一些常用的公式,如a^loga b=b,loga ab=loga a+loga b,loga(b^n)=nloga b等。
3. 对数的计算示例(1)计算log2 8-log2 2根据对数的减法法则,有log2 8-log2 2=log2 (8/2)=log2 4=2(2)计算log5 125-log5 25根据对数的除法法则,有log5 125-log5 25=log5 (125/25)=log5 5=1(3)计算log2 16+log2 8根据对数的加法法则,有log2 16+log2 8=log2 (16*8)=log2 128=7三、对数的应用对数在科学和工程领域有着广泛的应用,常见的应用包括物理学、化学、生物学、经济学等领域。
高中对数运算知识点总结
高中对数运算知识点总结一、对数的定义和性质1. 对数的定义对数是一种表示指数运算的逆运算。
当a的x次方等于b时,就称loga b等于x,表示为loga b = x。
其中,a叫做底数,b叫做真数,x叫做对数。
2. 对数的性质(1)对数的底数不为1且不等于0。
因为对数的底数不能为1或0,否则无法对应一个唯一的真数。
(2)对数的底数不等于1且不等于0。
因为对数的底数不等于1或0,否则无法对应一个唯一的真数。
(3)对数的真数必须大于0。
因为对数的真数必须大于0,否则无法定义对数。
(4)logab = logcb / logca对数的底数不影响对数的计算,可以利用这个性质进行对数运算的计算。
(5)a^logab = b这是对数的定义的逆过程,当底数为a时,对数运算和指数运算是相互逆的。
二、对数运算法则1. 对数的基本运算法则(1)对数的乘法法则若loga m = p,loga n = q,则loga (mn) = p+q。
两个数相乘的对数等于这两个数的对数之和。
(2)对数的除法法则若loga m = p,loga n = q,则loga (m/n) = p-q。
两个数相除的对数等于这两个数的对数之差。
(3)对数的幂运算法则若loga m = p,则loga (m^k) = k*loga m。
一个数的幂的对数等于这个数的对数乘以幂的指数。
2. 对数的换底公式在计算对数时,如果底数不同,可以使用对数的换底公式来计算。
loga b = logc b / logc a,其中a、b、c为任意正数,且a≠1,b>0,c>0,c≠1。
三、对数函数1. 对数函数的定义和性质对数函数是指以某一固定的正数a为底的函数,通常表示为y=loga x。
对数函数的图像是一条连续递增的曲线。
2. 对数函数的性质(1)定义域对数函数的定义域为正实数集(x>0),因为对数函数的真数必须大于0。
(2)值域对数函数的值域为全体实数集,因为当底数大于1时,对数函数是递增函数,当底数在(0,1)之间时,对数函数是递减函数。
对数知识点总结集合
对数知识点总结集合一、对数的概念1.1 对数的定义对数是数学中常见的概念,它是指数的逆运算。
对数以一个常数为底数,另一个数为真数,找到一个指数,使得底数的这个指数等于真数。
对数的定义形式如下:如果 a>0 且a≠1,且a ≠ 1,那么称指数x是以a为底的数b的对数。
记作x=log_ab,读作“以a为底b的对数等于x”,其中a为底数,b为真数,x为对数。
1.2 对数的性质对数具有一些基本性质,这些性质在处理对数运算时非常重要。
(1)对数的底数必须是大于0且不等于1的实数。
(2)对数的真数必须是大于0的实数。
(3)对数的值与指数的值之间具有一一对应的关系,即以a为底的b的对数等于x,等价于a的x次幂等于b。
(4)对数运算遵循对数法则,包括对数的乘法法则、对数的除法法则、对数的幂法则等。
二、对数的运算2.1 对数的运算法则对数的运算规则与指数运算法则非常类似,具体包括以下几个方面的法则:(1)对数的乘法法则:log_ab + log_ac = log_a(bc)(2)对数的除法法则:log_ab - log_ac = log_a(b/c)(3)对数的幂法则:log_ab^m = m*log_ab(4)对数的换底公式:log_ab = log_cb / log_ca2.2 对数的应用对数的运算在实际问题中具有广泛的应用,特别是在科学、工程、经济等领域。
例如在计算机科学中,对数常常用于分析算法的时间复杂度;在经济学中,对数常常用于分析利润的增长率和复合增长;在生物学中,对数常常用于分析细胞的增长增殖率等。
三、常用对数与自然对数3.1 常用对数与自然对数常用对数以10为底数,通常用lg表示,而自然对数以常数e为底数,通常用ln表示。
常用对数和自然对数之间的换底公式为:lg_ab = ln_b / ln_103.2 常用对数与自然对数的特性常用对数与自然对数具有一些特性和性质,如:(1)lg_ac = ln_c / ln_a(2)ln_a = lg_a / lg_e3.3 常用对数与自然对数的应用常用对数和自然对数在实际问题中具有广泛的应用,如在计算机科学和工程学中,常用对数和自然对数常常用于描述和分析一些复杂系统的性能和特性;在金融学和经济学中,常用对数和自然对数常常用于描述和分析一些金融商品、利率和风险等。
对数运算知识点归纳总结
对数运算知识点归纳总结一、对数的基本概念1.1 对数的定义对数的定义是:设a为正实数,且a≠1,a的正实数b的对数,记作logab,是指满足a的x次方等于b的数x。
即logab = x 当且仅当a^x = b。
在这里,a被称为“底数”,b被称为“真数”,x被称为“对数”,其中a^x = b称为“指数形式”。
1.2 对数的性质(1)对数的底数a必须是正实数且不等于1;(2)真数b必须是正实数;(3)当a>1时,对数是正数;当0<a<1时,对数是负数;(4)当真数b=1时,对数是0;(5)对数是无理数。
1.3 对数与指数的关系对数与指数是两个相关联的概念。
在a^x = b中,a称为底数,x称为指数,b称为真数。
而对数是指数形式的逆运算。
即a^x = b 等价于 logab = x。
对数函数和指数函数之间存在对称性,对数函数的图像是指数函数图像在y=x线上的镜像。
1.4 对数的表示方法对数的表示方法有两种,一种是常用对数,底数为10,常用符号为lg;另一种是自然对数,底数为e(自然对数的底数是一个无理数,e≈2.718281828459),常用符号为ln。
二、对数的运算规则2.1 对数运算的基本性质(1) log(a*b) = loga + logb(2) log(a/b) = loga - logb(3) loga^n = n*loga(4) log_a(a^x) = x2.2 对数运算的常用性质(1) loga1 = 0(2) logaa = 1(3) log1a = 0(4) loga(a^x*b^y) = x*loga + y*logb(5) loga(a/x) = loga(a) - loga(x)(6) loga(a^n) = n*loga(a)2.3 对数运算的推导法则对数运算的推导法则是指通过对数运算的基本性质和常用性质,对数式子进行化简和简化的方法。
这些法则包括换底公式、对数的乘方和除法法则等。
对数的概念知识点总结
对数的概念知识点总结一、对数的概念1.1 对数的定义对数是指数的倒数。
设a和b是正实数,且a≠1,a的x次幂等于b,那么x叫做以a为底数的对数,记作loga b=x。
其中,a称为底数,b称为真数,x称为对数。
1.2 对数的性质(1)对数的基本性质:①对数的法则:loga (MN) = loga M + loga N。
②对数的乘积法则:loga(M/N) = loga M − loga N。
③对数的幂法则:loga (M^x) = x loga M。
④对数的换底公式:loga b = logc b / logc a。
(2)对数的特殊性:loga 1 = 0。
1.3 对数函数对数函数是以对数为自变量的函数,一般记作y = loga x。
对数函数是单调递增的,其图像是一个不断向上增长的曲线。
1.4 对数的应用对数在实际生活中有着广泛的应用,比如在科学和工程领域,对数可以用来简化和解决复杂的计算问题。
在财务和经济领域,对数可以用来描述复利和增长速度。
此外,在信息论和统计学中,对数也有着重要的应用。
二、对数的运算2.1 对数的运算规则(1)对数方程的求解:利用对数的性质和公式,可以将对数方程转化为指数方程,从而求解未知数的值。
(2)对数的应用:利用对数的特性和公式,可以将复杂的计算问题简化为更容易处理的形式,从而提高计算的效率和精度。
2.2 对数的反运算对数的反运算是指数运算,即将以a为底数的对数转化为以a为底数的指数形式,从而得到真数的值。
2.3 对数的实际应用对数在实际中有广泛的应用,比如在科学和工程领域中,对数可以用来描述复杂的物理现象和工程问题。
在金融和经济领域中,对数可以用来描述复利和增长速度。
在信息论和统计学中,对数可以用来处理大量数据和计算概率。
三、对数的性质3.1 对数的底数对数的底数一般取为10,自然对数的底数为e。
对数的底数不同,其计算和性质都有所不同。
3.2 对数的长度对数的长度是指对数所具有的位数,一般取整数部分。
对数知识点总结归纳
对数知识点总结归纳一、对数的定义和性质1. 对数的定义对数的定义是指数运算的逆运算。
设a是一个正数且a≠1,b是一个正数,那么指数运算y=a^x可以表示为对数运算x=loga b。
其中,a称为底数,b称为真数,x称为指数,loga b称为以a为底b的对数。
因此,对数运算可以简单表示为loga b=x,其中a为底数,b 为真数,x为指数。
2. 对数的性质对数有以下几个重要性质:(1)对数的定义域:对数的定义域是正实数集合。
(2)对数的值域:对数的值域是实数集合。
(3)对数的底数:对数的底数a必须是正数且a≠1。
(4)对数的特性:loga a=1,loga 1=0。
(5)对数的运算法则:loga (mn)=loga m+loga n,loga (m/n)=loga m-loga n,loga(m^k)=kloga m。
(6)换底公式:loga b=logc b/logc a。
以上是对数的定义和性质,了解对数的这些基本知识对于深入学习对数运算非常重要。
二、对数的应用对数在数学和实际生活中有着广泛的应用。
在数学中,对数可以解决指数方程、指数不等式和指数函数的性质等问题。
在实际生活中,对数也有着广泛的应用,如音乐、声音等领域。
以下是对数的一些应用:1. 指数方程对数可以用来解决指数方程。
指数方程是一种以未知数或变量为指数的方程。
常见的指数方程如2^x=8,3^x=27等。
对数可以通过转化指数方程为对数方程来求解未知数。
2. 指数不等式对数也可以用来解决指数不等式。
指数不等式是一种以未知数或变量为指数的不等式。
对数可以通过转化指数不等式为对数不等式来求解未知数。
3. 指数函数的性质对数还可以用来研究指数函数的性质。
指数函数是以某个正数为底数的函数,如f(x)=2^x,g(x)=3^x等。
对数可以帮助我们研究指数函数的增减性、最值、单调性等性质。
4. 音乐和声音对数在音乐和声音中也有着广泛的应用。
音乐和声音的频率通常以对数形式表示,即音阶的每个音符的频率之间的比例是对数的。
对数法的知识点总结
对数法的知识点总结一、对数的定义对数是指数运算的倒数。
通常来说,对数是一个数对应的指数。
比如,log2(8) = 3,表示2的多少次方等于8。
在这里,log2表示以2为底的对数,8是对数的真数,3是对数的值。
对数的底数必须大于0且不等于1,对数的真数必须大于0。
对数常用符号log来表示,底数和真数用括号括起来。
对数的定义是指数的一个有用的补充。
指数表示一个数重复相乘的次数,而对数表示一个数重复乘积的次数。
例如,2的3次方等于8,那么log2(8) = 3。
可以看出,对数和指数是互相对立的,通过对数可以方便地解决指数运算不易解决的问题。
二、对数的性质对数有一些重要的性质,比如乘法性质、除法性质、幂次性质和换底性质等。
这些性质是对数运算的基础,也是对数问题的解决关键。
1. 乘法性质:loga(m*n) = loga(m) + loga(n),其中a > 0且a ≠ 1,m和n都是大于0的实数。
这个性质表示两个数的乘积的对数等于这两个数的对数之和。
2. 除法性质:loga(m/n) = loga(m) - loga(n),其中a > 0且a ≠ 1,m和n都是大于0的实数。
这个性质表示两个数的商的对数等于这两个数的对数之差。
3. 幂次性质:loga(m^p) = p * loga(m),其中a > 0且a ≠ 1,m是大于0的实数,p是任意实数。
这个性质表示一个数的幂次的对数等于这个数的对数乘以幂次。
4. 换底性质:loga(b) = logc(b) / logc(a),其中a、b、c都是大于0且不等于1的实数。
这个性质表示底数不同的对数可以相互换底,该性质在解决对数问题时非常有用。
这些性质对于解决对数问题非常重要,可以大大简化对数的运算和求解。
三、对数的运算规则对数的运算规则是指对数的加减乘除和幂次运算法则,它们是对数运算的基础,可以帮助我们解决各种对数问题。
1. 加减法规则:对数的加减法规则是乘法性质和除法性质的直接应用。
关于对数的知识点总结
关于对数的知识点总结一、对数的定义1. 对数的基本概念对数是对数运算的基本概念,它表示一个数以另一个数为底的幂运算结果。
例如,如果a^b=c,那么b就是以a为底c的对数,记作log_{a}c=b。
其中,a称为对数的底,c称为真数,b称为对数。
对数的基本概念可以用数学公式来表示:a^b=c ,即 log_{a}c=b2. 对数的特点对数有一些特点,包括:(1)对数的底数不能为0或1;(2)对数运算是指数运算的逆运算;(3)对数运算中真数必须为正数;(4)对数运算在同一底数下是互为逆运算的。
3. 对数的表示对数的表示有两种常见的方式,一种是常用对数,即以10为底的对数,另一种是自然对数,即以e为底的对数。
常用对数和自然对数具有不同的性质和应用,需要根据具体情况进行选择和应用。
4. 对数的应用对数在数学和科学领域中有广泛的应用,包括:(1)在科学计算和工程领域中,对数常用于解决复杂的数学问题和模型计算;(2)在统计学中,对数常用于处理数据,特别是处理非负数据和处理数据间的比率;(3)在物理学中,对数常用于描述和分析自然现象中的指数变化规律;(4)在金融学中,对数常用于计算利息和投资收益率。
二、对数的性质对数具有一些特殊的性质,包括:1. 对数运算的性质(1)对数运算是指数运算的逆运算;(2)对数运算中,底数必须大于0且不等于1;(3)对数运算中,真数必须为正数。
2. 对数的常见性质(1)对数的乘法性质:log_{a}xy=log_{a}x+log_{a}y;(2)对数的除法性质:log_{a}(x/y)=log_{a}x-log_{a}y;(3)对数的幂的性质:log_{a}x^m=mlog_{a}x;(4)对数的换底公式:log_{a}x=\frac{log_{b}x}{log_{b}a}。
3. 对数的常用性质(1)对数函数的定义域为正实数集,值域为实数集;(2)对数函数在底数大于1时,为增函数,在底数介于0和1之间时,为减函数;(3)对数函数的图像呈现出一种特殊的曲线形状,可以通过图像来直观地理解对数的性质。
对数型函数知识点总结
对数型函数知识点总结一、对数的基本概念对数是指数的逆运算。
设a和b是正数,且a≠1,如果a的x次方等于b,那么x叫做以a为底b的对数,记作x=log_ab。
其中a叫做对数的底数,b叫做真数,x叫做对数。
对数的定义及运算规则见下表:1、对数的定义:log_ab=x 当且仅当 a^x=b2、对数的运算规则:对数的性质主要有:(1)a^x=b ⇔ x=logy=logeb/logea(2)log_a(m*n)=log_am+log_an(3)log_a(m/n)=log_am-log_an(4)log_ab*log_ba=1二、对数函数的图像及性质对数函数y=log_ax (a>0,a≠1)的图像特点:1、定义域:x>02、值域:(-∞,∞)3、关于y轴对称4、渐近线:x=0对数函数的变形:1、对数函数y=log_ax的变形:a>1时,是增函数;0<a<1时,是减函数。
2、指数函数y=a^x和对数函数y=log_ax的关系:如果a^x=y,那么x=log_ay三、对数方程及不等式的解法对数方程及不等式的解法:1、对数方程的解法:对数方程a^x=b (a>0,a≠1)的解法:a>1时,(1)当b>0时,两边取对数得x=log_ab;(2)当b=0时,方程无解;a=1时,方程a^x=1的解为x=0。
0<a<1时,(1)当b>0时,两边取对数得x=log_ab;(2)当b=0时,两边无解;2、对数不等式的解法:对数不等式a^x>b (a>0,a≠1)的解法:a>1时,分两种情况,大于时取对数得x>log_ab;0<a<1时,同样分两种情况,大于时取对数得x>log_ab;四、对数函数和指数函数的关系1、对数函数和指数函数的定义:指数函数y=a^x (a>0,a≠1) 是对数函数y=log_ax的逆函数。
对数知识点笔记总结
对数知识点笔记总结一、对数的定义对数是指数的逆运算。
设 a 是正数且不等于 1,a 的 x 次幂等于 b,则称 x 是以 a 为底,b的对数,记作logₐ b=x。
其中,a 称为对数的底数,b 称为真数,x 称为对数。
对数的定义实际上是以 a 为底,求得的 x 是 b 的幂次方,即 a 的 x 次幂等于 b。
二、对数的性质1. 对数的底数必须大于 0,且不等于 1。
2. 对数的真数必须大于 0。
3. 对数的底数 a 与真数 b 之间的关系:b 是 a 的 x 次幂,等价于 x 是以 a 为底,b 的对数。
4. 对数的底数与幂指数可以互相交换:logₐb=logₐc×logₐb。
5. 对数的乘积等于对数的和:logₐb+logₐc=logₐbc。
6. 对数的商等于对数的差:logₐb-logₐc=logₐ(b/c)。
7. 对数的幂等于幂的倍数:x×logₐb=logₐ(b^x)。
三、常用对数和自然对数1. 常用对数:以 10 为底的对数。
通常用 lg 表示常用对数。
lg 表示以 10 为底,b 的对数。
即lg b=log₁₀b。
2. 自然对数:以 e 为底的对数,e 是一个常数,约等于 2.71828。
通常用 ln 表示自然对数。
ln 表示以 e 为底,b 的对数。
即ln b=logₑb。
四、对数的性质1. 常用对数和自然对数之间的换底公式:logₐb=lnb/lna。
五、对数函数1. 对数函数的定义:函数y= logₐx 称为对数函数。
2. 对数函数的图像:对数函数的图像是一条无限长的曲线。
对数函数的图像在 x 轴的右侧,y 轴的左侧,并且逐渐向下趋近于 x 轴,但永远不会与 x 轴相交,即对数函数的图像不存在零点和负数点。
六、对数方程和对数不等式1. 对数方程:含有对数的方程。
求解对数方程的步骤:1)将对数方程中的对数转化为指数形式;2)解出指数方程;3)检验解得的值是否满足原方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1对数的概念如果a(a>0,且a ≠1)的b 次幂等于N ,即N a b=,那么数b 叫做以a 为底N 的对数,记作:b N a =log ,其中a 叫做对数的底数,N 叫做真数.由定义知:①负数和零没有对数;②a>0且a ≠1,N>0;③01log =a , 1log =a a , b a b a =log ,b a b a =log特别地,以10为底的对数叫常用对数,记作N 10log ,简记为lgN ;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作N e log ,简记为N ln2对数式与指数式的互化式子名称指数式N a b =(底数)(指数)(幂值)对数式b N a =log (底数)(对数)(真数)3对数的运算性质如果a>0,a ≠1,M>0,N>0,那么(1)N M MN a a a log log )(log +=(2N M a a log log N)(M log a -=÷(3)M b M a b a log log =问:①公式中为什么要加条件a>0,a ≠1,M>0,N>0?②=na a log ______ (n ∈R)③对数式与指数式的比较.(学生填表)运算性质 n m n m a a a +=⋅,n m n m a a a -=÷mn n m a a =)((a>0且a ≠1,n ∈R)N M MN a a a log log )(log +=, N M a a log log N)(M log a -=÷(a>0,a ≠1,M>0,N>0)难点疑点突破对数定义中,为什么要规定a >0,,且a ≠1?理由如下:①若a <0,则N 的某些值不存在,例如log-28②若a=0,则N ≠0时b 不存在;N=0时b 不惟一,可以为任何正数③若a=1时,则N ≠1时b 不存在;N=1时b 也不惟一,可以为任何正数为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数解题方法技巧1(1)将下列指数式写成对数式:①54=625;②2-6=164;③3x=27;④13m=573.(2)将下列对数式写成指数式:①log1216=-4;②log2128=7;③log327=x;④lg0.01=-2;⑤ln10=2.303;⑥lgπ=k.解析由对数定义:ab=N logaN=b.解答(1)①log5625=4.②log2164=-6.③log327=x.④log135.73=m.解题方法指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=N logaN=b.(2)①12-4=16.②27=128.③3x=27.④10-2=0.01.⑤e2.303=10.⑥10k=π.2根据下列条件分别求x的值:(1)log8x=-23;(2)log2(log5x)=0;(3)logx27=31+log32;(4)logx(2+3)=-1.解析(1)对数式化指数式,得:x=8-23=?(2)log5x=20=1. x=?(3)31+log32=3×3log32=?27=x?(4)2+3=x-1=1x. x=?解答(1)x=8-23=(23)-23=2-2=14.(2)log5x=20=1,x=51=5.(3)logx27=3×3log32=3×2=6,∴x6=27=33=(3)6,故x=3.(4)2+3=x-1=1x,∴x=12+3=2-3.解题技巧①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化.②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值.解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;思路二,对指数式的两边取同底的对数,再利用对数式的运算求值解答解法一∵logax=4,logay=5,∴x=a4,y=a5,∴A=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1.解法二对所求指数式两边取以a为底的对数得logaA=loga(x512y-13)=512logax-13logay=512×4-13×5=0,∴A=1.解题技巧有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算.4设x,y均为正数,且x·y1+lgx=1(x≠110),求lg(xy)的取值范围.解析一个等式中含两个变量x、y,对每一个确定的正数x由等式都有惟一的正数y与之对应,故y是x的函数,从而lg(xy)也是x的函数.因此求lg(xy)的取值范围实际上是一个求函数值域的问题,怎样才能建立这种函数关系呢?能否对已知的等式两边也取对数?解答∵x>0,y>0,x·y1+lgx=1,两边取对数得:lgx+(1+lgx)lgy=0.即lgy=-lgx1+lgx(x≠110,lgx≠-1).令lgx=t, 则lgy=-t1+t(t≠-1).∴lg(xy)=lgx+lgy=t-t1+t=t21+t.解题规律对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.设S=t21+t,得关于t的方程t2-St-S=0有实数解.∴Δ=S2+4S≥0,解得S≤-4或S≥0,故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞).5求值:(1)lg25+lg2·lg50+(lg2)2;(2)2log32-log3329+log38-52log53;(3)设lga+lgb=2lg(a-2b),求log2a-log2b的值;(4)求7lg20·12lg0.7的值.解析(1)25=52,50=5×10.都化成lg2与lg5的关系式.(2)转化为log32的关系式.(3)所求log2a-log2b=log2ab由已知等式给出了a,b之间的关系,能否从中求出ab的值呢?(4)7lg20·12lg0.7是两个指数幂的乘积,且指数含常用对数,设x=7lg20·12lg0.7能否先求出lgx,再求x?解答(1)原式=lg52+lg2·lg(10×5)+(lg2)2=2lg5+lg2·(1+lg5)+(lg2)2=lg5·(2+lg2)+lg2+(lg2)2=lg102·(2+lg2)+lg2+(lg2)2=(1-lg2)(2+lg2)+lg2+(lg2)2=2-lg2-(lg2)2+lg2+(lg2)2=2.(2)原式=2log32-(log325-log332)+log323-5log59=2log32-5log32+2+3log32-9=-7.(3)由已知lgab=lg(a-2b)2 (a-2b>0),∴ab=(a-2b)2, 即a2-5ab+4b2=0.∴ab=1或ab=4,这里a>0,b>0.若ab=1,则a-2b<0, ∴ab=1(舍去).∴ab=4,∴log2a-log2b=log2ab=log24=2.(4)设x=7lg20·12lg0.7,则lgx=lg20×lg7+lg0.7×lg12=(1+lg2)·lg7+(lg7-1)·(-lg2)=lg7+lg2=14,∴x=14, 故原式=14.解题规律①对数的运算法则是进行同底的对数运算的依据,对数的运算法则是等式两边都有意义的恒等式,运用法则进行对数变形时要注意对数的真数的范围是否改变,为防止增根所以需要检验,如(3).②对一个式子先求它的常用对数值,再求原式的值是代数运算中常用的方法,如(4).6证明(1)logaN=logcNlogca(a>0,a≠1,c>0,c≠1,N>0);(2)logab·logbc=logac;(3)logab=1logba(b>0,b≠1);(4)loganbm=mnlogab.解析(1)设logaN=b得ab=N,两边取以c为底的对数求出b就可能得证.(2)中logbc能否也换成以a为底的对数.(3)应用(1)将logab换成以b为底的对数.(4)应用(1)将loganbm换成以a为底的对数.解答(1)设logaN=b,则ab=N,两边取以c为底的对数得:b·logca=logcN,∴b=logcNlogca.∴logaN=logcNlogca.(2)由(1)logbc=logaclogab.所以logab·logbc=logab·logaclogab=logac.(3)由(1)logab=logbblogba=1logba.解题规律(1)中logaN=logcNlogca叫做对数换底公式,(2)(3)(4)是(1)的推论,它们在对数运算和含对数的等式证明中经常应用. 对于对数的换底公式,既要善于正用,也要善于逆用.(4)由(1)loganbm=logabmlogaan=mlogabnlogaa= mnlogab.7已知log67=a,3b=4,求log127.解析依题意a,b是常数,求log127就是要用a,b表示log127,又3b=4即log34=b,能否将log127转化为以6为底的对数,进而转化为以3为底呢?解答已知log67=a,log34=b,∴log127=log67log612=a1+log62.又log62=log32log36=log321+log32,由log34=b,得2log32=b.∴log32=b2,∴log62=b21+b2=b2+b.∴log127=a1+b2+b=a(2+b)2+2b.利用已知条件求对数的值,一般运用换底公式和对数运算法则,把对数用已知条件表示出来,这是常用的方法技巧8已知x,y,z∈R+,且3x=4y=6z.(1)求满足2x=py的p值;(2)求与p最接近的整数值;(3)求证:12y=1z-1x.解析已知条件中给出了指数幂的连等式,能否引进中间量m,再用m分别表示x,y,z?又想,对于指数式能否用对数的方法去解答?解答(1)解法一3x=4y log33x=log34y x=ylog342x=2ylog34=ylog316,∴p=log316.解法二设3x=4y=m,取对数得:x·lg3=lgm,ylg4=lgm,∴x=lgmlg3,y=lgmlg4,2x=2lgmlg3,py=plgmlg4.由2y=py, 得2lgmlg3=plgmlg4,∴p=2lg4lg3=lg42lg3=log316.(2)∵2=log39<log316<log327=3,∴2<p<3.又3-p=log327-log316=log32716,p-2=log316-log39=log3169,而2716<169,∴log32716<log3169,∴p-2>3-p.∴与p最接近的整数是3.解题思想①提倡一题多解.不同的思路,不同的方法,应用了不同的知识或者是相同知识的灵活运用,既发散了思维,又提高了分析问题和解决问题的能力,何乐而不为呢?②(2)中涉及比较两个对数的大小.这是同底的两个对数比大小.因为底3>1,所以真数大的对数就大,问题转化为比较两个真数的大小,这里超前应用了对数函数的单调性,以鼓励学生超前学习,自觉学习的学习积极性.(3)解法一令3x=4y=6z=m,由于x,y,z∈R+,∴k>1,则x=lgmlg3,y=lgmlg4,z=lgmlg6,所以1z-1x=lg6lgm-lg3lgm=lg6-lg3lgm=lg2lgm,12y=12·lg4lgm=lg2lgm,故12y=1z-1x.解法二3x=4y=6z=m,则有3=m1x①,4=m1y②,6=m1z③,③÷①,得m1z-1x=63=2=m12y.∴1z-1x=12y.9已知正数a,b满足a2+b2=7ab.求证:logma+b3=12(logma+logmb)(m>0且m≠1).解析已知a>0,b>0,a2+b2=7ab.求证式中真数都只含a,b的一次式,想:能否将真数中的一次式也转化为二次,进而应用a2+b2=7ab?解答logma+b3=logm(a+b3)212=①将a+b3向二次转化以利于应用a2+b2=7ab是技巧之一.②应用a2+b2=7ab将真数的和式转化为ab的乘积式,以便于应用对数运算性质是技巧之二.12logma+b32=12logma2+b2+2ab9.∵a2+b2=7ab,∴logma+b3=12logm7ab+2ab9=12logmab=12(logma+logmb),即logma+b3=12(logma+logmb).思维拓展发散1数学兴趣小组专门研究了科学记数法与常用对数间的关系.设真数N=a×10n.其中N>0,1≤a<10,n∈Z.这就是用科学记数法表示真数N.其科学性体现在哪里?我们只要研究数N的常用对数,就能揭示其中的奥秘.解析由已知,对N=a×10n取常用对数得,lgN=n+lga.真数与对数有何联系?解答lgN=lg(a×10n)=n+lga.n∈Z,1≤a<10,∴lga∈〔0,1).我们把整数n叫做N的常用对数的首数,把lga叫做N的常用对数的尾数,它是正的纯小数或0.小结:①lgN的首数就是N中10n的指数,尾数就是lga,0≤lga<1;②有效数字相同的不同正数它们的常用对数的尾数相同,只是首数不同;③当N≥1时,lgN的首数n比它的整数位数少1,当N∈(0,1)时,lgN的首数n是负整数,|n|-1与N的小数点后第一个不是0的有效数字前的零的个数相同.师生互动什么叫做科学记数法?N>0,lgN的首数和尾数与a×10n有什么联系?有效数字相同的不同正数其常用对数的什么相同?什么不同?2若lgx的首数比lg1x的首数大9,lgx的尾数比lg1x的尾数小0380 4,且lg0.203 4=1.308 3,求lgx,x,lg1x的值.解析①lg0.203 4=1308 3,即lg0.203 4=1+0.308 3,1是对数的首数,0.308 3是对数的尾数,是正的纯小数;②若设lgx=n+lga,则lg1x也可表出.解答设lgx=n+lga,依题意lg1x=(n-9)+(lga+0.380 4).又lg1x=-lgx=-(n+lga),∴(n-9)+(lga+0380 4)=-n-lga,其中n-9是首数,lga+0380 4是尾数,-n-lga=-(n+1)+(1-lga),-(n+1)是首数1-lga是尾数,所以:n-9=-(n+1)lga+0.380 4=1-lga n=4,lga=0.308 3.∴lgx=4+0.308 3=4.308 3,∵lg0.203 4=1.308 3,∴x=2.034×104.∴lg1x=-(4+0.308 3)=5.691 7.解题规律把lgx的首数和尾数,lg1x的首数和尾数都看成未知数,根据题目的等量关系列方程.再由同一对数的首数等于首数,尾数等于尾数,求出未知数的值,是解决这类问题的常用方法.3 计算:(1)log2-3(2+3)+log6(2+3+2-3);(2)2lg(lga100)2+lg(lga).解析(1)中.2+3与2-3有何关系?2+3+2-3双重根号,如何化简?(2)中分母已无法化简,分子能化简吗?解题方法认真审题、理解题意、抓住特点、找出明确的解题思路和方法,不要被表面的繁、难所吓倒.解答(1)原式=log2-3(2-3)-1+12log6(2+3+2-3)2=-1+12log6(4+22+3·2-3)=-1+12log66=-12.(2)原式=2lg(100lga)2+lg(lga)=2〔lg100+lg(lga)〕2+lg(lga)=2〔2+lg(lga)〕2+lg(lga)=2.4已知log2x=log3y=log5z<0,比较x,3y,5z的大小.解析已知是对数等式,要比较大小的是根式,根式能转化成指数幂,所以,对数等式应设法转化为指数式.解答设log2x=log3y=log5z=m<0.则x=2m,y=3m,z=5m.x=(2)m,3y=(33)m,5z=(55)m.下面只需比较2与33,55的大小:(2)6=23=8,(33)6=32=9,所以2<33.又(2)10=25=32,(55)10=52=25,∴2>55.∴55<2<33. 又m<0,图2-7-1考查指数函数y=(2)x,y=(33)x,y=(55)x在第二象限的图像,如图2-7-1解题规律①转化的思想是一个重要的数学思想,对数与指数有着密切的关系,在解决有关问题时要充分注意这种关系及对数式与指数式的相互转化.②比较指数相同,底不同的指数幂(底大于0)的大小,要应用多个指数函数在同一坐标系中第一象限(指数大于0)或第二象限(指数小于0)的性质进行比较①是y=(55)x,②是y=(2)x,③是y=(33)x.指数m<0时,图像在第二象限从下到上,底从大到小.所以(33)m<(2)m<(55)m,故3y<x<5z.。