探索规律练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探索规律练习题一

1.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数( )粒。A 、12+n B 、12-n C 、n 2 D 、2+n

2.观察下列图形,则第n 个图形中三角形的个数是( ) A .22n + B .44n + C .44n - D .4n 3.(2009武汉)将一些半径相同的小圆按如图所示的规律摆

放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.

4.观察下列等式:221.4135-=⨯;222.5237-=⨯;223.6339-=⨯ 224.74311-=⨯; …………则第n (n 是正整数)个等式为________.

5.有一列数1234

251017

--,,,,

…,那么第7个数是 . 6.王婧同学用火柴棒摆成如下的三个“中”字形图案,依此规律,第n 个“中”字形图案需 根火柴棒. 7.观察数表

根据表中数的排列规律,则字母A 所表示的数是____________.

8.图6是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.

9.如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个

数是________

第1个图形

第2个图形

第3个图形

第4个图形

6

(1)

(2) (3) …… 1 第1 1 1 1 1 1 1 1-1-1-6-6-2-3-5-4-4-3 6 10 15 15 5 A 20- 1

10.观察下列各式:

11111323⎛⎫=- ⎪⨯⎝⎭,111135235⎛⎫=- ⎪⨯⎝⎭,111157257⎛⎫=- ⎪⨯⎝⎭

,…,根据观察计算:1111133557(21)(21)

n n ++++⨯⨯⨯-+ = .(n 为正整数)

11.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形 有 个 .

12.下图是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s = . (用n 的代数式表示s )

13.如图所示的运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,……第2009次输出的结果为___________.

14.将四张花纹面相同的扑克牌的花纹面都朝上,两张一叠放成两堆不变.若每次可任选一堆的最上面的一张翻看(看后不放回),并全部看完,则共有 种不同的翻牌方式. 15.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸

上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为 .

16.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 __________块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示). 17.(将正整数依次按下表规律排成四列,则根据表中的排列

规律,数2009应排的位置是第 行第 列.

……

n =1 n =2

n =3

(第13题)

① ② ③ ④

探索规律练习题二

1.(古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图1中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )

A .13 = 3+10

B .25 = 9+16

C .36 = 15+21

D .49 = 18+31

2.一组按一定规律排列的式子:-2

a ,52a ,-83a ,11

4

a ,…,(a ≠0)则第n 个式子是_ _

(n 为正整数). 3

已知2

1

(123...)(1)

n a n n =

=+,,,,记112(1)b a =-,2122(1)(1)b a a =--,…,122(1)(1)...(1)n n b a a a =---,则通过计算推测出n b 的表达式n b =______(用含n 的代数式表示)

4.正整数按图2的规律排列.请写出第20行,第21列的数字 .

5.观察下面的一列单项式:x ,22x -,34x ,48x -,…根据你发现的规律,第7个单项式为 ;第n 个单项式为 .

8.如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为1

2

的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的2

1)后,得图③,④,…,记第n (n ≥3) 块纸板的周长

为P n ,则P n -P n-1= .

第一行 第二行 第三行 第四行 第五行 第一列 第二列 第三列 第四列 第五列 1 2 5 10 17 ... 4 3 6 11 18 ... 9 8 7 12 19 ... 16 15 14 13 20 (25)

24

23 22

21

……

2

4=1+3 9=3+6 16=6+10

图1

相关文档
最新文档