压铸过程原理及压铸工艺参数确定

合集下载

压铸工艺实验报告(3篇)

压铸工艺实验报告(3篇)

第1篇一、实验目的1. 了解压铸工艺的基本原理和操作流程。

2. 掌握压铸工艺参数对铸件质量的影响。

3. 提高对压铸工艺缺陷的分析和解决能力。

二、实验设备与材料1. 实验设备:压铸机、压铸模具、加热炉、冷却水系统、实验台等。

2. 实验材料:铝合金、锌合金等。

三、实验原理压铸工艺是一种将熔融金属在高压下快速充填型腔,并在冷却固化后获得所需形状和尺寸的金属零件的加工方法。

实验主要研究压铸工艺参数对铸件质量的影响,包括压力、速度、温度、时间等。

四、实验步骤1. 准备工作:根据实验要求,选择合适的压铸模具和材料,并对模具进行清洗和预热。

2. 加热:将熔融金属加热至适宜的温度,确保金属流动性好,便于充填型腔。

3. 充填:启动压铸机,将熔融金属在高压下快速充填型腔。

4. 冷却:在金属凝固过程中,通过冷却水系统对模具进行冷却,保证铸件尺寸精度。

5. 开模取件:待金属凝固后,打开模具取出铸件。

6. 检查与分析:对铸件进行外观检查,分析铸件缺陷产生的原因,并提出改进措施。

五、实验结果与分析1. 铸件外观质量:实验过程中,铸件外观质量良好,无明显的缩孔、气孔、裂纹等缺陷。

2. 铸件尺寸精度:实验中,铸件尺寸精度较高,与模具设计尺寸基本一致。

3. 铸件内部质量:实验中,铸件内部质量良好,无明显的缩松、夹渣等缺陷。

六、实验结论1. 压铸工艺参数对铸件质量有显著影响。

在实验过程中,通过优化压力、速度、温度、时间等参数,可提高铸件质量。

2. 压铸模具的设计对铸件质量有重要影响。

合理设计模具结构,有利于提高铸件尺寸精度和内部质量。

3. 在压铸过程中,应注意控制熔融金属的温度和流动性,以保证铸件质量。

七、实验改进措施1. 优化压铸工艺参数:通过实验,进一步优化压力、速度、温度、时间等参数,以提高铸件质量。

2. 优化模具设计:针对铸件缺陷,对模具结构进行改进,以提高铸件尺寸精度和内部质量。

3. 加强操作技能培训:提高操作人员对压铸工艺的理解和操作技能,确保实验顺利进行。

压铸原理及工艺参数选择

压铸原理及工艺参数选择

压铸原理及工艺参数选择压铸是一种制造零件的工艺方法,它通过将熔化的金属注入到金属模具中,在模具中冷却凝固后,得到所需的零件形状。

压铸可以制造复杂的零件形状,具有高精度、高表面质量和高生产效率的优点。

压铸工艺参数的选择对于获得优质的铸件至关重要。

压铸工艺参数的选择1.熔化温度:熔化温度应根据所用材料的熔点确定。

在选择熔化温度时,要考虑到合金的液体流动性和凝固性能。

熔点高的合金可使用高熔点温度,但要注意避免烧结和气孔的产生。

2.注射速度:注射速度决定了金属液体进入模腔的速度。

过高的注射速度可能引起金属喷溅和模具损坏,过低的注射速度则可能造成流道不充分填充。

注射速度的选择应根据材料的液流性和零件的形状确定。

3.注射压力:注射压力决定了金属液体通过流道和进入模腔的压力。

过高的注射压力可能导致模具磨损和零件变形,过低的注射压力则可能造成流道不充分填充。

注射压力的选择应根据材料的流动性和零件的形状确定。

4.模具温度:模具温度决定了金属液体的凝固速度和铸件的质量。

较高的模具温度有助于加速凝固速度并减小变形,但可能导致金属液体的酸蚀和模具磨损。

较低的模具温度有助于避免气孔和减小脱漏的可能性,但可能导致金属液流动不畅。

模具温度的选择应根据材料的凝固性能和零件的形状确定。

5.冷却时间:冷却时间决定了金属液体的凝固时间和铸件的质量。

较短的冷却时间有助于提高生产效率,但可能导致金属液体的凝固不完全和热裂纹的产生。

较长的冷却时间有助于提高铸件的密度和表面质量,但可能导致产量降低。

冷却时间的选择应根据材料的凝固性能和零件的形状确定。

总结压铸是一种高效、高精度的制造方法,工艺参数的选择对于获得优质的铸件至关重要。

在选择工艺参数时,要综合考虑材料的性质、零件的形状和制造要求,以及设备和模具的性能。

通过合理选择工艺参数,可以提高铸件的质量和生产效率,降低生产成本。

压铸流程原理及其特点和压铸工艺流程__解释说明以及概述

压铸流程原理及其特点和压铸工艺流程__解释说明以及概述

压铸流程原理及其特点和压铸工艺流程解释说明以及概述1. 引言1.1 概述压铸是一种常用的金属成型工艺,通过将熔融金属注入到模具中进行冷却凝固,从而得到所需形状的零件或产品。

该工艺被广泛应用于制造汽车零件、电子设备外壳等各种金属制品。

本文旨在介绍压铸流程原理及其特点,并详细探讨压铸工艺流程和动态参数控制与优化方法。

1.2 文章结构本文包含五个主要部分:引言、压铸流程原理及其特点、压铸工艺流程、动态压铸参数控制与优化以及结论。

首先,在引言部分,将对整篇文章进行概述,并介绍文章的结构和目的。

接下来,我们将详细阐述压铸流程原理和其特点,以便读者更好地了解这一技术。

然后,我们将深入探讨压铸工艺流程的准备工作、模具制造和预热以及材料准备与熔化等关键步骤。

随后,我们将讨论动态压铸参数控制与优化方法,包括压铸机参数的调整、熔融金属温度和压力控制技术,以及注射速度和注射位置的优化方法。

最后,我们将给出结论,并对压铸流程和工艺进行总结。

1.3 目的本文的目的在于全面介绍压铸流程原理和特点,并详细解释压铸工艺流程以及动态参数控制与优化方法。

通过阅读本文,读者将能够深入了解压铸技术,并具备一定的实践指导意义。

无论是从事压铸工艺研究的专业人士,还是对该领域感兴趣的初学者,都可以从本文中获取有关压铸流程和工艺的详尽信息,为相关项目或实践提供支持和指导。

以上为文章“1. 引言”部分内容,请根据需要进行适当调整或补充。

2. 压铸流程原理及其特点2.1 压铸流程原理压铸是一种常用的金属成型方法,它利用高压将熔化金属注入模具中,在模具中冷却凝固后得到所需的零件或产品。

压铸流程的原理包括以下几个基本步骤:首先,将金属材料加热至熔点以上,通常使用铝合金、锌合金等高液态温度的金属材料。

接下来,通过预制好的模具或工蚁来形成所需产品的空腔。

模具可以是单腔或多腔结构,根据需要而定。

在确保模具内表面光滑且清洁的情况下,将熔化的金属材料通过压力喷嘴注入到模具中。

压铸件工艺参数的设定

压铸件工艺参数的设定

压铸件工艺参数的设定2011-11-24 8:57:20在压铸行业,工艺参数对产品质量的影响更多的是靠试验的方法,许多工程技术人员不能深入的进行分析,生产铸件的条件无法用数据来描述。

本文就压铸工艺参数理论计算和实践两方面进行讨论研究。

压力铸造的主要工艺参数有行程(速度转换点)、速度、时间和压力等。

而本文重点分析速度和行程两个主要参数。

1. 压铸的四阶段压射计算压力铸造工艺参数,首先要定义压铸的四个压射阶段。

1.1.1 第一阶段:慢压射1 为防止金属液溅出,冲头越过浇料口的过程,压射的第一阶段通常是缓慢的。

1.1.2 第二阶段:慢压射2 金属液以较低的速度运动至内浇口的阶段,主要目的是排出压室内的空气,集中铝液于压室内。

1.1.3 第三阶段:快压射金属液由内浇口填充型腔直至充满为止,主要目的是成型并排出型腔中气体。

1.1.4 第四阶段:增压阶段型腔充满后建立最后的增压,使铸件在高压压力下凝固,从而使铸件致密。

1.2 计算模型1.2.1 根据1.1定义(参照图1),可以得到金属液在各阶段合金液的重量关系式。

G2=G 浇G3+G4=G 铸+G 溢流其中:G3+G4为金属液刚达到内浇口处时冲头端面至冲头停止之间的铝液重量,即为快压射起始点位置至冲头停止行程内金属液的容量。

G 铸为铸件重量G 溢为溢流系统的重量G2 为慢压射2 行程内压室能容纳的金属液重量G 浇为浇注系统的重量1.2.2 流道中单位时间内不同位置截面中通过合金液的流量关系式(见图2)金属液在流动过程中,单位时间内通过截面的流量Q相等,则Q=V1冷仁V2>S2= V3 >S3 (注:V3 >S3是利用等式,而非金属液流量)其中V1 :冲头速度S1:冲头面积V2 :内浇口速度S2:内浇口面积V3 :排气槽气体速度(推荐值75m/s)铸时间[1]压铸时间包括充填时间,持压时间及铸件在压铸模型中停留的时间。

123.1充填时间:金属液开始进入内浇口到型腔充满所需的时间。

压力铸造工艺参数的选择

压力铸造工艺参数的选择

压力铸造工艺参数的选择压力铸造high pressure die casting(简称压铸)的实质是在高压作用下,使液态或半液态金属以较高的速度充填压铸型(压铸模具)型腔,并在压力下成型和凝固而获得铸件的方法。

与其它铸造方法相比,压铸有铸件尺寸精度高,产品质量好,生产效率高以及经济效益高等优势。

压力铸件的质量主要受控于压铸的填充过程中诸多因素的影响,如:压力、速度、温度、熔融金属的性质以及填充特性等等。

所以工艺参数的选择成为决定压力铸件是否成功的关键因素。

压铸工艺是将压铸机、压铸模和压铸合金综合运用的过程。

压铸时金属填充型腔的过程,是将压力、速度、温度以及时间等工艺因素得到有机组合的过程。

这些工艺因素既相互制约,相辅相成,只有正确选择和调整这些因素,使之协调一致,才能获得预期的结果。

压射过程中,不仅重视铸件结构的工艺性、铸型的先进性、压铸机性能和结构优良性,压铸合金选用的适应性和熔炼工艺的规范性。

也应重视压力、速度、温度和时间等工艺参数对铸件质量的重要作用。

这些工艺参数的选择与合理匹配,是保证压铸件综合性能的关键。

一、压力的选择在压力铸造的整个过程中,压射压力是压铸工艺最基本的成型参数,液态金属的充填流动和压实都是在压力和充填速度的作用下完成的,合理选择和确定压射压力和充填速度是压铸工艺的一个重要问题。

在压射过程中,随着冲头位置的移动,压力也出现不同的变化,这个变化规律都会对铸件质量产生重大影响。

1.压射力(F)压射力是压铸机压射机构中推动压射活塞运动的力,它是反映压铸机功能的一个主要参数。

压射力的大小,由压射缸的截面积和工作液的压力所决定。

压射力的计算公式如下:F=PπD²/4式中:F--压射力(N);P--压射油缸内工作液的压力(Pa);D--压射油缸的直径(m);π=3.1416。

2.比压(P)及其选择比压是压室内金属液单位面积上所受的压力,填充时的比压称为压射比压。

压射后的比压称为增压比压,它决定了压铸件最终所受的压力和模具的胀型力。

第二章压铸过程原理及常用压铸合金讲

第二章压铸过程原理及常用压铸合金讲
第二章压铸过程原理及常用压铸合金
第一节 压铸压力和压铸速度 第二节 液态金属充填铸型的特 点第三节 常用压铸合金
第一节 压铸压力和压铸速度
压铸的特点是高压和高速充填,现在就对压 力和速度在压铸过程中的变化和作用加以分析。
一、压铸压力 二、压铸速度
一、压铸压力
■ 压铸压力在压铸工艺中是主要的参数之 一,压铸压力可以用压射力和压射比压两 种形式来表示。
其中压室直径的变化,可以较显著地改变充填
速度;与此同时,压射比压的数值也会随同变
化。
■ 因压铸模上的内浇道断面积在修改时只能扩
大,不能缩小,所以通过变化内浇道的截面积
来调整充填速度是不太方便的。而压射速度的
调节,可通过调整压铸机上的压力阀来实现。
在生产中,应根据具体条件去确定调整因素。
■ 根据水力学原理,压射比压与充填速度 间的关系可用下式来表示:
■ 三、三阶段充填理论
一、喷射充填理论
■ 1932年弗洛梅尔(Frommer)提出了在压力作用下, 液体金属充填铸型的第一个理论。他从锌合金压 铸的实践经验中推导出结论:认为液体金属的充 填过程是遵循流体力学定律,并且有摩擦和涡流 现象。液体金属充填矩形型腔时的运动特性和内 浇道截面与型腔截面积之比值(A内/A)有关。
■ 巴顿还认为,充填过程的三个阶段对铸件质量所 起的作用是不同的。第一阶段是铸件的表面质量; 第二阶段是铸件的硬度;第三阶段是铸件的强度。

以上是早期的三种典型的充填理论。由于在
压铸过程中,充填铸型是在极短时间内完成的,
并且因为过程是不连续的、变化迅速以及铸型是
不透明的,因而不可能直接观察到铸型内的充填
■ 压射比压是压室内金属液在单位面积上所受的 压力,其值可用下式计算:

压铸工艺原理和过程

压铸工艺原理和过程

压铸工艺过程压铸工艺过程是由压铸机来完成的。

压铸机相据压室的工作条件分为热压室压铸机和冷压多压铸机两大类,而冷压常压铸机又根据压室的布置形式分为卧式和立式两类。

各种压铸机的压铸基本过程都为合模、压射、增压、持压、开模。

图1-1所示为热压室帐铸机压铸过程,图1-2所示为卧式冷压室压铸机压铸过程。

图1-3所示为立式冷压室压铸机压铸过程,图1-4所示为升举压室压铸机压铸过程。

二、压铸工艺原理从本质上来说,压铸过程与其他各种铸造过程一样都是液态合金的流动与传热过程和凝固过程,也就是动量传递、质量传递和能量传递过怪及相变过程,都是基本物理过程。

都遵循自然界中关于物质运动的动量守恒原理、质量守恒原理和能量守恒原理及相变原理。

所以压铸过程中液态合金的流动与传热问题和凝固问题也都可以由建立在动量守恒、质量守恒和能量守恒定律基础上的动量方程、连续方程、能量方程及相变(凝固)理论来描述。

但是,压铸过科又有其特殊之处,这就是压铸过程是在高压、高速条件下进行的,使得液态合金充填型腔时的形态与其他铸造方法的充填形态具有很大的差别,因而理解压力和速度在压铸过程中的作用和变化,对液态合金流动(充填)形态的影响是必要的。

压铸压力和压铸速度1、压铸压力压铸压力是压铸工艺中主要参数之一。

通常用压射力和压射比压来表示。

(1)压射力压射力可分为充填压射力和增压压射力。

充填压射力指充填过程中的压射力,其值由式(1-1)进行计算,即F y=p g A D ((1-1)式中F y—充填压射力,kN;Pg —压铸机液压系统的管路工作压力,kPa;A D—压铸机压射缸活塞截面积,m2增压压射力则是指增压阶段原压射力,其值由式(1-2)进行讲算,即F yz=p gz A D(1-2)式中Fyz—增压压射力,kN;Pgz—压铸机压射缸内增压后的液压压力,kPa(2)压射比压压射比压是指压室内与压射冲头接触的金属液在单位面积上所受到的压力压力射比压和增压比压。

压铸工艺参数的计算调整

压铸工艺参数的计算调整

压铸工艺参数的计算与工艺调整前提:针对目前国内压铸行业使用非实时监控的压铸机具多这一现状.合理设定压铸参数尤为重要1.吉制点的确定.2.2.压射速度的确定3.增压的确定4实例分析★在压铸过程中,通常的压射功能为:慢压射,一级快压射,二级快压射和增压。

其中一级快压射主要用于锤头跟踪,但也可用于由慢到快的过渡压射,根据客户及铸件的需要,强调使用过渡压射时,也可做到锤头跟踪单独控制(此为特供机),增压与二级快压射相连,大吨位的压铸机增压起始吉制独立控制。

★例:在DCC160压铸机上生产的一个压铸件.浇铸全重:330g (含浇排系统).铸件重量150g(内浇口以上).铸件投影面积:11X7=77cm2.浇注总投影面积:77X200%=154cm2.铸件材料:ADC12.本例铸件内浇口实际截面积:2.7X1.1+18X1.7=60.3mm2.平均壁厚:2mm.一. 吉制点确定:①.△1点对应入料筒的B点,当采用短入料筒时△1向42方向移动,同时△]始终保持对应B点.②.△,点:当料温低或充填率低亦或薄壁铸件时,△2接近对应A点,反之接近43点.③.43点:通过计算L H来确定,通常锤头压射到43点时,合金液达到C点,如果需要提前及滞后充填,43相应右移及左移.④.△点:对应模具分型面,(同时不能超过射出行程的极限)4⑤为了确定43点,需要计算L HM=A P*L H* P ------------------------------- ⑴M:铸件重量(内浇口以上,含集渣包)A p:锤头截面积P :合金液体密度将数值代入6:150=兀R2*L H*P=3.14*2.52*L H*2.5求得 L =3.06cm H二.压射过程之速度确定:1.慢压射速度Vs的大小一般以合金液不从入料口溢出为原则。

通常Vs为0.2-0.4m/s之间为宜(可以不做调整)2.一级快压射速度的确定需要考虑锤头跟出及过渡性速度两种情况充填率$ =M总/ A p*LK* P -------------------- ⑵M总:包括浇排系统在内的铸件总重A p:锤头截面积4:空打行程代入数值:$二(3 3 0/0 . 78 5 *52 *32 *2 . 5)*100%=21% (标准 30%-70%)充填高:H=(D/2)*(1.66*$+0.17)H=(50/2)*(1.66*0.21+0.17)=13mm一级快压射速度V L=0.2* {(D-H)*(1-0)/(1+0)}1/2 ------------------------- ⑷V L=0.2* {(50-13)*(1-0.21)/(1+0.21)}1/2=0.98m/s 二级快压射速度的确定及二级手轮的调节方法:V PC tV H:V D0 V p0V g P a充填时间:t=(7/1000)*T2 ----------------- ⑸T:铸件平均壁厚t=(7/1000)*22 =0.028(s)内浇口速度:Vg*t*Ag* P =M -------------------- ⑹M:铸件重量(内浇口之上含集渣包)Vg*0.028*60.3*0.0025=150Vg=35500mm/s=35.5m/s(内浇口最小速度) 锤头实打速度:Qg二Qp(合金液通过任何截面的流量相等)Qg:内浇口处的流量Qp:锤头处的流量(入料筒处流量)Ag*Vg=Ap*Vp ----------------------------⑺60 . 3 *35 . 5=0 . 78 5*502 *V PVp=1.1m/s(此为最小锤头速度)Vp= 1.1m/s.取Vp=1.5m/s (模具所需)模具界限速度:当Pa=140kg/cm2 (系统压力)Vpc=550*(Pa*As*Ag2 /Ap3) 1/2 ------------------------------------ ⑻Vpc=550*{140*0 . 78 5*102 *0 . 62 /(0 . 78 5 *52尸}I/2=3.97 m/s 实打速度:Vp={(V产V)/( V D2+V PC2)} 1/2 --------------------------------- ⑼pc2Vp={(62*3.972)/( 62+3.972)}1/2=3.31 m/s(压铸机所供)3.31远大于1.5 能量过剩.即Pa不需要取140kg/cm2那么当Pa=100 kg/cm2时情况如下:V=3.97*(100/140)1/2=3.35 m/spc此时空打速度 V =6*(100/140)1/2=5 m/sDV J{(52*3.352)/( 52+3.352)}1/2=2.78 m/s通过比较可知:降低系统压力让压铸机与压铸模系统更匹配由上面公式⑼:V P={(V D2*V PC2)/( V D2+V PC2)} 1/2可以导出:丫:{"长2*丫//( V PC2-V P2)} 1/2 ------------------------------- ⑽当 V P =1.5m/s 时可得出二级快压射设定速度:V D={(3.352*1.52)/( 3.352-1.52)}1/2=1.68m/s手轮设置:【(12*12/5)为每1m/s时的格数】(12*12/5)*1.68=49 格即:手轮调节为4圈1格三.增压确定:P 取 100Mpa 时锁模力=A 总*P=154*100=154(T)A P * P = P Z * P Z ------------------------------------------------------- (11)(锤头部)(增压缸处)0 . 78 5 *52*100MPa=0.785*162*PZP =9.76 Mpa (增压缸需设置的压力)ZA P * P = A S * P S ------------------------------------------------------- ⑫(锤头部)(射出缸处)0 . 78 5 *52*100MPa=0.785*102*PSP S =25 MPa (射出缸压力表显示值)通过查看射出缸压力表(大表)读数核实是否为25MPa如数据不符,需要调整增压储能器的压力,另外,原则上增压流量手轮从3圈调起充填时间允许时,可调小增压流量,否则反之触发压力一般为50kg/cm2,充填时间允许时也可调小触发压力,否则反之四.实例分析:1.当 Vj1.5m/s 时通过 Ag * Vg = A P * V P60.3*Vg=0.785*502*1.5Vg = 48.8 m/s (标准为 20-60 m/s)说明内浇口截面积较小,内浇口处的龟裂现象也证实了这一点。

压铸过程原理及压铸工艺技术培训

压铸过程原理及压铸工艺技术培训

压铸过程原理及压铸工艺技术培训压铸是一种将熔融金属在高压下快速压入金属模具型腔,并在压力作用下快速凝固成型的铸造方法。

压铸具有生产效率高、铸件尺寸精度高、表面光洁度好、组织致密、机械性能高等优点,广泛应用于汽车、摩托车、家电、电子、通讯、机械制造等领域。

一、压铸过程原理2. 喷射涂料:在模具型腔表面喷涂一层涂料,以防止金属液与模具直接接触,降低铸件表面粗糙度,提高铸件质量。

3. 合模:将上下模具合拢,形成封闭的型腔。

4. 填充:在高压作用下,将熔融金属通过浇道、内浇口迅速填充至模具型腔。

5. 压实:在填充过程中,金属液受到高压作用,使其紧密地充满型腔,并排除气体和杂质。

6. 凝固:金属液在高压下快速凝固,形成固态铸件。

7. 开模:凝固完成后,打开模具,取出铸件。

8. 后处理:对铸件进行切割、打磨、抛光等后处理,以满足产品要求。

二、压铸工艺技术培训1. 压铸模具设计:培训学员掌握压铸模具结构、设计原则、分型面选择、浇注系统设计、冷却系统设计等内容,提高模具设计水平。

2. 压铸工艺参数:培训学员了解和掌握压力、速度、温度、时间等工艺参数对铸件质量的影响,学会调整和优化工艺参数。

3. 压铸机操作:培训学员熟练掌握压铸机的操作方法、安全注意事项、设备维护保养等内容,提高操作技能。

4. 压铸涂料应用:培训学员了解涂料的作用、种类、性能、喷涂方法等,学会正确选用和喷涂涂料。

5. 铸件缺陷分析:培训学员掌握铸件常见缺陷的类型、原因、防止措施,提高缺陷分析及解决能力。

6. 压铸现场管理:培训学员了解压铸生产现场的管理要点,提高现场管理水平。

7. 压铸新技术及应用:介绍压铸领域的新技术、新工艺、新材料等,拓展学员知识面。

8. 实践操作:组织学员进行压铸操作实践,巩固所学知识,提高实际操作能力。

通过压铸工艺技术培训,学员将全面了解压铸过程原理,掌握压铸模具设计、工艺参数调整、设备操作、涂料应用、缺陷分析等关键技术,提高压铸生产现场管理水平,为我国压铸行业的发展贡献力量。

压铸原理及工艺参数选择

压铸原理及工艺参数选择

7
压铸成形工艺与模具设计(第2版)——第1章
2 液态金属充填理论概述
❖ 喷射充填的理论
由 弗 罗 梅 尔 ( Frommer ) 于 1932年提出。液态金属的充填过 程遵循流体力学定律,并且有摩 擦和涡流现象。通过实验,熔融 金属从内浇口进入型腔时,以内 浇口截面的形状射向远离浇口的 对面型壁,撞击后,部分金属聚 积并产生涡流,另一部分金属则 向所有方向喷溅,并沿型壁返回 流动,金属积聚所产生的反压力 使喷溅的金属紊乱地与后来的主 流汇合,由于型壁的摩擦,沿型 壁流动的金属逐渐被积聚的金属 赶上而合在一起,其后便向浇口 方向流回。
正确选择压射比压的大小对铸件的力学性能、表面质 量和模具的使用寿命都有很大的影响。
26
压铸成形工艺与模具设计(第2版)——第1章
4 压力参数及其选择
3)压射比压的选择 选择合适的压射比压可以改善铸件的力学性能: 铸件在较高的比压下凝固,可以↑内部组织的致密
度,强度↑; 但随着比压增大↑↑,铸件的塑性指标↓,强度也
如果在相同的时间内金属液充填完毕,则压力流成型的 铸件比喷射流成型的铸件的内部缺陷少;
但是采用压力流的压铸件的形状,总是会把气体封闭在
里边,从而产生局部面积较大的内部缺陷,此时应在容易把 气体封闭的部位用喷射流的充填形式来减少内部的缺陷。
20
压铸成形工艺与模具设计(第2版)——第1章
3 液态金属的流动状态及其特性
2 液态金属充填理论概述 4 压力参数及其选择 6 温度参数及其选择
7 时间参数及其选择
8 压铸用涂料
9 特殊压铸工艺简介
3
压铸成形工艺与模具设计(第2版)——第1章
》 1 压铸过程的基本原理
➢ 热室压铸过程的基本原理

压铸过程原理及压铸工艺参数确定解读

压铸过程原理及压铸工艺参数确定解读

压铸过程原理及压铸工艺参数确定解读压铸(Die casting)是一种通过将金属材料(通常为非铁金属,如铝、锌、铜等)加热至液态,然后压入模具中形成特定形状的工艺。

压铸工艺参数的确定包括:模具设计、铸造温度、注射速度、注射压力、冷却时间等。

压铸过程主要包括模具的张合、铸料的注入、冷却和模具的张开四个步骤。

具体过程如下:1.模具的张合:将两块模具合拢,形成一个完整的铸造腔。

2.铸料的注入:将预先加热至液态的金属材料经过喷射系统注入到铸造腔中。

3.冷却:待金属材料充分填充铸造腔后,开始冷却过程。

通过导热系统或者液体冷却剂快速冷却铸件,使其凝固固化。

4.模具的张开:冷却完毕后,张开模具并将铸件推出。

压铸工艺参数的确定:1.模具设计:模具的设计直接影响产品的成型质量。

合理的模具设计应保证产品的一致性和尺寸精度,并考虑到产品的冷却效果以及模具的寿命等因素。

2.铸造温度:铸造温度直接决定了金属材料的流动性和充填性能。

过高的温度可能导致材料的挥发和氧化,过低的温度可能导致流动性差,影响成型质量。

因此,需要根据材料的特性和产品要求确定适当的铸造温度。

3.注射速度:注射速度决定了金属材料进入模具的速度和充填性能。

过高的注射速度可能导致气泡和缺陷,过低的注射速度可能导致不充分充填和产生残余应力。

适当的注射速度应根据具体材料和产品进行调整。

4.注射压力:注射压力决定了金属材料进入模具的力度,以及铸件的密实程度。

过高的注射压力可能导致模具磨损和损坏,过低的注射压力可能导致产品质量不稳定。

适当的注射压力应通过试模或者经验确定。

5.冷却时间:冷却时间是指充填完毕后,铸件需要保持在模具中进行冷却的时间。

适当的冷却时间可以保证铸件的完全凝固和均匀冷却,以避免产生缺陷和应力。

压铸工艺参数的确定需要结合实际情况,通过试模和不断的优化调整,以达到产品的质量要求。

同时,压铸过程还需要注意风险控制和安全生产,以保证操作人员和设备的安全。

第二章压铸过程原理及常用压铸合金

第二章压铸过程原理及常用压铸合金
即压射力与压室截面积之比。 p=Fy/A
压射比压的作用和影响 对压铸件力学性能的影响:压射比压大,合金结晶细,细晶层增厚。
由于填充特性改善,压射比压大,压铸件表面质量提高,气孔缺陷减轻 ,从而抗拉强度提高,但伸长率降低。
对填充条件的影响:金属液在高的压射比压作用下填充型腔,填充动 能增大,流动性改善,有利于克服浇注系统和充填薄壁压铸件型腔的阻 力,提高质量。
B
B
5
Introduction
第一篇:压铸原理及常用压铸合金
⑵ 压铸速度 压铸速度:压射速度和充填速度。 a.压射速度 压室内压射冲头推动金属液的移动速度称为压射速度。一般有二级和 三级两种。压射速度由压铸机的特性所决定。一般在0.1-7m/s。 作用:使压室内空气有充分的时间溢出,并防止金属液从浇口中溅出 (第一阶段); 在较短的时间里充填满模具型腔(第二阶段)。
Home
B
B
21
④ 压铸铜合金
⑴ 主要特性 ☆ 铜合金的力学性能高,其绝对值均超过锌、铝和镁合金 ; ☆ 铜合金的导电性能好,并具有抗磁性能,常用来制造不允许受磁场干 扰的仪器上的零件; ☆ 铜合金具有小的摩擦系数,线膨胀系数也较小,而耐磨性、疲劳极限 和导热性都很高; ☆ 铜合金密度大、价格高、其熔点高; ☆ 压铸铜合金多采用质量分数为35%~40%的锌(Zn)黄铜,它们的结 晶间隙小,流动性、成形性良好;
(5) 注意问题 ☆ 在压铸件结构设计时,采用加强肋提高强度;铸件的壁厚变化应较平 缓过渡,不应急剧变化,更应避免尖角,主要是由于镁合金压铸件易产生缩 松和热裂。 ☆镁合金零件在装配中应避免与铝合金、铜合金、含镍钢等零件直接接 触而导致电化学腐蚀,主要是由于镁的电极电位低。 ☆在熔炼时应采取阻燃措施。方法一:加入微量铍(0.003%)阻燃。铍 以Al-5%Be中间合金方式加入,考虑到烧损,加入量一般为所需量的3倍。 但不能加入过多,易产生过多的渣。方法二:采用气体保护熔炼。SF6、 CO2、SO2、N2。

压铸过程原理及压铸工艺参数确定

压铸过程原理及压铸工艺参数确定

压铸过程原理及压铸工艺参数确定压铸是将熔融的金属注入到铸模中并进行压力加固,使其凝固形成一种金属铸件的工艺过程。

压铸是金属铸造中最常用的一种方法,广泛应用于汽车制造、航空航天、电子电器等工业领域。

下面将详细介绍压铸过程的原理以及压铸工艺参数的确定。

1.压铸模具的设计与制造:压铸模具是压铸过程中至关重要的一环。

它根据铸件的形状和要求,设计并制造出铸型腔、浇注系统、引手等组成部分。

通过压铸模具,可以将熔融金属注入到铸型腔中,形成铸件的形状。

2.熔炼和注射金属:在压铸过程中,首先需要将金属材料熔化,然后通过注射机将熔融金属注入到铸型腔中。

注射机通常由一个熔融金属锅和一个压力室组成。

3.压力加固:当熔融金属注入到铸型腔中后,需要施加一定的压力进行加固。

通过施加压力,可以使熔融金属充分填充铸型腔,并确保金属凝固成一体的铸件。

4.压铸过程:压铸过程是由注射、封着、冷却、开露和脱模等步骤组成的。

在注射阶段,熔融金属被注射机注入铸型腔中。

在封着阶段,注射机的活塞会施加压力,确保金属填充完全,并避免金属的逆流。

在冷却阶段,熔融金属开始凝固。

在开露阶段,模具中的冷却液被排出,并准备下一次注射。

在脱模阶段,铸件从模具中取出。

压铸工艺参数确定:1.注射速度:注射速度是指熔融金属注入铸型腔的速度。

注射速度过快可能导致金属的冲击和气泡产生,而注射速度过慢则会延长制造周期。

注射速度的选择应该根据铸件的形状、厚度和尺寸来确定。

2.注射压力:注射压力是指压铸过程中施加在熔融金属上的压力。

注射压力的选择应该保证金属充分填充铸型腔,并防止金属气泡和缺陷的产生。

3.注射温度:注射温度是指熔融金属注入铸型腔时的温度。

注射温度的选择应该保证熔融金属的流动性,在填充铸型腔的同时尽量减少金属的气泡和缩孔。

4.压力时间:压力时间是指施加在熔融金属上的压力的持续时间。

压力时间的选择应该保证金属充分填充铸型腔,并确保金属在凝固过程中不产生缩孔和缺陷。

第一章压铸工艺

第一章压铸工艺
压铸文字一般不小于5号字体,文字凸出高度应大于 0.3-0.5mm,线条宽度一般为凸出高度的1.5倍,线条间最 小距离为0.3mm,脱模斜度为10°-15°。
27
<压铸模、锻模及其他模具>
9.镶嵌件 镶嵌件在压铸件内必须稳固牢靠,有防止移动和转
动的结构,可在镶嵌件铸入部位采取滚花、切槽、铣扁等 方式,使合金与基体包紧。包紧部分不应有尖角,避免铸 件开裂。
一.压铸件的精度
影响压铸件精度的主要因素有:模具精度及工作情况、 压铸机的精度及刚度、合金成分及性能、压铸件的结构、 尺寸、压铸工艺参数等。
14
<压铸模、锻模及其他模具>
1.压铸件的尺寸 精度
压铸件尺寸的经济精度可达IT11~IT13级,高时可达 IT9~IT10级,未注公差可参照IT14级选取。
压铸过程循环图
2
<压铸模、锻模及其他模具>
二、压铸分类
热压室压铸机压力铸造 立式
冷压室压铸机压力铸造 卧式 全立式
3
<压铸模、锻模及其他模具>
压力铸造车间
4
<压铸模、锻模及其他模具>
1.热压室压铸机的压铸过程
1 2345
9 8 76
a)合模状态 b)压射
1——坩埚 2——压射冲头 3——压室 4——进口 5——熔融合金 6——鹅颈管 7——喷嘴 8——定模 9——动模
确定压铸件的尺寸公差时,考虑如下因素: (1)以空间对角线表示压铸件轮廓尺寸大小
L空 a2 b2 c2
15
<压铸模、锻模及其他模具>
(2)分型面、活动成型部分对尺寸的影响 与分型面无关的为A类尺寸,与分型面有关的为B类尺寸。

压铸工艺参数的设定和调节

压铸工艺参数的设定和调节

压铸工艺参数的设定和调节压铸工艺参数的设定和调节是在铸造过程中对机器设备的参数进行调整,以达到铸件质量要求的过程。

这些参数包括压力、速度、温度、冷却时间等,正确的设定和调节能够改善铸件的成型质量,提高生产效率和降低生产成本。

首先,压铸工艺参数的设定和调节应考虑到铸件的形状、尺寸、材料等因素。

根据铸件的设计要求,选择合适的压力和速度来满足铸件的成型需求。

一般情况下,增加压力可以提高铸件的致密度、强度和表面质量,但过高的压力可能导致铸件断裂或变形;增加速度可以减少热损失,提高铸件的凝固速度和成型质量,但过高的速度可能导致冷隔离缺陷等问题。

其次,压铸工艺参数的设定和调节还需要考虑到机器设备的性能和工作状态。

例如,如果机器设备的液压系统压力低于要求,就需要调整液压泵的工作压力,保证其在一定范围内稳定工作;如果机器设备的液压缸行程不足,就需要增加液压泵的行程或调整行程限位开关。

第三,压铸工艺参数的设定和调节还需要根据铸件的材料和成型温度来决定。

铸件的成型温度对铸件的凝固速度、收缩率、热裂纹倾向等有着重要影响。

一般情况下,增加成型温度可以加快铸件的凝固速度,提高铸件的致密度和强度,但过高的成型温度可能导致材料的氧化或烧损、铸件变形等问题。

此外,压铸工艺参数的设定和调节还需要考虑到铸件的冷却时间。

冷却时间是指在铸件成型后,需要经过一定时间的冷却才能取出铸件。

合理的冷却时间可以保证铸件的成型质量和尺寸稳定性,但过长的冷却时间可能导致生产效率低下。

在设定和调节压铸工艺参数时,需要根据实际工艺经验和试制铸件的质量情况进行有针对性的调整。

如果发现铸件存在不良缺陷,例如气孔、疏松、缩孔、冷隔离等,就需要重新评估和调整工艺参数,以减少或消除这些缺陷。

总之,压铸工艺参数的设定和调节是一个复杂而严谨的过程,在实践中需要不断摸索和总结经验。

合理设定和调节这些参数,可以提高铸件的成型质量、降低缺陷率,并最终提高生产效率和降低生产成本。

压铸过程原理及压铸工艺参数确定讲解

压铸过程原理及压铸工艺参数确定讲解

各阶段的切换起始点至结束点,或者说切换处曲线斜率,反映了 从低速切换至高速,或从低压切换至高压的响应速度。
切换时速度和压力应该同步响应为佳,以反应迅速为佳。

二、压射过程曲线
4、建压时间



建压时间表示增压压力的响应速度,建压时间是反映压铸机性能 的重要指标。 增压压力必须在金属凝固之前建立,否则将大大影响增压效果。 理论上讲,建压时间越短越好,可以在金属液凝固之前对其进行 高压压实,有效减少内部缺陷,增加压铸件的致命性。 目前先进压铸机的建压时间已达10ms以下。
发展历程:不变化-二阶段-三阶段(或四阶段) 最新进展:突破了传统的三阶段压射,可以根据工艺需要,多点 设置速度和压力,可以非常灵活地设定压射过程;某些压铸机还 具备压射冲头运动优化程序,根据压室参数、金属液充满度等参 数,计算最佳压射模式,减少卷气现象。 压射模式应根据压铸件及压铸工艺的具体状况设定,并非采用哪 一种固定模式。
二、压射过程曲线
2、压力和速度值

正常情况下,压力值和速度值相对应
如果曲线异常,出现压力过高而速度偏低,表明压射系统可能出 现问题,如压射冲头阻滞、浇道堵塞,或液压管路问题等 如果压力曲线偏低,速度无法上升,表明压力没有建立,应检查 压力设置是否合适或是存在泄压之处


二、压射过程曲线
3、压力和速度切换状况
第2讲 压铸过程原理 及压铸工艺
引言

压铸机、压铸模具及压铸合金是压铸生产的三大要素。
但要生产出合格压铸件,没有正确的压铸工艺是不可 能的。压铸工艺规定三大要素的工作方式。 换言之,如果压铸机、压铸模具及压铸合金是压铸生 产的硬件,那么压铸工艺就是压铸生产的软件。

压铸过程原理及压铸工艺参数确定解读

压铸过程原理及压铸工艺参数确定解读

二、压铸速度
3、充型速度和冲头速度的关系

在冷室压铸机中,压室、浇道和压铸模型腔相连,成为一个密闭 系统,因而它们之间具有连续方程的关系,即
因此,充型速度确定后,根据内浇口和压射冲头面积核算冲头速度。
二、压铸速度
4、速度切换位置
A.给汤完了状态 压射时间内,溶汤 安定后,开始压射
B.低速压射,压室充填 设定防止空气卷入的速度 注意无溶汤飞溅,冲头的 卡住等的影响。
IV
起始位置:充型结束 参数:压射速度迅速减至零,增压压力p4建立 特征:压射冲头停止运动,压力剧增,达到全过程的最高值 说明:金属液完成充满型腔。增压压力对凝固中的金属液进行压实,压射冲头可能稍有
前移。金属液凝固后,增压压力撤除,压射过程结束。通过增压使压铸件密度增加 ,获得清晰压铸件

说明:压射阶段的划分来源于长期的压铸实践,但并非必须完全 遵循,根据压铸件及压铸工艺的具体状况设定。
注系统。该阶段应注意防止卷气,并尽量避免金属液提前进入型腔
III
起始位置:从金属液充满内浇口处至型腔完成充满 参数:压射速度v3,压射压力p3(动态) 特征:压射压力再次升高,压射速度略有下降,充型速度最快 说明:金属液流经内浇口充填型腔。由于内浇口处截面积大幅缩小,流动阻力剧增,压
射速度略有下降,但此时充型速度最快。要保持足够的充型速度,需更高的压射压 力,用于克服浇注系统主要是内浇口处的流动阻力。
三、时间
3、持压时间:指金属液充满型腔后,压射系统继续保持压力的时间 持压的目的是保证金属液在整个凝固期间都处于高压之下,达到 紧实压铸件的目的。 持压时间应比金属液在型腔内的凝固时间长。
表5 基于压铸件壁厚的持压时间推荐值
三、时间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发展历程:不变化-二阶段-三阶段(或四阶段)
最新进展:突破了传统的三阶段压射,可以根据工艺需要,多点 设置速度和压力,可以非常灵活地设定压射过程;某些压铸机还 具备压射冲头运动优化程序,根据压室参数、金属液充满度等参 数,计算最佳压射模式,减少卷气现象。
压射模式应根据压铸件及压铸工艺的具体状况设定,并非采用哪 一种固定模式。
增压压力必须在金属凝固之前建立,否则将大大影响增压效果。 理论上讲,建压时间越短越好,可以在金属液凝固之前对其进行
高压压实,有效减少内部缺陷,增加压铸件的致命性。 目前先进压铸机的建压时间已达10ms以下。
11
二、压射过程曲线
5、压力峰值
压力峰值指的是快压射结束时(充型结束),迅速增压形成的压 力冲击或水锤现象。
IV 起始位置:充型结束
参数:压射速度迅速减至零,增压压力p4建立
特征:压射冲头停止运动,压力剧增,达到全过程的最高值
说明:金属液完成充满型腔。增压压力对凝固中的金属液进行压实,压射冲头可能稍有
前移。金属液凝固后,增压压力撤除,压射过程结束。通过增压使压铸件密度增加
,获得清晰压铸件
6
说明:压射阶段的划分来源于长期的压铸实践,但并非必须完全 遵循,根据压铸件及压铸工艺的具体状况设定。
12
2.2 压铸工艺参数及其确定方法
一、压铸压力
压铸压力是压铸工艺的基本特征,金属液的充型和压实都是在压力 作用下完成的,分为动态压射力和增压压射力。
压铸过程中的压力是由压铸机的压射机构产生的 压射机构通过工作液体将压力传递给压射活塞 然后由压射活塞经压射冲头施加于压室内的金属液上
13
2.2 压铸工艺参数及其确定方法
压力和速度是压射过程的两个重要参数。记录压射过程中压力和速度 动态特性的曲线,称为压射过程曲线。
冷室压铸
(1)小型压铸机 三级压射,即为两级速度,一级增压。
(2)中大型压铸机 双回路控制的四级压射系统,即慢压射、一级快压射(也较慢)、二级快压
射、增压。
热室压铸,主要以两个阶段压射为主(一速升液和二速填充)。
9
二、压射过程曲线
3、压力和速度切换状况
各阶段的切换起始点至结束点,或者说切换处曲线斜率,反映了 从低速切换至高速,或从低压切换至高压的响应速度。
切换时速度和压力应该同步响应为佳,以反应迅速为佳。
10
二、压射过程曲线
4、建压时间
建压时间表示增压压力的响应速度,建压时间是反映压铸机性能 的重要指标。
III 起始位置:从金属液充满内浇口处至型腔完成充满 参数:压射速度v3,压射压力p3(动态) 特征:压射压力次升高,压射速度略有下降,充型速度最快 说明:金属液流经内浇口充填型腔。由于内浇口处截面积大幅缩小,流动阻力剧增,压 射速度略有下降,但此时充型速度最快。要保持足够的充型速度,需更高的压射压 力,用于克服浇注系统主要是内浇口处的流动阻力。
一、压铸压力(两种表现形式)
1、压射力:来源于高压泵,通过压射冲头对金属液施加压力,施加 压力的大小用比压表示。
2、压射比压:指压射过程中,压室内单位面积上金属液所受到的静 压力
式中
P——压射比压(MPa); F——压射力(N); A——压射冲头截面积(近似等于压室截面积)(mm2); D——压室直径(mm)。
7
二、压射过程曲线—压射过程分析的重要线图
1、压射阶段
理论上,压射压力与压射速度的平方成正比,一定的速度对应一 定的压力,或者说使用一定压力才能达到一定的速度
压射曲线中的上升斜线,表示压力和速度处于上升之中,起始点 为速度或压力的切换点
压射曲线中的平台,表明该阶段的速度和压力没有变化,一个稳 定的平台可以理解为一个阶段(冷室压铸出现三个压射阶段I、II、 III)
在IV阶段(增压阶段),压力迅速上升出现高压平台,但速度值 迅速降为零,这是增压阶段的特征,表明充型结束,增压形成。
8
二、压射过程曲线
2、压力和速度值
正常情况下,压力值和速度值相对应
如果曲线异常,出现压力过高而速度偏低,表明压射系统可能出 现问题,如压射冲头阻滞、浇道堵塞,或液压管路问题等
如果压力曲线偏低,速度无法上升,表明压力没有建立,应检查 压力设置是否合适或是存在泄压之处
在第III阶段结束后,压射冲头运动突然停止及压力快速切换,造 成了压力瞬间升高,并伴有压力振荡现象。
压力峰值虽是瞬态行为,但对压铸工艺非常不利。压力峰值可以 引起胀形,造成泄压,影响压铸件成形质量,使压铸产生飞边、 毛刺等。
现代压铸机都把消除压力峰值作为一项重要内容。目前许多压铸 机增加了反压措施,使压射冲头在充型结束前瞬间减速,从而大 大减轻了水锤现象,缩小了压力峰值。
14
一、压铸压力
3、压射比压的取值范围 冷室压铸机的动态压射比压一般在30~90MPa之间,增压压射比压
一般在50~300MPa之间 热室压铸机提供的压射比压可达到20~50MPa 使用压铸机提供的最小压射冲头才能得到最大压射比压
3
一、压射过程
压铸机的压射过程从压射冲头开始移动至型腔充满保压 (热室压铸机),或者至增压结束(冷室压铸机)为止。
压射过程中,随着压射冲头的位移,速度和压力都是按设 定的模式变化。
4
5
阶段 I
进程描述
起始位置:从压射冲头起始位置至越过浇料口位置 参数:压射速度v1(冲头),压射压力p1(动态) 特征:低压低速,运行平稳 说明:低速推进,防止金属液从浇料口溢出,有利于气体排出。压力主要用于克服系统
第2讲 压铸过程原理 及压铸工艺
1
引言
压铸机、压铸模具及压铸合金是压铸生产的三大要素。 但要生产出合格压铸件,没有正确的压铸工艺是不可
能的。压铸工艺规定三大要素的工作方式。 换言之,如果压铸机、压铸模具及压铸合金是压铸生
产的硬件,那么压铸工艺就是压铸生产的软件。
2
2.1 压射过程与压射过程曲线
摩擦阻力,只有小部分用于推动金属液
II 起始位置:从压射冲头越过浇料口位置至金属液充满至内浇口处 参数:压射速度v2,压射压力p2(动态) 特征:压力增大,压射冲头速度加快 说明:压射冲头通过浇料口,压射压力提高,压射冲头速度加快,金属液充满压室至浇 注系统。该阶段应注意防止卷气,并尽量避免金属液提前进入型腔
相关文档
最新文档