第一章有理数单元测试1

合集下载

人教版七年级上册数学 第一章 有理数 单元测试题 含答案 答题卡

人教版七年级上册数学  第一章 有理数 单元测试题  含答案 答题卡

第一章 有理数 单元测试题(一)一 选择题 (每小题3分 共30分)1.下列四个数中,在-2到 0之间的数是: ( ) A -1 B 1 C -3 D 32.下列说法正确的是: ( ) A 0表示什么也没有B 一场比赛赢4个球得+4分, -3分表示输了3个球 C 7没有符号D 0既不是正数,也不是负数3.既是分数又是正数的是( )A +2B -31C 0D 2.34.下列结论正确的有( )个: ① 规定了原点,正方向和单位长度的直线叫数轴 ② 最小的整数是0 ③ 正数,负数和零统称有理数 ④ 数轴上的点都表示有理数A 0B 1C 2D 3 5.在数轴上,A 点和B 点所表示的数分别为-2和1,若使A 点表示的数是B 点表示的数的3倍,应把A 点 ( ) A 向左移动5个单位 B 向右移动5个单位C 向右移动4个单位D 向左移动1个单位或向右移动5个单位 6.如图,在数轴上点M 表示的数可能是( )A .1.5B .-1.5C .-2.4D .2.47.在0.75,-1,-0.75,3,0,+5,-3这几个数中,互为相反数的有( ) A .0对 B .1对 C .2对 D .3对8.数a 在数轴上的对应点在原点左边,且|a|=4,则a 的值为( ) A .4或-4 B .4 C .-4 D .以上都不对 9.一个数的绝对值等于它的相反数,则这个数是( ) A .正数或0 B .负数或0 C .所有正数 D .所有负数10.清晨蜗牛从树根沿着树干往上爬,树高10m ,白天爬4m ,夜间下滑3m ,它从树根爬上树顶,需( ) A 、10天 B 、9天 C 、8天 D 、7天 二 填空题(每小题3分 共18分)1.如果向南走5米,记作+5米,那么向北走8米应记作____米. 2.已知下列各数:-4,3.5,0,-2,10,+21,其中非负数有_______ 3.在数轴上,距原点6个单位长度的点表示的数为____. 4.若a=-2020,则—a=____.5.某天早晨的气温是18℃,中午上升6℃,半夜又下降5℃,则半夜的气温是_____℃.6.如果x <0,y >0,且|x|=2,|y|=3,那么x+y=________. 三 解答题(本大题共72分) 1(30分) 计算(1)1+(-21 )+31 +(-61) (2)(-109)+(-267)+(+109)+268(3)(-23)-(+12)-(-56)-(-13) (4)(-813)-(+12)-(-70)-(-813);(5)(-3)-(-17)-(-33)-81 (6)(-12)+ 14 -(-21)+ 3 -(-2)2(8分)简答题:(1)-1和0之间还有负数吗?如有,请列举。

第1章 有理数单元测试卷(含答案)浙教版数学七年级上册

第1章 有理数单元测试卷(含答案)浙教版数学七年级上册

第 1 章测试卷有理数班级学号得分姓名一、选择题(本大题有10小题,每小题3分,共30分)1.如果温度上升2℃记做+2℃,那么温度下降3℃记做( )A. +2℃B. —2℃C. +3℃D. -3℃2.如图,数轴上被墨水遮盖的数可能为( )A. 1B. —1.5C. -3D. -4.23. 在数轴上,若点 M表示的有理数m 满足|m|>1,且m<0,则点M在数轴上的位置表示正确的是( )4.下列式子正确的是( )A. |-2|=-2B. |a|=aC. --|-2|<0D. -3<-45.数轴上表示-4与1的两点间的距离是( )A. 3B. -5C. 3D. 56.对于任何有理数a,下列一定为负数的是( )A. -(-3+a)B. -aC. -|a+1|D. -|a|-17.下列说法中不正确的是( )A. 最小的正整数是 1B. 最大的负整数是-1C. 有理数分为正数和负数D. 绝对值最小的有理数是08. 一个数a在数轴上对应的点是A,当点 A 在数轴上向左平移了 3个单位长度后到点 B,点A 与点 B 表示的数恰好互为相反数,则数a是( )A. -3B. -1.5C. 1.5D. 39.-|a|=-3.2,则a是( )A. 3.2B. -3.2C. ±3.2D. 以上都不对10.下列各式中,正确的是( )A. --|-2|>0 C. |-3|=-|3| D. |-6|<0二、填空题(本大题有 6 小题,每小题4分,共24分)11. -(-2)的相反数是,绝对值是 .12. 已知四个有理数在数轴上所对应的点分别为A,B,C,D,则这四个点从左到右的顺序为,离原点距离最近的点为 .13. 数轴上一个点到表示一1的点的距离是 4,那么这个点表示的数是 .14. 在数轴上表示数m的点到原点的距离为2,则m+1= .15.(1)所有不大于4 且大于-3的整数有;(2)不小于—4 的非正整数有;(3)若|a|+|b|=4,且a=-1,则b= .16. 已知数a与数b 互为相反数,且在数轴上表示数a,b的点A,B之间的距离为2020个单位长度,若a<b,则a= ,b= .三、解答题(本大题有8小题,共66分)17.(6分)在数轴上表示下列各数,并将它们按从小到大的顺序用“<”号连接.18.(6分)下表给出了某班6名学生的身高情况(单位:cm).学生A₁A₂A₃A₄A₅A₆身高166167172身高与班级平均身高的差+1-1-2+3值(1)完成表中空白部分;(2)他们的最高身高和最矮身高相差多少?(3)他们班级学生的平均身高是多少? 6名学生中有几名学生的身高超过班级平均身高?19. (6分)把下列各数填入相应的括号内:自然数:{ };负整数:{ };正分数:{ };负有理数:{ }.20.(8分)邮递员骑车从邮局出发,先向南骑行3km到达A 村,继续向南骑行5km到达B村,然后向北骑行14km到达 C村,最后回到邮局.(1)以邮局为原点,以向南方向为正方向,用0.5cm表示 1km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置;(2)C村离A 村有多远?(3)邮递员一共骑行了多少千米?21.(8分)同学们都知道,表示 2 与之差的绝对值,实际上它的几何意义也可理解为2 与两数在数轴上所对应的两点之间的距离.试探索:(1)求表示的几何意义是什么?,则x的值是多少?22.(10分)如图,数轴上标出了7个点,相邻两点之间的距离都相等,已知点 A 表示点 G 表示 8.(1)点B 表示的有理数是,表示原点的是点;(2)图中的数轴上另有点M到点A、点G的距离之和为13,求这样的点 M表示的有理数;(3)若相邻两点之间的距离不变,将原点取在点D,则点C表示的有理数是,此时点 B 与点表示的有理数互为相反数.23.(10分)有5袋小麦,以每袋25 千克为基准,超过的千克数记做正数,不足的千克数记做负数,各袋大米的千克数如下表:袋号一二三四五每袋超出或不足的千克数—.2.1一.3一.1.2(1)第一袋大米的实际质量是多少千克?(2)把表中各数用“<”连接;(3)把各袋的袋号按袋中大米的质量从小到大排列,这一排列与(2)题中各数排列的顺序是否一致?24.(12分)把几个数用大括号括起来,相邻几个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016-x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合.(1)集合{2016} 黄金集合,集合{-1,2017} 黄金集合.(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素? 如果存在,请直接写出答案,否则说明理由.(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素? 说明你的理由.第 1章测试卷有理数1. D2. C3. D4.C 5 D 6 . D 7 . C 8 . C 9 . C10. B 11. -2 2 12. BACD A 13. -5或314. 3或-115. (1)—2,—1,0,1,2,3,4 (2)-4,-3,-2,-1,0(3)±3 16. -1010 101017. 解:-|-4|=-4,-(-1)=1.在数轴上表示如图所示:所以18. 解:(1)第一行:164 163 168;第二行:+2 +7(2)172—163=9( cm).(3)班级平均身高:165cm;共有4名学生超过班级平均身高.19. 解:自然数:{1,0,+102};负整数:{—9,—70};正分数:{0.89,};负有理数20. (1)略 (2)9km (3)28km21. 解:(1)原式=|5|=5.(2)5与—3两数在数轴上所对应的两点之间的距离.(3)x=6或-4.22. (1)—2 C (2)—4.5或8.5 (3)—2 F23.(1)24.8千克 (2)—0.3<—0.2<—0.1<0.1<0.2(3)第三的质量<第一的质量<第四的质量<第二的质量<第五的质量与(2)中一致24. 解:(1)不是是(2)存在,最小元素是—2000.(3)该集合共有 24 个元素.理由如下:①若1008是该黄金集合中的一个元素,则它所对应的元素也为1008.②若1008不是该黄金集合中的元素,因为在黄金集合中,如果一个元素为a,那么另一个元素为2016—a,故黄金集合中的元素一定有偶数个,且黄金集合中每一对对应元素的和为 2016.因为,又该黄金集合中所有元素之和为M,且24190,若1008是该黄金集合中的元素,则22176+故1008不是该黄金集合中的元素,所以该黄金集合中元素的个数为 12×2=24.。

RJ人教版七年级上册第一章《有理数》单元测试习题卷内含答案和解析

RJ人教版七年级上册第一章《有理数》单元测试习题卷内含答案和解析

第一章《有理数》达标检测第Ⅰ卷选择题(共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-1的绝对值是【】A.1B.0C.-1D.±12.下列说法中,正确的是【】A.一个数的绝对值一定是正数B.任何正数一定大于它的倒数C.-a一定是负数D.0与任何一个数相乘,积一定是03.下面计算中,正确的是【】A.-(-2)2=22B.(-3)2=6C.-34=(-3)4D.(-0.1)2=0.124.下列说法不正确的是【】A.正整数、0、负整数统称为整数B.大于0的数叫正数C.有理数包括正数和负数D.有理数包括整数和分数5.在-(-3),|-3|,-32,(-3)3中,正数有【】A.1个B.2个C.3个D.4个6.若A,B两点在数轴上的位置如图所示,则A,B两点间的距离是【】A.-3B.5C.6D.77.下列数据是近似数的是【】A.王哲林单场拿下25个篮板B.姚明身高约226cmC.朱芳雨在亚俱杯中单节拿下16分D.在NBA联赛中,热火队取得27连胜8.下列各式中正确的是【】A.-4-3=-1B.5-(-5)=0C.10+(-7)=-3D.-5-4-(-4)=-59.若有理数a,b在数轴上的位置如图所示,则下列结论正确的是【】A.ab>0B.ab>0C.a-b>0D.a-b<010.下列说法中正确的是【】A.有最小的有理数B.有最大的负有理数C .有绝对值最小的有理数D .有最小的正数11.已知a 、b 是有理数,它们在数轴上的对应点的位置如图所示:下列选项中,把a 、-a 、b 、-b 按照从小到大的顺序排列正确的是【 】A.-b<-a<a<bB.-a<-b<a<bC.-b<a<-a<bD.-b<b<-a<a12.若一个有理数的偶次方是正数,则这个有理数的奇次方是【 】 A.正数B.负数C.正数或负数D.整数13.下列说法中,正确的是【 】A.近似数2.34和2.340的精确度相同B.近似数89.0精确到个位C.近似数8千和近似数8000的精确度相同D.近似数3.1416精确到万分位14.第六次人口普查的时间是2010年11月1日零时,普查登记的大陆31个省、自治区、直辖市和现役军人的人口共1 339 724 852人.下列用科学记数法表示这个数正确的为 【 】A.1.33×1010B.1.34×1010 C.1.33×109D.1.34×10915.如图,两个温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这一天的最高气温比最低气温高【 】A.5℃B.7℃C.12℃D.-12℃16.一根1m 长的小木棒,第一次截去它的13,第二次截去余下的13,如此截下去,截完第五次后剩下的小木棒的长度是【 】A.(13)5mB.5113⎡⎤⎛⎫⎢⎥- ⎪⎝⎭⎢⎥⎣⎦mC.(23)5mD.5213⎡⎤⎛⎫⎢⎥- ⎪⎝⎭⎢⎥⎣⎦m第Ⅱ卷非选择题 (共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上) 17.有理数-15的倒数是 . 18.一个点从数轴的原点开始,先向右移动5个单位长度,再向左移动8个单位长度,则到达的终点所对应的数是_____________.19.定义新运算“×”:对任意有理数a 、b ,都有a × b=a2-b ,例如:3×2-2=7,那么2 × 1=____________. 20.数轴上,如果点A 对应的数为-78,点B 对应的数为-76,那么离原点较近的点为____________.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)计算:(1)(-5)×(-7)-5×(-6);(2)(-12)÷4×(-6)÷2;(3)(-58)×(-4)2-0.25×(-5)×(-4)3.22.(本小题满分10分)列式计算:(1)-4、-5、+7三个数的和比这三个数的绝对值的和小多少?(2)从-1中减去-512、78、-34的和,所得的差是多少?23.(本小题满分10分)把下列各数在数轴上表示出来,并且用“>”号把它们连接起来:-3,-(-4),0,|-2.5|,-11 224.(本小题满分11分)给出依次排列的下列数:-1,2,-4,8,-16,32,….(1)按照给出的这几个数的某种规律,继续写出接下来的3个数;(2)这一列数中第n个数是什么?25.(本小题满分12分)某医院的急诊病房收治了一位急诊病人,护士需要每隔两小时为病人量一次体温(正常人的体温是36.5℃).(1)试完成下表:(2)在8时到22时,该病人哪个时刻体温最低?比最高体温低多少?26.(本小题满分14分)有A、B、C、D四种装置,将一个数输入一种装置后会输出另一个数.装置A:将输入的数加上5;装置B:将输入的数除以2;装置C:将输入的数减去4;装置D:将输入的数乘以3.这些装置可以连接,如装置A后面连接装置B就写成A·B,输入1后,经过A·B,输出3.(1)输入9,经过A·B·C·D,输出几?(2)若经过B·D·A·C,输出的是100,则输入的是多少?第二章《整式的加减》达标检测第Ⅰ卷选择题(共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在式子0,2a,3,,52a b xa y-+中,单项式共有【】A.2个B.3个C.4个D.5个2.单项式-3πxy2z3的系数和次数分别是【】A.-π,5B.-1,6C.-3π,6D.-3,73.多项式1+2xy-3xy2的次数及最高次项的系数分别是【】A.3,-3B.2,-3C.5,-3D.2,34.多项式12x|m|-(m-2)x+7是关于x的二次三项式,则m的值是【】A.2B.-2C.2或-2D.35.计算-2x2+3x2的结果为【】A.-5x2B.5x2C.-x2D.x26.下列叙述正确的是【】A.-273a b的系数是-7B.xy的系数为0C.a+b+c+d是四项式D.“a与b的平方差”列整式为(a-b)27.下列各组中的两个单项式能合并的是【】A.4和4xB.3x2y3和-y2x3C.2ab2和10ab2cD.y和2 3y8.减去-12x后,等于4x2-3x-5的整式是【】A.4x2-52x-5 B.-4x2+52x+5C.4x2-72x-5 D.-4x2+72x-59.下列去括号错误的是【】A.3x2-(x-2y+5z)=3x2-x+2y-5zB.5a2+(-3a-b)-(2c-d)=5a2-3a-b-2c+dC.3x2-3(x+6)=3x2-3x+6D.-(x-2y)-(-x2+y2)=x2-y2-x+2y10.下列各组式子:①a-b与-a-b;②a+b与-a-b;③a+1与1-a;④-a+b与a-b.其中互为相反数的是【】A.②④B.①②④C.①③④D.③④11.当x的值分别取2和-2时,多项式2x4的值【】A.互为相反数B.互为倒数C.相等D.异号且绝对值不相等12.下列各组单项式中,是同类项的为【】A.-2x2y与2yx2B.5x2y与-5xy2C.22与x2D.2πR与πR213.一块长方形园地的长是a,宽是b,园地中除一个直径为5的圆形水池外都是绿地,则绿地面积是【】A.ab-25πB.ab+6.25πB.C.ab+25π D.ab-6.25π14.多项式(xyz2+4xy-1)+(-3xy+z2yx-3)-(2xyz2+xy)的值【】A .与x ,y ,z 的大小都无关B .与x ,y 的大小有关,与z 的大小无关C .与x 的大小有关,而与y ,z 的大小无关D .与x ,y ,z 的大小都有关15.若M=4x 2-5x+11,N=3x 2-5x+10,则M 与N 的大小关系是 【 】A.M >NB.M=NC.M <ND.无法确定16.对于有理数a 、b ,定义a ※b=3a+2b ,则式子[]x y x y 2x +-()※()※化简后得 【 】A.15x-6yB.8x+3yC.8x-3yD.19x+3y第Ⅱ卷非选择题 (共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上) 17.单项式-3πxy 2的系数是 ,次数是 . 18.已知单项式3a mb 2与-ab n+3的和是单项式,那么m-n= . 19.当k= 时,式子x 3-kxy 2-4x 2+15xy 2+10中不含xy 2项. 20.如图是某花圃摆放的一组花盆图案(“○”代表红花花盆,“×”代表黄花花盆).观察图形并探索:在第n 个图案中,红花和黄花的盆数分别是 .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分) 化简:(1)(2xy-y )-(-y+yx ); (2)2223x7y 24x y 2x ⎡⎤----⎣⎦().22.(本小题满分10分)(1)当n 为何值时,多项式2x 3y 2n+4-3x 2y 5+14x 3y 3是八次多项式? (2)化简求值:x-3(x-14y 2)+(-x+14y 2),其中x=-2,y=-13.23.(本小题满分10分)化简后再求值:520+2(-3y 3z-2x )-4(-x-23y 3z ),其中x 、y 、z 满足下列方程●●●.圆点部分是被周亮不小心用墨水污染的条件,可是汤灿同学却认为不要那部分条件也能求出正确答案,你同意汤灿同学的说法吗?请你通过计算解释原因.(1)你的判断是(填“同意”或“不同意”). (2)原因:24.(本小题满分11分)若一个三位数的百位数字是a-b+c ,十位数字是b-c+a ,个位数字是c-a+b. (1)列出这个三位数的式子,并简化. (2)当a=2,b=5,c=4时,求出这个三位数. 25.(本小题满分12分)有一列单列式:-x ,2x 2,-3x 3,4x 4,…,-19x 19,20x 20,…. (1)你能说出它们的规律是什么吗? (2)写出第2014个单项式;(3)写出第n 个、第(n+1)个单项式. 26.(本小题满分14分)某农户2012年承包荒山若干亩,投资7800元改造后,种果树2000棵,今年水果总产量为18000kg ,此水果在市场上每千克售a 元,在果园每千克售b 元(b<a ).该农户将水果拉到市场出售,平均每天出售1000kg ,需8位工人,每位工人每天付工资50元.(1)分别用含a ,b 的式子表示两种方式出售水果的纯收入(注:纯收入=收入-支出);(2)若a=1.5,b=1,且两种出售水果方式都在相同时间内售完全部水果,请你通过计算说明,选择哪种出售方式较好.期中复习达标检测 第Ⅰ卷选择题 (共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列说法中错误的是 【 】A.0的相反数是0B.正数和负数统称为有理数C.0既不是正数,也不是负数D.0的绝对值是02.南海资源丰富,其面积约为350万km 2,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为【 】A.0.35×108B.3.5×107C.3.5×106D.35×1053.下列说法:①x 和0都是单项式;②多项式-5a 2b+9a 2b 3c-7ab 2+1的次数是5;③单项式-234m n 的系数是-3;④-3x 3+8xy 2-2y 3可读作-3x 3,8xy 2,-2y 3的和.其中正确的说法有 【 】 A.1个B.2个C.3个D.4个4.下列各组中的两个多项式,不是同类项的是【 】A.3m 2n 与-14nm2 B.-1与20142C.abc 与-9abcD.-25x 3y 2与-25x 2y 35.一运动员某次跳水的最高点离跳台2m ,记作+2m ,则水面离跳台10m 可以记作 【 】 A.-10mB.-12mC.+10mD.+12m 6.下列运算正确的是【 】A.(-2)3=8B.-22=4C.(-12)3=-18D.(-2)3=-6 7.下列去括号正确的是【 】A.12x-(a+b-c )=12x-a+b-c B.13a-(12a-a )=13a-12a+a C.m-(n+3m-13n )=m-n+3m+113nD.-[]x y a -+-()=-x+y+a 8.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c ,其中AB=BC.如果|a|>|c|>|b|,那么该数轴的原点O 的位置应该在【 】A.点A 的左边B.点A 与点B 之间C.点B 与点C 之间D.点C 的右边9.如果单项式-x a+1y 3与12y b x 2是同类项,那么a ,b 的值分别为【 】A.a=2,b=3B.a=1,b=2C.a=1,b=3D.a=2,b=2 10.若m-n=-1,则(m-n )2-2m+2n 的值是【 】 A.3B.2C.1D.-111.已知a 是正数,b 是负数,且|b|>|a|,用数轴上的点来表示a ,b ,则下列正确的是【 】12.规定一种新运算“※”,若a ,b 是有理数,则a ※b=3a-2b ,则2※(-5)= 【 】A.-4B.4C.-16D.1613.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,则m 2-cd+a bm+的值为【 】A.-3B.3C.-5D.3或-514.若|m-3|+(n+2)2=0,则m+2n 的值为【 】A.-4B.-1C.0D.415.若a=-2×32,b=(-2×3)2,c=-(2×3)2,则下列大小关系中正确的是 【 】A.a >b >cB.b >c >aC.b >a >cD.c >a >b 16.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算【 】A .甲B .乙C .丙D .一样第Ⅱ卷非选择题 (共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上)17.比较大小:-(-5) |-5|,|-0.1| |0.01|.18.小亮按图中所示的程序输入一个数x 等于10,最后输出的结果为 .19.一组单项式为:2x,4x 2,8x 3,16x 4,…,观察其规律,推断第n 个单项式应为.20.如图是小明家的楼梯示意图,其水平距离(AB 的长度)为(2a+b )m , 一只蚂蚁从A 点沿着楼梯边缘爬到C 点,共爬了(3a-b )m ,问小明家楼 梯的竖直高度(BC 的长度)为 m.(提示:蚂蚁爬行的总长度为AB 与 BC 的长度和)三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分) 计算: (1)-14-16×223⎡⎤--⎣⎦();(2)24×(16-34-58)+(-13)2÷(-172);(3)-13(9a-3)+2(a+1). 22.(本小题满分10分)若关于x ,y 的整式(ax 2+2xy-3y 3+1)-(4x 2+y 3-bxy -8)的值与x 的取值无关,求整式9(a-b )-[]8ab 3a b --()-4[]a b 5ab --()的值. 23.(本小题满分10分)已知表示数a 的点距离原点3个单位长度,且在原点的左边,表示数b 的点距离原点32个单位长度,且在原点的右边,求2a 2b-[]2ab22a2b 2ab2-+()的值.24.(本小题满分11分)有理数a ,b ,c 在数轴上的对应点分别为A ,B ,C ,其位置如图所示. (1)请结合图,用“<”或“>”填空: c+b 0;a-c 0;b+a 0.(2)试去掉绝对值符号并合并同类项:|c|-|c+b|+|a-c|+|b+a|.25.(本小题满分12分)两摞规格相同的数学课本整齐地叠放在课桌面上,请根据图中所给的数据信息,解答下列问题: (1)若课本数为m (本),请写出整齐叠放在桌面上的数学课本距离地面的高度(用含m 的整式表示); (2)现课桌上有56本与题(1)中规格相同的数学课本,整齐叠放成一摞,若从中取出14本,求余下的数学课本距离地面的高度.26.(本小题满分14分) 阅读下列材料:1×2=13×(1×2×3-0×1×2); 2×3=13×(2×3×4-1×2×3);3×4=13×(3×4×5-2×3×4).由以上三个等式相加,可得1×2+2×3+3×4=13×3×4×5=20. 读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程); (2)1×2+2×3+3×4+…+n ×(n+1)= .第三章《一元二次方程》达标检测第Ⅰ卷选择题 (共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列方程是一元一次方程的是 【 】A.x 2-x-2=0 B.3x+2y+1=0 C.2+3=5D.2x-3=2x 2.下列说法中,错误的是【 】A.若a=b ,则b=aB.若a=b ,则7a=7bC.若a=b ,则a+10=b+10D.若a=b ,则a b m m3.马小虎解的下列四个方程,你认为正确的是【 】A.x-2x=3的解为x=3B.5y-3y=1的解为y=2C.x-12x=1的解为x=2 D.7y-2y=1-6的解为y=1 4.把方程12x=1变形为x=2,其依据是【 】A.等式的性质1B.等式的性质2C.分数的基本性质D.以上均不正确5.已知x=2是方程ax+3bx+6=0的解,则3a+9b-5的值是【】A.15B.12C.-13D.-146.解方程322323x x++-=1时,去分母后,正确的结果是【】A.9x+6-4x+3=1B.9x+6-4x-6=1C.9x+6-4x-6=6D.9x+2-4x+3=67.若代数式5x-7与代数式4x+9的值相等,则x的值等于【】A.2B.16C.29D.1698.已知x=y,则下列各式中:x-3=y-3,3x=3y,-2x=-2y,yx=1,正确的有【】A.1个B.2个C.3个D.4个9.在下列方程中,解是x=-1的是【】A.2x+1=1B.2-2x=2014C.x=1D.13 32x x+--=210.将方程3x-5=2x-4变形,得3x-2x=-4+5,那么变形的依据是【】A.合并同类项法则B.乘法分配律C.等式的性质1D.等式的性质211.当x=2时,整式ax-2x的值为4,当x=-2时,这个整式的值为【】A.-8B.-4C.-2D.812.如图,天平中的物体a,b,c使天平处于平衡状态,则物体a与物体c的重量关系是【】A.2a=3cB.4a=9cC.a=2cD.a=c13.如图是超市中某品牌洗发露的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发露的原价为【】A.22元B.23元C.24元D.26元14.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是【】A.7岁B.8岁C.9岁D.10岁15.已知关于x的方程(k-2)x|k|-1+5=3k是一元一次方程,则k的值是【】A.±2B.2C.-2D.±116.某地水费收费标准如下:用水每月不超过6m3,按0.8元/m3收费;如果超过6m3,超过部分按1.2元/m3收费.已知某用户某月的水费平均为0.88元/m3,那么该用户这个月应交水费为【】A.6.6元 B.6元 C.7.8元 D.7.2元第Ⅱ卷非选择题(共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上)17.如果3x2a-1+5=6是关于x的一元一次方程,那么a= .18.有一个密码系统,其原理如下面的框图所示.当输出的值为10时,则输入的x= .19.在还没有出现字母以前,我们的祖先常用一些符号来表示方程中的未知数.现有一个方程:3× +5×=32,那么的值为 .20.有两桶水,甲桶有水180L,乙桶有水150L,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒 L水.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)解方程:(1)43-8x=3-112x;(2)12313 37x x-+=-(3)设y1=15x+1,y2=214x+,当x为何值时,y1与y2互为相反数呢?22.(本小题满分10分)数学迷小虎在解方程21134y y a-+=-去分母时,方程右边的-1漏乘了分母的最小公倍数12,因而求得方程的解为y=3,请你帮助小虎同学求出a的值,并正确求出原方程的解.23.(本小题满分10分)足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分.在2013年的中国足球超级联赛中,广州恒大战绩出色,在前29场比赛中,只输了一场,积74分排名榜首.请问这支球队胜了多少场?平了多少场?24.(本小题满分11分)七年级(2)班一个综合实践活动组去某停车场调查停车情况,下面是三位同学的谈话.你知道小型车停了几辆吗?中型车呢?25.(本小题满分12分)如图,用一根质地均匀长30cm的直尺和一些相同棋子做实验.已知支点到直尺左右两端的距离分别为a,b,通过实验可得如下结论:若左端棋子数×a=右端棋子数×b,则直尺就能平衡.现在已知a=10cm,并且左端放了4枚棋子,那么右端需放几枚棋子,直尺才能平衡?26.(本小题满分14分)一天,熊妈妈出门办事,临走吩咐小熊替它照看水果店.喜欢贪小便宜的小狐狸来买水果.它挑选了总共8kg 的鸭梨和葡萄,每千克鸭梨卖3元,每千克葡萄卖5元.在算账的时候,粗心的小熊把鸭梨和葡萄的价格搞错了,以鸭梨每千克5元、葡萄每千克3元的价格卖了28元.小狐狸付完钱后乐滋滋的走了.请聪明的你算一算,价格弄错后,小熊损失了多少钱?第四章《几何图形初步》达标检测第Ⅰ卷选择题(共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.右图中的物体的形状类似于【】A.棱柱B.圆柱C.圆锥D.球2.按下列语句画图:点M在直线a上,也在直线b上,但不在直线c上,直线a、b、c两两相交,则下列图中,符合题意的是【】3.55°角的余角的度数是【】A.55°B.45°C.35°D.125°4.若某测绘装置上一枚指针原来指向南偏西50°,把这枚指针按逆时针方向旋转14周角后,此时指针的指向是【】A.东南方向 B.北偏西40°C.南偏东50°D.南偏东40°5.如图,将平面图形绕轴旋转一周,得到的几何体是【】6.下列说法中,错误的是【】A.棱柱侧面的形状不可能是三角形B.夹角就是一条直线C.圆是平面图形D.角的两边不能用刻度尺度量7.下列单位换算中,错误的是【】A.(32)°=90' B.0.025°=90"----------------------------------------------C.125.45°=125°45'D.1000"=(518)°8.若∠A的补角是∠C,∠C又是∠B的余角,则∠A一定是【】A.锐角B.钝角C.直角D.无法确定9.如图,桌上放着一摞书和一个茶杯,则从正面看书和茶杯得到的平面图形是【】10.如图,是一个正方体的展开图,则图中“加”字所在面的对面所标的字是【】A.我B.的C.同D.学11.2012年12月26日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制车票【】A.6种B.12种C.15种D.30种12.如图,C是线段AB上一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是【】A.2cmB.3cmC.4cmD.6cm13.永州境内的潇水河畔有朝阳岩、柳子庙和迥龙塔等三个名胜古迹(如图).其中柳子庙坐落在潇水之西的柳子街上,始建于1056年,是永州人民为纪念唐宋八大家之一的柳宗元而筑建.现有三位游客分别参观这三个景点,为了使这三位游客参观完景点后步行返回旅游车上所走的路程总和最短.那么旅游车等候这三位游客的最佳地点应在【】A.朝阳岩B.柳子庙C.迥龙塔D.朝阳岩和迥龙塔这段路程的中间位置14.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于【】A.35°B.70°C.110°D.145°15.如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件【】A.AB=12B.BC=4C.AM=5=216.如图,直线AB,CD相交于点O,OE平分∠AOD,若∠BOC=80°,则∠AOE的度数是【】A.40°B.50°C.80°D.100°第Ⅱ卷非选择题(共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上)17.已知平面内的四个点A、B、C、D,过其中两点画直线,如果最多可以画m条,最少可以画n条,那么m+n 的值为_____________.18.如图,延长线段AB到点C,使BC=4,若AB=8,则线段AC的长是BC长的________倍.19.把一副三角尺按照如图所示的位置旋转,则图①中∠α与∠β的关系是__________,图②中∠α与∠β的关系是_________.20.将一副直角三角尺的直角顶点重合成如图所示的形状,如果∠AOD=120°,那么∠BOC的度数为___________.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)如图,是由几个相同的小正方体搭成的几何体,请你画出它从正面、左面、上面三个不同方向看到的平面图形.22.(本小题满分10分)计算:(1)48°39´+67°31´;(2)21°17´×4+176°52´÷3.23.(本小题满分10分)(1)一个角的补角加上10°后,等于这个角的余角的3倍,求这个角的度数;(2)把一条长为20cm的线段分成三段,中间的一段长为8cm,问第一段线段的中点到第三段线段的中点的距离等于多少?24.(本小题满分11分)下面是马小虎同学解的一道题.题目:在同一平面内,若∠BOA=70°,∠BOC=15°.求∠AOC的度数.解:根据题意可画出图形如图.因为∠BOA=70°,∠BOC=15°,所以∠AOC=∠BOA-∠BOC=70°-15°=55°.你若是马小虎的数学老师,会给马小虎同学满分吗?若会,请说明理由;若不会,请将马小虎的错误指出,并给出你认为正确的解法.25.(本小题满分12分)读题、画图、计算并作答.画线段AB=3cm,在线段AB上取一点K,使AK=BK,在线段AB的延长线上取一点C,使AC=3BC,在线段BA的延长线上取一点D,使AD=12AB.(1)求线段BC、DC的长;(2)点K是哪些线段的中点?26.(本小题满分14分)如图①,已知点O在直线BF上,∠BOD-∠BOC=90°,∠AOC=∠BOD,射线OM平分∠AOF.(1)∠DOM的度数是多少?(2)将图①中的射线OB沿射线OC折叠得到射线OE,如图②,请你在折叠后的图中找出等于2∠DOM的角.(3)将图①中的射线OF绕点O顺时针旋转得到射线ON,如图③,且∠AON=90°,则在旋转后的图中互补的角共有多少对?期末复习达标检测(一)第Ⅰ卷选择题(共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2的相反数是【】A.12B.-1C.2D.-22.天气预报说:“某地明天的气温是26~34℃”,其具体含义理解错误的是【】A.该地明天最低气温是零上26℃B.该地明天的温差是8℃C.该地明天最高气温是零上34℃D.该地明天的平均气温是零上30℃3.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000kg,这个数据用科学记数法表示为【】A.0.5×1011kgB.50×109kgC.5×109kgD.5×1010kg4.下列运算正确的是【】A.-57+27=-(57+27)=-1B.-7-2×(-5)=-9×(-5)=45C.3÷54×45=3÷1=3D.-5÷12+7=-10+7=-35.下列各对单项式中,是同类项的是【】A.-12x3y2与3x3y2 B.-x与yC.3与3aD.3ab2与a2b6.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是【】A.大B.伟C.国D.的7.小魏同学利用手中一副三角尺想摆放成∠α与∠β互余,下面四种摆放方式中符合要求的是【】8.“天上的星星有几颗,7后跟上22个0”,这是国际天文学联合大会上宣布的消息,用科学记数法表示宇宙空间星星的颗数为【】A.700×1020 B.7×1023 C.0.7×1025 D.7×10229.已知2x6y2和-13x3m y n是同类项,则3m2-2(m2-n)的值是【】A.8B.4C.-8D.-410.下列各题正确的是【】A.由7x=4x-3移项,得7x-4x=3B.由2(2x-1)-3(x+3)=1去括号,得4x-2-3x-9=1C.由2(2x+1)=x+7去括号、移项、合并同类项,得x=5D.由23132x x x--=+去分母,得2(2x-1)=1+3(x-3)11.如图,若∠AOB=90°,∠BOC=40°,OD平分∠AOC,则∠BOD的度数是【】A.40°B.60°C.30°D.25°12.多项式2mx2-x2+3x+1与x2-4y2+3x+5的差不含有x的二次项,则(m-2)2014的值为【】A.0B.1C.2D.201413.如图,数轴上A、B两点分别对应有理数a、b,则下列结论中,正确的是【】A.a+b>0B.ab>0C.a-b>0D.|a|-|b|>014.线段AB被分为2∶3∶4三部分,已知第一部分和第三部分的中间点的距离是5.4cm,则线段AB的长应为【】A.8.1cmB.9.1cmC.10.8cmD.7.4cm15.中央电视台《墙来了》是大众非常喜爱的一个娱乐节目.红队的“终极墙”有一道这样的题:“已知式子x+2y的值是3,则式子2x+4y+1的值是 .”假如你是红队其中的一员,你认为应选择下列哪个答案就不会掉下水里. 【】A.1B.4C.7D.不能确定16.在长方形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若设AE=xc m,依题意可得方程【】A.6+2x=14-3xB.6+2x=x+(14-3x)C.14-3x=6D.6+2x=14-x第Ⅱ卷非选择题(共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上)17.-1.5的倒数是,绝对值是 .18.比较大小:-57-79(填“>”“<”或“=”).19.若关于x的方程13x=5-k的解是x=-3,则k= .20.在有理数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b时,a*b=a2;当a<b时,a*b=a.则当x=-2时,(-12*x)·x2-[]3*x-()=.(“·”和“-”仍为有理数运算中的乘号和减号)三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)计算:(1)(-4)2×(-34)+30÷(-6);(2)(-1)3×(-5)÷2325⎡⎤-+⨯-⎣⎦()().22.(本小题满分10分)解方程:(1)4(x-1)=1-x;(2)1231 23x x+--=23.(本小题满分10分)已知|x+3|+(y-13)2=0,试求式子2(3xy+4x2)-3(xy+4x2)的值.24.(本小题满分11分)一个体服装店老板以每件60元的价格购进50件童装,针对不同的顾客,50件童装的售价不完全相同.若以80元为标准,将超过的钱数记为正,不足的钱数记为负,则记录的结果如下表:请你求出该服装店在售完这50件童装后,赚了多少钱?25.(本小题满分12分)如图,OC、OE分别是∠AOD、∠BOD的平分线,且∠BOD=72°,求∠COD、∠DOE、∠COE的度数并比较大小.26.(本小题满分14分)某公园门票价格规定如下表所示:某中学七(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,那么一共应付1240元,问:(1)如果两班联合起来,作为一个团体购票,那么省多少钱?(2)两班各有多少学生?(3)如果七(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱(只说方案,不必说明理由)?期末复习达标检测(二)第Ⅰ卷选择题(共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.根据搜狐视频官方数据显示,第五集《中国好声音》节目在播出后48h内,在搜狐视频平台创造了2.01亿次播放量记录.2.01亿用科学记数法表示为【】A.2.01×104 B.20.1×107C.2.01×108D.0.201×1092.鲜艳欲滴的水果是人们的最爱,观察图中的三幅图片,则与所示食物相类似的立体图形按从左到右的顺序依次是【】A.球、圆锥、圆柱B.球、棱柱、棱锥C.圆柱、圆锥、球D.球、圆柱、圆锥3.下列说法中,正确的是【】A.8πx4的系数是8B.-ab2的系数是-1,次数是3C.-225x y的系数是-2D.3不是单项式4.如图,下列说法中,错误的是【】A.直线OB与直线AB是同一条直线B.点O在射线BA的延长线上C.射线OB和射线OA是同一条射线D.点O在直线AB上5.某书中有这样一道方程:23x+⊗+1=x,其中⊗处印刷时被墨迹盖住了,查看后面答案,知这道题的解为x=-2.5,那么⊗处的数为【】A.-2.5B.2C.3.5D.56.已知∠A=65°,则∠A的补角等于【】A.125°B.105°C.115°D.95°7.下列说法中,正确的是【】A.x的指数是0B.-2ab的系数是-2C.单项式-235x y的系数是35,次数是2D.-3x2y+4x2y2-y-1是三次四项式8.以下各图均由彼此连接的6个小正方形纸片组成,其中不能折叠成一个正方体的是【】9.如图,将三个相同的正方形的一个顶点重合放置,那么∠1的度数为【】A.30°B.40°C.20°D.45°10.若n-m=-1,则(m-n)3-3n+3m的值是【】A.4B.3C.2D.-411.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同的n个点最多可确定15条直线,则n的值为【】A.4B.5C.6D.712.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有十颗珠子”.小刚却说:“只要把你的13给我,我也有10颗珠子”,那么小刚的弹珠颗数是【】A.3B.4C.6D.813.若|x|=3,|y|=2,且xy<0,则x+y的值是【】A.5或-5B.1或-1C.5或-1D.-5或114.如图,已知∠BOC=55°,∠AOC=∠BOD=90°.则∠AOD的度数为【】A.35°B.45°C.55°D.65°15.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y的值为【】A.2B.3C.6D.x+316.元旦当天,6位朋友均匀地围坐在圆桌旁共度佳节.如图,圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两位客人,每人向后挪动了相同的距离,再左右。

初一数学第一章《有理数》单元测试题

初一数学第一章《有理数》单元测试题

第一章 有理数单元测试题 【1】姓名得分温馨提示:下面的数学问题是为了展示你最近的学习成果而设计的!只要你仔细审题,认真答题,遇到困难不轻易放弃,你就有出色的表现,放松一点,请相信自己的实力!一、精心选一选:(每题2分、计16分)1、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方2、下列交换加数的位置的变形中,正确的是( )A 、14541445-+-=-+-B 、1311131134644436-+--=+-- C.12342143-+-=-+-D 、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+- 3、下列各对数中,互为相反数的是 ( )A .()2.5-+与2.5-; B.()2.5++与2.5-;C.()2.5--与2.5; D.2.5与()2.5++4、a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( ) (A)a+b<0 (B)a+c<0(C)a -b>0 (D)b -c<0 a b 0 c5、若两个有理数的和是正数,那么一定有结论( )(A )两个加数都是正数; (B )两个加数有一个是正数;(C )一个加数正数,另一个加数为零;(D )两个加数不能同为负数6、654321-+-+-+……+2005-2006的结果不可能是:( )A 、奇数B 、偶数C 、负数D 、整数7、、两个非零有理数的和是0,则它们的商为: ( )A 、0B 、-1C 、+1D 、不能确定8、有1000个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则第1000个数的和等于( )(A)1000 (B)1 (C)0 (D)-1二.填空题:(每题3分、计30分)9、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记作;数-2的实际意义为,数+9的实际意义为。

第一章 有理数单元测试(含答案)

第一章 有理数单元测试(含答案)

a 10第一章 有理数单元测试一、选择题(每小题4分,共32分)1.下列说法正确的是( ) A.所有的整数都是正数 B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数 2.12的相反数的绝对值是( ) A.-12 B.2 C.-2 D.12 3.有理数a 、b 在数轴上的位置如图所示,那么下列式子中成立的是( )A.a>bB.a<bC.ab>0D.0a b> 4.在数轴上,原点及原点右边的点表示的数是( )A.正数B.负数C.非正数D.非负数5.下列各组数中,不是互为相反意义的量的是( )A.收入200元与支出20元B.上升10米和下降7米C.超过0.05mm 与不足0.03mD.增大2岁与减少2升6.如果一个数的平方等于它的倒数,那么这个数一定是( )A.0B.1C.-1D.±17.4604608取近似值,保留三个有效数字,结果是( )A.4.60×106B.4600000C.4.61×106D.4.605×1068.下列运算正确的是( ) A.-22÷(-2)2=1 B. 31128327⎛⎫-=- ⎪⎝⎭C.1352535-÷⨯=- D. 133( 3.25)6 3.2532.544⨯--⨯=- 二、填空题(每小题3分,共24分) 9.在数+8.3, 4-,8.0-, 51-, 0, 90, 334-,|24|--中,________________是正数,__________________是负数, 整数.10.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降11℃, 这时气温是__.11.一个数的相反数的倒数是113-,这个数是________.12.数轴上到原点的距离是3个单位长度的点表示的数是______.13.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个.14. 平方等于641 的数是 ,立方等于641 的数是 ,平方等于它本身的数是 .15.绝对值小于5的所有的整数的和_______.16.若│x-1│+(y+2)2=0,则x-y=___________.三、解答题:(共44分)17.计算题(每题5分,共20分)(1)(-12)÷4×(-6)÷2 (2) 235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭(3) 111311123124244⎛⎫⎛⎫⎛⎫⎛⎫--+----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (4) 232121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭18.(8分)若│a │=2,b=-3,c 是最大的负整数,求a+b-c 的值.19.(8分)检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地出发, 到收工时,行走记录为(单位:千米):+8,-9,+4,+7,-2,-10,+18,-3,+7,+5回答下列问题:(每题5分,共10分)(1)收工时在A 地的哪边?距A 地多少千米?(2)若每千米耗油0.3升,问从A 地出发到收工时,共耗油多少升?20.(8分)某工厂向银行申请了甲种贷款5105.1⨯元,乙种贷款5100.2⨯元,甲种贷款每年的年利率为7%,乙种贷款每年的年利率为6%,问该厂每年付出的利息是多少元?(用科学记数法表示)参考答案一、选择题(每小题4分,共32分)CDADD BAD二、填空题(每小题3分,共24分) 9. +8.3 90, -4 -0.8 -15 -343 -24-, -4 0 90 -24-;10. -1℃; 11. 34; 12. ±3; 13. 512(即29 = 512); 14. ±18,14,10; 15. 0;16. 3.三、解答题(每小题10分,共30分)17.(1)(-12)÷4×(-6)÷2=(-12)×14×(-6)×12=9. (2)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭ =25160.25(4)(5)(4)1080908-⨯-⨯-⨯-⨯-=--=-. (3)111311123124244⎛⎫⎛⎫⎛⎫⎛⎫--+----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ =111311123124244---++ =1111331111230434422444⎛⎫⎛⎫-++--+=-+=- ⎪ ⎪⎝⎭⎝⎭. (4)232121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭ =4412744993⎛⎫-⨯⨯+-⨯- ⎪⎝⎭=.1644033-++=.18.∵│a │=2,∴a=±2.c 是最大的负整数,∴c=-1.当a=2时,a+b-c=2-3-(-1)= 0.当a=-2时a+b-c=-2-3-(-1)=-4.19.(1)∵8-9+4+7-2-10+18-3+7+5=8+4+7+18+7+5-9-10-2-3=25,∴在A 处的东边25米处.(2)∵│8│+│-9│+│4│+│7│+│-2│+│-10│+│18│+│-3│+│7│+│5│=73千米,73×0.3=21.9升,∴从出发到收工共耗油21.9升.20. 1.5×510×7%+2.0×510×6%=2.25×410(元).。

人教版七年级数学第一章《有理数》单元测试带答案解析

人教版七年级数学第一章《有理数》单元测试带答案解析

人教版七年级数学第一章《有理数》单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.2021年5月15日,我国“天问一号”探测器在火星成功着陆.火星具有和地球相近的环境,与地球最近时候的距离约55000000km .将数字55000000用科学记数法表示为( )A .80.5510⨯B .75.510⨯C .65.510⨯D .65510⨯2.2021年3月5 日,李克强总理在政府工作报告中指出,我国脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.5575万=55750000,用科学记数法将55750000表示为( )A .4557510⨯B .555.7510⨯C .75.57510⨯D .80.557510⨯3.实数a ,b 在数轴上对应点位置如图所示,则下列不等式正确的是( )A .0a b <B .0a b ->C .0ab >D .0a b +>4.据国家统计局公布,我国第七次全国人口普查结果约为14.12亿人,14.12亿用科学记数法表示为( )A .914.1210⨯B .100.141210⨯C .91.41210⨯D .81.41210⨯ 5.如图,将数轴上6-与6两点间的线段六等分,这五个等分点所对应数依次为12345,,,,a a a a a .则与1a 相等的数是( )A .2aB .3aC .4aD .5a6.2022的相反数的倒数是( )A .2022B .12022-C .12022D .2022- 7.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为5-,b ,4,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻度5.4cm .则数轴上点B 所对应的数b 为( )A .3B .1-C .2-D .3-8.若10x N =,则称x 是以10为底N 的对数.记作:lg x N =.例如:210100=,则2lg100=;0101=,则0lg1=.对数运算满足:当0M >,0N >时,()lg lg lg M N MN +=,例如:lg3lg5lg15+=,则()2lg5lg5lg 2lg 2+⨯+的值为( )A .5B .2C .1D .0 9.数轴上表示数m 和2m +的点到原点的距离相等,则m 为( )A .2-B .2C .1D .1-10.实数a ,b ,c 在数轴上的对应点的位置如图所示,如果0a c +=,那么下列结论正确的是( )A .0b <B .a b <-C .0ab >D .0b c -> 11.如图,在探究“幻方”、“幻圆”的活动课上,学生们感悟到我国传统数学文化的魅力.一个小组尝试将数字5,4,3,2,1,0,1,2,3,4,5,6-----这12 个数填入“六角幻星”图中,使6条边上四个数之和都相等.部分数字已填入圆圈中,则a 的值为( )A .4-B .3-C .3D .412.一电子跳蚤落在数轴上的某点k 0处,第一步从k 0向左跳一个单位到k 1,第二步从k 1向右跳2个单位到k 2,第三步由k 2处向左跳3个单位到k 3,第四步由k 3向右跳4个单位k 4…按以上规律跳了100步后,电子跳蚤落在数轴上的数是0,则k 0表示的数是( )A .0B .100C .50D .﹣50二、填空题13.负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走了5米,记作+5米,那么向西走5米,可记作______米.14.2022年2月4日,第24届冬奥会在北京开幕,据统计中国地区观看开幕式的人数约为316000000人,请将数字316000000用科学记数法表示出来_________.15.目前,我国基本医疗保险覆盖已超过13.5亿人,数据13.5亿用科学记数法表示为____________.16.已知数轴上的点A ,B 表示的数分别为2-,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题17.计算题:(1)()()()915128-+--+-(2)1131323142⎛⎫⎛⎫⎛⎫-⨯-⨯÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)2020311|24|(2)3----⨯+- (4)111136693⎛⎫⎛⎫-⨯-- ⎪ ⎪⎝⎭⎝⎭18.()()113132⎛⎫---+-- ⎪⎝⎭. 19.“十一”黄金周期间,北京故宫游园人数大幅度增加,在7天假期中每天旅游的人数较之前一天的变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):(1)若9月30日故宫的游园人数为2.1万人,请你计算“十一”黄金周期间游客人数最多的是___________(填写日期),最少的是___________(填写日期),它们相差___________万人;(2)故宫门票是60元一张,请计算出“十·一”黄金周期间,北京故宫的门票总收入(万元).20.计算:()44881999⎛⎫-⨯-÷- ⎪.(1)解法1是从第______步开始出现错误的;解法2是从第______步开始出现错误的;(填写序号即可)(2)请给出正确解答.21.阅读下列材料:计算:1111()243412÷-+ 解法一:原式111111111113412243244241224242424=÷-÷+÷=⨯-⨯+⨯= 解法二:原式14311211()6241212122412244=÷-+=÷=⨯= 解法三:原式的倒数 1111111111()()24242424434122434123412=-+÷=-+⨯=⨯-⨯+⨯=, 所以,原式= 14(1)上述得到的结果不同,你认为解法___________是错误的;(2)请你选择合适的解法计算;12112()()3031065-÷-+- 22.(1)()()20171811-+----(2)()()3.75 5.18 2.25 5.18+---+(3)1443512365757⎛⎫⎛⎫⎛⎫⎛⎫----+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(4)()1124 5.2522265⎛⎫⎛⎫---+-+-+ ⎪ ⎪⎝⎭⎝⎭23.计算:(1)20(14)(18)13-+---- (2)()125366312⎛⎫-+⨯- ⎪⎝⎭(3)1599416⎛⎫-⨯ ⎪⎝⎭ (4)()221833235⎡⎤⎛⎫-+-⨯--÷ ⎪⎢⎥⎝⎭⎣⎦24.对于数轴上的A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如数轴上点A ,B ,C 所表示的数分别为1,3,4,此时点B 是点A ,C 的“联盟点”.(1)若点A 表示数4-,点B 表示数5,点M 是点A ,B 的“联盟点”,点M 在A 、B 之间,且表示一个负数,则点M 表示的数为____________;(2)若点A 表示数2-,点B 表示数2,下列各数23-,0,4,6所对应的点分别为1C ,2C ,3C ,4C ,其中是点A ,B 的“联盟点”的是____________;(3)点A 表示数15-,点B 表示数25,P 为数轴上一点:①若点P 在点B 的左侧,且点P 是点A ,B 的“联盟点”,此时点P 表示的数是____________; ②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P 表示的数____________.25.信息1:点A 、B 在数轴上表示有理数a ,b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB =a b -;信息2:数轴是一个非常重要的数学工具,揭示了数与点之间的内在联系,它是“数形结合”的基础.结合上面的信息回答下列问题:已知数轴上点A 、B 两点对应的有理数a ,b ,且a ,b 满足340a b -++=(1)填空:a =, b =,A ,B 之间的距离为;(2)数轴上的动点C 对应的有理数为c .①式子a c b c -+-最小值是,此时c 的取值范围是;②当9a c b c -+-=时,则c =;③式子a c b c d c -+-+-有最小值为9,则有理数d =;④式子12399c c c c 的最小值为.参考答案:1.B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将55000000用科学记数法表示为5.5×107.故选:B.【点睛】此题考查科学记数法的表示方法.熟练掌握科学记数法的表示形式并正确确定a 及n的值是解题的关键.2.C【分析】根据科学记数法的定义“把一个大于10的数表示成10na⨯的形式(其中a是整数位只有一位的数,即a大于或等于1且小于10,n是正整数),这样的记数方法叫做科学记数法”进行解答即可得.【详解】解:755750000 5.57510=⨯,故选C.【点睛】本题考查了科学记数法,解题的关键是熟记科学记数法的定义.3.C【分析】由题意可知a<b<0,故a、b同号,且|a|>|b|.根据有理数加减法乘除法法则可推断出各式的符号.【详解】解:由题意可知a<b<0,故a、b同号,且|a|>|b|.∴ab>0,a-b=a+|b|<0,ab>0,a+b<0;∴选项A、B、D错误,选项C正确,故选:C.【点睛】此题主要考查了不等式的基本性质和实数和数轴的基本知识点,比较简单.4.C【分析】根据把一个大于10的数记成a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:14.12亿91412000000 1.41210==⨯.故选:C.【点睛】本题主要考查了科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,解题的关键是确定a与n的值.5.D【分析】求出数轴上6-与6两点间的线段六等分的每一等分的长度,接着求出1a 的值,再求出1a 的绝对值,得到对应的数是5a .【详解】∵()6662--÷=⎡⎤⎣⎦,∴1624a -+=-=, ∴144a =-=,∵56254a =-+⨯=, ∴15a a =.故选D .【点睛】本题主要考查了数轴和绝对值,熟练掌握数轴的定义和表示数的方法,绝对值的几何意义和计算方法,是解决此类问题的关键.6.B【分析】根据和为零的两个数互为相反数,利用乘积为1的两个数互为倒数计算.【详解】∵2022的相反数是-2022,∴-2022的倒数是12022-, 故选B .【点睛】本题考查了相反数即只有符号不同的两个数,倒数即乘积为1的两个数,熟练掌握定义,灵活计算是解题的关键.7.C【分析】结合图1和图2求出1个单位长度=0.6cm ,再求出求出AB 之间在数轴上的距离,即可求解;【详解】解:由图1可得AC =4-(-5)=9,由图2可得AC =5.4cm ,∴数轴上的一个长度单位对应刻度尺上的长度为=5.4÷9=0.6(cm ),∵AB =1.8cm ,∴AB =1.8÷0.6=3(单位长度),∴在数轴上点B 所对应的数b =-5+3=-2;故选:C【点睛】本题考查了数轴,利用数形结合思想解决问题是本题的关键.8.C【分析】通过阅读自定义运算规则:()lg lg lg M N MN +=,再得到lg101, 再通过提取公因式后逐步进行运算即可得到答案. 【详解】解:()lg lg lg M N MN +=,∴()2lg5lg5lg 2lg 2+⨯+lg5lg5lg2lg2lg5lg10lg 2lg5lg 2=+lg10= 1.=故选C【点睛】本题考查的是自定义运算,理解题意,弄懂自定义的运算法则是解本题的关键.9.D【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>,可得m 和2m +互为相反数,由此即可求得m 的值.【详解】∵数轴上表示数m 和2m +的点到原点的距离相等,2m m +>,∴m 和2m +互为相反数,∴m +2m +=0,解得m =-1.故选D .【点睛】本题考查了数轴上的点到原点的距离,根据题意确定出m 和2m +互为相反数是解决问题的关键.10.B【分析】由图可知,a b c <<,由0a c +=,可得a c =-,0a b c <<<,则0b >,0ab <,0b c -<,进而可判断A ,C ,D 的对错;由0a b a c +<+=,可得a b <-,进而可判断B 的正误.【详解】解:由图可知,a b c <<,∵0a c +=,∴a c =-,∴0a b c <<<,∴0b >,0ab <,0b c -<,∴A ,C ,D 错误;故不符合题意;∵0a b a c +<+=,∴a b <-,∴B 正确,故符合题意;故选:B .【点睛】本题考查了根据点在数轴的位置判断式子的正负.解题的关键在于从数轴上得出0a b c <<<.11.B【分析】共有12个数,每一条边上4个数的和都相等,共有六条边,所以每个数都加了两遍,这12个数共加了两遍后和为12,所以每条边的和为2,然后利用这个原理将剩余的数填入圆圈中,即可得到结果.【详解】解:因为共有12个数,每一条边上4个数的和都相等,共有六条边,所以每个数都加了两遍,这12个数共加了两遍后和为12,所以每条边的和为2,所以5,1,5--这一行最后一个圆圈数字应填3,则a 所在的横着的一行最后一个圈为3,2,1,1--这一行第二个圆圈数字应填4,目前数字就剩下4,3,0,6--,1,5这一行剩下的两个圆圈数字和应为4-,则取4,3,0,6--中的4,0-,2,2-这一行剩下的两个圆圈数字和应为2,则取4,3,0,6--中的4,6-,这两行交汇处是最下面那个圆圈,应填4-,所以1,5这一行第三个圆圈数字应为0,则a 所在的横行,剩余3个圆圈里分别为2,0,3,要使和为2,则a 为3-故选:B【点睛】本题主要考查了幻方的应用,找到每一行的规律并正确进行填数是解题的关键.12.D【分析】根据题意写出数字并总结出变化规律,然后计算即可得到答案.【详解】解:根据题意可知:10210320(1)(2)(1)(2)(3)(1)(2)(3)k k k k k k k k =+-=++=+-++=+-=+-+++-……0(1)(2)(3)...(1)n n k k n =+-+++-++-当n =100时,1000000(1)(2)(3) (100)(12)(34)...(9910015050k k k k k =+-+++-+++=+-++-+++-+=+⨯=+=)∴050k =-故选D .【点睛】本题考查了有理数的加法,掌握相关知识,找到数字的变化规律,同时注意解题中需注意的相关事项是本题的解题关键.13.5-【分析】根据用正负数表示两种具有相反意义的量,如果向东走了5米,记作+5米,那么向西走5米,可记作5-米.【详解】解:∵向东走了5米,记作+5米,∴向西走5米,可记作5-米,故答案为:5-.【点睛】本题考查用正负数表示两种具有相反意义的量,熟练掌握用正负数表示两种具有相反意义的量是解答本题的关键.相反意义的量:按照指定方向的标准来划分,规定指定方向为正方向的数用正数表示,则向指定方向的相反的方向变化用负数表示,正与负是相对的. 14.83.1610⨯【分析】先确定表示数的整数位数,减去1得到n ;将小数点点在左边第一个非零数字后面,确定a 值,写成10n a ⨯的形式即可.【详解】∵316000000=83.1610⨯,故答案为:83.1610⨯.【点睛】本题考查了绝对值大于1的数的科学记数法,确定表示数的整数位数,减去1得到n ;将小数点点在左边第一个非零数字后面,确定a 值,确定这两个关键要素是解题的关键. 15.91.3510⨯【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.【详解】∵13.5亿=91.3510⨯,故答案为:91.3510⨯.【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.16. 2.5-或4.5【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.17.(1)10;(2)12-;(3)11-;(4)5648【分析】有理数的混合运算法则:先算乘方及乘除,再算加减;同级运算,按从左到右的顺序进行计算;如果有括号,先算括号里面的.【详解】解:(1)()()()915128-+--+-(9)1512(8)612(8)18(8)10=-+++-=++-=+-= (2)1131323142⎛⎫⎛⎫⎛⎫-⨯-⨯÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 713()()(2)231412=-⨯-⨯⨯-=-(3)2020311|24|(2)3----⨯+- 1(1)6(8)3(1)2(8)(1)(2)(8)11=--⨯+-=--+-=-+-+-=-(4)111136693⎛⎫⎛⎫-⨯-- ⎪ ⎪⎝⎭⎝⎭ 1326()361818181536185648⎛⎫=-⨯-- ⎪⎝⎭⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭= 【点睛】本题主要考查了有理数的混合运算,熟记运算法则是解题的关键.18.146- 【分析】根据有理数的加减运算法则求解即可. 【详解】解:原式11=3132-+-- 1=46-. 【点睛】本题主要考查了有理数的加减运算,熟知相关计算法则是解题的关键. 19.(1)10月4日,10月7日,3.5(2)2346万元【分析】(1)根据每一天的人数比前一天的变化情况,求出各天的游客人数;(2)求出这7天的总游客人数,即可求出门票总收入.(1)10月1日 2.1 3.2 5.3+=(万人),10月2日 5.30.6 5.9+=(万人),10月3日 5.90.3 6.2+=(万人),10月4日 6.20.7 6.9+=(万人),10月5日 6.9 1.3 5.6-=(万人),10月6日 5.60.2 5.8+=(万人),10月7日 5.82.4 3.4=﹣(万人),游园人数最多的是10月4日,最少的是10月7日;6.9 3.4=3.5-(万人)故答案为:10月4日,10月7日,3.5(2)解:()60 5.3 5.9 6.2 6.9 5.6 5.8 3.4=2346⨯++++++(万元),答:北京故宫的门票总收入2346万元.【点睛】本题考查了正负数的意义,有理数的加减的应用,掌握正负数的意义是解题的关键.20.(1)①;③(2)解答过程见详解【分析】(1)根据有理数运算法则判断即可;(2)按照运算法则,先进行乘除运算,再进行加减运算即可.【详解】(1)解:解法1,步骤①中“先算加减后算乘除”不符合有理数混合运算法则,故步骤①错误;解法2,11363622-+≠-,步骤③不符合有理数加法法则,故步骤③错误. 故答案为:①;③.(2)解:原式()44981998⎛⎫=-⨯-⨯- ⎪⎝⎭ 1236=-+ 1235=- 【点睛】本题主要考查了有理数的混合运算,解题关键在于熟练掌握有理数混合运算的运算法则.21.(1)一和三 (2)110-【分析】(1)观察三种解法解答过程可得答案;(2)先求出倒数,再求原式的值.【详解】(1)解:由已知可得,解法一和三是错误的,故答案为:一和三;(2)原式的倒数为21121()()3106530-+-÷- 2112()(30)31065=-+-⨯- 2112(30)(30)(30)(30)31065=⨯--⨯-+⨯--⨯- 203512=-+-+10=-,∴原式1(10)=÷-110=-. 【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数相关的运算法则和运算律. 22.(1)30-;(2)6;(3)10;(4)5960- 【分析】(1)根据有理数的加减法进行计算即可求解;(2)根据有理数的加减法进行计算即可求解;(3)根据有理数的加减法进行计算即可求解;(4)根据有理数的加减法进行计算即可求解.【详解】解:(1)()()20171811-+----20171811=--+-()20171118=-+++4818=-+30=-:(2)()()3.75 5.18 2.25 5.18+---+3.75 5.18 2.25 5.18=-++3.75 2.25 5.18 5.18=+-+=6;(3)1443512365757⎛⎫⎛⎫⎛⎫⎛⎫----+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1443512365757=-+-+ 1443531265577⎛⎫=--++ ⎪⎝⎭919=-+=10;(4)()1124 5.2522265⎛⎫⎛⎫---+-+-+ ⎪ ⎪⎝⎭⎝⎭ 111245222645=+--+ 111245222645=--+++-- 30101524160+--=-+ 1=160-+ 5960=-. 【点睛】本题考查了有理数的加减混合运算,正确的计算是解题的关键.23.(1)29-(2)3 (3)33994- (4)285-【分析】(1)减法转化为加法,再进一步计算即可;(2)利用乘法分配律展开,再进一步计算即可;(3)原式变形为1(100)416=-⨯,再利用乘法分配律展开,再进一步计算即可; (4)根据有理数的混合运算顺序和运算法则计算即可.【详解】(1)解:原式20141813=--+-29=-;(2)解:原式125(36)36366312=⨯-+⨯-⨯ 62415=-+-3=;(3)解:原式1(100)416=-⨯ 14100416=⨯-⨯ 14004=-33994=-; (4)解:原式819(1)54=-+-⨯ 29(1)5=-+- 395=-+ 285=-. 【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.24.(1)-1;(2)C 1或C 4;(3)①5355533--,,;②65;45;105.【分析】(1)先求出AB =9,再根据联盟点的定义求出M 表示的数是2与 -1,最后根据点M 表示一个负数,即可求解;(2)根据题意求得CA 与BC 的关系,得到答案;(3)①分点P 位于点A 左侧、点P 表示的数位于AB 之间,且靠近点A 、点P 表示的数位于AB 之间,且靠近点B 三种情况讨论,即可求解;②分当P 为A 、B 的联盟点、点B 为AP 联盟点且AB =2BP 、点B 为AP 联盟点且PB =2AB 三种情况讨论,即可求解.(1)解:由题意得()=54=9AB --,因为点M 是点A ,B 的“联盟点”,点M 在A 、B 之间, ∴AM =2BM ,或BM =2AM ,所以AM = 229633AB ⨯=⨯=或AM = 119333AB ⨯=⨯=, 所以点M 表示的数是-4+6=2或-4+3=-1,因为点M 表示一个负数,所以点M 表示的数为-1.故答案为:-1;(2)解:由题意得 C 1A =43,C 1B =83,C 1B =2C 1A ,故C 1符合题意; C 2A =C 2B =2,故C 2不符合题意;C 3A =6,C 3B =2,故C 3不符合题意;C 4A =8,C 4B =4,C 4A =2C 4B ,故C 4符合题意.故答案为:C 1或C 4;(3)解;由题意得AB =40.①当点P 位于点A 左侧时,PB =2P A ,所以P A =AB =40,所以点P 表示的数为-15-40=-55;当点P 表示的数位于AB 之间,且靠近点A 时,PB =2P A ,所以P A =14040=33⨯,所以点P 表示的数为40515=33-+-; 当点P 表示的数位于AB 之间,且靠近点B 时,P A =2PB ,所以P A =28040=33⨯,所以点P 表示的数为803515=33-+; 故答案为:5355533--,,; ②当P 为A 、B 的联盟点时,则P A =2PB ,所以AB =PB =40,所以点P 表示的数为25+40=65;当点B 为AP 联盟点且AB =2BP 时,BP =140=202⨯,所以点P 表示的数为2520=45+; 当点B 为AP 联盟点且PB =2AB 时,BP =240=80⨯,所以点P 表示的数为2580=105+; 故答案为:65;45;105.【点睛】本题为新定义问题,难度较大.考查了在数轴上表示有理数,有理数的加减运算等知识,理解“联盟点”的意义,根据题意结合数轴分类讨论是解题关键.25.(1)3;4-;7(2)①7;43c -≤<;②5-或4;③-6或5;④2450【分析】(1)根据绝对值的非负性,求出a 、b 的值,然后根据数轴上两点之间的距离公式,求出A ,B 之间的距离即可;(2)①根据动点C 在A 、B 之间时AC BC +最小,即可确定c 的取值范围;②分两种情况:当4c -<或3c >,分别求出c 的值即可;③根据43d -≤≤时,a c b c d c -+-+-的最小值为7,得出4d -<或3d >,然后分两种情况求出d 的值即可;④根据c 取中间的数50时,12399c c c c 有最小值,求出最小值即可.(1)解:340a b -++=∵,30a ∴-=,40b +=, 3a ∴=,4b =-, ()347AB =--=.故答案为:3;4-;7.(2) 解:①∵点C 在A 、B 之间时AC BC +最小,即a c b c -+-最小,∴43c -≤<时,a c b c -+-的值最小, ∵3a =,4b =-,∴34c c -+--()34c c =-+---⎡⎤⎣⎦ 34c c =-++7=即a c b c -+-的最小值为7.故答案为:7;43c -≤<.②∵当43c -≤<时,7a c b c -+-=,∴4c -<或3c >, 当4c -<时,34349a c b c c c c c -+-=-+--=---=, 解得:5c =-;当3c >时,34349a c b c c c c c -+-=-+--=-++=,解得:4c =;故答案为:5-或4. ③∵当43d -≤≤时,a c b c d c -+-+-的最小值为7,∴4d -<或3d >,当4d -<,4c =-时,a c b c d c -+-+-的值最小, 此时,()()()344449a c b c d c d -+-+-=--+---+--=,即()749d -+=,解得:6d =-;当3d >,3c =时,a c b c d c -+-+-的值最小, 此时,334339a c b c d c d -+-+-=-+--+-=,即739d +-=,解得:5d =;故答案为:-6或5.④∵c 取中间的数50时,12399c c c c 有最小值, ∴12399c c c c 的最小值为: 5015025035099 49484710123474849=+++⋅⋅⋅+++++⋅⋅⋅+++()212349=+++⋅⋅⋅+()1494922+⨯=⨯ 2450=故答案为:2450.【点睛】本题主要考查了数轴上两点间的距离,绝对值的意义,有理数的混合运算,熟练掌握绝对值的意义,是解题的关键.。

人教版七年级数学第一章 有理数单元测试(含答案 )

人教版七年级数学第一章 有理数单元测试(含答案 )

第一章有理数一、单选题1.在有理数-3,3-,()23-,()33-中,负数有( )A.1个B.2个C.3个D.4个2.某种速冻水饺的储藏温度是-18℃±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是( )A.-17℃B.-22℃C.-18℃D.-19℃3.下列说法正确的是()A.正数和负数统称有理数B.正整数和负整数统称为整数C.小数3.14不是分数D.整数和分数统称为有理数4.下列说法中,①任意有理数a的倒数是1a,②相反数等于自身的数只有一个,③海拔-155米表示海平面下155米,④绝对值大于本身的数一定是负数,⑤零是最小的自然数,⑥有理数包含正有理数和负有理数,⑦任意有理数a的相反数是a-.正确的有( )个A.2B.3C.4D.55.已知15a-=,则a的值为( )A.6B.-4C.6或-4D.-6或46.如果a的相反数是2,那么a等于( )A.-2B.2C.12D.12-7.若a是最小的自然数,b是最小的正整数,c是绝对值最小的有理数,则a bc-的值为( ) .A.-1 B.1 C.0 D.28.把()()()()5315+-+--+-写成省略括号的和的形式是( ) .A .5315--+-B .5315-+-C .5315++-D .5315---9.有理数中,比-3大2的数是( )A.-5B.5C.1D.-1 10.12是-2的( ) . A .相反数B .绝对值C .倒数D .以上都不对 11.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则10098!!的值为( ) A .5049 B .99! C .9900 D .2!12.北京时间2019年4月10日21点整,天文学家召开全球新闻发布会,宣布首次直接拍摄到黑洞的照片,这颗黑洞位于代号为M87的星系当中,距离地球5300万光年之遥,质量相当于60亿颗太阳,其中5300万.这个数据可以用科学记数法表示为( ) A.85.310⨯B.75.310⨯C.35.310⨯D.25310⨯二、填空题13.若a 与b 互为相反数,则代数式335a b +-=______.14.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是1,则3a+3b -mcd=__________. 15.绝对值不大于3的所有整数之和是__;绝对值小于2017的所有整数之积为______. 16.中国首艘航母“辽宁号”满载排水量约达6.8×104吨.则这个近似数它精确到____位.三、解答题17.某检修小组乘一辆汽车在东西走向的公路上检修线路,约定向东走为正,某天从A地出发到收工时的行走记录如下(单位:km):+15,-2,+5,-1,+10,-13,-2,+12,-5,+4,+6,求:(1)问收工时检修小组是否回到A地,如果回到A地,请说明理由;如果没有回到A地,请说明检修小组最后的位置;(2)距离A地最近的是哪一次?距离多远?(3)若汽车每千米耗油3升,开工时储油180升,到收工时,中途是否需要加油,若加油最少加多少升?若不需要加油,到收工时,还剩多少升汽油?(假定汽车可以开到油量为0)18.计算下列各题(1)180 +(-10)(2)(-2.8)-(-1)(3)-20+|-14|-(-6)-13(4)1112 32 2233⎛⎫⎛⎫+---+⎪ ⎪⎝⎭⎝⎭19.计算(1)(4)(13)(5)(9)7 --++---+(2)136 3.3(6)(3)4 3.3 44-----++(3)1481(2)(16)49-÷-⨯÷-(4)31 (24)(120.75)83-⨯+-20.有个填写运算符号的游戏:在“1269”中的每个□内,填入+⨯÷,﹣,,中的某一个(可重复使用),然后计算结果.(1)计算:1269+﹣﹣;(2)若请推算12696÷⨯=﹣,□内的符号;(3)在“1269﹣”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21.已知,A、B在数轴上对应的数分别用a、b表示,且(a-20)2+|b+10|=0,P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离;(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数;(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…….点P能移动到与A或B重合的位置吗?若不能,请直接回答;若能,请直接指出,第几次移动,与哪一点重合.答案1.B2.B3.D4.D5.C6.A7.C8.B9.D10.D11.C12.B13.-514.-1或1.15.0 016.千17.(1)把所有数据相加,根据结果判定方向与距离;(2)根据数据可知,数据和的绝对值最小时距离A 地最近;(3)算出走的总路程,得出耗油量,与180比较得出答案即可. 解:(1)15-2+5-1+10-13-2+12-5+4+6=29,检修小组最后在A 地东面29km 处; (2)15-2+5-1+10-13-2=12km ,第七次最近,距离A 地12km ;(3)由题意可知,|+15|+|-2|+|+5|+|-1|+|10|+|-13|+|-2|+|+12|+|-5|+|4|+|6|=75,汽车最多可以开60km ,汽车还需开15km ,需要中途加油至少45升.18.(1)180 +(-10)=180-10=170;(2)(-2.8)-(-1)=-2.8+1=-1.8;(3)-20+|-14|-(-6)-13 =-20+14+6-13=-13;(4)11121232=3+2=6223333⎛⎫⎛⎫+---++ ⎪ ⎪⎝⎭⎝⎭ 19.解:(1)(4)(13)(5)(9)7--++---+=(4135)+(97)---+=22+16-=6-(2)136 3.3(6)(3)4 3.344-----++ 13=6 3.3+6+34 3.344-++ ()()13=6+3+ 3.3 3.3+6444⎛⎫-++ ⎪⎝⎭=10010++=20(3)1481(2)(16)49-÷-⨯÷- 441=81()()9916-⨯-⨯⨯- 41=36()916⨯⨯- 1=16()16⨯- =1-(4)31(24)(120.75)83-⨯+- 1173=(24)(24)(24)834-⨯+-⨯--⨯ =33(56)(18)-+---=71-故答案为:(1)6-;(2)20;(3)1-;(4)71-.20.(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴112⨯⨯6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.21.(1)∵(a-20)2+|b+10|=0,∴a=20,b=-10,∴AB=20-(-10)=30,数轴上标出A 、B 得:(2)∵|BC|=6且C在线段OB上,∴x C-(-10)=6,∴x C=-4,∵PB=2PC,当P在点B左侧时PB<PC,此种情况不成立,当P在线段BC上时,x P-x B=2(x c-x p),∴x p+10=2(-4-x p),解得:x p=-6;当P在点C右侧时,x p-x B=2(x p-x c),x p+10=2x p+8,x p=2.综上所述P点对应的数为-6或2.(3)第一次点P表示-1,第二次点P表示2,依次-3,4,-5,6…则第n次为(-1)n•n,点A表示20,则第20次P与A重合;点B表示-10,点P与点B不重合。

2022-2023学年人教版七年级数学上册第一章有理数单元测试(一)(含答案)

2022-2023学年人教版七年级数学上册第一章有理数单元测试(一)(含答案)

人教版七年级数学上册第一章有理数 单元测试(一)一、单选题(共10小题,每题3分,共30分)1.−15的相反数是( )A .−15B .15C .−5D .52. 2021年5月国家统计局公布了第七次人口普查结果,我国人口数约为14.12亿,其中14.12亿用科学记数法表示为( ) A .14.12×108 B .0.1412×1010 C .1.412×109D .1.412×1083.在 −(−5) , −|−3| ,4, −4 这4个数中,最小的有理数是( )A .−(−5)B .−|−3|C .4D .−44.如果给出两个说法:①用四舍五入法对3.355取近似值,精确到百分位得3.35;②近似数5.2万精确到千位;那么( ) A .①②都正确 B .①正确,②不正确 C .①不正确,②正确D .①②都不正确5.已知|x |=3,|y |=2,且xy >0,则x ﹣y 的值等于( )A .5或﹣5B .1或﹣1C .5或1D .﹣5或﹣16.数轴上点A 表示的数是-2,那么与点A 相距5个单位长度的点表示的数是 ( )A .-7B .3C .-7或3D .以上都不对7.下列说法中正确的个数是( )①|a| 一定是正数;②−a 一定是负数;③−(−a) 一定是正数;④a3 一定是分数.A .0个B .1个C .2个D .3个8.已知 a,b 表示两个非零的实数,则 |a|a +|b|b的值不可能是( )A .2B .–2C .1D .09.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.小明买了一件商品,比标价少付了40元,那么他购买这件商品花了( ) A .80元B .120元C .160元D .200元10.若a=-2020,则式子 |a 2+2019a +1|+|a 2+2021a −1| 的值是( )A .4036B .4038C .4040D .4042二、填空题(共5小题,每题3分,共15分)11.如图,数轴上点A,B所表示的两个数的和的绝对值是.12.观察图形,并用你发现的规律直接写出图4中的y的值是.13.用计算器计算并填空:112=,1112=,11112,你发现计算结果有什么规律?根据你发现的规律,不用计算器计算:1111112=14.若a,b都是不为零的有理数,那么|a|a+ |b|b的值是.15.若整数a、b、c、d满足abcd=21,且a>b>c>d,则|c﹣a|+|b﹣d|=.三、计算题(24分)16(8分).计算(1)12﹣(﹣18)+(﹣7)﹣15(2)﹣8²+2×(﹣2)³﹣(﹣6)÷(﹣13)²﹣(−1)200817(8分).阅读(1)题的计算方法,再计算(2)题.( 1 )计算:(−556)+(−923)+1734+(−312).解:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)]=0+(−114)=−114.上面这种解题方法叫拆项法.( 2 )计算:(−201856)+(−201723)+403323+(−112)18(8分).化简|x+5|+|2x−3|四、解答题(31分)19(9分).为了迎接全国文明城市创建,市交警队的一辆警车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆警车的司机如何向队长描述他的位置?(2)如果此时距离出发点东侧2千米处出现交通事故,队长命令他马上赶往现场处置,则警车在此次巡逻和处理事故中共耗油多少升?(已知每千米耗油0.2升)20(12分).(1)已知|m|=5,|n|=2,且m<n,求m−n值.(2)已知|x+1|=4,(y+2)2=4,若x+y≥−5,求x−y的值.21(12分).甲、乙两商场上半年经营情况如下(“+”表示盈利,“-”表示亏本,以百万为单位)(1)三月份乙商场比甲商场多亏损多少元;(2)六月份甲商场比乙商场多盈利多少元;(3)甲、乙两商场上半年平均每月分别盈利或亏损多少元.参考答案一、单选题(共10小题,每题3分,共30分)1.【答案】B【解析】解:−15的相反数是15.故答案为:B.【分析】只有符号不同的两个数叫做互为相反数,根据定义即可得出答案。

第一章_有理数单元测试题(含答案)

第一章_有理数单元测试题(含答案)

第⼀章_有理数单元测试题(含答案)第⼀章有理数单元测试题班级姓名学号得分考⽣注意:1、本卷共有29个⼩题,共100分+30分2、考试时间为90分钟⼀、选择题(本题共有10个⼩题,每⼩题都有A、B、C、D四个选项,请您把您认为适当得选项前得代号填⼊题后得括号中,每题2分,共20分)1、下列说法正确得就是( )A、整数就就是正整数与负整数B、负整数得相反数就就是⾮负整数C、有理数中不就是负数就就是正数D、零就是⾃然数,但不就是正整数2、下列各对数中,数值相等得就是( )A、-27与(-2)7B、-32与(-3)2C、-3×23与-32×2D、―(―3)2与―(―2)33、在-5,-,-3、5,-0、01,-2,-212各数中,最⼤得数就是( )A、-12B、- C 、-0、01 D、-54、如果⼀个数得平⽅与这个数得差等于0,那么这个数只能就是( )A、0B、-1 C 、1 D、0或15、绝对值⼤于或等于1,⽽⼩于4得所有得正整数得与就是( )A、 8B、7C、 6D、56、计算:(-2)100+(-2)101得就是( )A、2100B、-1C、-2D、-21007、⽐-7、1⼤,⽽⽐1⼩得整数得个数就是( )A 、6 B、7 C、 8 D、98、2003年5⽉19⽇,国家邮政局特别发⾏万众⼀⼼,抗击“⾮典”邮票,收⼊全部捐赠给卫⽣部门⽤以⽀持抗击“⾮典”⽃争,其邮票发⾏为12050000枚,⽤科学记数法表⽰正确得就是( )A.1、205×107B.1、20×108C.1、21×107D.1、205×1049、下列代数式中,值⼀定就是正数得就是( )A.x2 B、|-x+1| C、(-x)2+2 D、-x2+110、已知8、62=73、96,若x2=0、7396,则x得值等于( )A 86、 2B 862C ±0、862D ±862⼆、填空题(本题共有9个⼩题,每⼩题2分,共18分)11、⼀幢⼤楼地⾯上有12层,还有地下室2层,如果把地⾯上得第⼀层作为基准,记为0,规定向上为正,那么习惯上将2楼记为 ;地下第⼀层记作 ;数-2得实际意义为 ,数+9得实际意义为。

第一章 有理数单元测试题(一)

第一章 有理数单元测试题(一)

第一章有理数单元测试题(一)一、选择题1.飞机上升-30米,实际上就是()A.上升30米B.下降30米C.下降-30米D.先上升30米,再下降30米.2.﹣的相反数是()A.-6B.-C.D.63.如果两个数的和为0,那么这两个数()A.都等于零B.互为相反数C.互为倒数D.一定是一正一负4.在四个数0,-2,-1,2中,最小的数是()A.0B.-2C.-1D.25.-6的绝对值是()A.-6B.6C.D.-6.a=1,|b|=4,且ab<0,则a+b的值为()A.3B.-3C.±3D.±57.下列说法中①-a一定是负数;②|-a|一定是正数;③倒数等它本身的数是±1;④绝对值等于它本身的数是0、1.其中正确的个数是()A.1个B.2个C.3个D.4个8.下列各数中,互为相反数的是( )A.-2.25与B.与-0.33C.-与0.2D.5与-(-5)9.下列计算正确的是()A.﹣2﹣1=﹣1B.﹣(﹣2)3=8C.3÷x3=3D.(﹣2)4=810.数据2、﹣1、0、5、中,比0小的数是()A.2B.-1C.D.511.的相反数是()A. B. C.- D.-12.已知|a|=1﹣b,b的相反数等于1.5,则a的值为()A.2.5B.0.5C.±2.5D.1.513.右图为张小亮的答卷,他的得分应是( )A. 100分B. 80分C. 60分D. 40分14.若|a-2|+(b+3)2=0,则a b等于( )A.-3 B.-9 C.3 D.915.若两个非零的有理数a,b,满足:|a|=a,|b|=-b,a+b<0,则在数轴上表示数a,b的点正确的是( )二、填空题16.计算:|-3|+(-1)2=________.17.在﹣2.1,﹣2,0,1这四个数中,最小的数是________.18.a、b为有理数,在数轴上的对应点位置如图所示,把a、b、-a、-b按从小到大的顺序排列:________<________<________<________19.的倒数是________3的相反数为________;﹣2的绝对值是________20.3﹣2×(﹣5)2=________.21.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是________℃.22.比较大小:________(用“>或=或<”填空).23.如果a=2,则-〔-(-a)〕=________24.已知数轴上两点A,B它们所表示的数分别是+4,﹣6,则线段AB=________.25.数轴上到原点的距离等于4的数是________三、解答题26.将下列各数在数轴上表示出来,并用“<”连接:﹣22,﹣(﹣1),0,|﹣3|,﹣2.5.27.为了鼓励居民节约用水,某自来水公司采取分段计费,每月每户用水不超过10吨,每吨2.2元;超过10吨的部分,每吨加收1.3元.小明家4月份用水15吨,应交水费多少元.28.已知x、y为有理数,现规定一种新运算*,满足x*y=xy+1.(1)求2*4的值;(2)求(1*4)*(﹣2)的值;(3)探索a*(b+c)与a*b+a*c的关系,并用等式把它们表达出来.29.计算:(1)(﹣2)+(﹣3)﹣(+1)﹣(﹣6)(2)2×(﹣3)﹣48÷(﹣6)(3)﹣5﹣(﹣)+7+(﹣2.25) (4)﹣5×(﹣3)2﹣1÷(﹣0.5)(5)﹣14+24×(﹣+) (6)(﹣1)5×[﹣4﹣(﹣2)3]+3÷(﹣)30.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15); (2)999×11845+999×(-15)-999×1835.参考答案一、选择题1-5 B C B B B 6-10 B A A B B 11-15 C C B D B二、填空题16.4 17.﹣2.1 18.a ;-b ;b ;-a 19.;-3;2 20.﹣47 21.4 22.< 23.-2 24.10 25.±4三、解答题26.解:画出数轴并表示出各数如图:从左到右用“<”把各数连接起来为:﹣22<﹣2.5<0<﹣(﹣1)<|﹣3|. 27.()5.2810153.1102.2=-⨯+⨯(元)28.解:(1)2*4=2×4+1=9;(2)(1*4)*(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)a *(b+c )=a (b+c )+1=ab+ac+1,a *b+a *c=ab+1+ac+1=ab+ac+2. a *(b+c )+1=a *b+a *c .29.(1)解:原式=﹣2﹣3﹣1+6=0(2)解:原式=﹣6+8=2(3)解:原式=﹣5++7﹣2.25=﹣8+7=﹣(4)解:原式=﹣5×9﹣1×(﹣2)=﹣45+2=﹣43(5)解:原式=﹣1+(﹣9+20)=﹣1+11=10(6)解:原式=﹣1×[﹣4﹣(﹣8)]+(﹣5)=﹣1×4﹣5=﹣4﹣5=﹣930.解:(1)999×(-15) (2)999×11845+999×(-15)-999×1835=(1000-1)×(-15) =999×[11845+(-15)-1835] =-15000+15 =999×100=-14985. =99900.。

七年级数学上册第一章《有理数》测试题1(含解析)(新版)新人教版

七年级数学上册第一章《有理数》测试题1(含解析)(新版)新人教版

第一章《有理数》单元测试题一、选择题(每小题只有一个正确答案)1.﹣的相反数是()A. 4 B.﹣ C. D.﹣42.如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作()A.﹣500元 B.﹣237元 C. 237元 D. 503.下列说法正确的是()A.正数和负数统称有理数 B.正整数和负整数统称为整数C.小数不是分数 D.整数和分数统称为有理数4.在,+7, 0,,中,负数有()A. 4个 B. 3个 C. 2个 D. 1个5.下列说法中错误的是()A.正分数、负分数统称分数 B.零是整数,但不是分数C.正整数、负整数统称整数 D.零既不是正数,也不是负数6.下列各数:,,,,,,…中,有理数的个数有()A. 4个 B. 5个 C. 6个 D. 0个7.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A.﹣1 B. 0 C. 1 D.不存在8.“厉害了我的国”一档电视节目展示了我国国内生产总值由2006年的3645亿元增长到2017年的82.712万亿元,用科学记数法表示应为()A.0.82712×1014 B.8.2712×1013 C.8.2712×1014 D.8.2712×10129.如果a、b互为相反数,且b≠0,则式子a+b,,|a|﹣|b|的值分别为()A. 0,1,2 B. 1,0,1 C. 1,﹣1,0 D. 0,﹣1,010.数轴上一点表示的有理数为,若将点向右平移个单位长度后,点表示的有理数应为()A. B. C. D.11.京九铁路的全长用四舍五入法得到近似数为,则它精确到( ) A.万位 B.十万位 C.百万位 D.千位12.若,,,的大小关系是()A. B. C. D.二、填空题13.比较大小:________;________;________14.如果定义为与中较大的一个,那么________.15.下列算式中,①,②,③,④,⑤.计算错误的是________.(填序号)16.若m、n互为相反数,x、y互为倒数,则m+n+xy+=__.17.已知|x|=5,|y|=4,且x>y,则2x+y的值为____________.三、解答题18.将下列各数填入相应的集合中:—7 , 0,, —2.55555……, 3.01, +9 , 4.020020002…, +10﹪,有理数集合:{ };无理数集合:{ };整数集合:{ };分数集合:{ }19.计算:(1)|-3|-5×(-)+(-4); (2)(-2)2-4÷(-)+(-1)2017.20.计算:(1)-18×;(2)(-1)3-÷3×[2-(-3)2].21.把下列各数表示的点画在数轴上,并用“”把这些数连接起来,然后指出哪些是负数、哪些是分数、哪些是非负整数.,,,,,22.已知a,b互为相反数,且a≠0,c,d为倒数,m的绝对值为3,求m(2a+2b)2015+(cd)2016+()2017-m2的值.23.蜗牛从某点O开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):,,,,,,.通过计算说明蜗牛是否回到起点O.蜗牛离开出发点O最远时是多少厘米?在爬行过程中,如果每爬厘米奖励粒芝麻,则蜗牛一共得到多少粒芝麻?24.阅读下面的解题过程:计算:(-15)÷×6.解:原式=(-15)÷×6(第一步)=(-15)÷(-1)(第二步)=-15.(第三步)回答:(1)上面解题过程中有两处错误,第一处是第________步,错误的原因是________________;第二处是第________,错误的原因是________________.(2)把正确的解题过程写出来.参考答案1.C【解析】【分析】根据只有符号不同的两个数互为相反数,即可得出答案.【详解】解:的相反数是.故答案为:C.【点睛】此题主要考查相反数的意义,熟记相反数的意义是解题的关键.2.B【解析】【分析】根据条件“收入为正、支出为负”进行解答.【详解】依题意,规定收入为正,支出为负,那么支出237元应记作﹣237元,选项B正确. 【点睛】本题考查用正负数表示两个具有相反意义的量,属基础题.3.D【解析】【分析】根据有理数的分类及整数,分数的概念解答即可.【详解】A中正有理数,负有理数和0统称为有理数,故A错误;B中正整数,负整数和0统称为整数,故B错误;C中小数3.14是分数,故C错误;D中整数和分数统称为有理数,故D正确.故选D.【点睛】本题考查了有理数,整数,分数的含义.掌握有理数,整数,分数的含义是解题的关键.4.C【解析】【分析】根据小于0的数即为负数解答可得.【详解】在,+7, 0,,数中,负数有-1,共2个,故选C.【解答】解:在-4,0,-1.5,3,-2,15数中,负数有-4、-1.5、-2这3个,故选:B.【点评】本题主要考查正数和负数,熟练掌握负数的概念是解题的关键.5.C【解析】【分析】根据有理数、分数、整数的含义和分类,逐项判断即可.【详解】:∵正分数、负分数统称分数,∴选项A正确;∵零是整数,但不是分数,∴选项B正确;∵正整数、负整数、0统称整数,∴选项C不正确;∵零既不是正数,也不是负数,∴选项D正确.故选C.【点睛】此题主要考查了有理数、分数、整数的含义和分类,要熟练掌握,解答此题的关键是要明确:0是自然数.6.C【解析】【分析】根据有理数的定义解答即可.【详解】在﹣6,﹣3.14,﹣π,,0.307,4,0.212121…中,有理数有﹣6,﹣3.14,,0.307,4,0.212121…共6个.故选C.【点睛】本题考查了有理数的定义,掌握有理数是有限小数或无限循环小数是解题的关键.7.A【解析】【分析】先根据自然数,整数,有理数的概念分析出a,b,c的值,再进行计算.【详解】∵最小的自然数是0,最大的负整数是﹣1,绝对值最小的有理数是0,∴a+b+c=0+(﹣1)+0=﹣1,故选A.【点睛】本题考查了有理数的加法运算,解题的关键是知道最小的自然数是0,最大的负整数是-1,绝对值最小的有理数是0.8.B【解析】【分析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| <10 )的记数法.【详解】82.712万亿= 8.2712×1013故选:B【点睛】本题考核知识点:科学记数法. 解题关键点:理解科学记数法意义.9.D【解析】【详解】∵a、b互为相反数,且b≠0,∴a+b=0,=﹣1,|a|﹣|b|=0,则式子a+b,,|a|﹣|b|的值分别为0,﹣1,0.故选D.10.C【解析】【分析】根据平移的性质,进行分析选出正确答案.【详解】﹣2+3=1.故A点表示的有理数应为1.故选C.【点睛】本题考查了数轴,利用点在数轴上左减右加的平移规律是解决问题的关键.11.B【解析】【分析】根据近似数精确到哪一位,应当看末位数字5实际在哪一位,写出原数即可得出答案.【详解】∵2.5×106=2500000,5在十万位,∴2.5×106精确到十万位;故选:B.【点睛】考查近似数的精确度问题,解决问题的关键是正确区分精确度与有效数字的确定方法. 12.A【解析】【分析】根据﹣1<m<0,可得:0<m2<1,<﹣1,据此判断出m,m2,的大小关系即可.【详解】∵﹣1<m<0,∴0<m2<1,<﹣1,∴<m<m2.故选A.【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.13.【解析】【分析】先根据乘方的定义进行计算,再根据有理数大小比较方法比较即可求解.【详解】解:∵43=64,34=81,64<81,∴43<34;∵(-5)2=25,52=25,∴(-5)2=52;∵-|-3|=-3,-(-3)=3,-3<3,∴-|-3|<-(-3).故答案为:<;=;<.【点睛】考查了有理数大小比较,本题的关键是根据乘方的定义进行计算,求出结果.14.【解析】【分析】根据规则计算出与,比较大小即可得到答案.【详解】∵-(﹣3)×2=6,-(﹣3)+2=5,∴(﹣3)*2=6.故答案为:6.【点睛】本题考查了有理数的乘法,根据规律解题是解题的关键.15.①②③④【解析】【分析】根据有理数的乘方,有理数的除法和乘法的法则,计算得到结果,即可作出判断.【详解】① ﹣(﹣2)2=﹣4,故错误;②﹣5÷×5=﹣125,故错误;③=,故错误;④(﹣3)2×(﹣)=﹣3,故错误;⑤﹣33=﹣27.故错误.故答案为:①②③④.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.16.0【解析】【分析】互为相反数的两个数的和为0,商为-1,互为倒数的两个数的积为1.【详解】∵m、n互为相反数,x、y互为倒数,∴m+n=0,,xy=1∴原式=0+1+(-1)=0.【点睛】本题主要考查的是相反数和倒数的性质,属于中等难度题型.明确互为相反数的两个数的和为零,互为倒数的两个数的积为1是解决这个问题的基础.17.6或14【解析】【分析】根据绝对值的性质可得x=±5,y=±4,再根据x>y,可得①x=5,y=4,②x=5,y=﹣4,然后可得2x+y的值.【详解】∵|x|=5,|y|=4,∴x=±5,y=±4.∵x>y,∴①x=5,y=4,2x+y=14;②x=5,y=﹣4,2x+y=6.故答案为:6或14.【点睛】本题主要考查了有理数的加法和绝对值,关键是掌握绝对值等于一个正数的数有两个.18.—7 , 0,, —2.55555……, 3.01, +9,+10﹪;4.020020002…,;—7 ,0, +9 ;, —2.55555……, 3.01, +10﹪.【解析】【分析】根据有理数,无理数,整数,分数的概念进行分类即可.【详解】有理数集合:{ —7 , 0,, —2.55555……, 3.01, +9,+10﹪ };无理数集合:{ 4.020020002…, };整数集合:{ —7 , 0, +9 };分数集合:{ , —2.55555……, 3.01, +10﹪ }【点睛】考查有理数,无理数,整数,分数的概念,整数和分数统称为有理数;无理数指的是无限不循环小数;整数包含正整数,0和负整数.19.(1)2;(2)9.【解析】【分析】(1)先化简绝对值、进行乘法运算,然后再进行加减法运算即可;(2)先进行乘方运算、再进行乘除运算、最后进行加减运算即可得.【详解】(1) )|-3|-5×(-)+(-4)=3-(-3)-4=3+3-4=2;(2) (-2)2-4÷(-)+(-1)2017=4-(-6)-1=4+6-1=9.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序与运算法则是解题的关键.20.(1)-6;(2) .【解析】分析:(1)运用乘法分配律计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.详解:(1)原式=-9-12+15=-6.(2)原式=-1-××(-7)=-1+=.点睛:本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.21.见解析.【解析】【分析】首先在数轴上表示各数,再根据在数轴上表示的两个有理数,右边的数总比左边的数大比较大小;再根据负数小于0和有理数的分类找出负数、分数、非负整数.【详解】,负数:,;分数:,,;非负数:,,,.【点睛】考查了有理数的大小比较以及有理数的分类,掌握在数轴上表示的两个有理数,右边的数总比左边的数大是解题的关键.22.-9.【解析】【分析】根据相反数、互为倒数、正整数的性质,推出a+b=0,cd=1,m=1,整体代入即可解决问题. 【详解】由题意得a+b=0,cd=1,=-1,|m|=3,∴m=±3,∴m2=(±3)2=9,∴原式=m[2(a+b)]2015+12016+(-1)2017-9=m(2×0)2015+1+(-1)-9=-9.【点睛】本题考查有理数的混合运算、相反数、互为倒数、正整数的性质等知识,属于中考常考题型. 23.(1)是回到起点O;(2)8厘米;(3)108.【解析】【分析】(1)分别相加,看是否为0,为0则回到了起点O;(2)分别计算绝对值,再比较大小即可;(3)计算绝对值的和,就是总路程,列式可得结论.【详解】(1)﹣6+12﹣10+5﹣3+10﹣8=0.所以蜗牛可以回到起点O.(2)|﹣6|=6,|﹣6+12|=6,|﹣6+12﹣10|=4,|﹣6+12﹣10+5|=1,|﹣6+12﹣10+5﹣3|=2,|﹣6+12﹣10+5﹣3+10|=8,所以蜗牛离开出发点O最远时是8厘米;(3)(6+12+10+5+3+10+8)×2=54×2=108答:蜗牛一共得到108粒芝麻.【点睛】本题考查了正数和负数的意义和有理数的加减法,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量;相加减时要注意同号相加比较简便.24.第二运算顺序错误第三步符号错误【解析】分析:(1)从第一步到第二步,先计算除法,再计算乘法,所以第1处是第二步,错误原因是运算顺序错误;然后根据有理数除法的运算方法,可得第2处是第三步,错误原因是符号错误.(2)根据有理数除法、乘法的运算方法,从左向右,求出算式的值是多少即可.详解:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是运算顺序错误,第二处是第三步,错误的原因是符号错误.(2)(﹣15)÷()×6=(﹣15)×6=(﹣15)×(﹣6)×6=90×6=540.故答案为:二、运算顺序错误;三、符号错误.点睛:(1)此题主要考查了有理数除法的运算方法,要熟练掌握,解答此题的关键是要明确:除以一个不等于0的数,等于乘这个数的倒数.(2)此题还考查了有理数乘法的运算方法,要熟练掌握,解答此题的关键是要明确:两数相乘,同号得正,异号得负,并把绝对值相乘.。

七年级上册数学人教版 第1章有理数 单元测试01 试卷含答案

七年级上册数学人教版 第1章有理数 单元测试01 试卷含答案

第一章有理数-单元测试一、选择题(每小题3分,共30分)1.-9的相反数是()A.9B.-9 C.19D.-192.在有理数1,12,-1,0中,最小的数是()A.1 B.12C.-1D.03.厦门地铁1号线全长30300米,30300用科学记数法表示为() A.0.303×105B.3.03×104C.30.3×103D.303×1024.在有理数|-1|,0,-122,(-1)2023中,负数的个数为()A.1B.2C.3D.45.下列计算错误的是()A.(-2)×(-3)=2×3=6B.-3-5=-3+(+5)=2C.4×(-2)=-8D.-(-32)=-(-9)=96.下列每对数中,不相等的一对是()A.(-1)2023和-12023B.(-1)2024和12024C.(-1)2024和-12024D.|-1|2023和|1|20237.下列说法正确的是()A.近似数0.21与0.210的精确度相同B.近似数1.3×104精确到十分位C.数2.9951精确到百分位是3.00D.“小明的身高约为161cm”中的数是精确到千位8.a,b两数在数轴上的位置如图所示,将a,b,-a,-b用“<”连接,其中正确的是()A.a<-a<b<-b B.-b<a<-a<bC.-a<b<-b<a D.a<-b<b<-a9.已知|m|=4,|n|=6,且|m+n|=m+n,则m-n的值等于()A.-10B.-2C.-2或-10D.2或1010.一根100m长的小棒,第一次截去一半,第二次截去剩下的13,第三次截去剩下的14……如此下去,直到截去剩下的1100,则剩下的小棒长为()A.12m B.1m C.2m D.4m二、填空题(每小题3分,共18分)11.如果全班某次数学测试的平均成绩为90分,某位同学考了93分,记作+3分,那么得分86分应记作__________.12.比较大小:-(-0.3)________|-13|(填“>”“<”或“=”).13.如图,点A表示的数是-2,以点A为圆心、1个单位长度为半径的圆交数轴于B,C两点,那么B,C两点表示的数分别是____________.(第13题)(第14题)14.如图是一个简单的数值运算程序图,当输入x的值为-1时,输出的数值为________.15.小明的爸爸买了一种股票,每股8元,已知股票交易时间是周一至周五,下表记录了在一周内该股票的涨跌情况:星期一二三四五股票涨跌/元0.20.35-0.45-0.40.5 (注:用正数记股票价格比前一日上升数,用负数记股票价格比前一日下降数)该股票这星期中最高价格是________元.16.已知|a|=5,|b|=2,且ab<0,则a+b=________.三、解答题(第17~20题每题8分,第21、22题每题10分,共52分) 17.(1)将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12.整数:{…};分数:{…};正有理数:{…};负有理数:{…}.(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”把这些数连接起来.18.计算:(1)-6+10-3+|-9|;+79-.19.现规定一种新运算“*”:a *b =a b -2,例如:2*3=23-2=6.*2*2的值.20.已知a,b 互为相反数,c,d 互为倒数,x 的绝对值是3.(1)求a+bc+d的值;(2)求(a+b)(a-b)-(1+cd)的值;(3)求x2-(a+b+cd)x-cd的值.21.某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)-6-20134袋数143453(1)若标准质量为450g,则抽样检测的20袋食品的总质量为多少克?(2)若该种食品的合格标准为(450±5)g,求该食品的抽样检测的合格率.22.福建某景区驾驶员接送游客,驾驶电瓶车从景区大门出发,向东走2km到达A景区,继续向东走2.5km到达B景区,然后又回头向西走8.5km到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1km,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置;(2)若电瓶车充足一次电能行走15km,则该驾驶员能否在电瓶车一开始充好电而途中不充电的情况下完成此次任务?请计算说明.答案一、1.A2.C3.B4.B5.B6.C7.C8.B 9.C10.B二、11.-4分12.<13.-3,-114.-215.8.5516.3或-3三、17.解:(1)整数:{(-1)2,-|-2|,-22,0,…};分数:{-(-2.5),-12…};正有理数:{-(-2.5),(-1)2,…};负有理数:{-|-2|,-22,-12,…}.(2)如图.-22<-|-2|<-12<0<(-1)2<-(-2.5).18.解:(1)原式=-6+10-3+9=(-6-3+9)+10=10.(2)原式=(6+28-33)÷49=1÷49=94.19.*2*2-2*2=14*2-2=-3116.20.解:根据题意,得a +b =0,cd =1,x =3或-3.(1)原式=0.(2)原式=-2.(3)当x =3时,原式=32-(0+1)×3-1=9-3-1=5.当x =-3时,原式=(-3)2-(0+1)×(-3)-1=9+3-1=11.21.解:(1)450×20+(-6)×1+(-2)×4+0×3+1×4+3×5+4×3=9000-6-8+0+4+15+12=9017(g).答:抽样检测的20袋食品的总质量为9017g.(2)19×100%=95%.20答:该食品的抽样检测的合格率为95%.22.解:(1)如图所示.(2)电瓶车一共走的路程为|+2|+|+2.5|+|-8.5|+|+4|=17(km).因为17>15,所以该驾驶员不能在电瓶车一开始充好电而途中不充电的情况下完成此次任务.。

人教版七年级数学上册 第一章 有理数 单元测试题 (有答案)

人教版七年级数学上册 第一章 有理数 单元测试题 (有答案)

人教版七年级数学上册第一章有理数单元测试题一.选择题(共10小题)1.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等2.如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为()A.﹣1 B.0 C.1 D.33.点A在数轴上,点A所对应的数用2a+1表示,且点A到原点的距离等于3,则a的值为()A.﹣2或1 B.﹣2或2 C.﹣2 D.14.<()<,符合条件的分数有()个.A.无数B.1 C.2 D.35.在,,1.62,0四个数中,有理数的个数为()A.4 B.3 C.2 D.16.在算式3﹣|﹣1□2|中的“□”里,选择一个运算符号,使得算式的值最大()A.+ B.﹣C.×D.÷7.有理数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.<08.312是96的()A.1倍B.C.D.36倍9.2019年“十一”黄金周期间(7天),北京市接待旅游总人数为920.7万人次,旅游总收入111.7亿元.其中111.7亿用科学记数法表示为()A.111.7×106B.11.17×109C.1.117×1010D.1.117×108 10.如果收入10元记作+10元,那么支出10元记作()A.+20 元B.+10元C.﹣10元D.﹣20元二.填空题(共8小题)11.2020年我国将完成脱贫攻坚目标任务.从2012年底到2019年底,我国贫困人口减少了93480000人,用科学记数法把93480000表示为.12.绝对值不大于11.1的整数有个.13.今年,秦州市市区道路的改造面积约达到231500平方米,使市民行车舒适度大大提升.231500(精确到1000)≈.14.计算:﹣ +|3|﹣+(﹣6)=.15.一只蜗牛在数轴上爬行,从原点出发爬行2个单位长度到达终点,那么这个终点表示的数值是.16.对于任意有理数a、b,规定a⊕b=2a2+ab﹣1,则(﹣3)⊕5=.17.﹣2020的相反数是,﹣2020的绝对值是,﹣2020的倒数是.18.若a+3=0,则a=.三.解答题(共8小题)19.计算(1)×()×÷;(2)()×12;(3)(﹣125)÷(﹣5);(4)(﹣10)3+[(﹣4)2﹣(1﹣32)×2].20.求|x+3|+|x﹣5|的最小值.21.如图,点A,B在数轴上,它们对应的数分别是﹣2,3x﹣4,且点A,B到原点的距离相等,求x的值.22.已知A地海拔高度为﹣30m,B地海拔高度为50m,C地海拔高度为﹣10m,哪个地方地势最高?哪个地方地势最低?地势最低的地方与地势最高的地方相差多少米?23.先计算,再阅读材料,解决问题:(1)计算:.(2)认真阅读材料,解决问题:计算:÷().分析:利用通分计算的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:()÷=()×30=×30﹣×30+×30﹣×30=20﹣3+5﹣12=10.故原式=.请你根据对所提供材料的理解,选择合适的方法计算:(﹣)÷.24.超市购进8筐白菜,以每筐25kg为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?25.阅读理解:李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是:“头尾一拉,中间相加,满十进一”例如:①24×11=264.计算过程:24两数拉开,中间相加,即2+4=6,最后结果264;②68×11=748.计算过程:68两数分开,中间相加,即6+8=14,满十进一,最后结果748.(1)计算:①32×11=,②78×11=;(2)若某个两位数十位数字是a,个位数字是b(a+b<10),将这个两位数乘11,得到一个三位数,则根据上述的方法可得,该三位数百位数字是,十位数字是,个位数字是;(用含a、b的代数式表示)(3)请你结合(2)利用所学的知识解释其中原理.26.定义新运算@”与“⊕”:a@b=,a⊕b=.(1)计算3@(﹣2)﹣(﹣2)⊕(﹣1)的值;(2)若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A 和B的大小.参考答案与试题解析一.选择题(共10小题)1.解:A、+a和﹣(﹣a)互为相反数;错误,二者相等;B、+a和﹣a一定不相等;错误,当a=0时二者相等;C、﹣a一定是负数;错误,当a=0时不符合;D、﹣(+a)和+(﹣a)一定相等;正确.故选:D.2.解:∵5+1﹣3=3,每行、每列、每条对角线上的三个数之和相等,∴a+5+0=33+1+b=3c﹣3+4=3,∴a=﹣2,b=﹣1,c=2,∴a﹣b+c=﹣2+1+2=1,故选:C.3.解:由题意得,|2a+1|=3,解得,a=1或a=﹣2,故选:A.4.解:设符合条件的数为x,根据分数的基本性质,把分子分母扩大2倍,则,符合条件的分数有:,,;把分子分母扩大3倍,则,符合条件的分数有:,,,,;…,所以符合条件的分数有无数个,故选:A.5.解:在,,1.62,0四个数中,有理数为,1.62,0,共3个,故选:B.6.解:在算式3﹣|﹣1□2|中的“□”里,要使得算式的值最大,就要使﹣1□2的绝对值最小,∴选择的运算符号是÷.故选:D.7.解:由数轴可知:b<﹣1,0<a<1,∴a+b<0,a﹣b>0,ab<0,<0.故选:D.8.解:∵312=(32)6=96,∴312是96的1倍.故选:A.9.解:111.7亿=11170000000=1.117×1010故选:C.10.解:如果收入10元记作+10元,那么支出10元记作﹣10元.故选:C.二.填空题(共8小题)11.解:93480000=9.348×107.故答案为:9.348×107.12.解:原点(0点)左边绝对值不大于11.1的整数有:﹣1、﹣2、﹣3、﹣4、﹣5、﹣6、﹣7、﹣8、﹣9、﹣10、﹣11,原点(0点)右边绝对值不大于11.1的整数有:1、2、3、4、5、6、7、8、9、10、11,还有0,因此,绝对值不大于11.1的整数有:11+1+11=23(个).故答案为:23.13.解:231500≈2.32×105,故答案为2.32×105.14.解:原式=﹣﹣+﹣=﹣1﹣3=﹣4,故答案为:﹣4.15.解:从原点出发,向右爬行2个单位长度,得+2,从原点出发,向左爬行2个单位长度,得﹣2,故答案为:2或﹣2.16.解:∵a⊕b=2a2+ab﹣1,∴(﹣3)⊕5=2×(﹣3)2+(﹣3)×5﹣1 =18﹣15﹣1=2.故答案为:2.17.解:﹣2020的相反数是2020,﹣2020的绝对值为2020,﹣2020的倒数是:﹣.故答案为:2020,2020,﹣.18.解:∵a+3=0,∴a=﹣3.故答案为:﹣3.三.解答题(共8小题)19.解:(1)×()×÷=×(﹣)×=﹣;(2)()×12=3+2﹣6=﹣1;(3)(﹣125)÷(﹣5)=[(﹣125)+(﹣)]×(﹣)=25+=25;(4)(﹣10)3+[(﹣4)2﹣(1﹣32)×2]=(﹣1000)+[16﹣(1﹣9)×2]=(﹣1000)+[16﹣(﹣8)×2]=(﹣1000)+(16+16)=(﹣1000)+32=﹣968.20.解:∵|x+3|+|x﹣5|表示点x到点﹣3和点5之间的距离之和,∴当点x在点﹣3和5之间时,距离之和最小,即﹣3≤x≤5故最小值为5﹣(﹣3)=8.21.解:∵点A,B到原点的距离相等,点A表示的数是﹣2,点B在原点的右侧,∴点B表示的数为2,即:3x﹣4=2,解得,x=2,答:x的值为2.22.解:因为50>﹣10>﹣30,所以B地地势最高,A地地势最低,地势最低的地方与地势最高的地方相差:50﹣(﹣30)=50+30=80(m).答:B地地势最高,A地地势最低,地势最低的地方与地势最高的地方相差80m.23.解:(1)原式=×12﹣×12+×12=4﹣2+6=8;(2)原式的倒数是:(﹣+﹣)×(﹣52)=×(﹣52)﹣×(﹣52)+×(﹣52)﹣×(﹣52)=﹣39+10﹣26+8=﹣47,故原式=﹣.24.解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),答:以每筐25千克为标准,这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),25×8﹣5.5=194.5(千克),答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元),583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.25.解:(1)①∵3+2=5∴32×11=352②∵7+8=15∴78×11=858故答案为352,858.(2)两位数十位数字是a,个位数字是b,这个两位数乘11,∴三位数百位数字是a,十位数字是a+b,个位数字是b.故答案为:a,a+b,b.(3)两位数乘以11可以看成这个两位数乘以10再加上这个两位数,若两位数十位数为a,个位数为b,则11(10a+b)=10(10a+b)+(10a+b)=100a+10b+10a+b=100a+10(a+b)+b根据上述代数式,可以总结出规律口诀为:“头尾一拉,中间相加,满十进一”.26.解:(1)3@(﹣2)﹣(﹣2)⊕(﹣1)=﹣=+=1;(2)A=3b@(﹣a)+a⊕(2﹣3b)=+=3b﹣1,B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b)=+=3b+1,则A<B.。

第1章 有理数 单元测试卷 2022-2023学年湘教版七年级数学上册

第1章 有理数  单元测试卷   2022-2023学年湘教版七年级数学上册

湘教版初中数学七年级上册第一章《有理数》单元测试卷考试范围:第一章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.在−(−5),−(−5)2,−|−5|,(−5)3中正数有 ( )A. 1个B. 2个C. 3个D. 4个2.在−13,227,0,−1,0.4,π,2,−3,−6这些数中,有理数有m个,自然数有n个,分数有k个,则m−n−k的值为( )A. 3B. 2C. 1D. 43.如图,数轴上点A,B,C分别表示−3x+5,−1,0,则数轴上表示−2x+3的点D应落在( )A. 点A的左边B. 线段AB上C. 线段BC上D. 点C的右边4.正六边形ABCDEF在数轴上的位置如图,点A、F对应的数分别为0和1,若正六边形ABCDEF绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点E所对应的数为2,则连续翻转2021次后,数轴上2021这个数所对应的点是()A. A点B. B点C. C点D. D点5.下列不等式中,正确的个数是( )−423>−4.7,−1223<−611,−0.2⋅>−0.22,−0.01<−1100.A. 1个B. 2个C. 3个D. 4个6.从−1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i={a i,b i}和M j={a j,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S的最大值( )A. 10B. 6C. 5D. 47.如图,数轴上A,B,C,D,E五个点分别表示连续的五个整数a,b,c,d,e,且a+e=0,则下列说法:①点C表示的数字是0;②b+d=0;③e=−2;④a+b+c+d+e=0。

2024新人教版七年级上册数学第一章《有理数》单元测试卷(含答案)

2024新人教版七年级上册数学第一章《有理数》单元测试卷(含答案)

8.如图,点4在数轴上表示的数为1,将点A向左移动4个单位长度得到点6,则点3表示的数为
()
A ------------------------- --------------- A
01
A. -2
B. -3
C. -5
D. 5
9.在数轴上,到表示-1的点的距离等于6的点表示的数是( )
A. 5
B. -7
(2)负分数集合:{-5.15, _0 -5%,……}.
17. 0, 2.
18. 120.
故答案为:-5.15, -0. 4,- 5%; (3)非负数集合:{+5, ().06, O, π, 1.5, ........}. 故答案为:+5, 0.06, 0, m 1.5; (4)有理数集合:{-8, +5, 0.06, ∙5.15, 0, _0.
23. (8分)(1)如果同=5,以=2,且小6异号,求a、b的值. (2)若Ial=5, |" = 1,且求内力的值.
第3页共6页
24. (8分)如图,灰太狼和喜羊羊、美羊羊、沸羊羊、懒羊羊在5X5的方格(每个小方格的边长 表示10米距离)图上沿着网格线运动.灰太狼从点A处出发去寻找点& G O, E处的某只羊, 规定:向上、向右走为正,向下、向左走为负.例如从点A到点B记为Af3( + 1, +3),从点3 到点A记为B-A (-1, -3),其中第一个数表示左右方向的移动情况,第二个数表示上下方向
发,到收工时所走路程(单位:千米)分别为:+10, -3, +4, +2, -8, +13, -2, +12, +8,
+5.
(1)收工时在A地的

第一章 有理数单元综合检测(解析版)

第一章 有理数单元综合检测(解析版)

第一章有理数单元综合检测满分:100分时间:60分钟一、选择题(共10小题,满分30分)1.2023的相反数是( )A.2023B.2023-C.12023D.2023±【分析】根据互为相反数的两数之和为0和只有符号不同的两个数是相反数进行判断即可.【解析】2023的相反数是2023-;故选:B.2.下列说法正确的是( )A.有理数分为正数、负数和零B.分数包括正分数、负分数和零C.一个有理数不是整数就是分数D.整数包括正整数和负整数【分析】直接利用有理数的有关定义分析判断即可.【解析】A、有理数包括正有理数、负有理数和零,故此选项错误;B、分数包括正分数、负分数,故此选项错误;C、一个有理数不是整数就是分数,故此选项正确;D、整数包括正整数、负整数0和零,故此选项错误.故选:C.3.下列各组数中互为相反数的是( )A.12-与2-B.1-与(1)-+C.(3)--与3-D.2与|2|-【分析】符号不同,绝对值相等的两个数互为相反数,据此即可得出答案.【解析】12-与2-不是相反数,则A不符合题意;(1)1-+=-,则B不符合题意;(3)3--=,它与3-互为相反数,则C符合题意;|2|2-=,则D不符合题意;故选:C.4.北京与巴黎的时差为7小时,例如:北京时间13:00,同一时刻的巴黎时间是早上6:00.笑笑和霏霏分别在北京和巴黎,她们相约在各自当地时间13:00~22:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A.14:00B.16:00C.21:00D.23:00【分析】根据巴黎时间比北京时间早7小时解答即可.【解析】由题意得,巴黎时间比北京时间早7小时,当巴黎时间为13:00,则北京时间为20:00;当北京时间为22:00,则巴黎时间为15:00;所以这个时间可以是北京时间的20:00到22:00之间,故选:C.5.下列各组数中,互为倒数的有( )①12和(2)-;②115-和56-;③|4|--和14-;④0和0;⑤1和1-;⑥3.2和516.A.1组B.2组C.3组D.4组【分析】对于①,11(2)(2)1122´-=-´=-¹,据此即可作出判断;接下来利用同样的方法,判断其它几个.注意:0没有倒数.【解析】对于①,11(2)(2)1122´-=-´=-¹,故①不互为倒数,对于②,1565(1)(15656-´-=´=,故②互为倒数,对于③,111(|4|)()(4)()41444--´-=-´-=´=,故③互为倒数,对于④,0没有倒数,故④不互为倒数,对于⑤1,1(1)11´-=-¹,故⑤不互为倒数,对于⑥,51653.2116516´=´=,故⑥互为倒数,故互为倒数的两个数有3组.故选:C.6.下列等式成立的是( )A .235222´=B .236222´=C .238222´=D .239222´=【分析】将2322´进行运算后判断即可.【解析】232352222+´==,故选:A .6. 计算20212022(2)(2)-+-的结果是( )A .2-B .2C .20212D .20212-【分析】根据乘法分配律计算即可求解.【解析】20212022(2)(2)-+-20212021(2)(2)(2)=-+-´-2021(12)(2)=-´-20211(2)=-´-20212=.故选:C .7. 下列说法不正确的是( )A .0.5-不是分数B .0是整数C .12不是整数D .2-是既是负数又是整数【分析】利用有理数的分类对各选项进行分析,即可得出结果.【解析】A 、0.5-是负分数,也是分数,故A 说法错误,符合题意;B 、0是整数,正确,故B 说法正确,不符合题意;C 、12是分数,不是整数,故C 说法正确,不符合题意;D 、2-是负数,也是负整数,故D 说法正确,不符合题意.故选:A .8. 袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年艰苦努力,目前我国杂交水稻种植面积达2.4亿亩,每年增产的粮食可以养活8000万人,将数据8000万用科学记数法表示为810n ´,则n 的值为( )A .7B .8C .9D .10【分析】科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10…时,n 是正数;当原数的绝对值1<时,n 是负数.【解析】8000Q 万780000000810==´,7n \=,故选:A .9. 定义一种正整数n 的“T ”运算:①当n 为奇数时,结果为31n +;②当n 为偶数时,用n 连续除以2,直到结果为奇数停止,并且运算重复进行.例如,当18n =时,运算过程如下:若21n =,则第2021次“T ”运算的结果是( )A .1B .2C .3D .4【分析】根据题意,可以写出前几次输出的结果,然后即可发现数字的变化规律,从而可以得到2021次“T ”运算的结果.【解析】由题意可得,当21n =时,第1次输出的结果为64,第2次输出的结果为1,第3次输出的结果为4,第4次输出的结果为1,第5次输出的结果为4,¼,\从第2次开始,这列数以1,4不断循环出现,(20211)2202021010-¸=¸=Q ,2021\次“T ”运算的结果4,故选:D .二.填空题(共6小题,满分16分)11.(3分) 一次数学测试,如果96分为优秀,以96分为基准简记,例如106分记为10+分,那么85分应记为 11- 分.【分析】高于96分记作正数,那么低于96分记作负数,85比96低11分,故记作11-.【解析】859611-=-,故答案为:11-.10. (3分)写出所有比 3.5-大的负整数: 3-,2-,1- .【分析】根据负整数的意义写出即可.【解析】比 3.5-大的负整数有3-,2-,1-.故答案为:3-,2-,1-.13.(3分)计算:21(0.4)3-¸-= 256 .【分析】直接利用有理数的除法运算法则计算得出答案.【解析】原式5235=¸5532=´256=.故答案为:256.14.(3分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,则235a b m cd ++-= 26. .【分析】直接利用互为相反数以及倒数、绝对值的性质分别化简得出答案.【解析】a Q 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,0a b \+=,1cd =,3m =±,29m =,则235a b m cd ++-0391=+´-271=-26=.故答案为:26.15. (3分)近似数1.25万是精确到 百 位.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解析】1.25万中,5在百位上,则精确到了百位.故答案为:百.16. (3分)如图,数轴上A ,B 两点所表示的数分别为a ,b ,有下列各式:①(1)(1)0a b -->;②(1)(1)0a b -+>;③(1)(1)0a b ++>.其中,正确式子的序号是 ①②? .【分析】因为数轴上右边的数总比左边的大,大数减小数差为正,小数减大数差为负.再根据乘法运算同号得正,异号得负.【解析】1a <Q ,10a \-<.1b <Q ,10b \-<.(1)(1)0a b \-->.\①正确,故①符合题意.1b <-Q ,(1)0b \--<.即10b +<,(1)(1)0a b \-+>.\②正确,故②符合题意.0a >Q ,10a \+>,又1b <-Q ,10b \+<,(1)(1)0a b \++<.\③错误.故③不合题意.故答案为:①②?.三.解答题(共8小题,满分42分)17.(4分) 计算:221(3)[2(6)(4)]4-+´´---.【分析】先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算.【解析】221(3)[2(6)(4)]4-+´´---19(1216)4=+´--19(28)4=+´-97=-2=.18.(8分)计算:(1)626172((()5353-+-´-+-´;(2)20232241(1)(3)||4(2)9-+-´--¸-.【分析】(1)先算乘法,再算加减即可;(2)先算乘方,再算乘除,最后算加减即可.【解析】(1)原式434255=-+-10434555=-+-63455=--405=-8=-;(2)原式11916169=-+´-¸111=-+-1=-.19.(8分)计算:(1)7531()(96436+-¸-;(2)22222(3)()4|4|3-+-´--¸-.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可;(2)先算乘方和去绝对值,然后算乘除法、最后算加减法.【解析】(1)7531()()96436+-¸-753()(36)964=+-´-753(36)(36)(36)964=´-+´--´-28(30)27=-+-+31=-;(2)22222(3)()4|4|3-+-´--¸-249(1643=-+´--¸4(6)4=-+--14=-.20. (6分)兴趣小组遇到这样一个问题:任意选取一个数,用这个数乘以2后加8,然后除以4,再减去一开始选取的数的12,则结果为多少?小组内4位成员分别令这个数为5-、3、4-、2发现结果一样.(1)请从上述4个数中任取一个数计算结果.(2)有一个成员猜想:无论这个数是几,其计算结果都一样,这个猜想对吗?请说明理由.如果你觉得这个猜想不对,请你提出一个新的猜想.【分析】(1)令这个数为3,根据已知条件列式计算即可;(2)设取的有理数为a ,根据已知条件列式计算,发现结果是定值,所以猜想正确.【解析】(1)令这个数为3,则1(328)43144 1.522´+¸-´=¸-=;(2)猜想正确,理由是:设取的有理数为a ,则:1111(28)224222a a a a +-=+-=,所以猜想是正确的.21. (8分)3-,2.5,0,4+,32-.(1)画数轴并在数轴上标出上面各数;(2)把上面各数用“>”连接起来.【分析】(1)在数轴上表示各数即可;(2)根据在数轴上右边的点表示的数大于左边的点表示的数从大到小的顺序用“>”连接起来即可.【解析】(1)如图所示:(2)根据在数轴上右边的点表示的数大于左边的点表示的数,可得34 2.5032+>>>->-.22. (6分)已知有理数a 、b 、c 在数轴上的位置.(1)a b + < 0;a c + 0;b c - 0;(用“>,<,=”填空)(2)试化简||2||||a b a c b c +-+--.【分析】(1)根据数轴确定a ,b ,c 的范围,即可解答;(2)根据绝对值的性质,即可解答.【解析】(1)由数轴可得:0c a b <<<,且||||a b >,0a b \+<,0a c +<,0b c ->,故答案为:<;<;>;(2)0a b +<Q ,0a c +<,0b c ->,||2||||a b a c b c \+-+--2()()a b a c b c =--++--22a b a c b c=--++-+23a b c =-+.23.(6分)有10袋小麦,每袋以90kg 为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如表:袋号12345678910重量()kg 1+1+ 1.5+1- 1.2+ 1.3+ 1.3- 1.2- 1.8+ 1.1+(1)请通过计算说明这10袋小麦总计超过多少kg 或不足多少kg ?(2)若每千克小麦2.5元,求10袋小麦一共可以卖多少元?【分析】(1)“正”和“负”相对,超过的千克数记为正数,不足的千克数记为负数,把称重记录的数据相加,和为正说明超过了,和为负说明不足;(2)先求10袋小麦的总重量,即乘单价即可求解.【解析】(1)11 1.51 1.2 1.3 1.3 1.2 1.8 1.1 5.4()kg +++-++--++=.故这10袋小麦总计超过5.4kg ;(2)(9010 5.4) 2.52263.5´+´=(元).故10袋小麦一共可以卖2263.5元.24.(6分)阅读理解:观察等式1122133-=´+,2255133-=´+¼发现,一对有理数a ,b 满足1a b ab -=+,那么我们把这对有理数a ,b 叫做“共生有理数对”,记为[a ,]b .如:有理数对[1,1]3和[5,2]3都是“共生有理数对”.(1)下列四对有理数中,不是“共生有理数对”的是 D .A .[3,12B .[3-,2]C .1[5,2]3-D .[2-,13-(2)若[4,1]m -是“共生有理数对”,请你求出该“共生有理数对”.(3)若[x ,1]x -是“共生有理数对”,请你判断[1x -,]x -是不是“共生有理数对”,并说明理由.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可解决问题.【解析】(1)A .113222-=Q ,11131112222´+=+=,[3\,12是“共生有理数对”;B .325--=-Q ,321615-´+=-+=,[3\-,2]是“共生有理数对”,C .Q 1213()5315--=,12213()11531515´-+=-+=,1[5\,2]3-是“共生有理数对”;D.212(133 ---=-Q,1222()111333-´-+=+=,[2 \-,1]3-不是“共生有理数对”.故答案为:D;(2)[4Q,1]m-是“共生有理数对”,4(1)4(1)1m m\--=-+,解得85m=,则831155m-=-=.\该“共生有理数对”是[4,35;(3)[1x-,]x-是“共生有理数对”,理由:[xQ,1]x-是“共生有理数对”,(1)(1)1x x x x\--=-+,(1)0x x\-=,1()1x x---=Q,(1)1(1)1011x x x x--+=-+=+=,1()(1)1x x x x\---=--+,[1x\-,]x-是“共生有理数对”.。

人教版七年级上册数学 第一章有理数 单元测试(解析版)

人教版七年级上册数学 第一章有理数 单元测试(解析版)

第一章 有理数 单元测试一、选择题1.如果向东走2m 记为+2m ,则向西走3m 可记为( ) A .+3m B .+2m C .-3m D .-2m2.下列各数:0.01,10,-6.67,31-,0,-(-3),-|-2|,-(-4²),其中属于非负整数的有( )A .1个B .2个C .3个D .4个 3.下列说法错误的是( )A.-2的相反数是2B.3的倒数是31C.(-3)-(-5)=2D.-11,0,4这三个数中最小的数是04.2018年中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕,本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为( ) A.0.55×10⁶ B.5.5×10⁵ C.5.5×10⁴ D.55×10⁴5.数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是()A.a >-4B.bd >0C.|a|>|d|D.b+c >06.在“有理数的加法与减法运算”的学习过程中,小明做过如下数学试验:“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”用算式表示以上过程和结果正确的是( ) A.0+(-3)-(+1)=-4 B.0+(-3)+(+1)=-2 C.0+(+3)+(-1)=+2 D.0+(+3)+(+1)=+47.下列计算结果最小的是( ) A.(-2-3)² B .C .-3²÷(-3)²D .(-1)⁴ 8.下列说法正确的是( ) A .近似数117.08精确到十分位B .按科学记数法表示的数5.04×10⁵,其原数是50400C .将数60340精确到千位是6.0×10⁴D .用四舍五入法得到的近似数8.1750精确到千分位 9.若|b+2|与(a-3)²互为相反数,则的值为( ) A.81 B.81- C.-8 D.810.已知整数a ₁,a ₂,a ₃,a ₄…满足下列条件:a ₁=0,a ₂=-|a ₁+1|,a ₃=-|a ₂+2|,a ₄=-|a ₃+3|,……,依此类推,a ₂₀₁₉的值为( ) A.2019 B.-2019 C.-1009 D.1009 二、填空题11.52-的相反数是________;绝对值等于4的数是________.12.若两个数的乘积等于-1,则称其中一个数是另一个数的负倒数,那么321-的负倒数为__________.13.a 是最小的正整数,b 是最小的非负数,m 表示大于-4且小于3的整数的个数,则a-b+m=____.14.把-2²,(-2)²,-|-2|,21-按从小到大的顺序排列是____________.15.下图是一个数值转换机,若输入数为3,则输出数是__________.16.已知数a 、b 在数轴上对应的点在原点两侧,并且到原点的距离相等,数x 、y 互为倒数,那么2|a+b|-2xy 的值等于_______.17.规定符号的意义为a b=ab-a ²+|-b|+1,那么-34=____. 18.若|m|=7,则m=____;若n ²=36,则n=____,m+n=____.19.若数轴上点A 表示的数是-1,且点B 到点A 的距离为2020,则点B 表示的数是__________.20.猜数字游戏中,小明写出如下一组数:353219161187452,,,,,…,小亮猜测出第六个数是6764,根据此规律,第n (n 为正整数)个数是_________________.三、解答题21.将下列各数填在相应的集合里, -3.8,-20%,4.3,720--,4²,0,⎪⎭⎫⎝⎛53--,-3²,整数集合:{ …}; 分数集合:{ …};正数集合:{ …};负数集合:{ …}.22.小琼和小凤都十分喜欢唱歌,她们两个一起参加社区的文艺汇演,在汇演前,主持人让她们自己确定一个出场顺序,可她们俩争着先出场,最后,主持人想了一个主意,如图所示.23. 计算: (1);(2);(3).24.一辆货车从仓库O 出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A .B ,C ,D ,E ,最后回到仓库O ,货车行驶的记录(单位:千米)如下:+1,+3,-6,-1,-2,+5.(1)请以仓库O为原点,向东为正方向,选择适当的单位长度画出数轴,并标出A,B,C,D,E的位置;(2)该货车共行驶了多少千米?(3)如果货车运送的水果以100千克为标准质量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果质量(单位:千克)可记为:+50,-15,+25,-10,-15,则该货车运送的水果总质量是多少千克?25.如图,在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B、点C表示的数;(2)如果点A、C表示的数互为相反数,求点B表示的数;(3)在(1)的条件下,若小虫P从点B出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q恰好从点C出发,以每秒0.2个单位长度的速度沿数轴向左运动,设两只小虫在数轴上的D点相遇,求点D表示的数.答案一、选择题1.C向东与向西具有相反的意义,因为向东走2m记为+2m,所以向西走3m可记为-3m,故选C.2.D -(-3)=3,-|-2|=-2,-(-4²)=16,非负整数有10,0,-(-3),-(-4²),共4个.3.D -11,0,4这三个数中最小的数是-11,所以D错误,故选D.4.B 55万=550000=5.5×10⁵.5.C 由数轴可知,-5<a <-4,-2<b <-1,0<c <1,d=4,所以a <-4,bd <0,|a|>|d|,b+c <0,故选C .6.B 根据“向左为负,向右为正”得0+(-3)+(+1)=-2,故选B .7.C (-2-3)²=25,,-3²÷(-3)²=-1,(-1)⁴=1,故选C .8.C 近似数117.08精确到百分位;按科学记数法表示的数5.04×10⁵,其原数是504000;用四舍五入法得到的近似数8.1750精确到万分位,只有C 正确,故选C .9.C 由题意得|b+2|+(a-3)²=0,因为|b+2|≥0,(a-3)²≥0,所以b+2=0,a-3=0,所以b=-2,a=3,所以=(-2)³=-8.10.C 因为a ₁=0,a ₂=-|a ₁+1|=-|0+1|=-1,a ₃=-|a ₂+2|=-|-1+2|=-1.a ₄=-|a ₃+3|=-|-1+3|=-2,a ₅=-|a ₄+4|=-|-2+4|=-2,……,所以,n是奇数时,,n 是偶数时,,所以,故选C .二、填空题11.答案 52;±4解析 负数的相反数是正数,所以52-的相反数是52,互为相反数的两个数的绝对值相等,所以绝对值等于4的数是±4.12.答案 53-解析35321=-,由题意可知,35的负倒数为53-.13.答案7解析 根据题意得a=1,b=0,m=6,所以a-b+m=1-0+6=7.14.答案 -2²<-|-2|<21-<(-2)²解析 因为-2²=-4,(-2)²=4,-|-2|=-2,又-4<-2<21-<4,所以-2²<-|-2|<21-<(-2)².15.答案 65解析 当输入数为3时,第一步得到的是8,第二步计算结果是65.16.答案 -2解析 因为数a 、b 在数轴上对应的点在原点两侧,并且到原点的距离相等,所以a 、b 互为相反数,所以a+b=0,数x 、y 互为倒数,所以xy=1.所以2|a+b|-2xy=-2.17.答案 -16解析 -34=(-3)×4-(-3)²+|-4|+1=-16.18.答案 ±7;±6;13或-13或1或-1解析 易知m=±7,n=±6.当m=7,n=6时,m+n=7+6=13.当m=7,n=-6时,m+n=7-6=1. 当m=-7,n=6时,m+n=-7+6=-1, 当m=-7,n=-6时,m+n=-7-6=-13. 19.答案 2019或-2021解析 数轴上点A 表示的数是-1,且点B 到点A 的距离为2020,所以点B 表示的数是-1+2020=2019或-1-2020=-2021. 20.答案解析 由题意可知分子存在的规律为2¹,2²,2³,…,,因为分母比分子大3,所以分母存在的规律为2¹+3,2²+3,2³+3,…,+3,则第n 个数是.三、解答题21.解析 整数集合:{4²,0,-3²,…};分数集合:{-3.8,-20%,4.3,…};正数集合:{4.3,4²,…};负数集合:{-3.8,-20%,,-3²,…).22.解析 -|-5|=-5,-(-3)=3,-0.4的倒数是25-,(-1)⁵=-1,0的相反数是0,比-2大27的数是23,将化简后的数在数轴上表示如下:所以-5<25-<-1<0<23<3. 23.解析 (1)原式=-8××6=-48×=8-36+4=-24. (2)原式(3)原式24.解析(1)如图所示(取1个单位长度表示1千米):(2)1+3+|-6|+|-1|+|-2|+5=18(千米).答:该货车共行驶了18千米.(3)100×5+50-15+25-10-15=535(千克). 答:该货车运送的水果总质量是535千克.25.解析(1)若点A 表示的数为0,∵0-4=-4,∴点B 表示的数为-4,∵-4+7=3,∴点C 表示的数为3.(2)若点A 、C 表示的数互为相反数,∵AC=7-4=3,∴点A 表示的数为-1.5,∵-1.5-4=-5.5,∴点B 表示的数为-5.5.(3)设小虫P 与小虫Q 的运动时间为t 秒,依题意得0.5t+0.2t=7,解得t=10,则点D表示的数是0.5×10-4=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数单元测试一
一、境空题(每空2分,共28分) 1、3
1-
的倒数是____;3
2
1的相反数是____.
2、比–3小9的数是____;最小的正整数是____.
3、计算:._____59____;2
123=--=+-
4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是
5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.
6、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C
7、计算:.______)
1()
1(101
100
=-+-
8、平方得4
12的数是____;立方得–64的数是____. 9、用计算器计算:._________95=
10、观察下面一列数的规律并填空:0,3,8,15,24,_______. 二、选择题(每小题3分,共24分)
11、–5的绝对值是………………………………………………………( ) A 、5 B 、–5 C 、5
1 D 、5
1-
12、在–2,+3.5,0,3
2-
,–0.7,11中.负分数有……………………( ) A 、l 个 B 、2个 C 、3个 D 、4个
13、下列算式中,积为负数的是………………………………………………( ) A 、)5(0-⨯ B 、)10()5.0(4-⨯⨯ C 、)2()5.1(-⨯ D 、)3
2
()5
1
()2(-⨯-⨯-
14、下列各组数中,相等的是…………………………………………………( ) A 、–1与(–4)+(–3) B 、3-与–(–3) C 、
4
3
2

16
9 D 、2)4(-与–16
15、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二
次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………( )
A 、90分
B 、75分
C 、91分
D 、81分
16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………( ) A 、
12
1 B 、
32
1 C 、
64
1 D 、
128
1
17、不超过3)2
3(-的最大整数是………………………………………( ) A 、–4 B –3 C 、3 D 、4
18、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28% 三、解答题(共48分)
19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数: –3,+l ,2
12
,-l.5,
6.
20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,
–2.问这五位同学的实际成绩分别是多少分? 21、(8分)比较下列各对数的大小. (1)5
4-与4
3-
(2)54+-与54+-
(3)25与52 (4)232⨯与2)32(⨯
22、(8分)计算.
(1)15783--+- (2))6141(21--
(3))4(2)3(623-⨯+-⨯- (4)6
1)31
6
1
(1⨯

23、(12分)计算. (l )5
1)2(423⨯-÷- (2)75
.04.34
353.075.053.1⨯-⨯
+⨯-
(3)[
]2
)
4(23
1)5.01(-+⨯÷-- (4))4
11()2(32)53
()
5(2
3
-⨯-÷+-
⨯-
24、(4分)已知水结成冰的温度是 0C ,酒精冻结的温度是–117℃。

现有一杯酒精的温度为12℃,放在一个制冷装置里、每分钟温度可降低1.6℃,要使这杯酒精冻结,需要几分钟?(精确到0.1分钟)
25、(4分)某商店营业员每月的基本工资为300元,奖金制度是:每月完成规定指标
10000元营业额的,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13200元,问他九月份的收入为多少元?
26、观察数表.
根据其中的规律,在数表中的方框内填入适当的数.。

相关文档
最新文档