普通专升本高等数学试题及答案

合集下载

高数专升本真题及答案

高数专升本真题及答案

高数专升本真题及答案一、选择题(每题2分,共20分)1. 下列函数中,哪一个不是周期函数?A. y = sin(x)B. y = x^2C. y = cos(x)D. y = tan(x)2. 函数f(x) = x^3 - 6x^2 + 9x + 2在区间[1, 3]上的最大值是:A. 2B. -1C. 12D. 153. 曲线y = x^3在点(1,1)处的切线斜率是:A. 1B. 2C. 3D. 44. 无穷小量o(x)与x的关系是:A. o(x)/x → 0 当x → ∞B. o(x)/x → 1 当x → ∞C. o(x)/x → ∞ 当x → ∞D. o(x)/x → x 当x → ∞5. 以下哪个级数是收敛的?A. 1 - 1/2 + 1/3 - 1/4 + ...B. 1 + 2 + 3 + 4 + ...C. 1 - 1/2^2 + 1/3^2 - 1/4^2 + ...D. 1 + 1/2 + 1/3 + 1/4 + ...6. 函数f(x) = ln(x)的原函数是:A. x^2B. e^xC. x ln(x)D. x7. 已知函数f(x) = 3x^2 + 2x - 1,求f'(1)的值是:A. 7B. 5C. 3D. 18. 以下哪个选项是微分方程dy/dx + 2y = 6x的解?A. y = 3x^2 + CB. y = 2x + CC. y = x^2 + CD. y = 3x + C9. 曲线y = x^2在点(1,1)处的法向量是:A. (1, -1)B. (1, 1)C. (-1, 1)D. (-1, -1)10. 以下哪个选项是二阶偏导数的连续性条件?A. fxx = fyyB. fxx + fyy = 0C. fxx - fyy = 0D. fxx * fyy = 1二、填空题(每空2分,共20分)11. 若函数f(x) = 2x^3 - 5x^2 + 3x + 1,则f'(x) =____________。

专升本高等数学(含答案)

专升本高等数学(含答案)

高等数学一、选择题1、设的值是则a x ax x ,3)sin(lim 0=→( )A.31B.1C.2D.32、设函数(==⎩⎨⎧≥+=k ,x ,)x x )(x<ke x f x则常数处连续在00cos 10)(2 。

A. 1B.2C.0D.3 3、)(,41)()2(lim)(00000x f x f h x f h ,x x f y h '→=--=则且处可导在点已知函数等于A .-4 B. -2 C. 2 D.4 4、⎰dt t f a b,b a x f )(],[)(则上连续在闭区间设函数( )A.小于零B.等于零C.大于零D.不确定 5、若A 与B 的交是不可能事件,则A 与B 一定是( )A.对立事件B.相互独立事件C.互不相容事件D.相等事件6、甲、乙二人参加知识竞赛,共有6个选择题,8个判断题,甲、乙二人依次各抽一题,则甲抽到选择题,乙抽到判断题的概率为 A.918 B.916 C.9124 D.91147、等于应补充处连续在要使)0(0)21(1)(3f ,x x n x f x=-=( ) A.e -6 B. -6 C. -23D.0 8、等于则且处可导在已知)(,41)()2(lim)(00000x f x f h x f h ,x x f h '=--→( )A. -4B. -2C.2D.4 9、等于则设)2)((,1)()(≥=n x fnx x x f n ( )A.()()11-1--n nx !n B.nn x n !)1(-C.()()2221--=-n n x !n D.12)2()1(----n n x!n 10、则必有处取得极小值在点函数,x x x f y 0)(==( )A.0)(0<x f '' B.0)(0='x f C.0)(0)(00>x f x f ''='且 D.不存在或)(0)(00x f x f '=' 11、则下列结论不正确的是上连续在设函数,b a x f ],[)(( )A .⎰的一个原函数是)()(x f dx x f abB.⎰的一个原函数是)()(x f dt t f a x(a <x <b )C. ⎰-的一个原函数是)()(x f dt t f xb(a <x <b )D.上是可积的在].[)(b a x f12、=-+∞→43121x x imx ( )A. -41B.0C.32D.113、=-+='=→hf h f im f ,x x f h )1()1(1,3)1(1)(0则且处可导在已知( )A. 0B.1C.3D.6 14、='=y nx y 则设函数,1 ( ) A. x 1 B. —x1 C. 1n x D.e x15、x <,x x f 当处连续在设函数0)(=0时,则时当,>x f ,x >,<x f 0)(00)(''( )A.是极小值)0(fB. 是极大值)0(fC. 不是极值)0(fD. 既是极大值又是极小值)0(f 16.设函数=-=dy x y 则),1sin(2( ) A.dx x )1cos(2- B,dx x )1cos(2-- C.2dx x x )1cos(2- D.dx x x )1cos(22-- 17、=')(,)(3x f x x f 则的一个原函数为设 ( )A.23x B.441x C. 44x D.6x 18、设函数=∂∂=xzxy z 则,tan ( )A.xy y 2cos B. xy x 2cos C.xy x 2sin - D. xyy2sin - 19、设函数=∂∂∂+=yx z y x z 23,)(则 ( )A.3(x +y )B.2)3y x +(C. 6(x +y ) B.2)6y x +( 20、五人排成一行,甲乙两人必须排在一起的概率P=( ) A.51 B. 52 c. 53 D. 54二、填空题 1、=-→xx xx 2sin ·2cos 1lim0 。

专升本高数考试题及答案

专升本高数考试题及答案

专升本高数考试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2+3x+2的导数是()A. 2x+3B. x^2+3C. 2x+6D. 2x2. 极限lim(x→0) (sin(x)/x)的值是()A. 0B. 1C. 2D. 33. 以下哪个选项是无穷小量()A. 1/xB. x^2C. sin(x)/xD. x^34. 曲线y=x^3在点(1,1)处的切线斜率是()A. 3B. 1C. 3/2D. 1/35. 定积分∫(0 to 1) x dx的值是()A. 1/2B. 1C. 2D. 0二、填空题(每题4分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的极值点是______。

2. 函数f(x)=e^x的不定积分是______。

3. 函数y=ln(x)的导数是______。

4. 函数y=x^2-4x+4的最小值是______。

5. 曲线y=x^2在点(2,4)处的法线方程是______。

三、解答题(每题10分,共60分)1. 计算极限lim(x→2) (x^2-4)/(x-2)。

2. 求函数f(x)=x^3-3x+1在区间[-1,2]上的最大值和最小值。

3. 计算定积分∫(0 to 2) (2x+3) dx。

4. 求曲线y=x^3-6x^2+9x+1在点(1,4)处的切线方程。

5. 计算二重积分∬(D) xy dA,其中D是由x=0, y=0, x=2, y=2x围成的区域。

6. 解微分方程dy/dx=2x+y。

四、附加题(每题10分,共10分)1. 证明:如果函数f(x)在区间[a,b]上连续,并且f(a)f(b)<0,则至少存在一个c∈(a,b),使得f(c)=0。

答案:一、选择题1. A2. B3. C4. A5. A二、填空题1. x=1, x=22. e^x+C3. 1/x4. 05. x+2y-8=0三、解答题1. 极限lim(x→2) (x^2-4)/(x-2) = 42. 最大值f(2)=3,最小值f(-1)=-53. 定积分∫(0 to 2) (2x+3) dx = 84. 切线方程:y-4=12(x-1),即y=12x-85. 二重积分∬(D) xy dA = 46. 解微分方程dy/dx=2x+y,得到y=e^(-2x)(C-1)+1四、附加题1. 证明略。

专升本高数试题及答案

专升本高数试题及答案

专升本高数试题及答案一、选择题1.已知函数f(x)=log₁₀(2x-1),则f(2)的值为多少?A) 0B) 1C) log₁₀3D) log₁₀2答案:D2.若f(x)在点x=a处可导,且f'(a)=3,则f(x)在点x=a处的切线斜率为多少?A) 3B) aC) f(a)D) 0答案:A3.已知集合A={1,2,3,4},集合B={3,4,5,6},则A∪B的结果为:A) {1,2,3,4,5,6}B) {1,2,3,4}C) {1,2,5,6}D) {3,4,5,6}答案:A二、计算题1.计算limₓ→∞(3x³+2x²-5x+1)的值。

答案:无穷大2.已知函数f(x)=x²+2x+1,求f'(x)的值。

答案:f'(x)=2x+23.已知三个数的平均值为85,其中两个数为60和90,求第三个数的值。

答案:第三个数的值为95三、证明题证明:对于任意实数x,若x²=x,则x=0或x=1。

证明:假设x²=x,则将方程两边移项得到x²-x=0,再因式分解得到x(x-1)=0,根据零乘法,得到x=0或x-1=0,即x=0或x=1。

由此可证明对于任意实数x,若x²=x,则x=0或x=1。

四、应用题某公司员工工资调整规则如下:每个员工的基本工资为3000元,年龄每增加1岁,工资增加50元;工龄每增加1年,工资增加100元。

现有一名员工,年龄为30岁,工龄为5年,请计算该员工的总工资。

答案:年龄增加的工资 = (30-20) * 50 = 500元工龄增加的工资 = 5 * 100 = 500元总工资 = 基本工资 + 年龄增加的工资 + 工龄增加的工资 = 3000 + 500 + 500 = 4000元总结:本文提供了专升本高数的试题及答案,包括选择题、计算题、证明题和应用题。

通过对这些题目的解答,读者可以巩固和提升自己在高等数学方面的知识和技能。

专升本高等数学习题集及参考答案

专升本高等数学习题集及参考答案

第一章 函数一、选择题1. 下列函数中,【 C 】不是奇函数A. x x y +=tanB. y x =C. )1()1(-⋅+=x x yD. x xy 2sin 2⋅=2. 下列各组中,函数)(x f 与)(x g 一样的是【 】A.33)(,)(x x g x x f == B.x x x g x f 22tan sec )(,1)(-==C. 1)(,1)(2-=-=x x g x x fD. 2ln )(,ln 2)(x x g x x f ==3. A. y C. y4. A. y C. y5. 函数A. C. [6. A. y C. y7. A. (C. (8. A. (C. (9. A. fC.()f x x =和()2g x = D. ()sin f x x =和()arcsin g x x =10. 设下列函数在其定义域内是增函数的是【 】A. ()cos f x x =B. ()arccos f x x =C. ()tan f x x =D. ()arctan f x x = 11. 反正切函数arctan y x =的定义域是【 】A. (,22ππ-B. (0,)πC. (,)-∞+∞D. [1,1]-12. 下列函数是奇函数的是【 】A. arcsin y x x =B.arccos y x x =C.arccot y x x = D. 2arctan y x x =13. 函数53sin ln x y=的复合过程为【 A 】A.x w w v v u u y sin ,,ln ,35==== B.x u u y sin ln ,53==C.x u u ysin ,ln 53== D.x v v u u y sin ,ln ,35===二、填空题1. 函数5arctan 5arcsin x x y +=的定义域是___________.2.()arcsin3xf x =的定义域为 ___________.3.函数1()arcsinx f x +=的定义域为 ___________。

专升本试题及答案数学

专升本试题及答案数学

专升本试题及答案数学一、选择题(每题2分,共20分)1. 已知函数 \( f(x) = 3x - 2 \),求 \( f(-1) \) 的值。

A. -5B. -3C. 1D. 32. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系。

A. 相离B. 相切C. 相交D. 内切3. 已知等差数列的首项为3,公差为2,求第10项的值。

A. 23B. 21C. 19D. 174. 函数 \( y = x^2 + 2x + 1 \) 的图像关于哪条直线对称?A. x = -1B. x = 0C. x = 1D. x = 25. 一个正方体的体积为64立方厘米,求其边长。

A. 4 cmB. 8 cmC. 2 cmD. 16 cm6. 已知 \( \sin(\alpha) = \frac{3}{5} \),且 \( \alpha \) 在第一象限,求 \( \cos(\alpha) \) 的值。

A. \( \frac{4}{5} \)B. \( \frac{1}{5} \)C. \( \frac{3}{4} \)D. \( \frac{1}{4} \)7. 一个等腰三角形的底边长为6,两腰长为5,求其面积。

A. 12B. 15C. 18D. 208. 已知 \( \log_{2}8 = 3 \),求 \( 2^3 \) 的值。

A. 4B. 8C. 16D. 329. 一个数列的前三项为1,1,2,且每一项是前两项的和,求第5项的值。

A. 3B. 4C. 5D. 610. 已知 \( e^x = 2 \),求 \( x \) 的值。

A. ln2B. ln4C. ln8D. ln16二、填空题(每题2分,共20分)11. 圆的面积公式为 \( \pi r^2 \),若半径为4,则面积为________。

12. 函数 \( y = \sin(x) \) 的周期为________。

13. 已知 \( \cos(\theta) = \frac{1}{3} \),求 \( \sin(\theta) \) 的值(假设 \( \theta \) 在第一象限)。

《高等数学》(专升本)试题及参考答案

《高等数学》(专升本)试题及参考答案

《高等数学》(专升本)习题答案一、单选题1、若无穷级数收敛,而发散,则称称无穷级数(C)A发散 B收敛 C条件收敛 D绝对收敛2、点x=0是函数y=x^4的(D)A驻点但非极值点 B拐点 C驻点且是拐点 D驻点且是极值点3、极限(B)A B C1 D04、函数f(x)在点x0极限存在是函数在该点连续的(A)A必要条件 B充分条件 C充要条件 D无关条件5、(C)A B C0 D16、曲线y=1/∣x∣的渐近线情况是(C)A只有水平渐近线 B只有垂直渐近线C既有水平渐近线又有垂直渐近线 D既无水平渐近线又无垂直渐近线7、函数的定义域为(D)A B C D8、y=x/(x^2-1)的垂直渐近线有(B)条A1 B2 C3 D49、向量、垂直,则条件:向量、的数量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件D既非充分又非必要条件10、当x→0时,下列函数不是无穷小量的是(D)Ay=x By=0 Cy=ln(x+1) Dy=e^x11、,则(D)A BC D12、设f(x)=2^x-1,则当x→0时,f(x)是x的(D)A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无穷13、(A)A0 B C D14、若f(x)在x=x0处可导,则∣f(x)∣在处(C)A可导 B不可导 C连续但未必可导 D不连续15、直线上的一个方向向量,直线上的一个方向向量,若与平行,则(B)A BC D16、设函数y=f(x)在点x0处可导,且f′(x)>0, 曲线y=f(x)则在点(x0,f(x0))处的切线的倾斜角为{C}A0 B∏/2 C锐角 D钝角17、设,则(A)A B C D18、函数y=x^2*e^(-x)及图象在(1,2)内是(B)A单调减少且是凸的 B单调增加且是凸的C单调减少且是凹的 D单调增加且是凹的19、和在点连续是在点可微分的(A)A充分条件 B必要条件 C充要条件 D无关条件20、以下结论正确的是(C )A 若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.21、无穷大量减去无穷小量是(D)A无穷小量 B零 C常量 D未定式22、下列各微分式正确的是(C)Axdx=d(x^2) Bcos2x=d(sin2x) Cdx=-d(5-x) Dd(x^2)=(dx^2)23、已知向量两两相互垂直,且,求(C)A1 B2 C4 D824、函数y=ln(1+x^2)在区间[-1,-2]上的最大值为(D)A4 B0 C1 Dln525、在面上求一个垂直于向量,且与等长的向量(D)A B C D26、曲线y=xlnx的平行于直线x-y+1=0的切线方程是(C)Ay=x By=(lnx-1)(x-1) Cy=x-1 Dy=-(x-1)27、向量与向量平行,则条件:其向量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件 D既非充分又非必要条件28、曲线y=e^x-e^-x的凹区间是(B)A(-∞,0) B(0,+∞) C(-∞,1) D(-∞,+∞)29函数在区间上极小值是(D)A-1 B1 C2 D030函数y=3x^2-x^3在区间[1,3]上的最大值为(A)A4 B0 C1 D331、若,则(A)A4 B0 C2 D32、已知y=xsin3x ,则dy=(B)A(-cos3x+3sin3x)dx B(3xcos3x+sin3x)dxC(cos3x+3sin3x)dx D(xcos3x+sin3x)dx33、二重极限(D)A等于0 B等于1 C等于 D不存在34、曲线 y=x^3+x-2 在点(1,0)处的切线方程是(B)Ay=2(x-1) By=4(x-1) Cy=4x-1 Dy=3(x-1)35、设,则(C)A BC D36、曲线y=2+lnx在点x=1处的切线方程是(B)Ay=x-1 By=x+1 Cy=x Dy=-x37、向量与轴与轴构成等角,与轴夹角是前者的2倍,下面哪一个代表的是的方向(C)A BC D38、半径R为的金属圆片,加热后伸长了R,则面积S的微分dS是(B)A∏RdR B2∏RdR C∏dR D2∏dR39、设在处间断,则有(D)A在处一定没有意义;B;(即);C不存在,或;D若在处有定义,则时,不是无穷小40、曲线y=x/(x+2)的渐进线为(D)Ax=-2 By=1 Cx=0 Dx=-2,y=141、若无穷级数收敛,且收敛,则称称无穷级数(D)A发散 B收敛 C条件收敛 D绝对收敛42、函数y=(x^2-1)^3的驻点个数为(B)A4 B3 C1 D243、曲线在点处的切线斜率是(A)A B C2 D44、M1(2,3,1)到点M2(2,7,4)的距离∣M1M2∣=(C)A3 B4 C5 D645、利用变量替换,一定可以把方程化为新的方程表达式(A)A B C D46、两个向量a与b垂直的充要条件是(A)Aab=0 Ba*b=0 Ca-b=0 Da+b=047、已知向量,求向量在轴上的投影及在轴上的分量(A)A27,51 B25,27 C25,51 D27,25 48、求抛物线 y=x^2与y=2-x^2 所围成的平面图形的面积(B)A1 B8/3 C3 D249、若,为无穷间断点,为可去间断点,则(C)A B C D50、要用铁板做一个体积为2m^3的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?(A)A均为³√2m时,用料最省. B均为³√3m时,用料最省.C均为√3m时,用料最省. D均为√2m时,用料最省.二、判断题1、设,则(错)2、已知曲线y=f(x)在x=2处的切线的倾斜角为5/6∏,则f′(2)=-1(错)3、对于无穷积分,有(对)4、定义函数极限的前提是该函数需要在定义处的邻域内有意义(对)5、函数的定义域是(对)6、函数就是映射,映射就是函数(错)7、设,且满足,则(错)8、函数有界,则界是唯一的(错)9、设是曲线与所围成,则,是否正确(错)10、极限存在,则一定唯一(对)11、在处二阶可导,且,若,则为极小值点(对)12、1/x的极限为0(错)13、设,其中,则,是否正确(对)14、1/n-1的极限为0(错)15、,是否正确(对)16、对于函数f(x),若f′(x0)=0,则x0是极值点(错)17、,是否正确(对)18、无界函数与其定义域没有关系(错)19、齐次型微分方程,设,则(对)20、若函数f(x)在x0处连续,则f(x)在x0处极限存在(对)21、函数可微可导,且(对)22、函数f(x)在[a,b]在内连续,且f(a)和f(b)异号,则f(x)=0在(a,b)内至少有一个实数根(对)23、微分方程的通解为,是否正确(对)24、y=e^(-x^2) 在区间(-∞,0)(1,∞)内分别是单调增加,单调增加(错)25、设是由所确定,函数在上连续,那么(对)26、有限个无穷小的和仍然是无穷小(对)27、是齐次线性方程的线性无关的特解,则是方程的通解(对)28、函数在一点的导数就是在一点的微分(错)29、设表示域:,则(错)30、方程x=cos在(0,∏/2)内至少有一实根(错)31、设,则,是否正确(对)32、f〞(x)=0对应的点不一定是曲线的拐点(对)33、设,其中,则(错)34、y=ln(1-x)/(1+x)是奇函数(对)35、设由所确定,则(对)36、方程x=cos在(0,∏/2)内至少有一实根(错)37、设在区间上连续,是的内点,如果曲线经过点时,曲线的凹凸性改变了,则称点为曲线的拐点(对)38、无穷间断点就是函数在该点的极限是无穷(对)39、设是圆周围成的区域,是否正确(对)40、定积分在几何上就是用来计算曲边梯形的面积(对)41、,是否正确(对)42、数列要么收敛,要么发散(对)43、函数在点可导(对)44、函数在一点处极限存在的充要条件是函数在该点的左极限等于右极限(对)45、在的邻域内可导,且,若:当时,;当时,则为极小值点(错)46、定积分在几何上就是用来计算曲边梯形的面积(对)47、二元函数的最小值点是(对)48、任何函数都可以求出定积分(错)49、设为,与为顶点三角形区域,则积分方程(对)50、若被积函数连续,则原函数不一定存在(错)。

数学专升本考试试题(含答案解析)

数学专升本考试试题(含答案解析)

数学专升本考试试题(含答案解析)一、选择题(每题2分,共20分)1. 若函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值为M,最小值为m,则Mm的值为()A. 2B. 4C. 6D. 8答案:C解析:函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值和最小值分别为f(1)和f(3),计算可得M = f(1) = 0,m = f(3) = 0,所以Mm = 00 = 0,故选C。

2. 若等差数列{an}的前n项和为Sn,且S5 = 25,则数列{an}的公差d为()A. 2B. 3C. 4D. 5答案:A解析:等差数列的前n项和公式为Sn = n/2 (a1 + an),代入S5 = 25,得到5/2 (a1 + a5) = 25,又因为a5 = a1 + 4d,所以5/2 (a1 + a1 + 4d) = 25,化简得到a1 + 2d = 5。

又因为S5 =5/2 (a1 + a5) = 5/2 (2a1 + 4d) = 5(a1 + 2d),代入S5 = 25,得到5(a1 + 2d) = 25,解得a1 + 2d = 5。

联立两个方程,得到d = 2,故选A。

3. 若圆x^2 + y^2 = 1上的点到原点的距离为r,则r的取值范围是()A. 0 < r < 1B. 0 ≤ r ≤ 1C. r > 1D. r ≥ 1答案:B解析:圆x^2 + y^2 = 1上的点到原点的距离为r,即r^2 = x^2 + y^2,因为x^2 + y^2 = 1,所以r^2 = 1,即0 ≤ r ≤ 1,故选B。

4. 若函数f(x) = ax^2 + bx + c在x = 1时的导数为2,则b的值为()A. 2B. 3C. 4D. 5答案:A解析:函数f(x) = ax^2 + bx + c在x = 1时的导数为2,即f'(1) = 2,计算f'(x) = 2ax + b,代入x = 1,得到f'(1) = 2a +b = 2,解得b = 2 2a,故选A。

高等数学试题及答案专升本

高等数学试题及答案专升本

高等数学试题及答案专升本高等数学试题及答案(专升本)一、选择题(每题4分,共40分)1. 极限lim(x→0) (sin x)/x 的值是()。

A. 0B. 1C. -1D. 2答案:B2. 函数f(x) = x^2 + 3x - 4的导数是()。

A. 2x + 3B. 2x - 3C. x^2 + 3D. x^2 - 3答案:A3. 曲线y = x^3 - 3x + 2在点(1, 0)处的切线斜率是()。

A. 1B. -1C. 3D. -3答案:B4. 不定积分∫(3x^2 - 2x + 1)dx 的结果是()。

A. x^3 - x^2 + x + CB. x^3 + x^2 - x + CC. x^3 - x^2 + x + CD. x^3 + x^2 - x + C答案:C5. 函数y = e^x 的原函数是()。

A. e^x + CB. e^(-x) + CC. e^x - CD. e^(-x) - C答案:A6. 已知函数f(x) = 2x + 1,g(x) = 3x - 2,则f[g(x)]的表达式是()。

A. 6x - 3B. 6x + 1C. 9x - 5D. 9x + 1答案:C7. 函数y = ln(x) 的反函数是()。

A. e^yC. x^yD. y^x答案:A8. 函数y = x^2 在区间[-2, 2]上的最大值是()。

A. 0B. 4C. -4D. 2答案:B9. 函数y = x^3 - 3x^2 + 2x 的极值点是()。

A. x = 0B. x = 1C. x = 2答案:B10. 曲线y = x^2 + 2x + 1与直线y = 3x + 2的交点个数是()。

A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)11. 极限lim(x→∞) (x^2 - 3x + 2)/(x^2 + 2x - 3) 的值是 _______。

答案:112. 函数f(x) = x^3 - 6x^2 + 11x - 6的二阶导数是 _______。

专升本高数试题及答案

专升本高数试题及答案

专升本高数试题及答案一、选择题(每题4分,共20分)1. 设函数f(x) = x^3 - 3x^2 + 2x,求f'(x)的值。

A. 3x^2 - 6x + 2B. x^3 - 3x^2 + 2C. 3x^2 - 6x + 2D. 3x^2 + 6x + 2答案:C2. 计算不定积分∫(3x^2 + 2)dx。

A. x^3 + 2x + CB. x^3 + 2x^2 + CC. x^3 + 2x + 3x^2 + CD. x^3 + 2x^2 + 3x + C答案:A3. 已知数列{an}满足an = 2an-1 + 1,且a1 = 1,求数列的通项公式。

A. an = 2^n - 1B. an = 2^(n-1) + 1C. an = 2^n + 1D. an = 2^(n+1) - 1答案:A4. 设A为3阶方阵,且|A| = 2,则|2A|的值为多少?A. 4B. 8C. 16D. 32答案:B5. 已知函数y = sin(x) + cos(x),求其导数y'。

A. cos(x) - sin(x)B. sin(x) + cos(x)C. cos(x) + sin(x)D. -cos(x) - sin(x)答案:A二、填空题(每题4分,共20分)1. 设函数f(x) = x^2 - 4x + 4,求其顶点坐标为______。

答案:(2, 0)2. 计算定积分∫(0, 2) (x^2 - 2x + 1)dx的值为______。

答案:23. 已知数列{bn}满足bn = 3bn-1 + 2,且b1 = 1,求b3的值为______。

答案:284. 设矩阵B = |1 2|,求其逆矩阵B^(-1)为______。

答案:|-2 1|5. 已知函数y = e^(-x),求其导数y'。

答案:-e^(-x)三、解答题(每题10分,共60分)1. 求函数f(x) = x^3 - 6x^2 + 9x + 1的极值点。

专升本高数试题及详解答案

专升本高数试题及详解答案

专升本高数试题及详解答案一、选择题(本题共5小题,每小题3分,共15分)1. 下列函数中,不是偶函数的是()。

A. y = x^2B. y = |x|C. y = cos(x)D. y = sin(x)2. 函数f(x) = 2x^3 - 6x^2 + 9x + 5在区间(-∞,+∞)内的最大值是()。

A. 5B. 9C. 12D. 无法确定3. 设曲线y = x^2上点P(-1, 1),则过点P的切线方程为()。

A. y = -2x - 1B. y = -x - 2C. y = x - 2D. y = 2x + 14. 以下哪个级数是收敛的?()A. ∑((-1)^n)/nB. ∑n^2C. ∑(1/n)D. ∑((-1)^(n+1))/n^25. 若函数f(x)在点x=a处连续,则必有()。

A. f(a)存在B. f(a) = 0C. lim(x->a-) f(x) = f(a)D. lim(x->a+) f(x) = f(a)二、填空题(本题共5小题,每小题2分,共10分)1. 若函数f(x) = 3x - 5,则f(2) = _______。

2. 曲线y = x^3在点(1,1)处的切线斜率为 _______。

3. 设数列{an}是等差数列,且a3 = 7,a5 = 13,则该数列的公差d= _______。

4. 若级数∑an收敛,则级数∑(an/2^n) _______(填“收敛”或“发散”)。

5. 利用定积分的几何意义,计算曲边梯形的面积,若y = 2x + 1在[0, 2]上的面积为 _______。

三、解答题(本题共4小题,共75分)1. (15分)求函数f(x) = x^2 - 4x + 3的单调区间,并证明。

2. (15分)设函数f(x) = ln(x + 2),求f(x)的n阶导数f^(n)(x)。

3. (20分)计算定积分∫[0, 4] (2x^2 - 3x + 1) dx,并说明其几何意义。

四川专升本数学2024年真题 及答案

四川专升本数学2024年真题 及答案

2024四川省普通高校专升本《高等数学》一、单项选择题(本大题共10小题,每小题5分,共计50分)1.函数211x y +=是()A.有界奇函数 B.有界偶函数C.无界奇函数D.无界偶函数2.0→x 时,下列与23x 等价的是()A.2sin xx B.)cos 1(x x - C.)21ln(2x + D.12-x e3.设)(x f 在a x =处可导,且1)(='a f 则=-+∞→)](1([lim a f na f n n ()A.2- B.1- C.1D.24.曲线54122---=x x x y 的铅直渐近线有()条A.0B.1C.2D.35.下列式子中成立的是()A.⎰+=+C x dx x 2)12(B.⎰+=+12)12(x x d C.⎰+=+12])12([x dx x d D.⎰+=+12])12([x dx x dx d6.过点)0,1,1(-且垂直于直线⎩⎨⎧=++=--02z y x z y x 的平面方程为()A.0132=+-+z y xB.0=++z y x C.0332=---z y x D.032=---z y x 7.二元函数y x x yz +=ln ,则=)1,2(dz ()A.dydx )212ln 2(2-+ B.dy dx 2212ln 2(+-C.dy dx )2ln 21(21++ D.dy dx 21)2ln 21(++8.下列级数收敛的是()A.∑∞=+-01)1(n n n nB.∑∞=0)23(n nC.∑∞=02sin n nn D.∑∞=0!n nn n 9.设A 为3阶矩阵,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==120020001,100010002,2C B A ,求=-BAC 2()A.64B.64- C.16D.16-10.设向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1325522314111321αααα,,,,则下列正确的是()A.321∂∂∂,,线性相关B..421∂∂∂,,线性相关C..431∂∂∂,,线性相关D..432∂∂∂,,线性相关二、填空题(本大题共6题,每小题5分,共计30分)11.⎪⎩⎪⎨⎧>≤+=0,1cos 0,)(x x x x k e x f x 在0=x 处连续,求=k 12.求232-+-=x x y 与x 轴所围图形的面积为13.设函数),(y x f z =由0)1(=---z y e xy z所确定,求=∂∂==11y x xz14.交换积分次序⎰⎰-=2120),(xdy y x f dx 15.幂级数∑∞=1n nn xa 的收敛半径为2,则∑∞=--11)1(n n nx na 的收敛区间为16.已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡222222a a a 的秩为2,则=a 三、计算题(本大题共6小题,共70分)17.(10分)求极限xx x 1)3sin 1(lim +→18.(10分)求函数3ln )(+=x xx f 的单调区间和极值19.(12分)计算定积分dx e xx38131⎰20.(12分)计算二重积分⎰⎰++Ddxdy yx2231,其中{},91|),(22≥<+≤=y y x y x D 21.(13分)已知)(x f 可导,且⎰-=--xx x f x dt tf 203)1()()1()2(,求)(x f 22.(13分)已知非齐次线性方程组为⎪⎩⎪⎨⎧+=-+++=+++=+++tx x t x x tx t x x t x x x x 2)1(4)2(32243213214321(1)当t 为何值时,方程组无解(2)当t 为何值时,方程组有解,并求有无穷解时的通解2024四川省普通高校专升本《高等数学》答案一、选择题1-5:BBCBD 6-10:ACCAA二、填空题11.1-12.6113.114.⎰⎰-121),(ydx y x f dy 15.)3,1(-16.4-三、计算题17.3e 18.增],[+∞e ,减),1(),1,0(e 极小值3)(+=e e f 19.23e20.3ln 2π21.)31)(1()(x x x f --=22.(1)时,无解1≠t ;(2)时,有无穷解1=t ,通解为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡002510230113214321C C x x x x。

2023年普通高校专升本高等数学参考答案

2023年普通高校专升本高等数学参考答案

一般高校专升本《高等数学》参照答案一、填空题1. x y e11=+;2. 1-;3.5512a π; 4.⎪⎭⎫⎢⎣⎡34,32; 5.))1((212E A ++++-λλλ; 6. 1; 7. 41;8.⎩⎨⎧>≤0),(20,02y y yf y ξ. 二、单项选择题1. D ;2. B ;3. A ;4. D ;5. C6. B7. D8. A三、计算题1. 解 原式=⎭⎬⎫⎩⎨⎧--+∞→x x a x x ln )1ln(lim exp =⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛--+∞→x a a a x x x 11ln lim exp , ………………………… 3分 当10<<a 时, 01ln lim =-+∞→xx x a aa , ∴ 原式=1e 0=. ……………………………… 5分 当0>a 时, aa a xx ln 1ln lim=--+∞→, ∴ 原式=a a=ln e . …………………………… 7分 2. 解 曲面在)5,2,1(-处旳法向量为)1,4,2()1,,()5,2,1(--=-=-y x z z n ………………………………………………… 2分 平面π方程为0)5()2(4)1(2=--+--z y x , 即 0542=---z y x . ……………………… 4分直线L 旳方程又可写为⎩⎨⎧-++=--=3)(5b x ax z bx y ,代入平面π旳方程解得1=a ,2-=b . …… 7分3. 解 原式=⎰⎰⎰+114d 1d d xzxy z y z x ……………………………… 2分=⎰⎰-+101224d )(1d 21xz x z z x ……………………… 3分=⎰⎰-+100224d )(1d 21zx x z z z ……………………… 5分=⎰+134d 131z z z …………………………………… 6分=18122-. …………………………………………… 7分 4. 解y u f xzx sin e )('=∂∂, y u f y z x cos e )('=∂∂. …………………………………1分 22x z ∂∂=)()(sin e )()sin e )((22u f u u f u y u f y u f x x '+''='+'', ………………………2分 22yz ∂∂=)()sin 1(e )(sin e )()cos e )((222u f u y u f y u f y u f x x x '--''='-'' =)()()(e22u f u u f u u f x'-''-''. …………………………………………………3分由z yz x z x22222e =∂∂+∂∂得0)()(=-''u f u f . ……………………………………………… 4分特性方程012=-r ,特性根11-=r ,12=r . ∴ u uC C u f e e)(21+=-. ………………………………………………………………… 6分由1)0(=f ,1)0(='f 得01=C ,212=C . ∴ uu f e 21)(=. ………………………………………………………………………… 7分 5. 解xx x x x 211112132+--=-+, … ………………………………………………… 2分∑∞==-011n n x x , 1||<x , ……………………………………………………… 4分∑∑∞=∞=-=-=+002)1()2(211n n n n n nx x x , 1|2|<x . …………………………… 6分 ∑∑∞=∞=--=2)1()(n nnnn nx x x f =∑∞=--0]2)1(1[n n n n x , 21||<x . ……………… 7分 6. 解: 1-*=A A A 111)()(--*-=-∴A A B A A E BA ……………… 2分A AB A A A A 1111)(----= …………… 3分ABA = ……… 4分 ⇒ 1))((--=A E A B ………………………5分1200320132-⎪⎪⎪⎭⎫ ⎝⎛------= …………… 6分=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----210043210874321 ………………… 7分 7. 解: 514635241362,,,,,ββββββββββββ++++++=+C B516354132,,,,,βββββββββ+++=+514352136,,,,,βββββββββ+++…… 2分 563412165432,,,,,,,,,,ββββββββββββ+=+543216145236,,,,,,,,,,ββββββββββββ+ ……………………………… 5分 8-=…………………………………………………………………………………………… 7分8. 解: {}121)()()(1,1=====B A P B P BA P P ηξ …………………………… 2分 {}41)()()(1,1=-==-==AB P B P A B P P ηξ …………………………3分{}121)()|()()()()(1,1=-=-===-=AB P A B P AB P AB P A P A B P P ηξ …… 4分{}127)(1)(1,1=⋃-==-=-=B A P A B P P ηξ ……………………… 5分 1211}1,1{}1,1{}1,1{}12{=-==+-=-=+=-==≤+ηξηξηξηξP P P P … 7分 9. 解: 3100)(,10)(==i i D E ξξ …………………………………………………… 2分 )310010010001100310010010100()1100(⋅->⋅⋅-=>ξξP P)33100001000(1≤--=ξP ……………………………………… 5分042.0)3(1211232≈Φ-=-≈-∞-⎰dt e t π……………………… 7分 四、应用题1. 解 如图所示,αβθ-=,θtan =αβαβtan tan 1tan tan +-=2601610xx x +-=6042+x x . ………… 3分 上式两边对x 求导:)60()60(4d d sec 222+-=x x x θθ, …………………………… 5分 令0d d =xθ得惟一驻点152=x . …………………… 6分 由问题旳实际意义知θ必有最大值,故152=x 就是θ旳最大值点,即球员在离底线152米处可获得最大射门张角1515arctan. ………………………… 8分 2. 解: ⎪⎪⎪⎪⎪⎭⎫⎝⎛---==-10111011000010112)(1n n T n A αβ ……………………………3分∴ 00421=++⇔=x x x x A n…………………………………………5分⇒通解:3,2,1010010010011321=∈⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-i Rk k k k i ………………8分3. 解: 22))4(()4()4()(ηξηξηξγa E a D a E E +++=+= ………… 2分),4cov(2)()4(ηξηξa a D D ++=+(4+22)a ……………… 5分2134080a a ++= …………………………………………… 6分∴ 当1320-=a 时,)(γE 到达最小 …………………………………… 8分 五、证明题1. 证 令x x f x F -=)()(, ……………………………………………… 1分 x x F x )(lim-∞→=xxx f x --∞→)(lim =01<-, ………………………… 2分∴ 由极限保号性知,0<∃a ,使得0)(>a F . ……………………… 4 分 同理,由xx F x )(lim+∞→=01<-得,0>∃b ,使得0)(<b F . …………… 5分由于)(x F 在],[b a 上持续,0)()(<b F a F ,故由零点定理知,),(),(∞+-∞⊂∈∃b a ξ,使得0)(=ξF ,即ξξ=)(f . …………………………………………………… 8分2.证: 1)(≥⇒≠A r o A ……………………………………………… 1分 ⇒0=Ax 旳基础解系中含旳向量旳个数n n A r n <-≤-=1)(…… 3分 由B 旳每一种列向量是0=Ax 旳解n A r n B r <-≤⇒)()( …………5分 B ⇒中列向量组是线性有关旳,0=∴B …………………………7分。

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案)高等数学专升本试卷(含答案)第一部分:选择题1. 在两点之间用直线段所构成的最短路径称为什么?选项:A. 曲线B. 斜线C. 弧线D. 线段答案:D. 线段2. 下列哪个函数在定义域内是递增的?选项:A. f(x) = x^2B. f(x) = e^xC. f(x) = ln(x)D. f(x) = 1/x答案:B. f(x) = e^x3. 下列级数中收敛的是:选项:A. ∑(n=1→∞) (-1)^n/nB. ∑(n=1→∞) n^2/n!C. ∑(n=1→∞) (1/n)^2D. ∑(n=1→∞) (1/2)^n答案:C. ∑(n=1→∞) (1/n)^24. 若函数f(x)在区间[0,1]上连续,则下列哪个不等式恒成立?选项:A. f(0) ≤ f(x) ≤ f(1)B. f(0) ≥ f(x) ≥ f(1)C. f(0) ≥ f(x) ≤ f(1)D. f(0) ≤ f(x) ≥ f(1)答案:A. f(0) ≤ f(x) ≤ f(1)第二部分:填空题1. 设函数f(x) = 2x^3 + 5x^2 - 3x + 2,那么f'(x) = ______。

答案:6x^2 + 10x - 32. 若a, b为实数,且a ≠ b,则a - b的倒数是 ________。

答案:1/(a - b)3. 设y = ln(x^2 - 4),则dy/dx = _______。

答案:2x/(x^2 - 4)4. 若两条直线y = 2x + a与y = bx + 6的夹角为60°,那么b的值为_______。

答案:√3第三部分:计算题1. 求极限lim(x→0) (sin^2(x) - x^2)/(x^4 + cos^2(x))。

解:由泰勒展开,sin(x) ≈ x,cos(x) ≈ 1 - x^2/2,当x→0时,忽略高阶无穷小,得到:lim(x→0) (sin^2(x) - x^2)/(x^4 + cos^2(x)) = lim(x→0) (x^2 - x^2)/(x^4 + (1 - x^2/2)^2)= lim(x→0) (0)/(x^4 + (1 - x^2/2)^2)= 0/(1) = 0答案:02. 求定积分∫(0→1) (x^2 + 3x + 2) dx。

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案) 高等数学专升本试卷题号得分考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。

一.选择题(每个小题给出的选项中,只有一项符合要求.本题共有5个小题,每小题4分,共20分)1.函数y=1-x+arccos(x+1)的定义域是()A。

x<1B。

(-3,1)C。

{x|x<1} ∩ {-3≤x≤1}D。

-3≤x≤12.极限lim(sin3x/x) x→∞等于()A。

0B。

3C。

1D。

不存在3.下列函数中,微分等于ln(2x)+c的是() A。

xlnx+cB。

y=ln(lnx)+cC。

3D。

14.d(1-cosx)=()∫(1-cosx)dxA。

1-cosxB。

-cosx+cC。

x-sinx+cD。

sinx+c5.方程z=(x^2+y^2)/ab表示的二次曲面是(超纲,去掉)()A。

椭球面B。

圆锥面C。

椭圆抛物面D。

柱面.第1页,共9页二.填空题(只须在横线上直接写出答案,不必写出计算过程,本题共有10个小题,每小题4分,共40分)1.lim(x→2) (x^2+x-6)/(x^2-4) = _________________.2.设函数f(x)={ex。

x>a+x。

x≤aa=__________________.3.设函数y=xe,则y''(x)=__________________.4.函数y=sinx-x在区间[0,π]上的最大值是______________________.5.|sin(π/4)| = _______________.6.设F(x)=∫(π/4)^(x+1)(sin(t)+1)dt=_______________________.7.设F(x)=∫(a,-a) (f(x)+f(-x))dx=____________________________.8.设a=3i-j-2k,b=i+2j-k,则a·b=______________________.9.设z=(2x+y),则(∂z/∂x) (0,1) = ____________________.10.设D= (∂z/∂x) (0,1) = ____________________.剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。

专升本数学试题及答案

专升本数学试题及答案

专升本数学试题及答案一、选择题(每题3分,共30分)1. 设函数f(x)=2x^2-3x+1,求f(2)的值。

A. 3B. 5C. 7D. 92. 已知圆的方程为(x-2)^2 + (y-3)^2 = 25,求圆心坐标。

A. (0,0)B. (2,3)C. (-2,3)D. (2,-3)3. 函数y=\sqrt{x}的定义域是:A. [0,+∞)B. (-∞,+∞)C. (0,+∞)D. [0,1]4. 已知等差数列的前三项分别为2, 5, 8,求该数列的通项公式。

A. an = 3n - 1B. an = 3n - 4C. an = n^2 - 1D. an = 2n5. 若sin(α) = 0.6,求cos(α)的值(结果保留一位小数)。

A. 0.8B. -0.8C. 0.5D. -0.56. 计算定积分∫_{0}^{1} x^2 dx的结果。

A. 1/3B. 1/2C. 1D. 2/37. 已知向量a=(2,3),b=(-1,2),求向量a与b的点积。

A. -1B. 0C. 1D. 28. 函数f(x)=x^3-6x^2+9x-2在x=2处的导数是:A. -1B. 1C. 3D. 59. 已知曲线y=x^3-3x^2+2x在点(1,0)处的切线斜率是:A. -2B. 1C. 0D. 210. 若方程x^2-6x+8=0有两个相等的实数根,则该方程的判别式Δ的值是:A. 0B. 12C. -12D. 24二、填空题(每空2分,共20分)11. 微分方程dy/dx + 2y = 3x的通解是 y = _______。

12. 若某函数的导数为f'(x)=2x+1,则原函数f(x)= _______。

13. 已知函数f(x)=ln(x),则f''(x)= _______。

14. 曲线y=x^2在点(1,1)处的切线方程是 y = _______。

15. 若向量a=(1,2),b=(3,4),则向量a与b的向量积(叉积)的模长是 _______。

2024年安徽普通专升本高等数学真题试卷及参考答案

2024年安徽普通专升本高等数学真题试卷及参考答案

2024年安徽省普通高校专升本招生考试试题高等数学考试真题还原(以下真题来自学生考试后的回忆,或有部分不准确)一、单项选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、当x →0+时,比sin x 更低阶的无穷小是()A、1-cos xB、3xD、In(1+x )参考答案:C 2、若函数sin ,0()2,=0ln(12),0x x ax f x x x x bx ⎧⎪⎪=⎨⎪+⎪⎩<>,在x =0处连续,其中a ,b 为常数,则()A、22a b ==,B、112a b ==,C、21a b ==,D、122a b ==,参考答案:B 3、已知21sin ()x xf x x x +=+,则()A、0()x f x =是的可去间断点,1()x f x =-是的无穷间断点B、0()x f x =是的可去间断点,1()x f x =-是的跳跃间断点C、0()x f x =是的跳跃间断点,1()x f x =-是的无穷间断点D、0()x f x =是的无穷间断点,1()x f x =-是的可去间断点参考答案:B4、设函数()f x 在[,b]a 上连续,在(,b)a 上可导,且()()f a f b >,则在(,b)a 内至少存在一点ξ,使得()A、'()f ξ<0B、'()f ξ>0C、'()=f ξ0D、'()f ξ不存在参考答案:A5、已知函数()x f x xe -=,则()A、()f x 在(1),-∞内单调减少B、()f x 在(1)+,∞内单调增加C、()f x 在1x =处取得极大值D、()f x 在1x =处取得极小值参考答案:C6、若函数4cos y x =,则dy =()A、3424sin x x dxB、3424sin x x dx -C、2422sin x x dx D、2422sin x x dx -参考答案:D7、已知2x 是()f x 的一个原函数,则2(1)fxf x dx -=()A、22x C -+B、-22x C-+C、222x C -+D、222x C--+参考答案;B8、下列广义积分收敛的是()A、143dx e xin x+⎰∞B、1dxe xinx +⎰∞C、123e xin x+⎰∞D、inx dxe x +⎰∞参考答案:A9、函数2ln z x y x =+在点(1,1)处的全微分(1,1)dz =()A、3dx dy +B、3dx dy+C、2dx dy +D、2dx dy+参考答案:A10、设n 阶方阵A 满足2,A A A E =且≠,其中E 为n 阶单位矩阵,则()A、A 是零矩阵B、齐次线性方程组0AX =只有零解C、A 是可逆矩阵D、A 的秩小于n参考答案:D 11、设随机事件A 与B 互不相容,则()A、(AB)0P =B、(A B)0P =C、(AUB)1P =D、(AB)1P =参考答案:D 12、设随机变量X 的概率密度函数2(1)4()x f x +-=其中()x -∞<<+∞,且{}{}P X c P X c ≥=≤,则常数C=()A、-2B、2C、-1D、1参考答案:C 二、填空题(本大题共6小题,每小题4分,共24分)13、函数323y x x =-在拐点处的切线方程为_____________参考答案:31y x =-+14、由曲线y e x =,直线1,0,0x x y =-==,所围成的封闭图形绕x 轴旋转所形成的旋转体体积参考答案:212)e --π(15、已知(,)z f x y =由方程221x t z Inz y e dt ++=⎰确定,则z x∂∂=_____________参考答案:21xze z +16、已知113122023x-=,则x =_____________参考答案:-117、同时投两个质地均匀的骰子,则两个骰子点数和为7的概率为_____________参考答案:1618、已知13X ~B(3,),则{x }p <D(X)=_____________参考答案:827三、计算题(本大题共7小题,共78分,计算应写出必要的计算步骤)19、2x →参考答案:120、求解不定积分2ln(1)d x x x +⎰参考答案:332111ln |1|c 33111ln()963x x x x x x ++++-+-21、求解:D xd σ⎰⎰,其中积分区域D 由曲线2y x =,直线2y x =-,和0y =所围成的封闭图形参考答案:111222、已知123,,a a a 线性无关,112321233123===a a a a a a a a a βββ+--+--,,,证明:向量组123βββ,,线性无关参考答案:存在一组常数123,,k k k ,使得1122330k k k βββ++=,证明:123,,k k k 全为零即可23、某工地拟建造截面为矩形加半圆的通风口,已知截面面积为2平方米时,则底长x 为多少米时,截面的周长最短。

专升本试题及答案高数

专升本试题及答案高数

专升本试题及答案高数一、选择题(每题2分,共20分)1. 函数f(x)=x^2-2x+3在区间[0,3]上的最大值是()。

A. 2B. 3C. 4D. 5答案:C2. 设函数f(x)=x^3-3x^2+2x+1,求f'(x)的值。

A. 3x^2-6x+2B. x^2-6x+1C. 3x^2-9x+2D. x^3-9x^2+2答案:C3. 曲线y=x^2与直线x=2所围成的图形的面积是()。

A. 2B. 4C. 8D. 16答案:C4. 已知等差数列{an}的前n项和为S_n=n^2,求a_1的值。

A. 0B. 1C. 2D. 3答案:A5. 极限lim (n→∞) (1+1/n)^n 的值是()。

A. eB. 1C. 2D. 3答案:A6. 函数y=sin(x)的周期是()。

A. πB. 2πC. π/2D. 4π答案:B7. 微分方程dy/dx + y = x的通解是()。

A. y = e^x - x/eB. y = e^x + xC. y = e^(-x) - x/eD. y =e^(-x) + x答案:D8. 曲线y=x^3-6x^2+11x-6在点(1,4)处的切线斜率是()。

A. -2B. 0C. 2D. 4答案:C9. 函数f(x)=x^3-3x^2+2x+1在x=1处的导数值是()。

A. -2B. 0C. 2D. 4答案:A10. 已知函数f(x)=x^2+2x+1,求f''(x)的值。

A. 2x+2B. 2x+4C. 4x+2D. 4x+4答案:B二、填空题(每题2分,共10分)1. 函数f(x)=x^2+1在x=-1处的导数值是____。

答案:22. 函数f(x)=ln(x)的原函数是____。

答案:xln(x)-x+C3. 曲线y=x^2与直线y=4x-5平行的切点坐标是____。

答案:(5,25)4. 函数y=x^3-6x^2+11x-6的极小值点是____。

(word完整版)专升本高等数学习题集及答案

(word完整版)专升本高等数学习题集及答案

第一章 函数一、选择题1. 下列函数中,【 C 】不是奇函数A. x x y +=tanB. y x =C. )1()1(-⋅+=x x yD. x xy 2sin 2⋅=2. 下列各组中,函数)(x f 与)(x g 一样的是【 】A. 33)(,)(x x g x x f == B.x x x g x f 22tan sec )(,1)(-== C. 11)(,1)(2+-=-=x x x g x x f D. 2ln )(,ln 2)(x x g x x f ==3. 下列函数中,在定义域内是单调增加、有界的函数是【 】A. +arctan y x x =B. cos y x =C. arcsin y x =D. sin y x x =⋅4. 下列函数中,定义域是[,+]-∞∞,且是单调递增的是【 】A. arcsin y x =B. arccos y x =C. arctan y x =D. arccot y x = 5. 函数arctan y x =的定义域是【 】A. (0,)πB. (,)22ππ-C. [,]22ππ-D. (,+)-∞∞6. 下列函数中,定义域为[1,1]-,且是单调减少的函数是【 】A. arcsin y x =B. arccos y x =C. arctan y x =D. arccot y x = 7. 已知函数arcsin(1)y x =+,则函数的定义域是【 】A. (,)-∞+∞B. [1,1]-C. (,)ππ-D. [2,0]- 8. 已知函数arcsin(1)y x =+,则函数的定义域是【 】A. (,)-∞+∞B. [1,1]-C. (,)ππ-D. [2,0]-9. 下列各组函数中,【 A 】是相同的函数A. 2()ln f x x =和 ()2ln g x x =B. ()f x x =和()g x =C. ()f x x =和()2g x = D. ()sin f x x =和()arcsin g x x = 10. 设下列函数在其定义域内是增函数的是【 】A. ()cos f x x =B. ()arccos f x x =C. ()tan f x x =D. ()arctan f x x = 11. 反正切函数arctan y x =的定义域是【 】A. (,)22ππ-B. (0,)πC. (,)-∞+∞D. [1,1]-12. 下列函数是奇函数的是【 】A. arcsin y x x =B. arccos y x x =C. arccot y x x =D. 2arctan y x x = 13. 函数53sin ln x y =的复合过程为【 A 】A.x w w v v u u y sin ,,ln ,35==== B.x u u y sin ln ,53== C.x u u y sin ,ln 53== D.x v v u u y sin ,ln ,35===二、填空题1. 函数5arctan 5arcsin x x y +=的定义域是___________.2.()arcsin3xf x =的定义域为 ___________.3. 函数1()arcsin3x f x +=的定义域为 ___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学试题及答案
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)
(x)=x-1
,则
[]ϕ=f (x)( )
....A B C D x-2x+22-x x+2 ln
ln ln ln x+2x-2x+22-x
2.()0
2lim
1cos t t x
x e e dt
x
-→+-=-⎰( )
A .0
B .1
C .-1
D .∞
3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( )
.lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆=
4.设函数,1
31,1
x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )
A.不连续
B.连续但左、右导数不存在
C.连续但
不可导 D. 可导
5.设C +⎰2
-x xf(x)dx=e ,则f(x)=( )
2
2
2
2
-x -x -x -x A.xe B.-xe C.2e D.-2e
二、填空题(本大题共10小题,每空3分,共30分) 请在每小题的空格中填上正确答案。

错填、不填均无分。

6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-1
4
)的定义域是__________.
7.()()2lim 1_________n n a aq aq aq q →∞
+++
+<=
8.arctan lim _________x x x
→∞
=
9.已知某产品产量为g 时,总成本是2
g C(g)=9+800
,则生产100
件产品时的边际成本100__g ==MC
10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.
11.函数3229129y x x x =-+-的单调减少区间是___________.
12.微分方程3
'1xy y x -=+的通解是___________. 13.

2ln 2
,6
a a π
=
=⎰
则___________.
14.设2
cos x
z y
=
则dz= _______. 15
设{}
2(,)01,01y
D
D x y x y xe
dxdy -=≤≤≤≤=⎰⎰,则_____________.
三、计算题(一)(本大题共5小题,每小题5分,共25分) 16.设1x
y x ⎛⎫
=
⎪⎝⎭
,求dy. 17.求极限0ln cot lim ln x x x +→ 18.求不定积分
.
19.计算定积分I=
.⎰
20.设方程2z
x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。

四、计算题(二)(本大题共3小题,每小题7分,共21分)
21.要做一个容积为v 的圆柱形容器,问此圆柱形的底面半径r 和高h 分别为多少时,所用材料最省?
22.计算定积分20
sin x xdx π

23.将二次积分⎰⎰
π
π=0
x
2
dy y
y sin dx I 化为先对x 积分的二次积分并计算其值。

五、应用题(本题9分) 24.已知曲线2
y x =,求
(1)曲线上当x=1时的切线方程;
(2)求曲线2
y x =与此切线及x 轴所围成的平面图形的面积,以及
其绕x 轴旋转而成的旋转体的体积x V .
六、证明题(本题5分)
25.证明:当x>0时
,ln(1 x x>
参考答案
一、单项选择题(本大题共5小题,每小题2分,共10分)1.答案:B
2.答案:A
3.答案:A
4.答案:C
5.答案:D
二、填空题(本大题共10小题,每空3分,共30分)
6.答案:
13
, 44⎡⎤⎢⎥⎣⎦
7.答案:
1a q -
8.答案:0
9.答案:1
4
10
11.答案:(1,2)
12.答案:
3
1
2
x
Cx
-+
13.答案:ln2
a=
14.答案:
2
1cos
sin2
x
xdx dy
y y
⎛⎫
-+

⎝⎭
15.答案:()2
1
1
4
e-
-
三、计算题(一)(本大题共5小题,每小题5分,共25分)
16. 答案:()
1
ln1
x
x dx
x
⎛⎫
-+ ⎪
⎝⎭
17.答案:-1
18
C
19. 答案:2
4
a
π
20. 答案:
2 ''
x y
z z 22x
Z Z
2e2e
xy z
x x
-
==
--

四、计算题(二)(本大题共3小题,每小题7分,共21分)
21
.答案:
002
V
r h
r
π
===
22.答案:
2 4π
23. 答案:1
五、应用题(本题9分)
24. 答案:(1)y=2x-1(2)
1
12

30
π
(2)
所求面积()
1
3
12
2
1121
(1
24312
y
S dy y y
⎡⎤
+
==+-=
⎢⎥
⎣⎦

所求体积()
12
22
11
1
325630
x
V x dx
πππ
ππ
=-⋅⋅⋅=-=

六、证明题(本题5分)25.证明:
()ln(1
'()ln(
ln(
ln(
1
'()ln(0
f x x x
f x x
x
x
x
x
f x x
=
∴=+
=+
=+
>
∴>
∴=>
故当0
x>时()
f x单调递增,则()(0),
f x f
>即
ln(1
x x>。

相关文档
最新文档