公开课幂的乘方课件_人教新课标版27页PPT
合集下载
幂的乘方公开课课件
要求
学生需要认真思考,积极回答问题,通过思考题的解答进一步巩固 所学知识。
THANKS
感谢观看
04
归纳小结
Chapter
回顾知识点
回顾幂、底数、指数的概念和性质。
再次强调幂的乘方运算法则。
总结公式和法则
01
总结幂的乘方运算法则:$(a^m)^n=a^{mn}$。
02
强调公式和法则的变形及应用。
强调重点和难点
01
强调幂的乘方运算法则的掌握和 应用是本节课的重点。
02
指出如何正确理解和应用幂的乘 方运算法则是本节课的难点。
一题多解
鼓励学生尝试多种解题方 法,培养他们的思维能力 和创新能力。
拓展练习
竞赛题目
探究性问题
引入适合学生水平的数学竞赛题目, 挑战学生的高阶思维和创新能力。
设计一些需要学生自主探究的问题, 培养学生的自主学习能力和探究精神 。
应用拓展
结合实际生活,设计一些与幂的乘方 相关的应用问题,引导学生将知识应 用到实际生活中。
基础运算
通过简单的幂的乘方运算 ,让学生熟悉和掌握基本 的运算方法。
错误纠正
针对学生容易出错的点进 行重点讲解,通过纠正错 误,加深学生对知识点的 理解。
进阶练习
综合运用
通过较为复杂的数学问题 ,引导学生综合运用幂的 乘方的知识,解决实际问 题。
Байду номын сангаас
多样化问题
设计不同类型的问题,包 括选择题、填空题、判断 题等,让学生适应不同的 问题形式。
公式:$(a^m)^n = a^{mn}$
深入理解幂的乘方法则
通过具体例子和图形来深入讲解幂的乘方法则的原理和 意义。
学生需要认真思考,积极回答问题,通过思考题的解答进一步巩固 所学知识。
THANKS
感谢观看
04
归纳小结
Chapter
回顾知识点
回顾幂、底数、指数的概念和性质。
再次强调幂的乘方运算法则。
总结公式和法则
01
总结幂的乘方运算法则:$(a^m)^n=a^{mn}$。
02
强调公式和法则的变形及应用。
强调重点和难点
01
强调幂的乘方运算法则的掌握和 应用是本节课的重点。
02
指出如何正确理解和应用幂的乘 方运算法则是本节课的难点。
一题多解
鼓励学生尝试多种解题方 法,培养他们的思维能力 和创新能力。
拓展练习
竞赛题目
探究性问题
引入适合学生水平的数学竞赛题目, 挑战学生的高阶思维和创新能力。
设计一些需要学生自主探究的问题, 培养学生的自主学习能力和探究精神 。
应用拓展
结合实际生活,设计一些与幂的乘方 相关的应用问题,引导学生将知识应 用到实际生活中。
基础运算
通过简单的幂的乘方运算 ,让学生熟悉和掌握基本 的运算方法。
错误纠正
针对学生容易出错的点进 行重点讲解,通过纠正错 误,加深学生对知识点的 理解。
进阶练习
综合运用
通过较为复杂的数学问题 ,引导学生综合运用幂的 乘方的知识,解决实际问 题。
Байду номын сангаас
多样化问题
设计不同类型的问题,包 括选择题、填空题、判断 题等,让学生适应不同的 问题形式。
公式:$(a^m)^n = a^{mn}$
深入理解幂的乘方法则
通过具体例子和图形来深入讲解幂的乘方法则的原理和 意义。
公开课幂的乘方课件_人教新课标版.ppt
• 10、Life is measured by thought and action, not by time. ——Lubbock 衡量生命的尺度是思想和行为,而不是时间。8.5.20208.5.202011:0311:0311:03:1011:03:10
• 11、To make a lasting marriage we have to overcome self-centeredness.要使婚姻长久,就需克服自我中心意识。Wednesday, August 5, 2020August 20Wednesday, August 5, 20208/5/2020
• •
THE END 8、For man is man and master of his fate.----Tennyson人就是人,是自己命运的主人11:0311:03:108.5.2020Wednesday, August 5, 2020
9、When success comes in the door, it seems, love often goes out the window.-----Joyce Brothers成功来到门前时,爱情往往就走出了窗外。 11:038.5.202011:038.5.202011:0311:03:108.5.202011:038.5.2020
14.1.2 幂的乘方
1.直线和圆的位置关系有三种(从直线与圆 公共点的个数)
2.用图形表示如下:
.o
l
相离
切 点
.o
.
. ..o
l
l
相切
相交
切
割
线
线
学习目标
1.使学生经历探索幂的乘方的过程, 掌握幂的乘方的运算法则。
幂的乘方ppt课件
解: (1) (102)3 1023106.
(2) (b5)5 b55 b25.
(3) (an)3 an3 a3n.
(4) (x2)mx2m x2m.
(5) (y2)3·y y23·y y6·y =y7.
(6) 2(a2)6 -(a3)4
=2a2×6 -a3×4
=2a12 -a12
(am)n = amn (m,n 都是正整数).
幂
的
意
义
底数 不变 , 指数 相乘
.
同底数幂乘法的运算性质:
am·an=am+n (m,n 都是正整数).
底数 不变 , 指数 相加 .
谢谢指导
14.1.2 幂的乘方
复习回顾
同底数幂乘法的运算性质是什么?
同底数幂相乘,底数不变,指数相加.
mn
(m,n都是正整数).
a m a n =a
新课导入
地球、木星、太阳可以近似地看做是球体. 木星、太阳的半径分别约是地球的
103倍和102倍,它们的体积分别约是地球的多少倍?
V球=
4 3
πr
3
103倍
,
其中V是球的体积、
r是球的半径.
(102)3倍
探究新知
活动1:探索(34 )2 等于多少?
提示:根据幂的意义和同底数幂的乘法的运算性质进行计算
(34 )2 = 34 × 34 = 34+4 = 38
.
即
4 2
(3 ) = 38
4
探究新知
活动2:根据提示,计算下列各式.
2)
8)
2)
2)
2)
(
(
(
(
(
人教版数学八年级上册..幂的乘方课件ppt课堂课件
人教版数学八年级上册14.1.2幂的乘 方课件 人教版数学八年级上册14.1.2幂的乘 方课件
人教版数学八年级上册14.1.2幂的乘 方课件
思 考 14.1.2
幂的乘方
➢问题:一种正方体的棱长为104,则它的体积是
多少?(用幂的形式表示)
( 1 0 4 )3
解:根据乘方的意义可知
怎样计怎算样呢列?(1式0 4?)3 104 104 1是0幂4 的形
n个am n个m
amm m
= amn =右边
∴ (am)n = amn(m、n都是正整数)
人教版数学八年级上册14.1.2幂的乘 方课件
人教版数学八年级上册14.1.2幂的乘 方课件
归纳
(am)n =
amn
幂的乘方请的你我尝们法试可用以则文直字接概利括 这用个它结进论行.计算.
(m、n都是正整数)
(3)(a m )3 =_a_m___a_m___a_m__a_m__m__m =a( 3m )
(m是正整数)
人教版数学八年级上册14.1.2幂的乘 方课件
人教版数学八年级上册14.1.2幂的乘 方课件
思
考
14.1.2 幂的乘方
观察下面结论,等式左右两边的底数、指 数有什么联系?
(33)2=36
(a4)3 =a12
D.4
人教版数学八年级上册14.1.2幂的乘 方课件
人教版数学八年级上册14.1.2幂的乘 方课件
小
结
14.1.2 幂的乘方
我们学到 了什么?
知识 方法
幂的乘方, 底数不变,指数相乘.
(a ) =a m n mn(m、n都是正整数)
特殊→一般→特殊”
例子 公式 应用
例如
人教版数学八年级上册14.1.2幂的乘 方课件
思 考 14.1.2
幂的乘方
➢问题:一种正方体的棱长为104,则它的体积是
多少?(用幂的形式表示)
( 1 0 4 )3
解:根据乘方的意义可知
怎样计怎算样呢列?(1式0 4?)3 104 104 1是0幂4 的形
n个am n个m
amm m
= amn =右边
∴ (am)n = amn(m、n都是正整数)
人教版数学八年级上册14.1.2幂的乘 方课件
人教版数学八年级上册14.1.2幂的乘 方课件
归纳
(am)n =
amn
幂的乘方请的你我尝们法试可用以则文直字接概利括 这用个它结进论行.计算.
(m、n都是正整数)
(3)(a m )3 =_a_m___a_m___a_m__a_m__m__m =a( 3m )
(m是正整数)
人教版数学八年级上册14.1.2幂的乘 方课件
人教版数学八年级上册14.1.2幂的乘 方课件
思
考
14.1.2 幂的乘方
观察下面结论,等式左右两边的底数、指 数有什么联系?
(33)2=36
(a4)3 =a12
D.4
人教版数学八年级上册14.1.2幂的乘 方课件
人教版数学八年级上册14.1.2幂的乘 方课件
小
结
14.1.2 幂的乘方
我们学到 了什么?
知识 方法
幂的乘方, 底数不变,指数相乘.
(a ) =a m n mn(m、n都是正整数)
特殊→一般→特殊”
例子 公式 应用
例如
幂的乘方课件
THANK YOU
感谢聆听
加密和安全
在加密和安全领域,幂的乘方 可以用来实现一些加密算法和 安全协议,例如RSA算法。
数据压缩
在数据压缩领域,幂的乘方可 以用来实现数据压缩和解压缩 ,例如在JPEG图像压缩中。
04
幂的乘方的扩展知识
幂的性质
幂的性质1
$a^{m^n} = (a^m)^n$
幂的性质2
$(a^m)^n = a^{mn}$
总结词
幂的乘方与指数的减法运算规则可以用于调整幂的大小和 方向。
总结词
幂的乘方与指数的减法运算规则适用于任何实数和正整数 。
详细描述
通过使用幂的乘方与指数的减法运算规则,可以在不改变 底数的情况下调整幂的大小和方向,从而在数学分析和实 际问题中实现不同的目的。
03
幂的乘方的应用
在数学中的应用
简化复杂数学表达式
幂的运算法则2
幂的除法法则:$a^{m/n} = (a^m)^{1/n}$(其中n为正整 数)
幂的运算法则3
同底数幂的乘法法则:$a^m times a^n = a^{m+n}$(其 中a不等于0)
幂的运算法则4
同底数幂的除法法则: $frac{a^m}{a^n} = a^{mn}$(其中a不等于0)
02
幂的乘方的运算规则
幂的乘方与指数的乘法运算规则
总结词
当底数相同时,幂的乘方可以通过指数相乘来计算。
详细描述
幂的乘方运算中,如果两个幂的底数相同,则它们的指 数可以相乘。例如,(a^m)^n = a^(m*n)。
总结词
幂的乘方运算中,当底数相同时,指数相乘时遵循同底 数幂的乘法法则。
详细描述
幂的乘方课件新人教版八年级上公开课ppt
探究
根据乘方的意义及同底数幂的乘法填 空,看看计算的结果有什么规律:
• (32)3=32×32×32=3( ); • (a2)3=a2×a2×a2=a ( ). (1)(am)3=am·am·am=a( ) (m是正整数).
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
探究
1、【(32)3】4 2、【(a3)4】3
解:1、 【(32)3】4
2、 【(a3)4】3
=(32×3)4
=(a3×4)3
=32×3×4
=a3×4×3
=324
=a36
变式1:
则【(am)n】p = amnp
活动4 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能
底数不变,指数相加。
幂的乘方的运算性质: (am)n = amn ( m,n 都是正整数 ).
底数 不变,指数相乘。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
1. 已知53n=25,求:n的值. 2. 已知3×9n=37,求:n的值.
计算
(1) (xn)5
(2)(24)3
(3) [(xy)3] 3m+1 (4) [(x+y)3 ] 2
解:(1) (xn)5 = x5n (2) (24)3 =24×3=212 (3) [ (xy)3 ]3m+1 = (xy)3 ·(3m+1)
=(xy)9m+3 (4) [(x+y)3 ] 2 =(x+y)3×2=(x+y)6
根据乘方的意义及同底数幂的乘法填 空,看看计算的结果有什么规律:
• (32)3=32×32×32=3( ); • (a2)3=a2×a2×a2=a ( ). (1)(am)3=am·am·am=a( ) (m是正整数).
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
探究
1、【(32)3】4 2、【(a3)4】3
解:1、 【(32)3】4
2、 【(a3)4】3
=(32×3)4
=(a3×4)3
=32×3×4
=a3×4×3
=324
=a36
变式1:
则【(am)n】p = amnp
活动4 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能
底数不变,指数相加。
幂的乘方的运算性质: (am)n = amn ( m,n 都是正整数 ).
底数 不变,指数相乘。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
1. 已知53n=25,求:n的值. 2. 已知3×9n=37,求:n的值.
计算
(1) (xn)5
(2)(24)3
(3) [(xy)3] 3m+1 (4) [(x+y)3 ] 2
解:(1) (xn)5 = x5n (2) (24)3 =24×3=212 (3) [ (xy)3 ]3m+1 = (xy)3 ·(3m+1)
=(xy)9m+3 (4) [(x+y)3 ] 2 =(x+y)3×2=(x+y)6
幂的乘方课件ppt(共19张PPT)
优生必做! 应用提高、拓展创新 问题 如果甲球的半径是乙球的n倍,那 么甲球的体积是乙球的n 3 倍.地球、木星、太 阳可以近似地看做是球体.木星、太阳的半径 分别约是地球的10倍和10 2 倍,它们的体积分 别约是地球的多少倍?
)m (m为正整数).
2.填空:
(1) a6y3=( )3;
(2)81x4y10=( )2 ;
(3)若(a3ym)2=any8, 则m=
, n=
;
;
1 2004 (4) ) = 3 (5) 28×55= .
32004×(-
拓展延伸
(1)0.125
a b
2005
(8)
2006
(2)若10 2,10 3, 求10
a
mn
(a ) (a )
m n
n m
幂的乘方法则顺口溜:
幂乘方,要牢记, 底不变,指数积。
作业
拓展训练
幂的乘方法则的逆用 mn m n
a
(a ) (a )
n m
1、幂的乘方的逆运算:
(1)x13·7=x(2 )=( x4 )5=( x5 )4=( x2 )10; x
0
(2)a2m =( am )2 =( a2
幂的乘方的运算公式
你能用语言叙述这个 结论吗?
(a ) a
m n
mn
(m、n都是正整数)
幂的乘方,底数不变,指数相乘.
在幂的乘方运算中,指数运算降了一级,也就是 多重乘方也具有这一性质.如 m n p mn p 将幂的乘方运算转化为指数的乘法运算,使问题简 [( a ) ] a (其中 m、n、p都是正整数).
14.1.2 幂的乘方
反馈一:
《幂的乘方》课件
积的乘方:(a*b)^m = a^m * b^m
单击添加标题
幂的乘方与积的乘方混合 运算:(a^m * b^n)^p
= a^(mp) * b^(np)
单击添加标题
幂的乘方与积的乘方运算 法则:a^(m+n) = a^m
* a^n,(a*b)^m = a^m * b^m,(a^m * b^n)^p = a^(mp) *
PPT,a click to unlimited possibilities
01 单 击 添 加 目 录 项 标 题 02 幂 的 定 义 和 性 质 03 幂 的 乘 方 规 则 04 幂 的 乘 方 运 算 05 幂 的 乘 方 与 积 的 乘 方 06 幂 的 乘 方 运 算 注 意 事 项
化学反应速率: 幂的乘方用于描 述化学反应速率
化学反应平衡: 幂的乘方用于描 述化学反应平衡
化学反应热力学: 幂的乘方用于描 述化学反应热力 学
化学反应动力学: 幂的乘方用于描 述化学反应动力 学
b^(np)
底数不能为0,否则运算无意义 底数可以为负数,但结果可能为负数 底数可以为分数,但结果可能为分数 底数可以为无理数,但结果可能为无理数
指数运算中,底数不能为0,否则无意义 指数运算中,指数可以为任何实数,包括负数 指数运算中,指数为负数时,底数必须大于0 指数运算中,指数为0时,结果等于1,无论底数是多少
幂的除法:a^m / a^n = a^(mn)
幂的乘方规则: a^m * a^n =
a^(m+n)
推导过程:设 a^m = b, a^n = c,则 a^m * a^n =
b*c= a^(m+n)
证明:通过数 学归纳法证明
应用:在数学、 物理、工程等 领域广泛应用
单击添加标题
幂的乘方与积的乘方混合 运算:(a^m * b^n)^p
= a^(mp) * b^(np)
单击添加标题
幂的乘方与积的乘方运算 法则:a^(m+n) = a^m
* a^n,(a*b)^m = a^m * b^m,(a^m * b^n)^p = a^(mp) *
PPT,a click to unlimited possibilities
01 单 击 添 加 目 录 项 标 题 02 幂 的 定 义 和 性 质 03 幂 的 乘 方 规 则 04 幂 的 乘 方 运 算 05 幂 的 乘 方 与 积 的 乘 方 06 幂 的 乘 方 运 算 注 意 事 项
化学反应速率: 幂的乘方用于描 述化学反应速率
化学反应平衡: 幂的乘方用于描 述化学反应平衡
化学反应热力学: 幂的乘方用于描 述化学反应热力 学
化学反应动力学: 幂的乘方用于描 述化学反应动力 学
b^(np)
底数不能为0,否则运算无意义 底数可以为负数,但结果可能为负数 底数可以为分数,但结果可能为分数 底数可以为无理数,但结果可能为无理数
指数运算中,底数不能为0,否则无意义 指数运算中,指数可以为任何实数,包括负数 指数运算中,指数为负数时,底数必须大于0 指数运算中,指数为0时,结果等于1,无论底数是多少
幂的除法:a^m / a^n = a^(mn)
幂的乘方规则: a^m * a^n =
a^(m+n)
推导过程:设 a^m = b, a^n = c,则 a^m * a^n =
b*c= a^(m+n)
证明:通过数 学归纳法证明
应用:在数学、 物理、工程等 领域广泛应用
人教版数学幂的乘方ppt
14.1.2 幂的乘方
1.口述同底数幂的乘法法则
am ·an = am+n (m、n都是正整数).
同底数幂相乘,底数不变,指数相加.
2.计算:
(1)
(2)
(3)
(4)
如果这个正方体的棱长是 42 来自m,那么它的体积是 (42)3 cm3.
探究
(42)3 42 42 42 46
(a2 )3 a2 a2 a2 a6 (am )3 am am am a3m
[(am )n ]p amn p (其中 m、n、p都是正整数)
14.1.2 幂的乘方
作 业:
1、课时练
•
1.阅读说明文,首先要整体感知文章 的内容 ,把握 说明对 象,能 区分说 明对象 分为具 体事物 和抽象 事理两 类;其 次是分 析文章 内容, 把握说 明对象 的特征 。事物 性说明 文的特 征多为 外部特 征,事 理性说 明文的 特征多 为内在 特征。
•
10.剪纸艺术传达着人们美好的情感, 美化着 人们的 生活, 而且能 够填补 创作者 精神上 的空缺 ,使沉 浸于艺 术中的 人们忘 掉一切 烦恼。 或许这 便是它 能在民 间顽强 地生长 ,延续 至今而 生命力 旺盛不 衰的原 因吧。
感谢观看,欢迎指导!
课堂例题
例3、已知3×9n=37,求n的值.
例4、设n为正整数,且x2n=2,求9(x3n)2的值。
下列各式中,与x5m+1相等的是( c )
(A)(x5)m+1 (B)(xm+1)5 (C) x·(x5)m (D) x·x5·xm
x14不可以写成( C )
(A)x5·(x3)3 (B) (-x) ·(-x2) ·(-x3) ·(-x8) (C)(x7)7 (D) x3·x4·x5·x2
1.口述同底数幂的乘法法则
am ·an = am+n (m、n都是正整数).
同底数幂相乘,底数不变,指数相加.
2.计算:
(1)
(2)
(3)
(4)
如果这个正方体的棱长是 42 来自m,那么它的体积是 (42)3 cm3.
探究
(42)3 42 42 42 46
(a2 )3 a2 a2 a2 a6 (am )3 am am am a3m
[(am )n ]p amn p (其中 m、n、p都是正整数)
14.1.2 幂的乘方
作 业:
1、课时练
•
1.阅读说明文,首先要整体感知文章 的内容 ,把握 说明对 象,能 区分说 明对象 分为具 体事物 和抽象 事理两 类;其 次是分 析文章 内容, 把握说 明对象 的特征 。事物 性说明 文的特 征多为 外部特 征,事 理性说 明文的 特征多 为内在 特征。
•
10.剪纸艺术传达着人们美好的情感, 美化着 人们的 生活, 而且能 够填补 创作者 精神上 的空缺 ,使沉 浸于艺 术中的 人们忘 掉一切 烦恼。 或许这 便是它 能在民 间顽强 地生长 ,延续 至今而 生命力 旺盛不 衰的原 因吧。
感谢观看,欢迎指导!
课堂例题
例3、已知3×9n=37,求n的值.
例4、设n为正整数,且x2n=2,求9(x3n)2的值。
下列各式中,与x5m+1相等的是( c )
(A)(x5)m+1 (B)(xm+1)5 (C) x·(x5)m (D) x·x5·xm
x14不可以写成( C )
(A)x5·(x3)3 (B) (-x) ·(-x2) ·(-x3) ·(-x8) (C)(x7)7 (D) x3·x4·x5·x2
人教版八年级上册数学14.1.2幂的乘方课件(共26张PPT)
∴ 444 355 533. 即 b a c.
1.幂的乘方的法则 语言叙述 幂的乘方,底数不变,指数相乘.
符号叙述 (a m )n a mn (m、n都是正整数).
2.幂的乘方的法则可以逆用.即
amn (am )n (an )m
3.多重乘方也具有这一性质.如
[(am )n ]p amn p (其中 m、n、p都是正整数).
观察各小题左右两边的底数、指数各有 什么关系?
幂的乘方法则: 幂的乘方,底数不变,指数相乘.
(am)n =amn(m ,n 都是正整数).
多重乘方可以重复运用上述法则:
( am)n p =amnp ( m ,n ,p是正整数).
例1 计算: (1)(103)5; (2)(a4)4;
(4)( - x4)3. (5) a2 3
4 1
3
2
2015
2
3
2015
2 3 11
动脑思考,变式训练
例4 若 a=355,b=444,c=533, 比较a、b、c 的大小.
解: ∵ 355 =(35)11=24311, 444 =(44)11=25611, 533 =(53)11 =12511.
能用文字语言概述你发现的积的乘方运算规律吗? 积的乘方,等于把积的每一个因式分别乘方,再 把所得的幂相乘. 当n 是正整数时,三个或三个以上因式的积的乘 方,也具有这一性质吗?
推广:(abc)n =anbncn.
动脑思考,例题解析
例3 计算: (1)(2a)3; (2)(-5b)3;
(3)(xy2)2; (4)(-2x3)4. 5 586 2
1.幂的乘方的法则 语言叙述 幂的乘方,底数不变,指数相乘.
符号叙述 (a m )n a mn (m、n都是正整数).
2.幂的乘方的法则可以逆用.即
amn (am )n (an )m
3.多重乘方也具有这一性质.如
[(am )n ]p amn p (其中 m、n、p都是正整数).
观察各小题左右两边的底数、指数各有 什么关系?
幂的乘方法则: 幂的乘方,底数不变,指数相乘.
(am)n =amn(m ,n 都是正整数).
多重乘方可以重复运用上述法则:
( am)n p =amnp ( m ,n ,p是正整数).
例1 计算: (1)(103)5; (2)(a4)4;
(4)( - x4)3. (5) a2 3
4 1
3
2
2015
2
3
2015
2 3 11
动脑思考,变式训练
例4 若 a=355,b=444,c=533, 比较a、b、c 的大小.
解: ∵ 355 =(35)11=24311, 444 =(44)11=25611, 533 =(53)11 =12511.
能用文字语言概述你发现的积的乘方运算规律吗? 积的乘方,等于把积的每一个因式分别乘方,再 把所得的幂相乘. 当n 是正整数时,三个或三个以上因式的积的乘 方,也具有这一性质吗?
推广:(abc)n =anbncn.
动脑思考,例题解析
例3 计算: (1)(2a)3; (2)(-5b)3;
(3)(xy2)2; (4)(-2x3)4. 5 586 2
人教版八年级上册.. 幂的乘方课件优质PPT
14.1.2 幂的乘方
学习目标
(1)理解幂的乘方,会用这一性质进行 幂的乘方运算.
(2)体验“由特殊到一般,从具体到抽 象”的思想方法,在研究数学问题中 的作用.
回顾与思考
回顾 & 思考☞
乘方的意义:n个aBiblioteka a·a·… ·a=
an
同底数幂的乘法运算法则:
am ·an = am+n (m,n都是正整数)
A. 3a2-a2=2 C. (a2)3·a+a7=2a7
B. (a2)3·a4=a24 D. - (a2)4=a8
2、计算题: (1) (75)2 (3) (a3)m
(2) (-4n)5 (4) (a3)4·a2
人教版八年级上册.. 幂的乘方课件优质PPT
3、若a2n=3,求(a3n)4的值. (选做)
人教版八年级上册.. 幂的乘方课件优质PPT
4. (1)若2x+y=3,则4x·2y= 8 . (2)已知3m·9m·27m·81m=330,求m的值. 解:3m·32m·33m·34m=330 310m=330 m=3
人教版八年级上册.. 幂的乘方课件优质PPT
人教版八年级上册.. 幂的乘方课件优质PPT
2. 64表示__4____个_6______相乘.
(62)4表示__4_____个__62_____相乘.
a3 表 示 __3_______ 个 _a_______ 相 乘.
(a2)3表示__3_____个__a_2 _____相乘
.
n
am
(am猜)n表想示:___(___a个m_)__n_=_?__相乘.
拓展与提高:
1.如果am=2, an=3,那么a3m-a2n和
学习目标
(1)理解幂的乘方,会用这一性质进行 幂的乘方运算.
(2)体验“由特殊到一般,从具体到抽 象”的思想方法,在研究数学问题中 的作用.
回顾与思考
回顾 & 思考☞
乘方的意义:n个aBiblioteka a·a·… ·a=
an
同底数幂的乘法运算法则:
am ·an = am+n (m,n都是正整数)
A. 3a2-a2=2 C. (a2)3·a+a7=2a7
B. (a2)3·a4=a24 D. - (a2)4=a8
2、计算题: (1) (75)2 (3) (a3)m
(2) (-4n)5 (4) (a3)4·a2
人教版八年级上册.. 幂的乘方课件优质PPT
3、若a2n=3,求(a3n)4的值. (选做)
人教版八年级上册.. 幂的乘方课件优质PPT
4. (1)若2x+y=3,则4x·2y= 8 . (2)已知3m·9m·27m·81m=330,求m的值. 解:3m·32m·33m·34m=330 310m=330 m=3
人教版八年级上册.. 幂的乘方课件优质PPT
人教版八年级上册.. 幂的乘方课件优质PPT
2. 64表示__4____个_6______相乘.
(62)4表示__4_____个__62_____相乘.
a3 表 示 __3_______ 个 _a_______ 相 乘.
(a2)3表示__3_____个__a_2 _____相乘
.
n
am
(am猜)n表想示:___(___a个m_)__n_=_?__相乘.
拓展与提高:
1.如果am=2, an=3,那么a3m-a2n和