3.6 三角形、梯形的中位线 (1)导学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.6 三角形、梯形的中位线 (1)
学习目标:
知识:1.探索并掌握三角形中位线的概念及性质。
2.会利用三角形中位线的性质解决相关问题。
3.体会转化的思想方法。
能力:在观察、操作、归纳、推理等探究过程中,发展合情推理能力。
情感:在合作、探究过程中,体会成功的喜悦,调动学生学习的积极性。
学习重点:三角形中位线性质的探索及其初步应用。
学习难点:运用转化思想解决有关问题。
一、情境创设:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?
二、探索活动: 1.操作:将一张三角形纸片剪成两部分,
使分成的两部分能拼成一个平行四边 形。(小组讨论)
步骤:(1)剪一个三角形,记为△ABC ;
(2)分别取AB 、AC 的中点D 、E ,连接
DE ; (3)沿DE 将△ABC 剪成两部分并将△ADE 绕点E 旋转180到△CFE 的位置得四边
形BCFD 。(学生继续完成操作)
2.讨论:(1)四边形BCFD 为平行四边形吗?为什么?
(2)线段DE 与线段BC 有怎样的关系,为什么?
3.归纳: 叫做三角形的中位线。
说说三角形中位线与三角形中线的区别:
三角形中位线的性质:
三.典型例题:
例1 如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,四边形EFGH
是平行四边形吗?为什么?
例2 在□ABCD 中,AC 、BD 交于O ,E 、F 、G 、H 分别是AB 、OB 、CD 、OD 的中点。说明:
∠HEF=∠FGH 。
四、巩固练习
1.△ABC 的各边边长为4、6、8,D 、E 、F 分别是AB 、BC 、AC 的中点,则DE= ;
EF= ;FD= 。
A
D E F C B F A O H G D C B E F E
H G D C B A
2.如图,A 、B 两地被建筑物阻隔,为测量A 、B 两地间的距离,在地面上选一点C ,连接CA 、
CB 分别连CA 、CB 的中点D 、E 。
(1)若DE 的长为36m ,求A 、B 两地间的距离。
(2)若D 、E 两点间还有阻隔,
你有什么方法解决?
3.在如图△ABC 中,DE 是△ABC 的中位线,AF 是BC 边上的中线. AF 、DE 互相平分吗?
五、课堂小结:
当 堂 检 测
1.一个三角形的周长为12cm ,则连接这个三角形各边中点形成三角形的周长为 。
2.三角形的三条中位线长分别为3cm 、4cm 、5cm ,则这个三角形的面积为 。
3.顺次连接等腰梯形四边中点得到一个四边形,则此四边形为( )。 A.等腰梯形 B.直角梯形 C.菱形 D.矩形
4.如图△ABC 中,中线BD 、CE 交于O ,F 、G 分别是 OB 、OC 的中点.四边形DEFG 为平行四边形吗?
A E
C F B
D C D
E B A O
F D C
G F B E