反证法证明题

合集下载

2022-2023学年浙教版数学八上期中复习专题3 证明(教师版)

2022-2023学年浙教版数学八上期中复习专题3 证明(教师版)

2022-2023学年浙教版数学八上期中复习专题3 证明一、单选题(每题3分,共30分)1.()用反证法证明命题:“如图,如果AB//CD,AB//EF,那么CD//EF.”证明的第一个步骤是()A.假定CD//EF B.假定CD不平行于EFC.已知AB//EF D.假定AB不平行于EF【答案】B【知识点】反证法【解析】【解答】解:∵结论是CD∥EF,∴当用反证法证明这一命题时,第一步应该是:“假设CD和EF不平行”.故答案为:B.【分析】用反证法证明命题的第一步:通常是假设所证结论不成立,结合结论是“CD∥EF”,即可解答.2.(2022·槐荫模拟)下列各图中,已知∥1=∥2,不能证明AB∥CD的是()A.B.C.D.【答案】B【知识点】平行线的判定【解析】【解答】:A、∵∥1=∥2,∴AB∥CD,该选项不符合题意;B、由∥1=∥2,不能判断AB∥CD,该选项符合题意;C、∵∥1=∥2,∥3=∥2,∴∥1=∥3,∴AB∥CD,该选项不符合题意;D、∵∥1=∥2,∴AB∥CD,该选项不符合题意;故答案为:B.【分析】根据平行线的判定方法逐项判断即可。

3.(2022·武安模拟)定理:三角形的内角和等于180°.已知:△ABC的三个内角为∠A,∠B,∠C.求证:∠A+∠B+∠C=180°.如图1,延长BC到点D,则∠ACD=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).∵∠ACD+∠ACB=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).如图2,过点C作DE∥AB,∵DE∥AB,∠1=∠B(两直线平行,内错角相等),∠2=∠A(两直线平行,内错角相等),又∵∠1+∠ACB+∠2=180°(平角定义),∴∠A+∠ACB+∠B=180°(等量代换).下列说法正确的是()A.证法1采用了从特殊到一般的方法证明了该定理B.证法1用合理的推理证明了该定理C.证法2还需证明其他形状的三角形,该定理的证明过程才完整D.证法2用严谨的推理证明了该定理【答案】D【知识点】推理与论证【解析】【解答】解:三角形外角和性质是建立在三角形内角和定理的基础上的,不能循环证明,故A、B都不符合题意;证法2用严谨的推理证明了该定理,故不需要分三角形的形状,故C不符合题意;D符合题意,故答案为:D.【分析】利用理论与实践结合和根据三角形的平行的性质与平角的定义可以判断作答。

反证法证明题(简单)(可编辑修改word版)

反证法证明题(简单)(可编辑修改word版)

反证法证明题例1. 已知∠A ,∠B ,∠C 为∆ABC 内角.求证:∠A ,∠B ,∠C 中至少有一个不小于60o.证明:假设∆ABC 的三个内角∠A ,∠B ,∠C 都小于60o,即∠A <60o,∠B <60o,∠C <60o,所以∠A +∠B +∠C < 180O,与三角形内角和等于180o矛盾,所以假设不成立,所求证结论成立.例2. 已知a ≠ 0 ,证明x 的方程ax =b 有且只有一个根.证明:由于a ≠ 0 ,因此方程ax =b 至少有一个根x =b .a 假设方程ax =b 至少存在两个根,不妨设两根分别为x1 , x2 且x1 ≠x2 ,则ax1=b, ax2=b ,所以ax1=ax2,所以a(x1-x2 ) = 0 .因为x1 ≠x2 ,所以x1 -x2 ≠ 0 ,所以a = 0 ,与已知a ≠ 0 矛盾,所以假设不成立,所求证结论成立.例3. 已知a3+b3= 2, 求证a +b ≤ 2 .证明:假设a +b > 2 ,则有a > 2 -b ,所以a3> (2 -b)3即a3> 8 -12b + 6b2-b3,所以a3> 8 -12b + 6b2-b3= 6(b -1)2+ 2 .因为6(b -1)2+ 2 ≥ 2所以a3+b3> 2 ,与已知a3+b3= 2 矛盾.所以假设不成立,所求证结论成立.例4. 设{a n}是公比为的等比数列,S n为它的前n 项和.求证:{S n}不是等比数列.证明:假设是{S }等比数列,则S 2=S ⋅S ,n 2 1 32 2 2 2 1 1 1 即 a 2 (1+ q )2 = a ⋅ a (1+ q + q 2 ) .因为等比数列 a 1 ≠ 0 ,所以(1+ q )2 = 1+ q + q 2 即 q = 0 ,与等比数列 q ≠ 0 矛盾, 所以假设不成立,所求证结论成立.例 5. 证明 是无理数.m 证明:假设 是有理数,则存在互为质数的整数 m ,n 使得 =.n所以 m = 2n 即 m 2 = 2n 2 ,所以 m 2 为偶数,所以m 为偶数.所以设 m = 2k (k ∈ N *) ,从而有4k 2 = 2n 2 即 n 2 = 2k 2 .所以n 2 也为偶数,所以 n 为偶数. 与 m ,n 互为质数矛盾.所以假设不成立,所求证 是无理数成立.例 6. 已知直线 a , b 和平面,如果 a ⊄, b ⊂,且 a / /b ,求证a / /。

“反证法”证明问题面面观

“反证法”证明问题面面观

(解题通法)“反证法”证明问题面面观江苏省姜堰中学 张圣官(225500)数学中我们经常会碰到一类证明题,这类题从正面很难直接证明,否定却很简单,反证法就是应这类问题而生的一种证题方法。

例如:已知直线AB,CD 异面,求证直线AC,BD 也为异面直线。

要是从正面来说的话,需要证明直线AC,BD 不同在任何一个平面内,这显然不容易论证清楚;而用反证法,假设直线AC,BD 共面于平面α,则,,,,A C B D αααα∈∈∈∈根据公理1得直线AB,CD 都在平面α内,这与条件已知直线AB,CD 异面产生矛盾,因此原假设不成立,即直线AC,BD 为异面直线。

具体来说,反证法的证题过程包括下面三个步骤:(1)反设——假设命题的结论不成立,即假定原结论的反面为真;(2)归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;(3)存真——由矛盾结果,断定反设不真,从而肯定原结论成立。

牛顿曾经说过:“反证法是数学家最精当的武器之一”。

反证法事实上是一种“以退为进”的证明方法,它是从否定命题的结论出发,通过正确的逻辑推理导出矛盾,从而证明了原命题的正确性的一种重要方法。

直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。

用反证法证明问题时如何经过推理得出矛盾是其中的关键。

一般来说,推得矛盾的方式有以下三种。

产生矛盾方式之一:与题设条件产生矛盾例1.已知函数()f x 在(,)-∞+∞递增。

求证:若()()()()f a f b f a f b +>-+-,则0a b +>。

分析:直接证明有困难,用反证法。

假设0a b +≤,则,a b ba ≤-≤-,因为函数()f x 在(,)-∞+∞递增,所以()(),()()f a fb f b f a ≤-≤-,()()()()f a f b f a f b +≤-+-,这与条件()()()()f a f b f a f b +>-+-产生矛盾。

高一数学直接证明与间接证明试题答案及解析

高一数学直接证明与间接证明试题答案及解析

高一数学直接证明与间接证明试题答案及解析1.用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是()A.a、b至少有一个不为0B.a、b至少有一个为0C.a、b全不为0D.a、b中只有一个为0【答案】A【解析】把要证的结论否定之后,即得所求的反设.解:由于“a、b全为0(a、b∈R)”的否定为:“a、b至少有一个不为0”,故选 A.点评:本题考查用反证法证明数学命题,得到“a、b全为0(a、b∈R)”的否定为:“a、b至少有一个不为0”,是解题的关键.2.“用反证法证明命题“如果x<y,那么x<y”时,假设的内容应该是()A.x=yB.x<yC.x=y且x<yD.x=y或x>y【答案】D【解析】由于用反证法证明命题时,应先假设命题的否定成立,而“x<y”的否定为:“x≥y ”.解:∵用反证法证明命题时,应先假设命题的否定成立,而“x<y”的否定为:“x=y或x >y”,故选D.点评:本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于中档题.3.已知a、b、c是△ABC的三边长,A=,B=,则()A.A>B B.A<B C.A≥B D.A≤B【答案】A【解析】由题意得 c<a+b,故 B==<,变形后再放大,可证小于 A.解:∵a、b、c是△ABC的三边长,∴c<a+b,∴B==<==+<+=A,∴B<A,故选 A.点评:本题考查三角形的边长的性质,用放缩法证明不等式.4.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角A、B、C中有两个直角,不妨设A=B=90°,正确顺序的序号为()A.①②③B.①③②C.②③①D.③①②【答案】D【解析】根据反证法的证法步骤知:第一步反设,假设三角形的三个内角A、B、C中有两个直角,不妨设A=B=90°,正确.第二步得出矛盾:A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;第三步下结论:所以一个三角形中不能有两个直角.从而得出正确选项.解:根据反证法的证法步骤知:假设三角形的三个内角A、B、C中有两个直角,不妨设A=B=90°,正确A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;所以一个三角形中不能有两个直角.故顺序的序号为③①②.故选D.点评:反证法是一种简明实用的数学证题方法,也是一种重要的数学思想.相对于直接证明来讲,反证法是一种间接证法.它是数学学习中一种很重要的证题方法.其实质是运用“正难则反”的策略,从否定结论出发,通过逻辑推理,导出矛盾.5.用反证法证明:“a>b”,应假设为()A.a>b B.a<b C.a=b D.a≤b【答案】D【解析】用反证明法证明,要先假设原命题不成立,即先要否定原命题.解:用反证明法证明,要先假设原命题不成立,即先要否定原命题,故用反证法证明:“a>b”,应假设为“a≤b”,故选D.点评:本题考查反证法的解题过程和证明方法,解题时要认真审题,仔细解答.6.关于综合法和分析法说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.分析法又叫逆推证法或执果索因法D.综合法和分析法都是因果分别互推的两头凑法【答案】D【解析】根据综合法、分析法的定义可得结论.解:根据综合法的定义可得,综合法是执因导果法,是顺推法;根据分析法的定义可得,分析法是执果索因法,是直接证法.故选:D.点评:本题主要考查综合法、分析法的定义,属于基础题.7.某同学证明+<+的过程如下:∵﹣>﹣>0,∴<,∴<,∴+<+,则该学生采用的证明方法是()A.综合法B.比较法C.反证法D.分析法【答案】A【解析】从推理过程(是“执因索果”还是“执果索因”)即可得到答案.解:从推理形式来看,从﹣>﹣>0入手,推出<,继而得到<,最后得到+<+,是“执因索果”,是综合法证明,故选:A.点评:本题考查综合法与分析法,掌握二者的推理形式(“执因索果”为综合法,“执果索因”为分析法)是关键,属于中档题.8.要证:a2+b2﹣1﹣a2b2≤0,只要证明()A.2ab﹣1﹣a2b2≤0B.a2+b2﹣1﹣≤0C.﹣1﹣a2b2≤0D.(a2﹣1)(b2﹣1)≥0【答案】D【解析】将左边因式分解,即可得出结论.解:要证:a2+b2﹣1﹣a2b2≤0,只要证明(a2﹣1)(1﹣b2)≤0,只要证明(a2﹣1)(b2﹣1)≥0.故选:D.点评:综合法(由因导果)证明不等式、分析法(执果索因)证明不等式.9.下面叙述正确的是()A.综合法、分析法是直接证明的方法B.综合法是直接证法、分析法是间接证法C.综合法、分析法所用语气都是肯定的D.综合法、分析法所用语气都是假定的【答案】A【解析】根据综合法、分析法的定义与证题思路,可得结论.解:综合法(由因导果)证明不等式、分析法(执果索因)证明不等式,是直接证明的方法.故选:A.点评:综合法(由因导果)证明不等式、分析法(执果索因)证明不等式.10.求证:+>.证明:因为+和都是正数,所以为了证明+>,只需证明(+)2>()2,展开得5+2>5,即2>0,显然成立,所以不等式+>.上述证明过程应用了()A.综合法B.分析法C.综合法、分析法混合D.间接证法【答案】B【解析】分析法是果索因,基本步骤:要证…只需证…,只需证…,分析法是从求证的不等式出发,找到使不等式成立的充分条件,把证明不等式的问题转化为判定这些充分条件是否具有的问题.解:分析法是果索因,基本步骤:要证…只需证…,只需证…结合证明过程,证明过程应用了分析法.故选:B.点评:解决本题的关键是对分析法的概念要熟悉,搞清分析法证题的理论依据,掌握分析法的证11.下列对分析法表述正确的是;(填上你认为正确的全部序号)①由因导果的推法;②执果索因的推法;③因果分别互推的两头凑法;④逆命题的证明方法.【答案】②【解析】根据分析法的定义可得,分析法是执果索因法.解:根据分析法的定义可得,分析法是执果索因法,是直接证法.故答案为:②.点评:本题主要考查综合法、分析法、反证法的定义,属于基础题.12.命题“对于任意角θ,cos4θ﹣sin4θ=cos2θ”的证明:“cos4θ﹣sin4θ=(cos2θ﹣sin2θ)(cos2θ+sin2θ)=cos2θ﹣sin2θ=cos2θ”过程应用了()A.分析发B.综合法C.综合法、分析法结合使用D.间接证法【答案】B【解析】在推理的过程中使用了因式分解,平方差公式,以及余弦的倍角公式,符合综合法的证明过程.解:在证明过程中使用了大量的公式和结论,有平方差公式,同角的关系式,所以在证明过程中,使用了综合法的证明方法.故选:B.点评:本题主要考查证明方法的选择和判断,比较基础.13.证明不等式的最适合的方法是()A.综合法B.分析法C.间接证法D.合情推理法【答案】B【解析】要证原不等式成立,只要证<,即证9+2<9+2,故只要证<,即证14<18,此种证明方法是分析法.解:要证明不等式,只要证<,即证9+2<9+2,故只要证<,即证14<18.以上证明不等式所用的最适合的方法是分析法.故选B.点评:本题考查的是分析法和综合法,解答此题的关键是熟知比较大小的方法.从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件,分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法.也称为因果分析,属于中档题.14.设()A.都大于2B.至少有一个大于2C.至少有一个不小于2D.至少有一个不大于2【解析】假设:中都小于2,则,但由于=≥2+2+2=6,出现矛盾,从而得出正确答案:中至少有一个不小于2.解:由于=≥2+2+2=6,∴中至少有一个不小于2,故选C.点评:分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法,也称为因果分析,从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”.15.已知函数f(x)=|sinx|的图象与直线y=kx(k>0)有且仅有三个交点,交点的横坐标的最大值为α,.则()A.A>B B.A<BC.A=B D.A与B的大小不确定【答案】C【解析】作出函数f(x)=|sinx|的图象,利用函数f(x)=|sinx|的图象与直线y=kx(k>0)有且仅有三个交点,确定切点坐标,然后利用三角函数的关系即可得到结论.解:作出函数f(x)=|sinx|的图象与直线y=kx(k>0)的图象,如图所示,要使两个函数有且仅有三个交点,则由图象可知,直线在()内与f(x)相切.设切点为A(α,﹣sinα),当x∈()时,f(x)=|sinx|=﹣sinx,此时f'(x)=﹣cosx,x∈().∴﹣cos,即α=tanα,∴==.即A=B.故选:C.点评:本题主要考查三角函数的图象和性质,利用数形结合是解决本题的关键.16.设函数f(x)=,类比课本推导等差数列的前n项和公式的推导方法计算f(﹣5)+f(﹣4)+f(﹣3))+…+f(0))+f(1))+…+f(5)+f(6)的值为()A.B.C.3D.【答案】C【解析】根据课本中推导等差数列前n项和的公式的方法﹣倒序相加法,观察所求式子的特点,应先求f(x)+f(1﹣x)的值.解:∵f(x)=∴f(x)+f(1﹣x)=+=+==,即f(﹣5)+f(6)=,f(﹣4)+f(5)=,f(﹣3)+f(4)=,f(﹣2)+f(3)=,f(﹣1)+f(2)=,f(0)+f(1)=,∴所求的式子值为3 .故选C.点评:本题为规律性的题目,要善于观察式子的特点,并且此题给出了明确的方法,从而降低了本题难度.17.(2014•北京)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【答案】B【解析】分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C 的学生各最多只有1个,继而推得学生的人数.解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.点评:本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.18.(2014•揭阳三模)对于正实数α,Mα为满足下述条件的函数f(x)构成的集合:∀x1,x2∈R且x2>x1,有﹣α(x2﹣x1)<f(x2)﹣f(x1)<α(x2﹣x1).下列结论中正确的是()A.若f(x)∈Mα1,g(x)Mα2,则f(x)•g(x)∈Mα1•α2B.若f(x)∈Mα1,g(x)∈Mα2,且g(x)≠0,则C.若f(x)∈Mα1,g(x)∈Mα2,则f(x)+g(x)∈Mα1+α2D.若f(x)∈Mα1,g(x)∈Mα2,且α1>α2,则f(x)﹣g(x)∈Mα1﹣α2【答案】C【解析】对于﹣α(x2﹣x1)<f(x2)﹣f(x1)<α(x2﹣x1).变形有,令,不妨设f(x)∈Mα1,g(x))∈Mα2,利用不等式的性质可得f(x)+g(x)∈Mα1+α2.从而得出正确答案.解:对于﹣α(x2﹣x1)<f(x2)﹣f(x1)<α(x2﹣x1),即有,令,有﹣α<k<α,不妨设f(x)∈Mα1,g(x))∈Mα2,即有﹣α1<kf<α1,﹣α2<kg<α2,因此有﹣α1﹣α2<kf+kg<α1+α2,因此有f(x)+g(x)∈Mα1+α2.故选C.点评:本题考查的是元素与集合关系的判断、进行简单的合情推理、函数恒成立问题,在能力上主要考查对新信息的理解力及解决问题的能力.19.(2014•枣庄一模)在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:(1)对任意a∈R,a*0=a;(2)对任意a,b∈R,a*b=ab+(a*0)+(b*0).则函数f(x)=(e x)*的最小值为()A.2B.3C.6D.8【答案】B【解析】根据性质,f(x)=(e x)*=1+e x+,利用基本不等式,即可得出结论.解:根据性质,f(x)=(e x)*=1+e x+≥1+2=3,当且仅当e x=时,f(x)=(e x)*的最小值为3.故选:B.点评:本题考查新定义,考查基本不等式的运用,正确理解新定义是关键.20.(2014•泸州一模)一支人数是5的倍数且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人.则这只游行队伍的最少人数是()A.1025B.1035C.1045D.1055【答案】C【解析】由已知可设这只游行队伍的最少人数是n,则n﹣1是2,3,4的公倍数,即12的倍数,且n为5和倍数,进而可得答案.解:设这只游行队伍的最少人数是n∵每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人.∴n﹣1是2,3,4的公倍数,即12的倍数即n﹣1=1008+12k,k∈N则n=1009+12k,k∈N又∵n为5的倍数故当k=3时,1045是满足条件的最少人数故选C点评:本题是典型的“韩信点兵”问题,解答的关键是将问题转化为公倍数问题.。

2019中考数学专题练习-命题与证明反证法(含解析)

2019中考数学专题练习-命题与证明反证法(含解析)

2019备战中考数学专题练习-命题与证明反证法(含解析)一、单选题1.用反证法证明“四边形的四个内角中至少有一个不小于90°”时第一步应假设()A. 四个角中最多有一个角不小于90°B. 四个内角中至少有一个不大于90°C. 四个内角全都小于90°D. 以上都不对2.用反证法证明“若⊙O的半径为r,点P到圆心的距离d<r,则点P在⊙O的内部”首先应假设()A. d≤rB. d≥rC. 点P在⊙O的外部D. 点P在⊙O上或点P在⊙O的外部3.用反证法证明:在一个三角形中至少有一个内角小于或等于60°.证明过程中,可以先()A. 假设三个内角没有一个小于60°的角B. 假设三个内角没有一个等于60°的角C. 假设三个内角没有一个小于或等于60°的角D. 假设三个内角没有一个大于或等于60°的角4.用反证法证明“△ABC的三个内角中至少有一个内角大于或等于60°”,第一步应假设()A. 三角形的三个内角都小于60°B. 三角形的三个内角中至多有一个角大于或等于60°C. 三角形的兰个内角中有两个角大于或等于60°D. 三角形的三个内角都大于或等于60°5.用反证法证明“△ABC中,若∠A>∠B>∠C,则∠A>60°”,第一步应假设()A. ∠A=60°B. ∠A<60°C. ∠A≠60°D. ∠A≤60°6.用反证法证明“一个三角形中至少有两个锐角”时,下列假设正确的是()A. 假设一个三角形中只有一个锐角B. 假设一个三角形中至多有两个锐角C. 假设一个三角形中没有一个锐角D. 假设一个三角形中至少有两个钝角7.对于命题“已知:a∥b,b∥c,求证:a∥c”.如果用反证法,应先假设()A. a不平行bB. b不平行cC. a⊥cD. a不平行c8.用反证法证明命题“钝角三角形中必有一个内角小于45°”时,首先应该假设这个三角形中()A. 有一个内角小于45°B. 每一个内角都小于45°C. 有一个内角大于等于45°D. 每一个内角都大于等于45°9.用反证法证明“若⊙O的半径为r,点P到圆心的距离d<r,则点P在⊙O的内部”首先应假设()A. d≤rB. d≥rC. 点P在⊙O的外部D. 点P在⊙O上或点P在⊙O的外部10.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设()A. a不垂直于cB. a,b都不垂直于cC. a与b相交D. a⊥b11.用反证法证明命题“一个三角形中至少有一个角不小于60度”,应先假设这个三角形中()A. 至多有两个角小于60度B. 都小于60度C. 至少有一个角是小于60度D. 都大于60度12.对假命题举反例时,应注意使反例()A. 满足命题的条件,并满足命题的结论B. 不满足命题的条件,但满足命题的结论C. 不满足命题的条件,也不满足命题的结论D. 满足命题的条件,但不满足命题的结论13.用反证法证明“三角形中至少有一个角不小于60°”,应该先假设这个三角形中()A. 没有一个内角小于60°B. 每一个内角小于60°C. 至多有一个内角不小于60°D. 每一个内角都大于60°二、填空题14.用反证法证明AB≠AC时,首先假设________成立.15.用反证法证明∠A>60°时,应先假设________16.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中 ________17.用反证法证明“三角形的内角中最多有一个角是直角”时应假设: ________18.用反证法证明“∠A≥60°”时,应假设________.三、解答题19.用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.20.用反证法证明命题“已知D,E分别为△ABC的边AB,AC上的点,BE,CD交于点F,则BE,CD不能互相平分”是真命题.21.如图,直线AB与CD相交于O,EF⊥AB于F,GH⊥CD于H.求证:EF和GH必相交.。

高中反证法练习题及讲解

高中反证法练习题及讲解

高中反证法练习题及讲解### 高中数学反证法练习题及讲解#### 练习题一:不等式的证明题目:证明对于任意正整数 \( n \),有 \( 1^2 + 2^2 + 3^2 + \ldots + n^2 \geq n^2 \)。

解答:假设存在某个正整数 \( n \),使得 \( 1^2 + 2^2 + 3^2 + \ldots + n^2 < n^2 \)。

考虑 \( n \) 的最小值,即 \( n = 1 \),显然 \( 1^2 = 1 \),不等式成立。

现在考虑 \( n > 1 \) 的情况,我们有:\[ 1^2 + 2^2 + \ldots + (n-1)^2 + n^2 < n^2 \]将 \( n^2 \) 移项,得到:\[ 1^2 + 2^2 + \ldots + (n-1)^2 < 0 \]但是,由于每一项都是非负的,它们的和不可能小于零。

这与我们的假设矛盾,因此原命题成立。

#### 练习题二:几何命题的证明题目:证明在直角三角形中,斜边的中点到三个顶点的距离相等。

解答:假设在直角三角形 \( ABC \) 中,斜边 \( AC \) 的中点为 \( M \),且 \( M \) 到顶点 \( A \)、\( B \) 和 \( C \) 的距离不相等。

不失一般性,设 \( MA < MB \)。

由于 \( M \) 是斜边的中点,我们有 \( MC = MA \)。

考虑直角三角形 \( ABM \),由于 \( MA < MB \),根据勾股定理,我们有 \( AM^2 + BM^2 = AB^2 \),这与 \( MA < MB \) 矛盾。

因此,我们的假设不成立,原命题成立。

#### 练习题三:数列的性质题目:证明对于任意实数 \( a \) 和 \( b \),如果 \( a < b \),则 \( a^2 < b^2 \)。

初中数学命题与证明的基础测试题附答案

初中数学命题与证明的基础测试题附答案

初中数学命题与证明的基础测试题附答案一、选择题1.用反证法证明命题:“在三角形中,至多有一个内角是直角”,正确的假设是()A.在三角形中,至少有一个内角是直角B.在三角形中,至少有两个内角是直角C.在三角形中,没有一个内角是直角D.在三角形中,至多有两个内角是直角【答案】B【解析】【分析】反证法即假设结论的反面成立,“最多有一个”的反面为“至少有两个”.【详解】解:∵“最多有一个”的反面是“至少有两个”,反证即假设原命题的否命题正确,∴应假设:在三角形中,至少有两个内角是直角.故选:B.【点睛】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.2.下列语句正确的个数是()①两个五次单项式的和是五次多项式②两点之间,线段最短③两点之间的距离是连接两点的线段④延长射线AB,交直线CD于点P⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质对各项进行分析即可.【详解】①两个五次单项式的和可能为零、五次单项式或五次多项式,错误;②两点之间,线段最短,正确;③两点之间的距离是连接两点的线段的长度,错误;④延长射线AB,交直线CD于点P,正确;⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向,正确;故语句正确的个数有3个故答案为:C.【点睛】本题考查语句是否正确的问题,掌握单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质是解题的关键.3.下列命题中是假命题的是( ).A .同旁内角互补,两直线平行B .直线a b ⊥r r,则a 与b 相交所成的角为直角C .如果两个角互补,那么这两个角是一个锐角,一个钝角D .若a b ∥,a c ⊥,那么b c ⊥【答案】C【解析】根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;根据垂直的定义,可知“直线a b ⊥,则a 与b 相交所成的角为直角”,是真命题; 根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;根据垂直的性质和平行线的性质,可知“若a b P ,a c ⊥,那么b c ⊥”,是真命题. 故选C.4.下列命题中是假命题的是( )A .一个锐角的补角大于这个角B .凡能被2整除的数,末位数字必是偶数C .两条直线被第三条直线所截,同旁内角互补D .相反数等于它本身的数是0【答案】C【解析】试题分析:利用锐角的性质、偶数的定义、平行线的性质及相反数的定义分别判断后即可确定正确的选项.A 、一个锐角的补角大于这个角,正确,是真命题,不符合题意;B 、凡能被2整除的数,末尾数字必是偶数,正确,是真命题,不符合题意;C 、两条平行直线被第三条直线所截,同旁内角才互补,故错误,是假命题,符合题意;D 、相反数等于他本身的数是0,正确,是真命题,不符合题意考点:命题与定理.5.下列说法中,正确..的是( ) A .图形的平移是指把图形沿水平方向移动.B .平移前后图形的形状和大小都没有发生改变.C .“相等的角是对顶角”是一个真命题D .“直角都相等”是一个假命题【答案】B【解析】图形的平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移,平移前后图形的形状和大小都没有发生改变.而相等的角不一定是对顶角,C 是一个假命题,直角都相等是真命题.故选B6.下列命题中,是假命题的是( )A .若a>b ,则-a<-bB .若a>b ,则a+3>b+3C .若a>b ,则44a b > D .若a>b ,则a 2>b 2【答案】D【解析】【分析】 利用不等式的性质分别判断后即可确定正确的选项.【详解】A 、若a >b ,则-a <-b ,正确,是真命题;B 、若a >b ,则a+3>b+3,正确,是真命题;C 、若a >b ,则44a b >,正确,是真命题; D 、若a >b ,则a 2>b 2,错误,是假命题;故选:D .【点睛】 此题考查命题与定理的知识,解题的关键是了解不等式的性质,难度不大.7.下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④直角三角形的两个锐角互余;⑤同角或等角的补角相等.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】【详解】解:命题①两条平行线被第三条直线所截,同位角相等,错误,为假命题;命题②两点之间,线段最短,正确,为真命题;命题③相等的角是对顶角,错误,为假命题;命题④直角三角形的两个锐角互余,正确,为真命题;命题⑤同角或等角的补角相等,正确,为真命题,故答案选B.考点:命题与定理.8.下列命题中,是真命题的是()A.将函数y=12x+1向右平移2个单位后所得函数的解析式为y=12xB.若一个数的平方根等于其本身,则这个数是0和1C.对函数y=2x,其函数值y随自变量x的增大而增大D.直线y=3x+1与直线y=﹣3x+2一定互相平行【答案】A【解析】【分析】利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.【详解】解:A、将函数y=12x+1向右平移2个单位后所得函数的解析式为y=12x,正确,符合题意;B、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;C、对函数y=2x,其函数值在每个象限内y随自变量x的增大而增大,故错误,是假命题,不符合题意;D、直线y=3x+1与直线y=﹣3x+2因比例系数不相等,故一定不互相平行,故错误,是假命题,故选:A.【点睛】本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.9.下列命题中①等腰三角形底边的中点到两腰的距离相等②如果两个三角形全等,则它们必是关于直线成轴对称的图形③如果两个三角形关于某直线成轴对称,那么它们是全等三角形④等腰三角形是关于底边中线成轴对称的图形⑤一条线段是关于经过该线段中点的直线成轴对称的图形正确命题的个数是()A.2个B.3个C.4个D.5个【答案】A【解析】【分析】根据等腰三角形的性质、轴对称图形的定义、全等三角形的判定逐个判断即可.【详解】根据等腰三角形的三线合一可知,底边中点在顶角角平分线上,再根据角平分线的性质可知,其到两腰的距离相等,则命题①正确全等的三角形不一定是成轴对称,则命题②错误成轴对称的两个三角形一定全等,则命题③正确等腰三角形是以底边中线所在直线为对称轴的轴对称图形,则命题④错误成轴对称的图形必须是两个,一个图形只能是轴对称图形,则命题⑤错误综上,正确命题的个数是2个故选:A.【点睛】本题考查了等腰三角形的性质、轴对称图形的定义、全等三角形的判定等知识点,掌握理解各定义与性质是解题关键.10.用三个不等式a>b,ab>0,1a>1b中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0 B.1 C.2 D.3【答案】A【解析】【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【详解】解:①若a>b,ab>0,则1a>1b;假命题:理由:∵a>b,ab>0,∴a>b>0,∴1a<1b;②若ab>0,1a>1b,则a>b,假命题;理由:∵ab>0,∴a、b同号,∵1a>1b,∴a<b;③若a>b,1a>1b,则ab>0,假命题;理由:∵a>b,1a>1b,∴a、b异号,∴ab<0.∴组成真命题的个数为0个;故选:A.【点睛】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.11.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x=-的图像上.【答案】D【解析】【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x=-的图像上,故D是真命题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.12.39.下列命题中,是假命题的是()A.同旁内角互补B.对顶角相等C.直角的补角仍然是直角D.两点之间,线段最短【答案】A【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.13.下列命题中,是真命题的是()A.同位角相等B.若两直线被第三条直线所截,同旁内角互补C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行【答案】D【解析】【分析】根据平行线的判定、平行线的性质判断即可.【详解】A、两直线平行,同位角相等,是假命题;B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;C、同旁内角互补,两直线平行,是假命题;D、平行于同一直线的两条直线互相平行,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.14.下列命题中是假命题的是( )A.一个三角形中至少有两个锐角B.在同一平面内,垂直于同一直线的两条直线平行C.同角的补角相等aD.如果a为实数,那么0【答案】D【解析】A. 一个三角形中至少有两个锐角,是真命题;B. 在同一平面内,垂直于同一直线的两条直线平行,是真命题;C. 同角的补角相等,是真命题;D. 如果a为实数,那么|a|>0,是假命题;如:0是实数,|0|=0,故D是假命题;故选:D.15.下列命题是假命题的是()A.有一个角是60°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.线段垂直平分线上的点到线段两端的距离相等【答案】C【解析】根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.【详解】A.正确;有一个角是60°的等腰三角形是等边三角形;B.正确.等边三角形有3条对称轴;C.错误,SSA无法判断两个三角形全等;D.正确.线段垂直平分线上的点到线段两端的距离相等.故选:C.【点睛】本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.16.下列命题的逆命题不正确...的是()A.相等的角是对顶角B.两直线平行,同旁内角互补C.矩形的对角线相等D.平行四边形的对角线互相平分【答案】C【解析】【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】A、逆命题是:对顶角相等.正确;B、逆命题是:同旁内角互补,两直线平行,正确;C、逆命题是:对角线相等的四边形是矩形,错误;D、逆命题是:对角线互相平分的四边形是平行四边形,正确.故选:C.【点睛】本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.17.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.18.下列四个命题中,其正确命题的个数是()①若ac>bc,则a>b;②平分弦的直径垂直于弦;③一组对角相等一组对边平行的四边形是平行四边形;④反比例函数y=kx.当k<0时,y随x的增大而增大A.1 B.2 C.3 D.4【答案】A【解析】【分析】根据不等式性质、垂径定理、平行四边形的判定、反比例函数的性质,分别进行判断,即可得到答案.【详解】解:①若ac>bc,如果c>0,则a>b,故原题说法错误;②平分弦(不是直径)的直径垂直于弦,故原题说法错误;③一组对角相等一组对边平行的四边形是平行四边,故原题说法正确;④反比例函数y=kx.当k<0时,在每个象限内y随x的增大而增大,故原题说法错误;正确命题有1个,故选:A.【点睛】本题考查了判断命题的真假,解题的关键是掌握不等式性质、垂径定理、平行四边形的判定、反比例函数的性质进行判断.19.下列命题是假命题的是()A.三角形的外心到三角形的三个顶点的距离相等B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16 C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限D.若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.20.下列命题是真命题的是()A.方程23240x x--=的二次项系数为3,一次项系数为-2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形【答案】A【解析】【分析】根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.【详解】A、正确.B、错误,对应边不一定成比例.C、错误,不一定中奖.D、错误,对角线相等的四边形不一定是矩形.故选:A.【点睛】此题考查命题与定理,熟练掌握基础知识是解题关键.。

反证法在证明题中的应用-高考数学解题模板

反证法在证明题中的应用-高考数学解题模板

【高考地位】 反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常出现。

它是数学学习中一种很重要的证题方法. 反证法证题的步骤大致分为三步:(1)反设:作出与求证的结论相反的假设;(2)归谬:由反设出发,导出矛盾结果;(3)作出结论:证明了反设不能成立,从而证明了所求证的结论成立.其中,导出矛盾是关键,通常有以下几种途径:与已知矛盾,与公理、定理矛盾,与假设矛盾,自相矛盾等.【方法点评】类型一 证明“至多”或“至少”问题 使用情景:证明“至多”或“至少”问题. 解题模板:第一步 首先假设命题不成立;第二步 然后根据已知或者规律推导出矛盾;第三步 最后得出结论.例1. 若,x y ∈{正整数},且2x y +>。

求证:12x y +<或12y x+<中至少有一个成立。

【变式演练1】若下列方程:x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2+2ax -2a =0至少有一个方程有实根。

则实数a 的取值范围为________。

类型二 证明“不可能”问题使用情景:证明“不可能”问题.解题模板:第一步 首先假设命题不成立;第二步 然后根据已知或者规律推导出矛盾;第三步 最后得出结论.例2.给定实数0a a ≠,,且1a ≠,设函数11()1x y x x ax a-=∈≠-R ,且,求证:经过这个函数图象上任意两个不同的点的直线不平行于x 轴.【变式演练2】如图,设SA 、SB 是圆锥SO 的两条母线,O 是底面圆心,C 是SB 上一点。

求证:AC 与平面SOB 不垂直。

类型三 证明“存在性”或“唯一性”问题使用情景:证明“存在性”或“唯一性”问题.解题模板:第一步 首先假设命题不成立;第二步 然后根据已知或者规律推导出矛盾;第三步 最后得出结论.例3.求证:方程512x=的解是唯一的.【变式演练3】用反证法证明数学命题时,首先应该做出与命题结论相反的假设.否定“自然数c b a ,,中恰有一个偶数”时正确的假设为()A .自然数c b a ,,都是奇数B .自然数c b a ,,都是偶数C .自然数c b a ,,中至少有两个偶数D .自然数c b a ,,中至少有两个偶数或都是奇数【高考再现】1. 【2016高考山东文数】观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯; 2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯; 2222π2π3π6π4(sin )(sin )(sin )(sin )3477773----+++⋅⋅⋅+=⨯⨯; 2222π2π3π8π4(sin )(sin )(sin )(sin )4599993----+++⋅⋅⋅+=⨯⨯; ……照此规律,2222π2π3π2π(sin)(sin )(sin )(sin )21212121n n n n n ----+++⋅⋅⋅+=++++_________.2. 【2015高考广东,理8】若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )A .大于5 B. 等于5 C. 至多等于4 D. 至多等于33.【2014山东.理4】 用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是( )A.方程02=++b ax x 没有实根B.方程02=++b ax x 至多有一个实根C.方程02=++b ax x 至多有两个实根D.方程02=++b ax x 恰好有两个实根4. 【2015高考北京,理20】已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n n n a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.【反馈练习】1.【2015-2016学年陕西延川县中学高二下学期期末数学(文)试卷】用反证法证明“三角形中最多只有一个内角是钝角”的结论的否定是( )A .有两个内角是钝角B .有三个内角是钝角C .至少有两个内角是钝角D .没有一个内角是钝角2.【2016-2017学年江西南昌市高三新课标一轮复习一数学试卷】用反证法证明命题“设3()3||()f x x x a a R =+-∈为实数,则方程()0f x =至少有一个实根”时,要做的假设是( )A .方程()f x 没有实根B .方程()0f x =至多有一个实根C .方程()0f x =至多有两个实根D .方程()0f x =恰好有两个实根3.【2016-2017河北武邑中学高二上周考9.25理数学试卷】 在用反证法证明命题“已知()0,2a b c ∈、、,求证()()()222a b b c c a ---、、不可能都大于1”时,反证时假设正确的是( )A .假设()()()222a b b c c a ---、、都小于1B .假设()()()222a b b c c a ---、、都大于1C .假设()()()222a b b c c a ---、、都不大于1D .以上都不对4.【2015-2016学年山东枣庄三中高二6月调查数学(理)试卷】用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )A. 假设三内角都不大于60度B. 假设三内角都大于60度C. 假设三内角至多有一个大于60度D. 假设三内角至多有两个大于60度5.【2015-2016学年福建晋江平山中学高二下学期期中数学(文)试卷】用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数6.【2016-2017河北武邑中学高二上周考9.25理数学试卷】已知二次函数()()20f x ax bx c a =++>的图象与x 轴有两个不同的交点,若()0f c =,且0x c <<时,()0f x >.(1)证明:1a是()0f x =的一个根; (2)试比较1a 与c 的大小; (3)证明:21b -<<-.7.【2015-2016学年山东曲阜师大附中高二下学期期中数学(理)试卷】(167225>(2)110,0,2,.b a a b a b a b++>>+>已知且求证:和中至少有一个小于28.【2015-2016学年江苏连云港东海县房山高级中学高二下期中文数学试卷】用反证法证明命题“三角形的3个内角中至少有2个锐角”时,假设的内容是。

(易错题精选)初中数学命题与证明的技巧及练习题附答案(2)

(易错题精选)初中数学命题与证明的技巧及练习题附答案(2)

(易错题精选)初中数学命题与证明的技巧及练习题附答案(2)一、选择题1.用反证法证明命题:“在三角形中,至多有一个内角是直角”,正确的假设是( ) A .在三角形中,至少有一个内角是直角B .在三角形中,至少有两个内角是直角C .在三角形中,没有一个内角是直角D .在三角形中,至多有两个内角是直角【答案】B【解析】【分析】反证法即假设结论的反面成立,“最多有一个”的反面为“至少有两个”.【详解】解:∵“最多有一个”的反面是“至少有两个”,反证即假设原命题的否命题正确, ∴应假设:在三角形中,至少有两个内角是直角.故选:B.【点睛】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.2.下列命题是假命题的是( )A .有一个角为60︒的等腰三角形是等边三角形B .等角的余角相等C .钝角三角形一定有一个角大于90︒D .同位角相等【答案】D【解析】【分析】【详解】解:选项A 、B 、C 都是真命题;选项D ,两直线平行,同位角相等,选项D 错误,是假命题,故选:D .3.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②【答案】B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B ≥90°,(2)那么,由AB=AC ,得∠B=∠C ≥90°,即∠B+∠C ≥180°,(3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B <90°,原题正确顺序为:③④①②,故选B .【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.4.下列命题中是假命题的是( ).A .同旁内角互补,两直线平行B .直线a b ⊥r r,则a 与b 相交所成的角为直角C .如果两个角互补,那么这两个角是一个锐角,一个钝角D .若a b ∥,a c ⊥,那么b c ⊥【答案】C【解析】根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;根据垂直的定义,可知“直线a b ⊥,则a 与b 相交所成的角为直角”,是真命题; 根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;根据垂直的性质和平行线的性质,可知“若a b P ,a c ⊥,那么b c ⊥”,是真命题. 故选C.5.下列命题中是假命题的是( )A .一个锐角的补角大于这个角B .凡能被2整除的数,末位数字必是偶数C .两条直线被第三条直线所截,同旁内角互补D .相反数等于它本身的数是0【答案】C【解析】试题分析:利用锐角的性质、偶数的定义、平行线的性质及相反数的定义分别判断后即可确定正确的选项.A 、一个锐角的补角大于这个角,正确,是真命题,不符合题意;B 、凡能被2整除的数,末尾数字必是偶数,正确,是真命题,不符合题意;C、两条平行直线被第三条直线所截,同旁内角才互补,故错误,是假命题,符合题意;D、相反数等于他本身的数是0,正确,是真命题,不符合题意考点:命题与定理.6.下列命题正确的是( )A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的. B.两个全等的图形之间必有平移关系.C.三角形经过旋转,对应线段平行且相等.D.将一个封闭图形旋转,旋转中心只能在图形内部.【答案】A【解析】【分析】根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.【详解】解:A、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;B、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;C、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;D、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误.故选:A.【点睛】本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.7.下列命题是真命题的是()A.方程2--=的二次项系数为3,一次项系数为-23240x xB.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形【答案】A【解析】【分析】根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.【详解】A、正确.B、错误,对应边不一定成比例.C、错误,不一定中奖.D、错误,对角线相等的四边形不一定是矩形.故选:A.【点睛】此题考查命题与定理,熟练掌握基础知识是解题关键.8.用三个不等式a>b,ab>0,1a>1b中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0 B.1 C.2 D.3【答案】A【解析】【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【详解】解:①若a>b,ab>0,则1a>1b;假命题:理由:∵a>b,ab>0,∴a>b>0,∴1a<1b;②若ab>0,1a>1b,则a>b,假命题;理由:∵ab>0,∴a、b同号,∵1a>1b,∴a<b;③若a>b,1a>1b,则ab>0,假命题;理由:∵a>b,1a>1b,∴a、b异号,∴ab<0.∴组成真命题的个数为0个;故选:A.【点睛】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.9.下列命题中正确的是().A.所有等腰三角形都相似B.两边成比例的两个等腰三角形相似C.有一个角相等的两个等腰三角形相似D.有一个角是100°的两个等腰三角形相似【答案】D【解析】【分析】根据相似三角形进行判断即可.【详解】解:A、所有等腰三角形不一定都相似,原命题是假命题;B、两边成比例的两个等腰三角形不一定相似,原命题是假命题;C、有一个角相等的两个等腰三角形不一定相似,原命题是假命题;D、有一个角是100°的两个等腰三角形相似,是真命题;故选:D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.10.下列命题中正确的有()个①平分弦的直径垂直于弦;②经过半径的外端且与这条半径垂直的直线是圆的切线;③在同圆或等圆中,圆周角等于圆心角的一半;④平面内三点确定一个圆;⑤三角形的外心到三角形的各个顶点的距离相等.A.1 B.2 C.3 D.4【答案】B【解析】【分析】根据垂径定理的推论对①进行判断;根据切线的判定定理对②进行判断;根据圆周角定理对③进行判断;根据确定圆的条件对④进行判断;根据三角形外心的性质对⑤进行判断.【详解】①平分弦(非直径)的直径垂直于弦,错误;②经过半径的外端且与这条半径垂直的直线是圆的切线,正确;③在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,错误;④平面内不共线的三点确定一个圆,错误;⑤三角形的外心到三角形的各个顶点的距离相等,正确;故正确的命题有2个故答案为:B.【点睛】本题考查了判断命题真假的问题,掌握垂径定理的推论、切线的判定定理、圆周角定理、确定圆的条件、三角形外心的性质是解题的关键.11.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.12.39.下列命题中,是假命题的是( )A .同旁内角互补B .对顶角相等C .直角的补角仍然是直角D .两点之间,线段最短【答案】A【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.13.下列命题中,是真命题的是( )A .同位角相等B .若两直线被第三条直线所截,同旁内角互补C .同旁内角相等,两直线平行D .平行于同一直线的两直线互相平行 【答案】D【解析】【分析】根据平行线的判定、平行线的性质判断即可.【详解】A 、两直线平行,同位角相等,是假命题;B 、若两条平行线被第三条直线所截,同旁内角互补,是假命题;C、同旁内角互补,两直线平行,是假命题;D、平行于同一直线的两条直线互相平行,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.14.下列命题中是假命题的是( )A.一个三角形中至少有两个锐角B.在同一平面内,垂直于同一直线的两条直线平行C.同角的补角相等aD.如果a为实数,那么0【答案】D【解析】A. 一个三角形中至少有两个锐角,是真命题;B. 在同一平面内,垂直于同一直线的两条直线平行,是真命题;C. 同角的补角相等,是真命题;D. 如果a为实数,那么|a|>0,是假命题;如:0是实数,|0|=0,故D是假命题;故选:D.15.下列命题是真命题的是()A.同旁内角相等,两直线平行B.对角线互相平分的四边形是平行四边形C.相等的两个角是对顶角D.圆内接四边形对角相等【答案】B【解析】【分析】由平行线的判定方法得出A是假命题;由平行四边形的判定定理得出B是真命题;由对顶角的定义得出C是假命题;由圆内接四边形的性质得出D是假命题;综上,即可得出答案.【详解】A.同旁内角相等,两直线平行;假命题;B.对角线互相平分的四边形是平行四边形;真命题;C.相等的两个角是对顶角;假命题;D.圆内接四边形对角相等;假命题;故选:B.【点睛】本题考查了命题与定理、平行线的判定、平行四边形的判定、对顶角的定义、圆内接四边形的性质;熟练掌握相关性质和定理、定义是解题关键.16.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.17.已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设( )A .AB ∠=∠B .AB BC = C .B C ∠=∠D .A C ∠=∠【答案】C【解析】【分析】反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.【详解】已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设B C ∠=∠,由“等角对等边”可得AB=AC,这与已知矛盾,所以.B C ∠≠∠故选C【点睛】本题考核知识点:反证法. 解题关键点:理解反证法的一般步骤.18.下列四个命题中,其正确命题的个数是()①若ac>bc,则a>b;②平分弦的直径垂直于弦;③一组对角相等一组对边平行的四边形是平行四边形;④反比例函数y=kx.当k<0时,y随x的增大而增大A.1 B.2 C.3 D.4【答案】A【解析】【分析】根据不等式性质、垂径定理、平行四边形的判定、反比例函数的性质,分别进行判断,即可得到答案.【详解】解:①若ac>bc,如果c>0,则a>b,故原题说法错误;②平分弦(不是直径)的直径垂直于弦,故原题说法错误;③一组对角相等一组对边平行的四边形是平行四边,故原题说法正确;④反比例函数y=kx.当k<0时,在每个象限内y随x的增大而增大,故原题说法错误;正确命题有1个,故选:A.【点睛】本题考查了判断命题的真假,解题的关键是掌握不等式性质、垂径定理、平行四边形的判定、反比例函数的性质进行判断.19.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A.1个B.2个C.3个D.4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B.20.下列命题中,其中真命题的个数是()①平面直角坐标系内的点与实数对一一对应;②内错角相等;③平行于同一条直线的两条直线互相平行;④对顶角相等A.1个B.2个C.3个D.4个【答案】B【解析】【分析】正确的命题是真命题,根据真命题的定义依次进行判断.【详解】①平面直角坐标系内的点与有序实数对一一对应,是假命题;②两直线平行,内错角相等,是假命题;③平行于同一条直线的两条直线不一定相互平行,是真命题;④对顶角相等,是真命题;故选:B.【点睛】此题考查真命题的定义,正确掌握坐标与图形,平行线的性质,平行公理,对顶角性质是解题的关键.。

反证法解答题专项练习30题(有答案)ok

反证法解答题专项练习30题(有答案)ok

反证法解答题专项练习30题(有答案)1.求证:在△ABC中至多有两个角大于或等于60°.2.设a、b、c都是实数,考虑如下3个命题:①若a2+ab+c>0,且c>1,则0<b<2;②若c>1且0<b<2,则a2+ab+c>0;③若0<b<2,且a2+ab+c>0,则c>1.试判断哪些命题是正确的,哪些是不正确的,对你认为正确的命题给出证明;你认为不正确的命题,用反例予以否定.3.用反证法证明“三角形的三个内角中,至少有一个内角小于或等于60°”证明:假设所求证的结论不成立,即∠A _________ 60°,∠B _________ 60°,∠C _________ 60°,则∠A+∠B+∠C>_________ .这与_________ 相矛盾.∴_________ 不成立.∴_________ .4.用反证法证明(填空):两条直线被第三条直线所截.如果同旁内角互补,那么这两条直线平行.已知:如图,直线l1,l2被l3所截,∠1+∠2=180°.求证:l1_________ l2证明:假设l1_________ l2,即l1与l2交与相交于一点P.则∠1+∠2+∠P _________ 180°_________所以∠1+∠2 _________ 180°,这与_________ 矛盾,故_________ 不成立.所以_________ .5.完形填空:已知:如图,直线a、b被c所截;∠1、∠2是同位角,且∠1≠∠2,求证:a不平行b.证明:假设_________ ,则_________ ,(两直线平行,同位角相等)这与_________ 相矛盾,所以_________ 不成立,故a不平行b.6.求证:在△ABC中,∠B≠∠C,则AB≠AC(提示:反证法)7.用反证法证明一个三角形中不能有两个角是直角.8.反证法证明:如果实数a、b满足a2+b2=0,那么a=0且b=0.9.如图,在△ABC中,AB=AC,P是△ABC内的一点,且∠APB>∠APC,求证:PB<PC(反证法)10.证明已知△ABC中不能有两个钝角.11.举反例说明下列命题是假命题.(1)一个角的补角大于这个角;(2)已知直线a,b,c,若a⊥b,b⊥c,则a⊥c.12.证明题:如图所示,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC.13.用反例证明命题“一个锐角与一个钝角的和等于一个平角”是假命题.14.用反证法证明:在同一平面内,a,b,c互不重合,若a∥b,b∥c,则a∥c.15.已知直线a,b,c,且a∥b,c与a相交,求证:c与b也相交.16.用反证法证明:(1)已知:a<|a|,求证:a必为负数.(2)求证:形如4n+3的整数k(n为整数)不能化为两个整数的平方和.17.用反证法证明:等腰三角形两底角必为锐角.18.求证:两个三角形有两条边对应相等,如果所夹的角不相等,那么夹角所对的边也不相等.19.用反证法证明下列问题:如图,在△ABC中,点D、E分别在AC、AB上,BD、CE相交于点O.求证:BD和CE不可能互相平分.20.在线段AB上依次取C、D、E三点,将AB分为四段,试说明至少有一段不小于AB,同时,至少有一段不大于AB.21.如图所示,在△ABC中,AB>AC,AD是内角平分线,AM是BC边上的中线,求证:点M不在线段CD上.22.已知a,b,c,d四个数满足a+b=1,c+d=1,ac+bd>1.求证:这四个数中至少有一个是负数.23.设a,b,c是不全相等的任意整数,若x=a2﹣bc,y=b2﹣ac,z=c2﹣ab.求证:x,y,z中至少有一个大于零.24.用反证法证明:一条线段只有一个中点.25.如图,在△ABC中,D、E两点分别在AB和AC上,求证:CD、BE不可能互相平分.26.能否找到7个整数,使得这7个整数沿圆周排成一圈后,任3个相邻数的和都等于29?如果能,请举一例.如果不能,请简述理由.27.将自然数1,2,3,…,21这21个数,任意地放在一个圆周上,证明:一定有相邻的三个数,它们的和不小于33.28.已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.29.已知:△ABC的三个外角为∠1,∠2,∠3.求证:∠1,∠2,∠3中至多有一个锐角.30.已知一平面内的任意四点,其中任何三点都不在一条直线上,试问:是否一定能从这样的四点中选出三点构成一个三角形,使得这个三角形至少有一内角不大于45°?请证明你的结论.参考答案:1.证明:假设一个三角形中有3个内角大于60°,则∠A>60°,∠B>60°,∠C>60°;∴∠A+∠B+∠C>180°,这与三角形内角和等于180°相矛盾,故在△ABC中至多有两个角大于或等于60°2.解:令b=4,c=5可以证明命题①不正确.若b=1,c=,可以证明命题③不正确.命题②正确,证明如下由c>1,且0<b<2,得0<<1<c.则c >>,c >>0故a2+ab+c=+(c ﹣)>03.解:证明:假设所求证的结论不成立,即∠A>60°,∠B>60°,∠C>60°,则∠A+∠B+∠C>180°.这与内角和为180°相矛盾.则假设不成立.则求证的命题正确.故答案为:>,>,>,180°,内角和180°,假设,求证的命题正确4.证明:假设l1不平行l2,即l1与l2交与相交于一点P.则∠1+∠2+∠P=180°(三角形内角和定理),所以∠1+∠2<180°,这与∠1+∠2=180°矛盾,故假设不成立.所以结论成立,l1∥l25.证明:假设a∥b,∴∠1=∠2,(两直线平行,同位角相等.),与已知∠1≠∠2相矛盾,∴假设不成立,∴a不平行b6.证明:假设AB=AC,则,∠B=∠C,与已知矛盾,所以AB≠AC 假设三角形的三个内角A、B、C中有两个直角,不妨设∠A=∠B=90°,则A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,∴∠A=∠B=90°不成立;所以一个三角形中不能有两个直角8.证明:假设如果实数a、b满足a2+b2=0,那么a≠0且b≠0,∵a≠0,b≠0,∴a2>0,b2>0,∴a2+b2>0,∴与a2+b2=0出现矛盾,故假设不成立,原命题正确9.证明:①假设PB=PC.∵AB=AC,∴∠ABC=∠ACB.∵PB=PC,∴∠PBC=∠PCB.∴∠ABC﹣∠PBC=∠ACB﹣∠PCB,∴∠ABP=∠ACP,在△ABP和△ACP中∴△ABP≌△ACP,∴∠APB=∠APC.这与题目中给定的∠APB>∠APC矛盾,∴PB=PC是不可能的.②假设PB>PC,∵AB=AC,∴∠ABC=∠ACB.∵PB>PC,∴∠PCB>∠PBC.∴∠ABC﹣∠PBC>∠ACB﹣∠PCB,∴∠ABP>∠ACP,又∠APB>∠APC,∴∠ABP+∠APB>∠ACP+∠APC,∴180°﹣∠ABP﹣∠APB<180°﹣∠ACP﹣∠APC,∴∠BAP<∠CAP,结合AB=AC、AP=AP,得:PB<PC.这与假设的PB>PC矛盾,∴PB>PC是不可能的.综上所述,得:PB<PC10.证明:假设△ABC中能有两个钝角,即∠A<90°,∠B>90°,∠C>90°;所以∠A+∠B+∠C>180°,与三角形的内角和为180°矛盾;所以假设不成立,因此原命题正确,即△ABC中不能有两个钝角11.解:(1)如果设∠A=100°,那么∠A的补角=80°<100°,所以命题:“一个角的补角大于这个角”是假∵a⊥b,∴∠1=90°,∵b⊥c,∴∠2=90°,∴∠1=∠2,∴a∥c.故命题:“已知直线a,b,c,若a⊥b,b⊥c,则a⊥c”是假命题12.证明:假设PB≠PC不成立,则PB=PC,∠PBC=∠PCB;又∵AB=AC,∴∠ABC=∠ACB;∴∠ABP=∠ACP;∴△ABP≌△ACP,∴∠APB=∠APC;与∠APB≠∠APC相矛盾.因而PB=PC不成立,则PB≠PC13.解:设一个锐角为30°,一个钝角为200°;则它们的度数和为230°≠180°,因此不是平角;故原命题是假命题14.解:假设a∥c不成立,则a,c一定相交,假设交点是P;则过点P,与已知直线b平行的直线有两条:a、c;与经过一点有且只有一条直线与已知直线平行相矛盾;因而假设错误.故a∥c15.证明:假设c∥b;∵a∥b,∴c∥a,这与c和a相交相矛盾,假设不成立;所以c与b也相交16.证明:(1)假设a≥0,则|a|=a,这与已知|a|>a 相矛盾,因此假设不成立,所以a必为负数;(2)假设4n+3的整数部分k能化成两个整数的平方和,不妨设这两个整数为α,β,则4n+3=α2+β2,因为(n+2)2+(﹣n2﹣1)≠α2+β2,所以假设不成立,故4n+3的整数k不能化为两个整数的平方和17.证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.而∠A+∠B+∠C>180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角18.已知:AB=A′B′,BC=B′C′,∠B≠∠B′,求证:AC≠A′C′.证明:假设AC=A′C′,在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(SSS),∴∠B=∠B′,∴与已知,∠B≠∠B′矛盾,则假设不成立,∴AC≠A′C′.19.证明:连接DE,假设BD和CE互相平分,∴四边形EBCD是平行四边形,∴BE∥CD,∵在△ABC中,点D、E分别在AC、AB上,∴AC不可能平行于AC,与已知出现矛盾,故假设不成立原命题正确,即BD和CE不可能互相平分20.解:假设每一段都小于AB,则四段之和小于AB,这与已知四段之和等于AB相矛盾,假设错误,所以至少有一段不小于AB ,同时,至少有一段不大于AB21.解:假设点M不在线段CD上不成立,则点M在线段CD上.延长AM到N,使AM=MN,连接BN;在△AMC和△NMB中,BM=CM,∠AMC=∠BMN,AM=MN,∴△AMC≌△NMB(SAS);∴∠MAC=∠MNB,BN=AC;∴BN>AB,即AC>AB;与AB>AC相矛盾.因而M在线段CD上是错误的.所以点M不在线段CD上22.证明:假设a、b、c、d都是非负数,∵a+b=c+d=1,∴(a+b)(c+d)=1.∴ac+bd+bc+ad=1≥ac+bd.这与ac+bd>1矛盾.所以假设不成立,即a、b、c、d中至少有一个负数23.证明:假设x,y,z都小于0,∵x=a2﹣bc,y=b2﹣ca,z=c2﹣ab,∴2(x+y+z)=2a2﹣2bc+2b2﹣2ca+2c2﹣2ab=(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ca+c2)=(a﹣b)2+(b﹣c)2+(c﹣a)2<0,∴这与(a﹣b)2+(b﹣c)2+(c﹣a)2≥0矛盾,故假设不成立,∴x,y,z中至少有一个大于零24.已知:一条线段AB,M为AB的中点.求证:线段AB只有一个中点M.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,又因为AM=AB=AN=AB,这与AM<AN矛盾,所以线段AB只有一个中点M25.证明:假设CD、BE可以互相平分.则连接DE.则四边形BCED是平行四边形.∴BD∥CE与△ABC相矛盾所以:CD、BE不可能互相平分26.解:不能.理由:假设存在7个整数a1,a2,a3,a4,a5,a6,a7排则a1+a2+a3=29,a2+a3+a4=29,a3+a4+a5=29,a4+a5+a6=29,a5+a6+a7=29,a6+a7+a1=29,a7+a1+a2=29.将上述7式相加,得3×(a1+a2+a3+a4+a5+a6+a7)=29×7.所以,与a1+a2+a3+a4+a5+a6+a7为整数矛盾!所以不存在满足题设要求的7个整数27.解:假设所有相邻的三个数,它们的和都小于33,则它们的和小于等于32.∴这21个数的和的最大值小于等于:32×21÷3=224,但是实际上,1+2+3+…+21=(1+21)×21÷2=231>224,所以假设不成立,则命题得证,∴将自然数1,2,3…21这21个数,任意地放在一个圆周上,其中一定有相邻的三个数,它们的和大于等于3328.证明:用反证法.如果a,b不都能被3整除,那么有如下两种情况:(1)a,b两数中恰有一个能被3整除,不妨设3|a,3不整除b.令a=3m,b=3n±1(m,n都是整数),于是a2+b2=9m2+9n2±6n+1=3(3m2+3n2±2n)+1,不是3的倍数,矛盾;(2)a,b两数都不能被3整除.令a=3m±1,b=3n±1,则a2+b2=(3m±1)2+(3n±1)2,=9m2±6m+1+9n2±6n+1=3(3m2+3n2±2m±2n)+2,不能被3整除,矛盾;同理分别设a=3m±2,b=3n±1或a=3m,b=3n±2,或a=3m±2,b=3n±2,代入a2+b2会得到相同的结论.由此可知,a,b都是3的倍数29.证明:因为三角形的每一个外角都与相邻的内角互补,因为当相邻的内角是钝角时,这个外角才是锐角,又因为三角形中最多只有一个内角是钝角,所以三角形的三个外角中最多只有一个锐角30.证明:能.(1)如图a,若四点A,B,C,D构成凸四边形.则必有一个内角≤90°.不妨设为∠A.这是因为,假设四个内角都大于90°,则360°=∠A+∠B+∠C+∠D>4×90°=360°.矛盾.则∠BAC+∠CAD≤90°.则∠BAC与∠CAD 中必有一个≤×90°=45°.故结论成立.(2)如图b.若四点A,B,C,D构成四边形.则△ABC 中必有一个内角≤×180°=60°.不防设∠A≤60°.又∠A=∠BAD+∠CAD≤60°.则∠BAD与∠CAD值中必有一个≤×60°<45°.故结论成立。

宜用反证法证明的几类命题

宜用反证法证明的几类命题

宜用反证法证明的几类命题反证法是证明数学命题的一种重要方法,当直接证明思路受阻,难以成功时,反证法常使人茅塞顿开,柳暗花明.它通常用来证明下列几类命题.一、否定性命题问题的结论是以否定形式出现(例如“没有…”,“不是…”,“不存在…”等)的命题,宜用反证法.例1 求证:3lg 2是无理数.分析:在实数集内,证它是无理数,即证它不是有理数.证明:假设3lg 2不是无理数,即为有理数,则设3lg 2=m n (,m n ∈+N ,n m ,互质)从而32=m n得, m n 32=上式表明:偶数等于奇数,这与偶数不等于奇数矛盾,于是假设不成立. 故3lg 2是无理数.例2 证明:一个三角形中不可能有两个直角.分析:用三角形内角和为0180证一个三角形中不存在两个直角.证明:假设一个三角形中有两个直角.不妨设∠A=090,∠B=090. ∵∠A+∠B+∠C=090+090+∠C=0180+∠C>0180这与三角形内角和定理矛盾. ∴ 假设不成立,即原命题成立.二、“至少”或“至多”类命题若一个命题的结论是“至少…”或“至多…”,“不都…”则可考虑用反证法. 例3 已知1p 、2p 、1q 、2q ∈R,且1p 2p =2(1q +2q )求证:方程2x +1p x +1q =0和2x +2p x +2q =0中,至少有一个方程有实根. 分析:“至少有一个”是“有一个”、 “有两个”,它的反面是“一个都没有”. 证明:假设这两个一元二次方程都没有实根,那么他们的判别式都小于0,即:⎪⎩⎪⎨⎧<<⇒⎪⎩⎪⎨⎧<-=∆<-=∆22212122221211440404q p q p q p q p ∴)(4212221q q p p +<+ ∵1p 2p =2(1q +2q )代入上式得02212221<-+p p p p ,即.0)(221<-p p .这与“任何实数的平方为非负数”相A B P 矛盾,所以假设不成立.故这两方程中,至少有一个方程有实根.三、唯一性命题若一个命题的结论是“…唯一”的形式出现,则可考虑用反证法. 例4 求证:在一个平面内,过直线l 外一点P 只能作出一条直线垂直于l . 证明:假设过点P 可以作两条直线垂直于直线l 如图,那么∠P AB =∠PBA =090. 于是∠APB +∠P AB +∠PBA >0180.即∆P AB 的内角和大于0180,这与定理“三角形内角和等于0180”相矛盾,故假设不成立.l。

反证法

反证法

反证法学校:___________姓名:___________班级:___________考号:___________一、选择题1.用反证法证明命题“若a ,b∈N,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .b 不能被3整除D .a 不能被3整除2.用反证法证明命题“若()220,a b a b +=∈R ,则a 、b 全为0”,其反设正确的是( )A .a 、b 至少有一个为0B .a 、b 至少有一个不为0C .a 、b 全不为0D .a 、b 中只有一个为03.用反证法证明命题:“若整系数一元二次方程()200ax bx c a ++=≠有偶数根,那么,,a b c 中至少有一个是偶数”时,下列假设中正确的是( )A .假设,,a b c 不都是偶数B .假设,,a b c 至多有两个是偶数C .假设,,a b c 至多有一个是偶数D .假设,,a b c 都不是偶数4.用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( )A .假设至少有一个钝角B .假设至少有两个钝角C .假设没有一个钝角D .假设没有一个钝角或至少有两个钝角5.设a ,b ,c 大于0,a +b +c =3,则3个数:a +b 1,b +c 1,c +a1的值( ) A .都大于2 B .至少有一个不大于2C .都小于2D .至少有一个不小于26.下列命题不适合用反证法证明的是( )A .同一平面内,分别与两条相交直线垂直的两条直线必相交B .两个不相等的角不是对顶角C .平行四边形的对角线互相平分D .已知x ,y∈R,且x +y>2,求证:x ,y 中至少有一个大于17.设x ,y ,z>0,则三个数y x +y z,z x +z y ,x z +x y ( ) A .都大于2 B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于28.用反证法证明命题“若2sin cos 1sin 1θθ-=,则s i n 0c o s θθ≥≥且”时,下列假设的结论正确的是( )A .sin 0cos 0θθ≥≥或B .sin 0cos 0θθ<<且C .sin 0cos 0θθ<<或D .sin 0cos 0θθ>>且二、填空题9.△ABC 中,若AB =AC ,P 是△ABC 内的一点,∠APB>∠APC,求证:∠BAP<∠CAP,用反证法证明时的假设为________.10.和两条异面直线AB 、CD 都相交的两条直线AC 、BD 的位置关系是________.11.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两名是对的,则获奖的歌手是________.三、解答题12.用反证法证明7,5,3不可能成等差数列.13,,a b c 中 至少有一个不小于1.14.若函数f(x)在区间[a ,b]上的图象连续,f(a)<0,f(b)>0,且f(x)在[a ,b]上单调递增,求证:f(x)在(a ,b)内有且只有一个零点.参考答案1.B【解析】反证法证明命题时,应假设命题的反面成立.“a ,b 中至少有一个能被3整除”的反面是:“a ,b 都不能被3整除”,故应假设a ,b 都不能被3整除.考点:反证法.2.B【解析】原命题的结论为:“a 、b 全为0”,反证法需假设结论的反面,其反面为“a 、b 至少有一个不为0”.考点:反证法的假设环节.3.D【解析】 “,,a b c 中至少有一个是偶数”包括一个、两个或三个偶数三种情况,其否定应为不存在偶数,即“假设,,a b c 都不是偶数”,故选D.考点:命题的否定.4.B【解析】由于命题“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,故用反证法证明命题“三角形的内角至多有一个钝角”时,应假设至少有两个钝角,故选B .考点:反证法.5.D 【解析】因为6121212111111=⨯+⨯+⨯≥⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=+++++cc b b a a c c b b a a a c c b b a ,等号成立的条件是1a b c ===,如果三个数都小于2,那么三个数相加不可能大于或等于6,所以至少有一个不小于2,故选D.考点:不等式.6.C【解析】A 中命题条件较少,不易正面证明;B 中命题是否定性命题,其反设是显而易见的定理;D 中命题是至少性命题,其结论包含两种情况,而反设只有一种情况,适合用反证法证明.考点:反证法证明命题.7.C【解析】假设这三个数都小于2,则三个数之和小于6,又y x +y z +z x +z y +x z +x y =(y x +x y )+(y z +z y )+(z x +x z )≥2+2+2=6,当且仅当x =y =z 时取等号,与假设矛盾,故这三个数至少有一个不小于2.故选C.考点:反证法证明命题.8.C【解析】若用反证法证明,只需要否定命题的结论,sin 0cos 0θθ≥≥且的否定为sin 0cos 0θθ<<或,故选C.考点:反证法.9.∠BAP=∠CAP 或∠BAP>∠CAP【解析】反证法对结论的否定是全面否定,∠BAP<∠CAP 的对立面是∠BAP=∠CAP 或∠BAP >∠CA P.考点:反证法的假设环节.10.异面【解析】假设AC 与BD 共面于平面 α,则A 、C 、B 、D 都在平面α内,∴AB ⊂α,CD ⊂α,这与AB 、CD 异面相矛盾,故AC 与BD 异面.考点:反证法证明直线位置关系.11.丙【解析】若甲获奖,则甲、乙、丙、丁说的都是错的,同理可推知乙、丙、丁获奖的情况,可知获奖的歌手是丙.考点:反证法在推理中的应用.12.详见解析【解析】证明:假设则=即10=10221≠.考点:反证法.13.详见解析【解析】证明:假设,,a b c 均小于1,即1,1,1a b c <<<,则有3a b c ++<,. 考点:反证法.14.见解析【解析】证明:由于f(x)在[a ,b]上的图象连续,且f(a)<0,f(b)>0,即f(a)·f(b)<0, 所以f(x)在(a ,b)内至少存在一个零点,设零点为m ,则f(m)=0,假设f(x)在(a ,b)内还存在另一个零点n ,即f(n)=0,则n≠m.若n>m ,则f(n)>f(m),即0>0,矛盾;若n<m ,则f(n)<f(m),即0<0,矛盾.因此假设不成立,即f(x)在(a ,b)内有且只有一个零点.考点:反证法.。

反证法练习题

反证法练习题

反证法精选题26道一.选择题(共18小题)1.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°2.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A.三角形中有一个内角小于或等于60°B.三角形中有两个内角小于或等于60°C.三角形中有三个内角小于或等于60°D.三角形中没有一个内角小于或等于60°3.选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°4.已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾.②因此假设不成立.∴∠B<90°.③假设在△ABC中,∠B≥90°.④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②5.要证明命题“若a>b,则a2>b2”是假命题,下列a,b的值不能作为反例的是()A.a=1,b=﹣2B.a=0,b=﹣1C.a=﹣1,b=﹣2D.a=2,b=﹣1 6.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2B.a=﹣1C.a=1D.a=27.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60°B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°8.用反证法证明“三角形中至少有一个内角大于或等于60°”时,应先假设()A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°9.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是()A.5B.2C.4D.810.用反证法证明命题“一个三角形中至多有一个角是直角”,应先假设这个三角形中()A.至少有两个角是直角B.没有直角C.至少有一个角是直角D.有一个角是钝角,一个角是直角11.用反证法证明,“在△ABC中,∠A、∠B对边是a、b,若∠A>∠B,则a>b.”第一步应假设()A.a<b B.a=b C.a≤b D.a≥b12.用反证法证明:“一个三角形中,至少有一个内角大于或等于60°”.应假设()A.一个三角形中没有一个角大于或等于60°B.一个三角形中至少有一个角小于60°C.一个三角形中三个角都大于等于60°D.一个三角形中有一个角大于等于60°13.用反证法证明:“一个三角形中至多有一个角不小于90°”时,应假设()A.一个三角形中至少有两个角不小于90°B.一个三角形中至多有一个角不小于90°C.一个三角形中至少有一个角不小于90°D.一个三角形中没有一个角不小于90°14.用反证法证明“在直角三角形中,至少有一个锐角不大于45°”,应先假设这个直角三角形中()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°15.在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角( )A .小于60°B .等于60°C .大于60°D .大于或等于60°16.已知五个正数的和等于1,用反证法证明:这五个正数中至少有一个大于或等于15,先要假设这五个正数( )A .都大于15B .都小于15C .没有一个小于15D .没有一个大于1517.下列说法正确的个数( )①近似数32.6×102精确到十分位: ②在√2,−(−2)2,√83,﹣|−√2|中,最小的数是√83③如图所示,在数轴上点P 所表示的数为﹣1+√5④反证法证明命题“一个三角形中最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”⑤如图②,在△ABC 内一点P 到这三条边的距离相等,则点P 是三个角平分线的交点A .1B .2C .3D .418.用反证法证明“a >0”时,应先假设结论的反面,下列假设正确的是( )A .a <0B .a =0C .a ≠0D .a ≤0二.填空题(共8小题)19.用反证法证明命题“三角形中至少有一个内角大于或等于60°“,应假设 .20.用反证法证明“一个三角形中最多有一个内角是钝角”的第一步是 .21.用反证法证明“如果|a |>a ,那么a <0.”是真命题时,第一步应先假设 .22.用反证法证明“在三角形中,至少有一个内角大于或等于60°”时,应先假设 .23.用反证方法证明“在△ABC 中,AB =AC ,则∠B 必为锐角”的第一步是假设 .24.用反证法证明“内错角相等,两直线平行”时,首先要假设 .25.如图,直线AB 、CD 被直线EF 所截,∠1、∠2是同位角,如果∠1≠∠2,那么AB 与CD不平行.用反证法证明这个命题时,应先假设:.26.数学课上,同学提出如下问题:老师说这个证明可以用反证法完成,思路及过程如下:小贴士反证法不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.在某些情形下,反证法是很有效的证明方法.如图1,我们想要证明“如果直线AB,CD被直线所截EF,AB∥CD,那么∠EOB=∠EO'D.”如图2,假设∠EOB≠∠EO'D,过点O作直线A'B',使∠EOB'=∠EO'D,可得A'B'∥CD.这样过点O就有两条直线AB,A′B′都平行于直线CD,这与基本事实矛盾,说明∠EOB≠∠EO'D的假设是不对的,于是有∠EOB=∠EO'D.请补充上述证明过程中的基本事实:.。

高一数学直接证明与间接证明试题答案及解析

高一数学直接证明与间接证明试题答案及解析

高一数学直接证明与间接证明试题答案及解析1.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度【答案】B【解析】一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.解:根据反证法的步骤,假设是对原命题结论的否定,“至少有一个”的否定:“一个也没有”;即“三内角都大于60度”.故选B点评:本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.2.用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是()A.a、b至少有一个不为0B.a、b至少有一个为0C.a、b全不为0D.a、b中只有一个为0【答案】A【解析】把要证的结论否定之后,即得所求的反设.解:由于“a、b全为0(a、b∈R)”的否定为:“a、b至少有一个不为0”,故选 A.点评:本题考查用反证法证明数学命题,得到“a、b全为0(a、b∈R)”的否定为:“a、b至少有一个不为0”,是解题的关键.3.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的假设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中至少有两个偶数或都是奇数【答案】D【解析】用反证法证明某命题时,应先假设命题的否定成立,而命题的否定为:“a,b,c中至少有两个偶数或都是奇数”,由此得出结论.解:用反证法证明某命题时,应先假设命题的否定成立,而:“自然数a,b,c中恰有一个偶数”的否定为:“a,b,c中至少有两个偶数或都是奇数”,故选D.点评:本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,是解题的关键.4.用反证法证明:“方程ax2+bx+c=0,且a,b,c都是奇数,则方程没有整数根”正确的假设是方为()程存在实数根xA.整数B.奇数或偶数C.正整数或负整数D.自然数或负整数【答案】A【解析】本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.根据反证法的步骤,假设是对原命题结论的否定,故只须对“方程没有整数根”写出否定即可.解:根据反证法的步骤,假设是对原命题结论的否定“方程没有整数根”的否定“方程存在实数根x为整数”.为整数.即假设正确的是:方程存在实数根x故选A.点评:一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.5.关于综合法和分析法说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.分析法又叫逆推证法或执果索因法D.综合法和分析法都是因果分别互推的两头凑法【答案】D【解析】根据综合法、分析法的定义可得结论.解:根据综合法的定义可得,综合法是执因导果法,是顺推法;根据分析法的定义可得,分析法是执果索因法,是直接证法.故选:D.点评:本题主要考查综合法、分析法的定义,属于基础题.6.某同学证明+<+的过程如下:∵﹣>﹣>0,∴<,∴<,∴+<+,则该学生采用的证明方法是()A.综合法B.比较法C.反证法D.分析法【答案】A【解析】从推理过程(是“执因索果”还是“执果索因”)即可得到答案.解:从推理形式来看,从﹣>﹣>0入手,推出<,继而得到<,最后得到+<+,是“执因索果”,是综合法证明,故选:A.点评:本题考查综合法与分析法,掌握二者的推理形式(“执因索果”为综合法,“执果索因”为分析法)是关键,属于中档题.7.已知a,b,c∈(0,1),则对于(1﹣a)b,(1﹣b)c,(1﹣c)a说法正确的是()A.不能都大于B.都大于C.都小于D.至少有一个大于【答案】A【解析】首先根据题意,通过反证法得出结论.解:假设(1﹣a)b,(1﹣b)c,(1﹣c)a中都大于即(1﹣a)b>,(1﹣b)c>,(1﹣c)a>,即>①>②>③①②③相加:++>由基本不等式++≤=矛盾所以假设不成立,∴(1﹣a)b,(1﹣b)c,(1﹣c)a中至少有一个不大于.故选:A.点评:本题考查反证法的应用,涉及不等式的证明与基本不等式的应用,属于中档题.8.要证:a2+b2﹣1﹣a2b2≤0,只要证明()A.2ab﹣1﹣a2b2≤0B.a2+b2﹣1﹣≤0C.﹣1﹣a2b2≤0D.(a2﹣1)(b2﹣1)≥0【答案】D【解析】将左边因式分解,即可得出结论.解:要证:a2+b2﹣1﹣a2b2≤0,只要证明(a2﹣1)(1﹣b2)≤0,只要证明(a2﹣1)(b2﹣1)≥0.故选:D.点评:综合法(由因导果)证明不等式、分析法(执果索因)证明不等式.9.下面叙述正确的是()A.综合法、分析法是直接证明的方法B.综合法是直接证法、分析法是间接证法C.综合法、分析法所用语气都是肯定的D.综合法、分析法所用语气都是假定的【答案】A【解析】根据综合法、分析法的定义与证题思路,可得结论.解:综合法(由因导果)证明不等式、分析法(执果索因)证明不等式,是直接证明的方法.故选:A.点评:综合法(由因导果)证明不等式、分析法(执果索因)证明不等式.10.要证明“”可选择的方法有以下几种,其中最合理的是.(填序号).①反证法,②分析法,③综合法.【答案】②【解析】分析不等式的形式,判断最合适证明的方法.解:因为,是含有无理式的不等式,如果利用反证法,其形式与原不等式相同,所以反证法不合适;综合法不容易找出证明的突破口,所以最还是的证明方法是分析法.故答案为:②.点评:本题考查反证法与分析法、综合法证明不等式的使用条件,基本知识的应用.11.证明命题:“f(x)=e x+在(0,+∞)上是增函数”,现给出的证法如下:因为f(x)=e x+,所以f′(x)=e x﹣,因为x>0,所以e x>1,0<<1,所以e x﹣>0,即f′(x)>0,所以f(x)在(0,+∞)上是增函数,使用的证明方法是()A.综合法B.分析法C.反证法D.以上都不是【答案】A【解析】由条件根据分析法和综合法的定义,可得结论.解:题中命题的证明方法是由所给的条件,利用所学的定理、定义、公式证得要证的结论,故此题的证明方法属于综合法,故选:A.点评:本题主要考查分析法和综合法的定义,属于基础题.12.分析法是从要证的不等式出发,寻求使它成立的()A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件【答案】A【解析】本题考查的分析法和综合法的定义,根据定义分析法是从从求证的结论出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”.我们易得答案.解:∵分析法是逆向逐步找这个结论成立需要具备的充分条件;∴分析法是从要证的不等式出发,寻求使它成立的充分条件故选A点评:分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法,也称为因果分析,从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”.13.证明不等式的最适合的方法是()A.综合法B.分析法C.间接证法D.合情推理法【答案】B【解析】要证原不等式成立,只要证<,即证9+2<9+2,故只要证<,即证14<18,此种证明方法是分析法.解:要证明不等式,只要证<,即证9+2<9+2,故只要证<,即证14<18.以上证明不等式所用的最适合的方法是分析法.故选B.点评:本题考查的是分析法和综合法,解答此题的关键是熟知比较大小的方法.从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件,分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法.也称为因果分析,属于中档题.14.要证明+<2,可选择的方法有以下几种,其中最合理的是()A.综合法B.分析法C.反证法D.归纳法【答案】B【解析】要证+<2,需证<,即证…,显然用分析法最合理.解:用分析法证明如下:要证明+<2,需证<,即证10+2<20,即证<5,即证21<25,显然成立,故原结论成立.综合法:∵﹣=10+2﹣20=2(﹣5)<0,故+<2.反证法:假设+≥2,通过两端平方后导出矛盾,从而肯定原结论.从以上证法中,可知最合理的是分析法.故选B.点评:本题考查分析法的应用,考查分析与判定思维能力,属于中档题.15.设()A.都大于2B.至少有一个大于2C.至少有一个不小于2D.至少有一个不大于2【答案】C【解析】假设:中都小于2,则,但由于=≥2+2+2=6,出现矛盾,从而得出正确答案:中至少有一个不小于2.解:由于=≥2+2+2=6,∴中至少有一个不小于2,故选C.点评:分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法,也称为因果分析,从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”.16.已知函数f(x)=|sinx|的图象与直线y=kx(k>0)有且仅有三个交点,交点的横坐标的最大值为α,.则()A.A>B B.A<BC.A=B D.A与B的大小不确定【答案】C【解析】作出函数f(x)=|sinx|的图象,利用函数f(x)=|sinx|的图象与直线y=kx(k>0)有且仅有三个交点,确定切点坐标,然后利用三角函数的关系即可得到结论.解:作出函数f(x)=|sinx|的图象与直线y=kx(k>0)的图象,如图所示,要使两个函数有且仅有三个交点,则由图象可知,直线在()内与f(x)相切.设切点为A(α,﹣sinα),当x∈()时,f(x)=|sinx|=﹣sinx,此时f'(x)=﹣cosx,x∈().∴﹣cos,即α=tanα,∴==.即A=B.故选:C.点评:本题主要考查三角函数的图象和性质,利用数形结合是解决本题的关键.17.(2014•枣庄一模)在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:(1)对任意a∈R,a*0=a;(2)对任意a,b∈R,a*b=ab+(a*0)+(b*0).则函数f(x)=(e x)*的最小值为()A.2B.3C.6D.8【答案】B【解析】根据性质,f(x)=(e x)*=1+e x+,利用基本不等式,即可得出结论.解:根据性质,f(x)=(e x)*=1+e x+≥1+2=3,当且仅当e x=时,f(x)=(e x)*的最小值为3.故选:B.点评:本题考查新定义,考查基本不等式的运用,正确理解新定义是关键.18.(2014•泸州一模)一支人数是5的倍数且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人.则这只游行队伍的最少人数是()A.1025B.1035C.1045D.1055【答案】C【解析】由已知可设这只游行队伍的最少人数是n,则n﹣1是2,3,4的公倍数,即12的倍数,且n为5和倍数,进而可得答案.解:设这只游行队伍的最少人数是n∵每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人.∴n﹣1是2,3,4的公倍数,即12的倍数即n﹣1=1008+12k,k∈N则n=1009+12k,k∈N又∵n为5的倍数故当k=3时,1045是满足条件的最少人数故选C点评:本题是典型的“韩信点兵”问题,解答的关键是将问题转化为公倍数问题.19.(2014•郴州三模)设集合A⊆R,如果x∈R满足:对任意a>0,都存在x∈A,使得0<|x﹣x0|<a,那么称x为集合A的一个聚点.则在下列集合中:(1)Z+∪Z﹣;(2)R+∪R﹣;(3){x|x=,n∈N*};(4){x|x=,n∈N*}.其中以0为聚点的集合有()A.1个B.2个C.3个D.4个【答案】B【解析】根据集合聚点的新定义,我们逐一分析四个集合中元素的性质,并判断是否满足集合聚点的定义,进而得到答案.解:(1)对于某个a<1,比如a=0.5,此时对任意的x∈Z+∪Z﹣,都有|x﹣0|=0或者|x﹣0|≥1,也就是说不可能0<|x﹣0|<0.5,从而0不是Z+∪Z﹣的聚点;(2)集合{x|x∈R,x≠0},对任意的a,都存在x=(实际上任意比a小得数都可以),使得0<|x|=<a,∴0是集合{x|x∈R,x≠0}的聚点;(3)集合{x|x=,n∈N*}中的元素是极限为0的数列,对于任意的a>0,存在n>,使0<|x|=<a,∴0是集合 {x|x=,n∈N*}的聚点;(4)中,集合{x|x=,n∈N*}中的元素是极限为1的数列,除了第一项0之外,其余的都至少比0大,∴在a<的时候,不存在满足得0<|x|<a的x,∴0不是集合{x|x=,n∈N*}的聚点;故选:B点评:本题的考点是函数恒成立问题,主要考查的知识点是集合元素的性质,其中正确理解新定义﹣﹣集合的聚点的含义,是解答本题的关键.20.(2014•陕西模拟)已知[x]表示不超过实数x的最大整数(x∈R),如:[﹣1.3]=﹣2,[0.8]=0,[3.4]=3.定义{x}=x﹣[x],求{}+{}+{}+…+{}=()A.1006B.1007C.1008D.2014【答案】B【解析】利用新定义,代入计算可得结论.解:,,∴指数为奇次幂时,值为,为偶次幂时,值为∴原式=1007,故选:B.点评:本题考查简单的合情推理,考查新定义,考查学生的计算能力,比较基础.。

宜用反证法证明的命题

宜用反证法证明的命题

宜用反证法证明的命题作者:余克玲来源:《甘肃教育》2007年第20期〔关键词〕反证法;否定性命题;唯一性命题〔中图分类号〕 G633.63〔文献标识码〕 C〔文章编号〕 1004—0463(2007)10(B)—0049—01Ⅰ.关于否定性的命题当命题中含有“不存在”、“不可能”之类的否定性结论时,命题可采用反证法.例1:圆内非直径的两弦相交不能互相平分.已知:弦AB、CD相交于P.求证:AB、CD不能互相平分.分析:这个命题的结论是否定的,是“不能互相平分”,它的反面是“能互相平分”.结论的反面比结论本身易证,可用反证法.证明:假设AB、CD互相平分.∵AB、CD不是直径,∴点P与O不重合.连接OP,∵AP=PB,∴OP⊥AB.同理可证OP⊥CD.这就是说,过点P有两条直线AB、CD都垂直于OP,这与“过一点只有一条直线与已知直线垂直”相矛盾.∴ AB、CD不能互相平分.Ⅱ.某些唯一性的命题命题中含有“唯一存在”、“只有一个”之类的结论,宜用反证法.例2:求证两直线相交,只有一个交点.已知:直线a和b交于点O.求证:直线a和b只有一个交点O.证明:假设直线a和b相交不只有一个交点O,那么a和b至少有两个交点O、P.这时,直线a是由O、P两点确定的直线,直线b也是由O、P两点确定的直线.这样,由O、P两点就确定了两条直线.这与公理“两点只能确定一条直线”相矛盾.∴两条直线相交,只有一个交点.Ⅲ.关于“最多”、“最少”之类结论的命题例3:求证三角形的内角中,最多只能有一个钝角.已知:任意一个三角形.求证:三个内角中,最多只能有一个钝角.证明:假设还有一个内角是钝角,则这两个内角和大于180°,这与“三角形内角和定理”相矛盾.∴三角形的内角中,最多只能有一个钝角.Ⅳ.难于直接使用已知条件导出结论的命题例4:一个三角形中有两个角的平分线相等,则这个三角形是等腰三角形.已知:△ABC中,BE、CF分别是∠ABC和∠ACB的平分线.且BE=CF.求证:△ABC是等腰三角形.证明:假设AB>AC,则∠ACB>∠ABC.于是∠BCF>∠CBE.在△BCF和△CBE中,BC= BC,BE=CF,∠BCF>∠CBE,∴ BF >CE.(1)作平行四边形BEGF,则∠1=∠FBE=∠CBE而FC=FG,连结CG,则∠FGC=∠FCG.∴∠2>∠3,∴CE>GE,即BF故AB>AC不成立.同理,可证AB∴只有AB=AC.Ⅴ.某些起始命题在各个数学分支中,按照公理化方法,最初建立的仅是数量不多的定义和公理.因此,对于证明某些起始性质或定理的预备知识不够.直接证明有困难,宜用反证法.例5:切线性质定理:圆的切线垂直于过切点的半径.已知:直线AT是⊙O的切线,A为切点.求证:AT⊥OA.分析:到学切线性质为止,关于切线的知识仅知道两条:①切线和圆有且只有一个公共点;②圆心到切线的距离等于半径.没有更多的定理可作论证依据,此时,可用反证法.证明:假设AT与OA不垂直.过O作OM⊥AT,交AT于M.由垂线段最短,得OM∵圆心到直线AT的距离小于半径,∴AT与⊙O相交.这与已知相矛盾.∴AT⊥OA.以上几类命题,用反证法一般都能收到良好的效果.此外,涉及到对象无法一一列举的命题,如:求证素数有无穷多个,以及某些定理的逆命题不宜用反证法.不过,这在初中阶段很少出现,所以这里不再赘述.“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文”。

高中数学反证法例题

高中数学反证法例题

高中数学反证法例题高中数学反证法例题一选择题1.否定结论“至多有两个解”的说法中,正确的是()A.有一个解B.有两个解C.至少有三个解D.至少有两个解[答案] C[解析]在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”,故应选C.2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为()A.a、b、c都是奇数B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数D.a、b、c中至少有两个偶数[答案] B[解析]a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数或至少有两个偶数”.故应选B.3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是()A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°[答案] B[解析]“至少有一个不大于”的否定是“都大于60°”.故应选B.4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是()A.假设a,b,c都是偶数B.假设a、b,c都不是偶数C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个偶数[答案] B[解析]“至少有一个”反设词应为“没有一个”,也就是说本题应假设为a,b,c都不是偶数.5.命题“△ABC中,若&ang;A>&ang;B,则a>b”的结论的否定应该是()A.aB.a&le;bC.a=bD.a&ge;b[答案] B[解析]“a>b”的否定应为“a=b或a6.已知a,b是异面直线,直线c平行于直线a,那么c 与b的位置关系为()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线[答案] C[解析]假设c∥b,而由c∥a,可得a∥b,这与a,b 异面矛盾,故c与b不可能是平行直线.故应选C.7.设a,b,c&isin;(-&infin;,0),则三数a+1b,c+1a,b+1c中()A.都不大于-2B.都不小于-2C.至少有一个不大于-2D.至少有一个不小于-2[答案] C[解析]a+1b+c+1a+b+1c=a+1a+b+1b+c+1c∵a,b,c&isin;(-&infin;,0),∴a+1a=--a+-1a&le;-2b+1b=--b+-1b&le;-2c+1c=--c+-1c&le;-2∴a+1b+c+1a+b+1c&le;-6∴三数a+1b、c+1a、b+1c中至少有一个不大于-2,故应选C.8.若P是两条异面直线l、m外的任意一点,则()A.过点P有且仅有一条直线与l、m都平行B.过点P有且仅有一条直线与l、m都垂直C.过点P有且仅有一条直线与l、m都相交D.过点P有且仅有一条直线与l、m都异面[答案] B[解析]对于A,若存在直线n,使n∥l且n∥m则有l∥m,与l、m异面矛盾;对于C,过点P与l、m 都相交的直线不一定存在,反例如图(l∥α);对于D,过点P 与l、m都异面的直线不唯一.9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁[答案] C[解析]因为只有一人获奖,所以丙、丁只有一个说对了,同时甲、乙中只有一人说对了,假设乙说的对,这样丙就错了,丁就对了,也就是甲也对了,与甲错矛盾,所以乙说错了,从而知甲、丙对,所以丙为获奖歌手.故应选C.10.已知x1>0,x1≠1且xn+1=xn(x2n+3)3x2n+1(n=1,2…),试证“数列{xn}或者对任意正整数n都满足xnxn+1”,当此题用反证法否定结论时,应为()A.对任意的正整数n,都有xn=xn+1B.存在正整数n,使xn=xn+1C.存在正整数n,使xn&ge;xn+1且xn&le;xn-1D.存在正整数n,使(xn-xn-1)(xn-xn+1)&ge;0[答案] D[解析]命题的结论是“对任意正整数n,数列{xn}是递增数列或是递减数列”,其反设是“存在正整数n,使数列既不是递增数列,也不是递减数列”.故应选D.高中数学反证法例题二填空题11.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.[答案]没有一个是三角形或四边形或五边形[解析]“至少有一个”的否定是“没有一个”.12.用反证法证明命题“a,b&isin;N,ab可被5整除,那么a,b中至少有一个能被5整除”,那么反设的内容是________________.[答案]a,b都不能被5整除[解析]“至少有一个”的否定是“都不能”.13.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①&ang;A+&ang;B+&ang;C=90°+90°+&ang;C>180°,这与三角形内角和为180°相矛盾,则&ang;A=&ang;B=90°不成立;②所以一个三角形中不能有两个直角;③假设&ang;A,&ang;B,&ang;C中有两个角是直角,不妨设&ang;A=&ang;B=90°.正确顺序的序号排列为____________.[答案]③①②[解析]由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.14.用反证法证明质数有无限多个的过程如下:假设______________.设全体质数为p1、p2、…、pn,令p=p1p2…pn+1.显然,p不含因数p1、p2、…、pn.故p要么是质数,要么含有______________的质因数.这表明,除质数p1、p2、…、pn之外,还有质数,因此原假设不成立.于是,质数有无限多个.[答案]质数只有有限多个除p1、p2、…、pn之外[解析]由反证法的步骤可得.高中数学反证法例题三解答题15.已知:a+b+c>0,ab+bc+ca>0,abc>0.求证:a>0,b>0,c>0.[证明]用反证法:假设a,b,c不都是正数,由abc>0可知,这三个数中必有两个为负数,一个为正数,不妨设a<0,b<0,c>0,则由a+b+c>0,可得c>-(a+b),又a+b<0,∴c(a+b)<-(a+b)(a+b)ab+c(a+b)<-(a+b)(a+b)+ab即ab+bc+ca<-a2-ab-b2∵a2>0,ab>0,b2>0,∴-a2-ab-b2=-(a2+ab+b2)<0,即ab+bc+ca<0,这与已知ab+bc+ca>0矛盾,所以假设不成立.因此a>0,b>0,c>0成立.16.已知a,b,c&isin;(0,1).求证:(1-a)b,(1-b)c,(1-c)a 不能同时大于14.[证明]证法1:假设(1-a)b、(1-b)c、(1-c)a都大于14.∵a、b、c都是小于1的正数,∴1-a、1-b、1-c都是正数.(1-a)+b2&ge;(1-a)b>14=12,同理(1-b)+c2>12,(1-c)+a2>12.三式相加,得(1-a)+b2+(1-b)+c2+(1-c)+a2>32,即32>32,矛盾.所以(1-a)b、(1-b)c、(1-c)a不能都大于14.证法2:假设三个式子同时大于14,即(1-a)b>14,(1-b)c>14,(1-c)a>14,三式相乘得(1-a)b(1-b)c(1-c)a>143①因为0同理,0所以(1-a)a(1-b)b(1-c)c&le;143.②因为①与②矛盾,所以假设不成立,故原命题成立.17.已知函数f(x)是(-&infin;,+&infin;)上的增函数,a,b&isin;R.(1)若a+b&ge;0,求证:f(a)+f(b)&ge;f(-a)+f(-b);(2)判断(1)中命题的逆命题是否成立,并证明你的结论.[解析](1)证明:∵a+b&ge;0,∴a&ge;-b.由已知f(x)的单调性得f(a)&ge;f(-b).又a+b&ge;0?b&ge;-a?f(b)&ge;f(-a).两式相加即得:f(a)+f(b)&ge;f(-a)+f(-b).(2)逆命题:f(a)+f(b)&ge;f(-a)+f(-b)?a+b&ge;0.下面用反证法证之.假设a+b<0,那么:a+b<0?a<-b?f(a)?f(a)+f(b)这与已知矛盾,故只有a+b&ge;0.逆命题得证.18.(2019?湖北理,20改编)已知数列{bn}的通项公式为bn=1423n-1.求证:数列{bn}中的任意三项不可能成等差数列.[解析]假设数列{bn}存在三项br、bs、bt(rbs>br,则只可能有2bs=br+bt成立.∴2?1423s-1=1423r-1+1423t-1.两边同乘3t-121-r,化简得3t-r+2t-r=2?2s-r3t-s,由于r故数列{bn}中任意三项不可能成等差数列.。

反证法之几何证明专题

反证法之几何证明专题

反证法之几何证明专题例1.已知:AB、CD是⊙O内非直径的两弦(如图1),求证AB与CD不能互相平分。

(1)证明:假设AB与CD互相平分于点M、则由已知条件AB、CD均非⊙O直径,可判定M不是圆心O,连结OA、OB、OM。

∵OA=OB,M是AB中点∴OM⊥AB(等腰三角形底边上的中线垂直于底边)同理可得:OM⊥CD,从而过点M有两条直线AB、CD都垂直于OM这与已知的定理相矛盾。

故AB与CD不能互相平分。

例2.已知:在四边形ABCD中,M、N分别是AB、DC的中点,且MN=(AD+BC)。

求证:AD∥BC(2)证明:假设AD BC,连结ABD,并设P是BD的中点,再连结MP、PN。

在△ABD中∵BM=MA,BP=PD∴MP AD,同理可证PN BC从而MP+PN=(AD+BC)①这时,BD的中点不在MN上若不然,则由MN∥AD,MN∥BC,得AD∥BC与假设AD BC矛盾,于是M、P、N三点不共线。

从而MP+PN>MN②由①、②得(AD+BC)>MN,这与已知条件MN=(AD+BC)相矛盾,故假设AD BC不成立,所以AD∥BC。

练习1.求证:三角形中至少有一个角不大于60°。

2.求证:一直线的垂线与斜线必相交。

3. 已知:设m,n分别为直线l的垂线和斜线(如图),垂足为A,斜足为B求证:m和n必相交。

3.在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于H,求证:AD 与BE不能被点H互相平分。

4.求证:直线与圆最多只有两个交点。

5.求证:等腰三角形的底角必为锐角。

已知:△ABC中,AB=AC求证:∠B、∠C必为锐角。

参考答案:1.证明:假设△ABC中的∠A、∠B、∠C都大于60°则∠A+∠B+∠C>3×60°=180°这与三角形内角和定义矛盾,所以假设不能成立。

故三角形中至少有一个角不大于60°。

2.证明:假设m和n不相交则m∥n∵m⊥l ∴n⊥l这与n是l的斜线相矛盾,所以假设不能成立。

在证明题中如何使用反证法?

在证明题中如何使用反证法?

证明:(用反证法证明)
设在素不少于两个的群<G, >中存在零元 。对 a G, 由零元的定义有 a* = 。
<G, >是群, 关于*消去律成立。 a=e。即G中只有一个元素,这与|G| 2矛盾。故在元素不少于两个的群中不存在零元。
例3 在一个群<G,*>中,若A和B 都是G的子群。若A B=G,则A=G或B=G。
C H1 H2 … Hn P P
其中H1是某个已知条件,Hi(2≤i≤m)或者是某个已知条件,或者是由已知条件和前面的中间结论按照定理或公理推导出来的中间结论, C是命题结论的否定。
ห้องสมุดไป่ตู้
归谬是反证法的关键,导出矛盾的过程虽然没有固定的模式,但必须从结论的否定出发。反证法的逻辑基础是形式逻辑的排中律,命题结论C和它的否定 C中一个且只有一个为真,从而如果 C为假,那么C必为真。这里的P P是一个永假式,导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与结论的否定矛盾;自相矛盾。
例4 设T=<V,E>是一棵树,若|V|>1,则T中至少存在两片树叶。
问题解析:命题结论“T中至少存在两片树叶”的否定是“T中至多只有一片树叶”。我们希望能推出一个与树的性质矛盾的结论。树叶就是度中树中度为1的顶点,其余的顶点度数就大于等于2,且树的边数等于顶点数减1。欧拉握手定理把顶点的度数和边数联系起来。按照这样的思路我们想法得出两个相互矛盾的结论。这样我们就完成了用反证法证明的整个推理过程。
例2 证明在元素不少于两个的群中不存在零元。
问题解析:命题结论中含有“不存在”,故它的否定是“存在”。命题结论的反设是:在元素不少于两个的群中存在零元。现在要由零元的性质推出矛盾。在反证法的实施过程中,推出两个相互矛盾的中间结论是非常重要的。一般都是推出与某个已知条件的矛盾。但已知条件可能不止一个,这时一般选择比较特殊的条件,像本题中的“元素不少于两个”。然后就像直接证法一样进行思考,直到得到两个相互矛盾的结论(在本题中,就是“元素只有一个”和“元素不少于两个”)。这样我们就完成了用反证法证明的整个推理过程。

反证法【讲师版】

反证法【讲师版】

解题思想数学“参数法”学生姓名授课日期教师姓名授课时长数学思想方法与数学基础知识相比较,它有较高的地位和层次.数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。

而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用.可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”.数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得. 数学基本方法是数学思想的具体体现,是数学的行为,是解决问题的重要手段,它不仅有明确的内涵,而且具有模式化与可操作性的特征,有实施的步骤和做法.高考经典问题求解中的数学方法一般是指“配方法、换元法、待定系数法、反证法、数学归纳法、”等.有时在解决更小范围内的数学问题所使用的的具体方法是“代入法、消元法、比较法、割补法、等积法”等. 高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等. 本系列专题通过概念与规律、基础题型再现、思维启迪、经典问题回放、实战演练等环节对数学基本方法的应用进一步的夯实.与前面所讲的方法不同,反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。

法国数学家阿达玛(Hadamard)对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。

具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反证法证明题
例1. 已知A ∠,B ∠,C ∠为ABC ∆内角.
求证:A ∠,B ∠,C ∠中至少有一个不小于60o
.
证明:假设ABC ∆的三个内角A ∠,B ∠,C ∠都小于60o
, 即A ∠<60o ,B ∠<60o ,C ∠<60o
, 所以O
180A B C ∠+∠+∠<, 与三角形内角和等于180o
矛盾, 所以假设不成立,所求证结论成立.
例2. 已知0a ≠,证明x 的方程ax b =有且只有一个根. 证明:由于0a ≠,因此方程ax b =至少有一个根b x a
=. 假设方程ax b =至少存在两个根,
不妨设两根分别为12,x x 且12x x ≠, 则12,ax b ax b ==, 所以12ax ax =, 所以12()0a x x -=.
因为12x x ≠,所以120x x -≠, 所以0a =,与已知0a ≠矛盾, 所以假设不成立,所求证结论成立.
例3. 已知3
3
2,a b +=求证2a b +≤. 证明:假设2a b +>,则有2a b >-,
所以3
3
(2)a b >-即323
8126a b b b >-+-,
所以3
2
3
2
81266(1)2a b b b b >-+-=-+. 因为2
6(1)22b -+≥
所以332a b +>,与已知33
2a b +=矛盾. 所以假设不成立,所求证结论成立.
例4. 设{}n a 是公比为的等比数列,n S 为它的前n 项和.
求证:{}n S 不是等比数列.
证明:假设是{}n S 等比数列,则2
213S S S =⋅,
即222
111(1)(1)a q a a q q +=⋅++.
因为等比数列10a ≠,
所以2
2
(1)1q q q +=++即0q =,与等比数列0q ≠矛盾, 所以假设不成立,所求证结论成立.
例5. 证明2是无理数.
证明:假设2是有理数,则存在互为质数的整数m ,n 使得2m n
=. 所以2m n =
即222m n =,
所以2
m 为偶数,所以m 为偶数. 所以设*
2()m k k N =∈, 从而有2
2
42k n =即2
2
2n k =. 所以2
n 也为偶数,所以n 为偶数. 与m ,n 互为质数矛盾.
所以假设不成立,所求证2是无理数成立.
例6. 已知直线,a b 和平面,如果,a b αα⊄⊂,且//a b ,求证//a α。

证明:因为//a b , 所以经过直线a , b 确定一个平面β。

因为a α⊄,而a β⊂, 所以 α与β是两个不同的平面. 因为b α⊂,且b β⊂, 所以b αβ=I .
下面用反证法证明直线a 与平面α没有公共点.假 设直线a 与平面α有公共点P ,则P b αβ∈=I ,
即点P 是直线 a 与b 的公共点,
这与//a b 矛盾.所以 //a α.
例7.已知0 < a , b , c < 2,求证:(2 a )c , (2 b )a ,(2 c )b 不可能同时大于1
证明:假设(2 a )c , (2 b )a ,(2 c )b 都大于1,
即 (2 a )c>1, (2 b )a>1, (2 c )b>1, 则(2 a )c (2 b )a (2 c )b >1 …① 又因为设0 < a , b , c < 2,(2 a ) a 12
)2(=+-≤a
a ,
同理 (2 b ) b≤1, (2 c ) c≤1, 所以(2 a )c (2 b )a (2
c )b ≤1此与①矛盾.
所以假设不成立,所求证结论成立.
例8.若x , y > 0,且x + y >2,则
x
y +1和y x
+1中至少有一个小于2
证明:假设
x
y
+1≥2,y x +1≥2,
因为x , y > 0,所以12,12y x x y +≥+≥ ,
可得x + y ≤2 与x + y >2矛盾. 所以假设不成立,所求证结论成立.
例9.设0 < a , b , c < 1,求证:(1 a )b , (1 b )c , (1 c )a ,不可能同时大于
4
1
证明:假设设(1
a )
b >
41, (1 b )c >41, (1 c )a >4
1, 则三式相乘:ab < (1 a )b •(1 b )c •(1 c )a <64
1

又∵0 < a , b , c < 1 ∴412)1()1(02
=⎥⎦

⎢⎣⎡+-≤-<a a a a 同理:41)1(≤
-b b , 4
1
)1(≤-c c 以上三式相乘: (1 a )a •(1 b )b •(1 c )c ≤64
1
与①矛盾 所以原式成立
例10. 设二次函数q px x x f ++=2
)(,求证:)3(,)2(,)1(f f f 中至少有一个不小于
2
1. 证明:假设)3(,)2(,)1(f f f 都小于
2
1
, 则.2)3()2(2)1(<++f f f (1) 另一方面,由绝对值不等式的性质,有
2
)39()24(2)1()3()2(2)1()3()2(2)1(=+++++-++=+-≥++q p q p q p f f f f f f (2)
(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确.。

相关文档
最新文档