n皇后问题算法实验报告

合集下载

n皇后问题实验报告

n皇后问题实验报告

n皇后问题实验报告n皇后问题实验报告引言:n皇后问题是一个经典的数学问题,它要求在一个n×n的棋盘上放置n个皇后,使得它们互相之间不能相互攻击,即任意两个皇后不能处于同一行、同一列或同一对角线上。

本实验旨在通过编程实现n皇后问题的求解,并探索不同算法在解决该问题上的性能差异。

实验步骤及结果:1. 回溯算法的实现与性能分析回溯算法是最常见的解决n皇后问题的方法之一。

它通过递归的方式遍历所有可能的解,并通过剪枝操作来提高效率。

我们首先实现了回溯算法,并对不同规模的问题进行了求解。

在测试中,我们将问题规模设置为4、8、12和16。

结果表明,当n为4时,回溯算法能够找到2个解;当n为8时,能够找到92个解;当n为12时,能够找到14200个解;当n为16时,能够找到14772512个解。

可以看出,随着问题规模的增加,回溯算法的求解时间呈指数级增长。

2. 启发式算法的实现与性能分析为了提高求解效率,我们尝试了一种基于启发式算法的解决方法。

在该方法中,我们使用了遗传算法来搜索解空间。

遗传算法是一种模拟生物进化过程的优化算法,通过进化操作(如选择、交叉和变异)来寻找问题的最优解。

我们将遗传算法应用于n皇后问题,并对不同规模的问题进行了求解。

在测试中,我们将问题规模设置为8、12和16。

结果表明,遗传算法能够在较短的时间内找到问题的一个解。

当n为8时,遗传算法能够在几毫秒内找到一个解;当n为12时,能够在几十毫秒内找到一个解;当n为16时,能够在几百毫秒内找到一个解。

相比之下,回溯算法在同样规模的问题上需要几秒钟甚至更长的时间。

3. 算法性能对比与分析通过对比回溯算法和启发式算法的性能,我们可以看到启发式算法在求解n皇后问题上具有明显的优势。

回溯算法的求解时间随问题规模呈指数级增长,而启发式算法的求解时间相对较短。

这是因为启发式算法通过优化搜索策略,能够更快地找到问题的解。

然而,启发式算法并非没有缺点。

n皇后 实验报告

n皇后 实验报告

n皇后实验报告《n皇后实验报告》引言n皇后问题是一个经典的计算机科学问题,旨在找到一种方法,在n×n的棋盘上放置n个皇后,使得它们互相之间不能攻击到对方。

这个问题不仅在计算机科学领域有着重要的意义,也在数学和逻辑学中有着深远的影响。

在本实验中,我们将探讨不同解决n皇后问题的方法,并对它们进行实验和比较。

实验方法我们选择了几种常见的解决n皇后问题的算法,包括暴力搜索、回溯法、遗传算法和模拟退火算法。

我们使用Python编程语言实现了这些算法,并在不同规模的n值下进行了实验。

我们记录了每种算法的运行时间、内存占用和解的质量,并进行了对比分析。

实验结果在实验中,我们发现暴力搜索算法在较小规模的n值下表现良好,但随着n的增大,其运行时间呈指数级增长,内存占用也急剧增加。

回溯法在中等规模的n值下表现较好,但在大规模n值下也存在性能问题。

遗传算法和模拟退火算法在各种规模的n值下都表现出了较好的性能,尤其是在大规模n值下,其运行时间和内存占用都能保持在合理范围内,并且能够找到高质量的解。

结论通过本次实验,我们发现遗传算法和模拟退火算法是解决n皇后问题的较为有效的方法,尤其在大规模n值下表现出了明显的优势。

这些算法能够在合理的时间内找到高质量的解,对于解决实际问题具有一定的实用性。

同时,我们也意识到在选择解决n皇后问题的算法时,需要根据具体情况来进行选择,不能一概而论。

希望本实验能够为解决n皇后问题提供一些参考和启发。

展望在未来的研究中,我们可以进一步探讨不同算法在解决n皇后问题中的优劣势,尝试设计新的算法来解决这一问题,并且在更多的实际应用场景中进行验证。

同时,我们也可以将这些算法应用到其他类似的组合优化问题中,以期能够找到更加通用和高效的解决方法。

希望通过这些努力,能够为计算机科学和数学领域的发展做出一些贡献。

实验十 n皇后问题

实验十  n皇后问题

算法设计与分析实验报告姓名:杨勇涛班级:计科102一、实验名称:n皇后问题时间:2012年4月25日,星期三,第四节地点:12#311二、实验目的及要求在n*n格的棋盘上放置彼此不受攻击的n皇后。

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列后统一斜线上的棋子。

N皇后问题等价于在n*n格的棋盘上放置n个皇后,任何2个皇后不放在同一行同一列或同一列统统一些线上。

三、实验环境VC++四、实验内容从键盘上输入n皇后的数目,输出所有的结果五、算法描述及实验步骤N×N皇后问题的求解过程就是一个试探回逆的过程。

如图-1(图1-1)1、首先查找第一行的可放位置,第一行全部可以放,那么我们就先将第一个皇后放在(0,0)点。

(图1-2)2、再查找第二行,由于第一行的(0,0)已经放了皇后,故第二行的(1,0)和(1,1)都能放皇后了,可放的就是(1,2)和(1,3)点,在(1,2)放上皇后。

(图1-3)3、再查找第三行,查找所以发现第三行没有可放的位置了,回逆到第二行讲皇后放到(1,3)再查找第3行。

如果还不行,就回到第一行将第一行的皇后放人下一个可放的点,依次类推,查找N×N上的所以可放的位置,直到第一行所以位置被放完,输出结果。

4、根据上面的规律可以发现,对于一个皇后放在坐标(x,y),它的下一行位置为(x-1,y)(x,y)(x+1,y)的坐标都不能再放皇后。

我们用一个数组来存放本行能放皇后的点。

用循环来查找上面行对本行的影响六、调试过程及实验结果七、总结回溯法有“通用的解题法”之称。

用它可以系统的搜索一个问题的所有解或任一解。

回溯法是一个既带有系统性又带有跳跃性的搜索算法。

八、附录(源程序清单)#include "math.h"#include <iostream>using namespace std;bool valid(int i,int j);//判断安置元素的合法性void trial(int i); //递归安置元素void print(); //显示布局int q; //皇后数int *a; //存储布局元素int count = 0; //合法布局的序号int main(int argc, char* argv[]){cout<<"请输入皇后数:"<<endl;cin>>q;a = new int[q*q];for(int j=0;j<q*q;j++)a[j] = 0;trial(0);cout<<"布局完毕"<<endl;return 0;}void trial(int i) //递归安置元素{if(i>=q)print();elsefor(int j=0;j<q;j++){a[i*q+j] = 1;if(valid(i,j))trial(i+1);a[i*q+j] = 0;}}bool valid(int i,int j) //判断安置元素的合法性{bool b=true;for(int i1=0;i1<i;i1++)for(int j1=0;j1<q;j1++)if(a[i1*q+j1]==1){if(j1==j)//判断是否在同一列b = false;else if(abs(i-i1)==abs(j-j1))//判断是否在对角线b = false;}return b;}void print() //显示布局{count++;cout<<"第"<<count<<" 种布局:"<<endl;for(int m=0;m<q;m++){for(int n=0;n<q;n++){cout<<a[m*q+n]<<" ";}cout<<endl;}cout<<"----------------------------------------"<<endl; }。

实验四N皇后问题求解

实验四N皇后问题求解

实验四N 皇后问题求解、题目1) 以Q-皇后问题为例,掌握回溯法的基本设计策略。

2) 掌握回溯法解决Q-皇后问题的算法并实现;二、算法设计思想回溯法是在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。

当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。

(其实回溯法就是对隐式图的深度优先搜索算法)。

若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

判断解是否可行的条件:1. 不在同一行或者同一列,x[i]!=x[j],i!=j2•不在一条斜线上,设两个皇后在(i,j)和(k,l)位置,卜k|!=|j-l|三、程序#include<stdio.h>#include<stdlib.h>int n,stack[100]; // 存当前路径int total; // 路径数int att(int,int);void make(int l) //递归搜索以stack[l]为初结点的所有路径{int i,j; //子结点个数if (l==n+1){total=total+1; // 路径数+1 for(i=1;i<=n;i++)printf(" 输出皇后的列位置%-3d",stack[i]);// 输出第i 行皇后的列位置stack[i]}int att(int l,int i){}for (i=1;i<=n;i++){stack[l]=i; II算符i 作用于生成stack[l-1]产生子状态stack[l];if (!att(l,i))make(l+1);printf("\n");exit; II 回溯} II 再无算符可用,回溯int k;for (k=1;k<l;k++)if (abs(l-k)==abs(stack[k]-i)||i==stack[k])return 1;return 0;}int main(){}四、运行结果printf("N=");scanf("%d",&n);total=0; II 路径数初始化为0make(1); II从结点1出发,递归搜索所有的路径printf("%d\n",total);system("pause");return 0;六、心得体会在解决N皇后的时候一开始有点不止如何着手,因为这里有个N的不确定性,所以选择简单少量的情况进行具体考虑显得相对容易了许多,还有一个值得注意的问题就是如何判断要不要重新开始搜索,并且在已经形成的简单模型基础上进行改进,使之也能满足后面较复杂情况。

n皇后 实验报告

n皇后 实验报告

n皇后实验报告n皇后实验报告引言:n皇后问题是一个经典的数学问题,其目标是在一个n×n的棋盘上放置n个皇后,使得它们互不攻击。

本实验旨在通过编程实现n皇后问题的解法,并对不同的算法进行性能分析。

实验方法:本实验采用Python语言编写程序,实现了两种常见的解法:回溯法和遗传算法。

回溯法是一种穷举搜索的方法,通过不断尝试每一种可能的放置方式,直到找到满足条件的解;而遗传算法则是通过模拟生物进化的过程,利用选择、交叉和变异等操作逐步优化解的质量。

实验结果:在实验中,我们分别测试了回溯法和遗传算法在不同规模的n皇后问题上的性能表现。

以下是实验结果的总结:1. 回溯法:- 对于规模较小的问题(n<10),回溯法可以在短时间内找到所有解,并输出结果。

- 随着问题规模的增大,回溯法的搜索时间呈指数级增长。

当n=15时,搜索时间已经超过10秒。

- 回溯法在解决大规模问题时,遇到了组合爆炸的问题,无法在合理的时间内得出结果。

2. 遗传算法:- 遗传算法对于规模较小的问题表现不如回溯法,因为其需要较长的时间来找到一个较优解。

- 随着问题规模的增大,遗传算法的性能逐渐超过回溯法。

当n=20时,遗传算法能够在合理的时间内找到一个较优解。

- 遗传算法在解决大规模问题时,相比回溯法有明显的优势,因为其搜索时间增长较慢。

实验讨论:通过对实验结果的分析,我们可以得出以下结论:- 回溯法适用于规模较小的n皇后问题,但在大规模问题上的性能不佳。

- 遗传算法在大规模问题上表现较好,但对于规模较小的问题需要更长的时间来找到较优解。

- 遗传算法的性能受到参数设置的影响,不同的选择、交叉和变异策略可能导致不同的结果。

结论:综上所述,回溯法和遗传算法都是解决n皇后问题的有效方法,但在不同规模的问题上有不同的性能表现。

在实际应用中,我们可以根据问题规模选择合适的算法来求解。

对于规模较小的问题,回溯法可以提供精确的解;而对于大规模问题,遗传算法能够在合理的时间内找到较优解。

(完整word版)N皇后问题实验报告

(完整word版)N皇后问题实验报告

N皇后问题算法一、实验目的及要求所要涉及或掌握的知识:1.了解皇后相互攻击的条件:如果任意两个皇后在同一行,同一列或同一对角线,则她们相互攻击。

2.运用迭代的方法实现6皇后问题,求解得到皇后不相互攻击的一个解。

3.在运用迭代的方法实现编程时,要注意回溯点。

二、N皇后问题:在一个 N * N 的国际象棋棋盘中,怎样放置 N 个皇后才能使 N 个皇后之间不会互相有威胁而共同存在于棋局中,即在 N * N 个格子的棋盘中没有任何两个皇后是在同一行、同一列、同一斜线上。

三、问题分析最容易想到的方法就是有序地从第 1 列的第 1 行开始,尝试放上一个皇后,然后再尝试第 2 列的第几行能够放上一个皇后,如果第 2 列也放置成功,那么就继续放置第 3 列,如果此时第 3 列没有一行可以放置一个皇后,说明目前为止的尝试是无效的(即不可能得到最终解),那么此时就应该回溯到上一步(即第 2 步),将上一步(第 2 步)所放置的皇后的位置再重新取走放在另一个符合要求的地方…如此尝试性地遍历加上回溯,就可以慢慢地逼近最终解了。

四、具体实现package queen;import java.util.Scanner;public class NQueensII {public static void main(String[] args){Scanner in=new Scanner(System.in);System.out.println("Please enter the number of queen you want(请输入你要求解的皇后的个数)");int n=in.nextInt();Queen(n);}/***用回溯法设计函数Queen(n)求解*/public static boolean Place(int x[],int k)//考察皇后k放置在x[k]列是否发生冲突{for(int i=1; i<k; i++)if (x[k]==x[i]||Math.abs(k-i)==Math.abs(x[k]-x[i])) return false;return true;}public static void Queen(int n){int x[]=new int[n+1];for (int i=1; i<=n; i++)//初始化x[i]=0;int k=1;while (k>=1){x[k]=x[k]+1;//在下一列放置第k个皇后while (x[k]<=n&&!Place(x,k))x[k]=x[k]+1;//搜索下一列if (x[k]<=n && k==n){ //得到一个解,输出System.out.println("The answer is(得到的解是):");for (int i=1; i<=n; i++)System.out.print("("+i+","+x[i]+")"+" ");System.out.println();return;}else if (x[k]<=n && k<n)k=k+1;//放置下一个皇后else{x[k]=0;//重置x[k],回溯k=k-1;}}}}运行结果:五、总结回溯法有“通用解题法”之称,用它可以搜索问题的所有解。

N皇后问题实验报告C++版

N皇后问题实验报告C++版

N皇后问题实验报告C++版N皇后问题实验报告【实验题目】N皇后问题【实验目的】(1)掌握回溯法的设计思想(2)掌握解空间树的构造方法(3)考察回溯法求解问题的有效程度【实验要求】(1)设计可能解的标识方式,构造解空间树(2)设计回溯算法完成问题求解【源代码】#include#include#include#includestatic char Queen[20][20];static int a[20];static int b[40];static int c[40];static int iQueenNum=0;static int Num=1;int n;void iQueen(int row);void location(){int row;int cow;for(row=0;row<n;row++)< p="">{a[row]=0;for(cow=0;cow<n;cow++)< p="">Queen[row][cow]='+';}for(row=0;row<2*n;row++)b[row]=c[row]=0;iQueen(0);};void iQueen(int row) {int cow;for(cow=0;cow<n;cow++)< p="">{if(a[cow]==0&&b[row-cow+n-1]==0&&c[row+cow]==0) {Queen[row][cow]='?';a[cow]=1;b[row-cow+n-1]=1;c[row+cow]=1;if(row<n-1)< p="">iQueen(row+1);else{int row;int cow;cout<<""<<n<<"个皇后摆放位置的第"<<num<<"种情况为:"<<endl;< p="">for(row=0;row<n;row++)< p="">{for(cow=0;cow<n;cow++)< p="">cout<<setw(2)<<queen[row][cow];< p="">cout<<endl;< p="">}cout<<"皇后位置坐标"<<": ";for(row=0;row<n;row++)< p="">{for(cow=0;cow<n;cow++)< p="">{if(Queen[row][cow]=='?')cout<<"("<<row+1<<','<<cow+1<<")";< p="">}}cout<<endl;< p="">Num++;cout<<endl;< p="">}Queen[row][cow]='+';a[cow]=0;b[row-cow+n-1]=0;c[row+cow]=0;}}}void show(){ system("cls");cout<<endl;< p="">cout<<"\t"<<" **************n皇后问题实验设计*********** "<<endl;< p="">cout<<"\t"<<" "<<endl;< p="">cout<<"\t"<<" 1. 回溯算法 0.退出"<<endl;< p="">cout<<"\t"<<" "<<endl;< p="">cout<<"\t"<<"请选择 1或者0"<<endl;< p=""> }int main(){ system("color 5E");for(;;){ A:show();cout<<endl;< p="">int number;cin>>number;switch(number){case 0: exit(0);case 1: system("cls");cout<<"输入皇后个数(个数大于4):";cin>>n;location();system("pause");goto A;default:cout<<"选择错误,请重新作出选择!"<<=""> goto A;}}return 0;}【实验结果与分析】</endl;<> </endl;<> </endl;<></endl;<></endl;<></endl;<></endl;<></endl;<></endl;<></row+1<<','<<cow+1<<")";<></n;cow++)<></n;row++)<></endl;<></setw(2)<<queen[row][cow];<></n;cow++)<></n;row++)<></n<<"个皇后摆放位置的第"<<num<<"种情况为:"<<endl;<> </n-1)<></n;cow++)<></n;cow++)<></n;row++)<>。

用回溯算法解n皇后问题实验步骤

用回溯算法解n皇后问题实验步骤

湖州师范学院实验报告课程名称:算法实验四:回溯算法一、实验目的1、理解回溯算法的概念,掌握回溯算法的基本要素。

2、掌握设计回溯算法的一般步骤,针对具体问题,能应用回溯算法求解。

二、实验内容1、问题描述1 )n后问题在n×n格的棋盘上放置彼此不受攻击的n个皇后。

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n后问题等价于在n×n格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。

2)0-1 背包问题需对容量为 c 的背包进行装载。

从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。

对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高。

每种物品要么放进背包,要么丢弃。

2、数据输入:文件输入或键盘输入。

3、要求:1)完成上述两个问题,时间为2 次课。

2)独立完成实验及实验报告。

三、实验步骤1、理解方法思想和问题要求。

2、采用编程语言实现题目要求。

3、上机输入和调试自己所写的程序。

4、附程序主要代码:1.n后问题:#include<iostream>using namespace std;class Queen {friend int nQueen(int);private:bool Place(int k);void Backtrack(int t);int n,*x;long sum;};bool Queen::Place(int k) {for (int j = 1; j < k; j++)if ((abs(k - j) == abs(x[j] - x[k])) || (x[j] == x[k]))return false;return true;}void Queen::Backtrack(int t) {if (t > n) {for (int i = 1; i <= n; i++)cout << x[i] << " ";cout << endl;sum++;}else {for (int i = 1; i <= n; i++) {x[t] = i;if (Place(t)) Backtrack(t + 1);}}}int nQueen(int n) {Queen X;//初始化XX.n = n;X.sum = 0;int* p = new int[n + 1];for (int i = 0; i <= n; i++)p[i] = 0;X.x = p;X.Backtrack(1);delete [] p;return X.sum;}void main() {int n, set;cout << "请输入皇后个数:"; cin >> n;cout << "可行方案所有解:" << endl;set = nQueen(n);cout << "可行方案数:" << set << endl;}2.0-1背包:#include <stdio.h>#include <conio.h>int n;//物品数量double c;//背包容量double v[100];//各个物品的价值double w[100];//各个物品的重量double cw = 0.0;//当前背包重量double cp = 0.0;//当前背包中物品价值double bestp = 0.0;//当前最优价值double perp[100];//单位物品价值排序后int order[100];//物品编号int put[100];//设置是否装入//按单位价值排序void knapsack(){int i,j;int temporder = 0;double temp = 0.0;for(i=1;i<=n;i++)perp[i]=v[i]/w[i];for(i=1;i<=n-1;i++){for(j=i+1;j<=n;j++)if(perp[i]<perp[j]) perp[],order[],sortv[],sortw[] {temp = perp[i];perp[i]=perp[i];perp[j]=temp;temporder=order[i]; order[i]=order[j]; order[j]=temporder; temp = v[i];v[i]=v[j];v[j]=temp;temp=w[i];w[i]=w[j];w[j]=temp;}}}//回溯函数void backtrack(int i){double bound(int i);if(i>n){bestp = cp;return;}if(cw+w[i]<=c){cw+=w[i];cp+=v[i];put[i]=1;backtrack(i+1);cw-=w[i];cp-=v[i];}if(bound(i+1)>bestp)//符合条件搜索右子数 backtrack(i+1);}//计算上界函数double bound(int i){double leftw= c-cw;double b = cp;while(i<=n&&w[i]<=leftw){leftw-=w[i];b+=v[i];i++;}if(i<=n)b+=v[i]/w[i]*leftw;return b;}int main(){int i;printf("请输入物品的数量和容量:");scanf("%d %lf",&n,&c);printf("请输入物品的重量和价值:");for(i=1;i<=n;i++){printf("第%d个物品的重量:",i);scanf("%lf",&w[i]);printf("价值是:");scanf("%lf",&v[i]);order[i]=i;}knapsack();backtrack(1);printf("最有价值为:%lf\n",bestp);printf("需要装入的物品编号是:");for(i=1;i<=n;i++){if(put[i]==1)printf("%d ",order[i]);}return 0;}5、实验结果:四、实验分析1、:n后问题分析只要不要在同一直线和斜线上就行。

n皇后问题实验报告

n皇后问题实验报告

N后问题算法一、实验目的及要求所要涉及或掌握的知识:1. 了解皇后相互攻击的条件:如果任意两个皇后在同一行,同一列或同一对角线,则她们相互攻击。

2. 运用迭代的方法实现6皇后问题,求解得到皇后不相互攻击的一个解3. 在运用迭代的方法实现编程时,要注意回溯点二、问题描述及实验内容对6皇后问题求解,用数组c[1…6]来存皇后的位置。

c[i]=j表示第i个皇后放在第j列。

最后程序运行的结果是c[1…6]={1,5,8,6,3,7 }三、问题分析和算法描述6-QUEENS的算法表示:输入:空。

输出:对应于6皇后问题的解的向量c[1…6]={1,5,8,6,3,7}1. for k=1 to 62. c[k]=0 //没有放皇后3. end for4. flag=false5. k=16. while k>=17.while c[k]<=58.c[k]=c[k]+19.if c为合法着色 then set flag=ture 且从两个while循环退出10.else if c是部分解 then k=k+111.end while12. c[k]=0 //回溯并c[k]=013. k=k-114. end while15. if flag then output c16. else output “no solution”四、具体实现# include <math.h>#include <time.h>#include <stdlib.h>#include <stdio.h>#include "iostream"using namespace std;int total = 0; //方案计数void backtrace(int queen[],int N){int i, j, k;cout<<"★为皇后放置位置\n";for (i=1;;){ //首先安放第1行if(queen[i]<N){ //皇后还可调整k=0; //检查与第k个皇后是否互相攻击while(k<i&&abs(queen[k]-queen[i])&&(abs(queen[k]-queen[i])-abs(k-i))) k++;if (k<=i-1){ //与第k个皇后互相攻击queen[i]++; //第i个皇后右移一列,重测continue;}i++; //无冲突,安置下一行皇后if(i<N) continue;cout<<"第"<<total+1<<"种为:\n";for(int i=0;i<N;i++){for(int j=0;j<queen[i];j++)cout<<"□";cout<<"★";for(int k=queen[i]+1;k<N;k++)cout<<"□";cout<<endl;}total++; //方案数加1if(total%5==0) cout<<endl;queen[N-1]++; // 将第8个皇后右移一列,前8个不动i=N-1; //此处是制造机会,如不成功则回溯,关键一步}else //当前行皇后无法安置,回溯{queen[i]=0; //当前行皇后回归1列i--; //回溯到前一行皇后if(i<0){ //回溯到数组1行之前,结束cout<<"\n针对 "<<N<<" 皇后问题,"<<"一共找到 "<<total<<" 种放置方法。

数据结构N皇后实验报告

数据结构N皇后实验报告

实验5.1 求解n皇后问题实验要求:编写一个程序exp5—1.cpp,求解皇后问题:在n*n的方格棋盘上,放置n个皇后,要求每个皇后不同行,不同列、不同左右对角线。

要求:(1)皇后的个数n由用户输入,其值不能超过20.采用递归方法求解。

实验过程:按照要求在VC++6.0控制台上编写程序代码如下:#include <stdio.h>#include <stdlib.h>const int N=20; //最多皇后个数int q[N]; //存放各皇后所在的列号int count=0; //存放解个数void print(int n) //输出一个解{count++;int i;printf(" 第%d个解:",count);for (i=1;i<=n;i++)printf("(%d,%d) ",i,q[i]);printf("\n");}int place(int k,int j) //测试(k,j)位置能否摆放皇后{int i=1;while (i<k) //i=1~k-1是已放置了皇后的行{if ((q[i]==j) || (abs(q[i]-j)==abs(i-k)))return 0;i++;}return 1;}void queen(int k,int n) //放置1-k的皇后{int j;if (k>n)print(n); //所有皇后放置结束elsefor (j=1;j<=n;j++) //在第k行上穷举每一个位置if (place(k,j)) //在第k行上找到一个合适位置(k,j){q[k]=j;queen(k+1,n);}}void main(){int n; //n存放实际皇后个数printf(" 皇后问题(n<20) n=");scanf("%d",&n);if (n>20)printf("n值太大,不能求解\n");else{printf(" %d皇后问题求解如下:\n",n);queen(1,n);printf("\n");}}完成后运行显示对话框:输入的是n=6的输出结果是:实验结果分析:(1)按照实验书指定操作,运行结果出现的错误,其实是我们经常犯的错误。

n皇后 实验报告

n皇后 实验报告

n皇后实验报告n皇后实验报告引言:n皇后问题是一个经典的数学问题,旨在找到在一个n×n的棋盘上放置n个皇后,使得它们互不攻击。

这个问题涉及到了组合数学、图论和计算机算法等多个领域,具有一定的难度和挑战性。

本实验旨在通过不同的算法和策略来解决n皇后问题,并对它们的效率和性能进行评估。

实验一:暴力法暴力法是最简单直接的解决方法之一。

它通过穷举法遍历所有可能的皇后放置方式,并检查是否满足条件。

具体步骤如下:1. 生成一个空的n×n棋盘。

2. 从第一行开始,依次尝试将皇后放置在每个格子上。

3. 如果当前格子可以放置皇后,则继续下一行;否则,回溯到上一行,重新选择一个可行的格子。

4. 当所有行都放置了皇后时,找到了一个解,记录下来。

5. 继续尝试下一个可能的放置方式,直到遍历完所有情况。

实验结果显示,暴力法在小规模问题上表现良好,但在n较大时,其时间复杂度呈指数级增长,运行时间非常长。

实验二:回溯法回溯法是一种优化的解决方法,它通过剪枝操作来减少不必要的搜索。

具体步骤如下:1. 生成一个空的n×n棋盘。

2. 从第一行开始,依次尝试将皇后放置在每个格子上。

3. 如果当前格子可以放置皇后,则继续下一行;否则,回溯到上一行,重新选择一个可行的格子。

4. 当所有行都放置了皇后时,找到了一个解,记录下来。

5. 在每次尝试放置皇后时,通过检查当前格子所在的行、列和对角线上是否已经有皇后,来判断是否满足条件。

6. 在每次回溯时,可以通过剪枝操作来减少搜索的空间。

实验结果显示,回溯法相较于暴力法有了一定的提升,但在n较大时,仍然存在一定的时间复杂度问题。

实验三:优化算法为了进一步提高解决n皇后问题的效率,我们尝试了一些优化算法。

其中,一种比较常见的优化算法是基于位运算的方法。

1. 生成一个空的n×n棋盘。

2. 使用一个n位的二进制数来表示每一行上的皇后位置,其中1表示有皇后,0表示没有皇后。

n皇后问题算法实验报告

n皇后问题算法实验报告

算法分析与设计实验报告实验内容:N皇后问题实验时间:2013.12.3姓名:***班级:计科1101学号:**********一、实验内容及要求在n×n格的棋盘上放置彼此不受攻击的n个皇后,按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

二、实验目的1.巩固和加深对回溯法的理解2.了解递归和迭代法在回溯法中的应用三、算法分析1.理解皇后不被攻击的条件:n后问题等价于在n*n格的棋盘上放置n个皇后,任何两个皇后不能放在同一行或同一列或同一斜线上。

2.算法模块简要分析用数组存储皇后的位置,将i设置为0.Int place(*x,n) :数组x[] 用来表示列数,n为皇后个数,用来判断皇后是否被攻击,判断的条件是(x[i]-x[n]==i-n||x[i]-x[n]==n-i||x[i]==x[n])即用来判断“同一行或同一列或同一斜线上”。

Int print(*x,n):打印皇后解的空间。

Int iniprint(*x,n):初始化打印函数,相当于对棋盘初始化。

将可以放皇后的位置记为“1”,不放皇后的位置记为“0”。

Int Nqueen(int n):n皇后问题求解,如果满足一组可行解,sum++。

Int i=0,如果x[i]>=n的时候即进行下一行,i++;当i=n时,sum++;输出该组可行解的个数和位置的矩阵。

并且i--,回溯到上一层继续搜索可行解。

四、运行结果及分析1、三皇后没有可行解2、2.4个皇后有2个可行解3.5皇后有10个可行解五、源代码#include<stdio.h>static int n, sum=0;//可行解个数static int locate[20];int place(int k){//判断是否在一条线上并返回0,1for(int i=1;i<k;i++){if(locate[i] == locate[k] || (i+locate[i])==(locate[k]+k)||(locate[i]-i)==(locate[k]-k))return 0;}return 1;}void Back(int m){if(m>n){sum++;for(int i=1;i<=n;i++){for(int a=1;a<=n;a++){if(a<locate[i]||a>locate[i])printf(" * ");elseprintf(" \2 "); //如果已经安排完毕则输出棋盘和记录}printf("\n");}printf("第%d种解法如上图所示: ",sum);for(int i=1;i<=n;i++)printf("%d ",locate[i]);printf("\n\n\n");}else{//如果没有安排完则递归继续下一个安排,无解则返回上一个for(int i=1;i<=n;i++){locate[m]=i;if(place(m))Back(m+1);}}}int main(){printf("请输入皇后数量:");scanf("%d",&n);printf("\n(\2表示皇后,*表示棋盘)\n\n\n");Back(1);printf("%d个皇后共有以上%d种解法\n\n\n",n,sum);}六、实验心得回溯法有“通用解题法”之称,用它可以搜索问题的所有解。

局部搜索实验之N皇后

局部搜索实验之N皇后

300万个皇后6秒钟
PB07210134 高航
实验目的:
用局部搜索算法尽可能快的解决N皇后问题
实验过程
1.问题的表示:一个数组queen[i]存放第i列皇后的行数
confilict:冲突数
2.自己动手按照书上的算法写
发现每步复杂度是O(N2)难以承受。

3.简化问题。

构造初始状态时,用洗牌的想法构造出一个没有行冲突的状态,之后对此状态进行列交换。

4.参阅《300,000,000 Queens in Less Than One Minute》一文学到了QS4算
法,并了解到之前采用的是QS1算法。

彻底解决了该问题。

QS4算法主要是在生成初始状态方面进行了改进,以便尽可能的减少初始状态的冲突。

5.实验结果:
时间复杂度达到O(N)
为保证算法的正确性,另写有一check.exe检查输出文件的正确。

文件:
QS4.cpp
check.exe
《300,000,000 Queens in Less Than One Minute》。

n皇后 实验报告

n皇后 实验报告

n皇后问题实验报告1. 引言n皇后问题是一个经典的组合优化问题,旨在找到如何在一个n × n的棋盘上放置n个皇后,使得任意两个皇后不在同一行、同一列或同一对角线上。

这个问题可以通过回溯算法来解决。

在本实验报告中,我们将详细介绍n皇后问题,并提供一个实现回溯算法解决该问题的步骤。

2. 算法步骤以下是解决n皇后问题的步骤:2.1 初始化首先,我们需要定义一个n × n的棋盘,并初始化所有位置为空。

2.2 递归回溯接下来,我们使用递归回溯来找到合适的解决方案。

我们从第一行开始,逐个尝试在每个位置放置一个皇后。

2.2.1 判断位置是否合法在放置皇后之前,我们需要判断当前位置是否符合规则。

判断的条件包括当前位置所在的行、列以及对角线上是否已经存在其他皇后。

如果存在冲突,则需要尝试下一个位置。

2.2.2 放置皇后如果当前位置合法,我们将在该位置放置一个皇后,并继续递归地尝试下一行。

2.2.3 回溯如果放置皇后后无法找到合适的解决方案,我们需要回溯到上一行,将上一行的皇后位置向后移动一位,并尝试下一个位置。

2.3 输出解决方案当找到一个合适的解决方案时,我们输出棋盘的状态,显示每个位置是否有皇后。

2.4 继续寻找其他解决方案如果还存在其他解决方案,我们将继续递归回溯,直到找到所有的解决方案。

3. 实验结果经过实验,我们使用回溯算法成功解决了n皇后问题。

对于不同的n值,我们找到了所有的解决方案并进行了输出。

以下是几个n皇后问题的解决方案示例:3.1 n = 4- Q - -- - - QQ - - -- - Q -3.2 n = 8Q - - - - - - -- - - - Q - - -- - - - - - - Q- - - - - Q - -- - Q - - - - -- - - - - - Q -- Q - - - - - -- - - Q - - - -4. 总结通过本实验,我们了解了n皇后问题,并学习了回溯算法的应用。

n皇后问题实验报告材料

n皇后问题实验报告材料

N后问题算法一、实验目的及要求所要涉及或掌握的知识:1. 了解皇后相互攻击的条件:如果任意两个皇后在同一行,同一列或同一对角线,则她们相互攻击。

2. 运用迭代的方法实现6皇后问题,求解得到皇后不相互攻击的一个解3. 在运用迭代的方法实现编程时,要注意回溯点二、问题描述及实验内容对6皇后问题求解,用数组c[1…6]来存皇后的位置。

c[i]=j表示第i个皇后放在第j列。

最后程序运行的结果是c[1…6]={1,5,8,6,3,7 }三、问题分析和算法描述6-QUEENS的算法表示:输入:空。

输出:对应于6皇后问题的解的向量c[1…6]={1,5,8,6,3,7}1. for k=1 to 62. c[k]=0 //没有放皇后3. end for4. flag=false5. k=16. while k>=17. while c[k]<=58. c[k]=c[k]+19. if c为合法着色 then set flag=ture 且从两个while循环退出10. else if c是部分解 then k=k+111. end while12. c[k]=0 //回溯并c[k]=013. k=k-114. end while15. if flag then output c16. else output “no solution”四、具体实现# include <math.h>#include <time.h>#include <stdlib.h>#include <stdio.h>#include "iostream"using namespace std;int total = 0; //方案计数void backtrace(int queen[],int N){int i, j, k;cout<<"★为皇后放置位置\n";for (i=1;;){ //首先安放第1行if(queen[i]<N){ //皇后还可调整k=0; //检查与第k个皇后是否互相攻击while(k<i&&abs(queen[k]-queen[i])&&(abs(queen[k]-queen[i])-abs(k-i))) k++;if (k<=i-1){ //与第k个皇后互相攻击queen[i]++; //第i个皇后右移一列,重测continue;}i++; //无冲突,安置下一行皇后if(i<N) continue;cout<<"第"<<total+1<<"种为:\n";for(int i=0;i<N;i++){for(int j=0;j<queen[i];j++)cout<<"□";cout<<"★";for(int k=queen[i]+1;k<N;k++)cout<<"□";cout<<endl;}total++; //方案数加1if(total%5==0) cout<<endl;queen[N-1]++; // 将第8个皇后右移一列,前8个不动i=N-1; //此处是制造机会,如不成功则回溯,关键一步}else //当前行皇后无法安置,回溯{queen[i]=0; //当前行皇后回归1列i--; //回溯到前一行皇后if(i<0){ //回溯到数组1行之前,结束cout<<"\n针对 "<<N<<" 皇后问题,"<<"一共找到 "<<total<<" 种放置方法。

N皇后问题实验报告

N皇后问题实验报告

N皇后问题实验报告电子工程学院A.实验内容在n×n格的棋盘上放置彼此不受攻击的n个皇后,按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子,求解可以放置的方法种数。

B.问题分析n后问题等于于在n×n格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。

即规定每一列放一个皇后,不会造成列上的冲突;当第i 行被某个皇后占领后,则同一行上的所有空格都不能再放皇后,要把以i为下标的标记置为被占领状态。

C.算法设计1. 解决冲突问题:这个问题包括了行,列,两条对角线;列:规定每一列放一个皇后,不会造成列上的冲突;行:当第i行被某个皇后占领后,则同一行上的所有空格都不能再放皇后,要把以i为下标的标记置为被占领状态;对角线:对角线有两个方向。

在这我把这两条对角线称为:主对角线和从对角线。

在同一对角线上的所有点(设下标为(i,j)),要么(i+j)是常数,要么(i-j)是常数。

因此,当第i个皇后占领了第j列后,要同时把以(i+j)、(i-j)为下标的标记置为被占领状态。

2. 算法设计因为n皇后问题,从n大于11开始求解过程耗时就很长,所以定义x数组的最大值MAXNUM=30;即最大可解决30皇后问题。

1) 判断当前位置是否可放置皇后皇后k在第k行第x[k]列时,x[i]==x[k] 时,两皇后在同一列上;abs(x[i]-x[k])==abs(i-k)时,两皇后在同一斜线上;两种情况两皇后都可相互攻击,返回false表示不符合条件。

bool Place(int k){int i;i=1;while(i<k){if(x[i]==x[k]||abs(x[i]-x[k])==abs(i-k))return false;i=i+1;}return true;2) 输出当前解void Print(int x[],int n) {num++;printf("第%d\t种解法:(",num);for(int i=1;i<=n;i++) {printf("%d,",x[i]);if(i%n==0)printf(");\n"); }3) 回溯法搜索解空间void NQueens(int n){int k=1;x[1]=0;while(k>0){x[k]+=1;while(x[k]<=n&&!Place(k)) x[k]+=1;if(x[k]<=n)1 / 6{if(k==n)Print(x,n);else{k=k+1;x[k]=0;}}//回溯至上一行;elsek--;}}3. 实验结果及分析n皇后问题解的情况皇后的个问题的解数N=1 X=(1) N=2 无解N=3 无解N=4 X1=(2,4,1,3); X2=(3,1,4,2) N=5 X1=(1,3,5,2,4); X2=(1,4,2,5,3); X3=(2,4,1,3,5);X4=(2,5,3,1,4);X5=(3,1,4,2,5); X6=(3,5,2,4,1); X7=(4,1,3,5,2);X8=(4,2,5,3,1);X9=(5,2,4,1,3); X10=(5,3,1,4,2) N=6X1=(2,4,6,1,3,5);X2=(3,6,2,5,1,4);X3=(4,1,5,2,6,3);X4=(5,3,1, 6,4,2)N=7 40个解 N=8 92个解4. 实验程序随着N 的增大,解的个数增多,以N=4为例#include <stdio.h>#include<math.h>#define N 4 /* 定义棋盘大小 */static int sum; /* 当前已找到解的个数 */static int x[N];int place(int k){int j;for (j = 0; j < k; j ++)if (x[j] == x[k] || abs(j - k) == abs(x[j] - x[k])) return 0;2 / 6return 1;}/* 打印棋局 */void chessboard(){int i,j;int site[N];printf("第%d种解法:\n", ++ sum);for (i = 0; i < N; i ++) {for (j = 0; j < N; j ++)if (j == x[i]) {printf("Q ");site[i]=j+1;}else printf("* ");printf("\n");}printf("A%d(",sum);for(i = 0; i < N; i ++){printf("%d,",site[i]);}printf(");");printf("\n");}/* 回溯搜索解空间 */void backtrack(){int k = 0;x[0] = -1;while (k >= 0) {x[k] += 1; /* 向右移一列 *//* 向右移至出最右列或可以放置皇后的列 */ while ((x[k] < N) && !(place(k))) x[k] += 1; if (x[k] < N) /* 向右移未移出棋盘 */if (k == N - 1) chessboard(); /* 已移至最后一行 */else x[++ k] = -1; /* 向下移一行 */else k --; /* 回溯到上一行 */}}int main(void){backtrack();printf("%d皇后有%d个解:\n",N,sum); return 0;}3 / 6实验结果截图:5. 流程图4 / 6D.心得体会通过算法老师布置的这次大作业,首先使我们更好地理解皇后问题和回溯法的原理;其次,在作业过程中遇到的困难,使我们3人学会了如何合作才能更高效的解决问题;最后,在这次作业中,锻炼了我们收集资料,学习新技能的能力,感谢老师~E.参考文献《算法设计技巧与分析》——电子工业出版社《C程序设计》——西安电子科技大学出版社《回溯法》——百度文库5 / 6。

n后问题实验报告

n后问题实验报告

一.实验目的1. 了解皇后相互攻击的条件:如果任意两个皇后在同一行,同一列或同一对角线,则她们相互攻击。

2. 运用迭代的方法实现n皇后问题,求解得到皇后不相互攻击的一个解二.实验内容基本思路:用n元组x[1:n]表示n后问题的解,其中x[i]表示第i个皇后放在棋盘的第i行的第x[i]列。

抽象约束条件得到能放置一个皇后的约束条件:(1)x[i]!=x[k]; (2)abs(x[i]-x[k])!=abs(i-k)。

应用回溯法,当可以放置皇后时就继续到下一行,不行的话就返回到第一行,重新检验要放的列数,如此反复,直到将所有解解出。

在回溯法中,递归函数Backtrack(1)实现对整个解空间的回溯搜索。

Backtrack(i)搜索解空间的第i层子树。

类Queen的数据成员记录解空间的节点信息,以减少传给Backtrack函数的参数。

sum记录当前已找到的可行方案数。

运用回溯法解题通常包含以下三个步骤:(1)针对所给问题,定义问题的解空间;(2)确定易于搜索的解空间结构;(3)以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。

源代码:#include<iostream>using namespace std;class Queen{friend int nQueen(int);private:bool Place(int k);void Backtract(int t);int n,*x;long sum; //可行方案数};bool Queen::Place(int k){for(int j=1;j<k;j++)if((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k])) return false;return true;}void Queen::Backtract(int t){if (t>n){sum++;cout<<"第"<<sum<<"种方法:";for(int i=1;i<=n;i++)cout<<x[i]<<" ";cout<<endl;}else{for(int i=1;i<=n;i++){x[t]=i;if(Place(t)) Backtract(t+1);}}}int nQueen(int n){Queen X;X.n=n;X.sum=0;int *p=new int[n+1];for(int i=0;i<=n;i++)p[i]=0;X.x=p;X.Backtract(1);delete []p;return X.sum;}void main(){int n,m;cout<<"请输入皇后个数:";cin>>n;m=nQueen(n);cout<<endl;cout<<"有"<<m<<"种可行方法"<<endl; }三.实验的结果及分析……………四.实验心得体会通过这次实验理解了回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。

算法快速排序01背包N皇后问题实验报告

算法快速排序01背包N皇后问题实验报告

算法分析与设计实验报告姓名:专业班级学号:学院:信息科学与工程实验一:快速排序实验实验目的理解递归算法的思想和递归程序的执行过程,并能熟练编写递归程序。

掌握分治算法的思想,对给定的问题能设计出分治算法予以解决。

实验预习内容编程实现讲过的例题:二分搜索、合并排序、快速排序。

对本实验中的问题,设计出算法并编程实现。

试验内容和步骤快速排序快速排序:在待排序的数组的n个元素中取一个元素(一般取第一个),将其移动到这样的位置:在其之前的元素的值都小于它,在其之后的元素都大于它,这样是一趟快速排序;然后对数组的两个部分进行同样的操作,直到每部分只有一个记录为止;总之,每趟使表的第一个元素放在适当位置,将表两分,再对两子表进行同样的递归划分,直至划分的子表长度为1。

一、递归程序执行的过程1 实现快速排序的实现基于分治法,具体分为三个步骤。

假设待排序的序列为L[m..n]。

分解:序列L[m .. n]被划分成两个可能为空的子序列L[m .. pivot-1]和L[pivot+1 .. n],使L[m .. pivot-1]的每个元素均小于或等于L[pivot],同时L[pivot+1.. n]的每个元素均大于L[pivot]。

其中L[pivot]称为这一趟分割中的主元(也称为枢轴、支点)。

解决:通过递归调用快速排序,对子序列L[m .. pivot-1]和L[pivot+1 .. r]排序。

合并:由于两个子序列是就地排序的,所以对它们的合并不需要操作,整个序列L[m .. n]已排好序。

2.概述快速排序(Quick Sort)是一种有效的排序算法。

虽然算法在最坏的情况下运行时间为O(n^2),但由于平均运行时间为O(nlogn),并且在内存使用、程序实现复杂性上表现优秀,尤其是对快速排序算法进行随机化的可能,使得快速排序在一般情况下是最实用的排序方法之一。

快速排序被认为是当前最优秀的内部排序方法。

3.性质内部排序快速排序是一种内部排序方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法分析与设计实验报告
实验内容:N皇后问题
实验时间:2013.12.3
姓名:***
班级:计科1101
学号:**********
一、实验内容及要求
在n×n格的棋盘上放置彼此不受攻击的n个皇后,按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

二、实验目的
1.巩固和加深对回溯法的理解
2.了解递归和迭代法在回溯法中的应用
三、算法分析
1.理解皇后不被攻击的条件:n后问题等价于在n*n格的棋盘上放置n个皇后,任何两个皇后不能放在同一行或同一列或同一斜线上。

2.算法模块简要分析
用数组存储皇后的位置,将i设置为0.
Int place(*x,n) :数组x[] 用来表示列数,n为皇后个数,用来判断皇后是否被攻击,判断的条件是(x[i]-x[n]==i-n||x[i]-x[n]==n-i||x[i]==x[n])即用来判断“同一行或同一列或同一斜线上”。

Int print(*x,n):打印皇后解的空间。

Int iniprint(*x,n):初始化打印函数,相当于对棋盘初始化。

将可以放皇后的位置记为“1”,不放皇后的位置记为“0”。

Int Nqueen(int n):n皇后问题求解,如果满足一组可行解,sum++。

Int i=0,如果x[i]>=n的时候即进行下一行,i++;当i=n时,
sum++;输出该组可行解的个数和位置的矩阵。

并且i--,回溯到上一层继续搜索可行解。

四、运行结果及分析
1、三皇后没有可行解
2、
2.4个皇后有2个可行解
3.5皇后有10个可行解
五、源代码
#include<stdio.h>
static int n, sum=0;//可行解个数
static int locate[20];
int place(int k)
{//判断是否在一条线上并返回0,1
for(int i=1;i<k;i++){
if(locate[i] == locate[k] || (i+locate[i])==(locate[k]+k)||(locate[i]-i)==(locate[k]-k))
return 0;
}
return 1;
}
void Back(int m)
{
if(m>n){
sum++;
for(int i=1;i<=n;i++)
{
for(int a=1;a<=n;a++)
{
if(a<locate[i]||a>locate[i])
printf(" * ");
else
printf(" \2 "); //如果已经安排完毕则输出棋盘和记录
}
printf("\n");
}
printf("第%d种解法如上图所示: ",sum);
for(int i=1;i<=n;i++)
printf("%d ",locate[i]);
printf("\n\n\n");
}
else
{//如果没有安排完则递归继续下一个安排,无解则返回上一个
for(int i=1;i<=n;i++)
{
locate[m]=i;
if(place(m))
Back(m+1);
}
}
}
int main()
{
printf("请输入皇后数量:");
scanf("%d",&n);
printf("\n(\2表示皇后,*表示棋盘)\n\n\n");
Back(1);
printf("%d个皇后共有以上%d种解法\n\n\n",n,sum);
}
六、实验心得
回溯法有“通用解题法”之称,用它可以搜索问题的所有解。

它是一个既带有系统性又带有跳跃性的搜索算法,是按照深度优先策略,从根节点出发搜索解
空间树。

算法搜索至某一节点时,利用判断函数先判断该节点内是否包含问题的解,如果不包含则直接跳过,节省时间,相关的判断函数根据实际问题来编写。

比较适合求解组合数较大的问题。

通过本次试验,对回溯法有了深刻的理解,并且对递归得到了巩固。

在编写N皇后算法的过程中,遇到了一些问题,当以普通的方式回溯时,当n>=11时,程序运行时间变得很长,说明该算法的时间复杂度比较大。

由于时间原因没有来得及使用递归,接下来可以比较一下两者的算法的时间复杂度。

程序不是一时之事,需要长时间的积累,逐步付诸实践才能真正的掌握。

相关文档
最新文档