第九章 可逆电池电动势及其应用
第九章可逆电池的电动势及其应用
![第九章可逆电池的电动势及其应用](https://img.taocdn.com/s3/m/156afc43f5335a8102d2206e.png)
第九章 可逆电池的电动势及其应用【复习题】【1】可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应,对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题?【答】可逆电极主要有三类:A.第一类电极:由金属浸在含有该金属离子的溶液中组成。
如锌电极 22()|()Zn Zn a Zn s ++ 22()2()Zn Zn a e Zn s ++-+→ 222,,1ln2Zn Zn Zn ZnZn RT F a θϕϕ+++=- 属于第一类电极的除了金属电极外,还有气体电极(比如氢电极、氧电极和卤素电极)和汞齐电极等。
B. 第二类电极:包括难溶盐电极和难溶氧化物电极难溶盐电极:由金属表面覆盖一薄层该金属的难溶盐,然后浸在含有该难溶盐的负离子的溶液中组成。
例如甘汞电极 ()|()|(Cl Cl a AgCl s Ag s -- ()()()Cl AgCl s e Ag s Cl a ---+=+ ln Cl RTa Fθϕϕ-=-难溶氧化物电极:由金属表面覆盖一薄层该金属的难溶氧化物,然后浸在含有H +或OH -离子的溶液中组成。
例如汞-氧化汞电极()()|Hg s HgO s H OH +--或(a )2()2()2()HgO s H O e Hg s OH a --++=+ ln RTa Fθϕϕ=-C.第三类电极:叫氧化还原电极。
由惰性金属(如铂片)插入含有某种离子的不同氧化态溶液中构成的电极。
例如3232(),()|()Fe Fe Fe a Fe a Pt s ++++3212()()Fe a e Fe a +-++→ 32321,,2ln Fe Fe Fe Fe a RT F a θϕϕ++++=- 对于气体电极和氧化还原电极在书写电极表示式时应注意:要有惰性金属作为导体,惰性金属只传导电子,不发生化学变化。
【2】什么叫电池的电动势?用伏特表测得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法?【答】(1)电池的电动势是原电池组成相间的各界面上所产生的电势差的代数和。
第九章可逆电池的电动势及其应用1
![第九章可逆电池的电动势及其应用1](https://img.taocdn.com/s3/m/15b6983e3968011ca3009191.png)
§9.1 可逆电池和可逆电极 §9.2 电动势的测定
§9.3 可逆电池的书写方法及电动势的取号
§9.4 可逆电池的热力学 §9.5 电动势产生的机理 §9.6 电极电势和电池的电动势
§9.7 电动势测定的应用
§9.8 内电位、外电位和电化学势
2014-5-11
使化学能转变为电能的装置称为原电池或电池。
金属电极:将金属浸在含有该金属离子的溶液中构成。 构成: 含该金属离子溶液 ┃ 金属 示例: Cu2+(a)┃ Cu
Zn2+ (a)┃ Zn
反应: Mz+ (a) + z e - → M
第一类电极
气体电极:指H2、O2和Cl2气体冲击着的铂片浸入含有
H+、OH-和Cl-的溶液中而构成。 构成: 含该气体离子溶液 ┃ 气体 ┃ 惰性电极 示例: OH-(a) ┃ O2(p)┃Pt 反应:
第二类电极反应写法 首先,此电极与金属电极一样,应有反应 Ag++e-→Ag 同时由于难溶盐有一定的溶度积,存在如下平衡 AgCl →Ag++Cl两式相加
AgCl+e-→Ag+Cl-
难溶氧化物电极是将金属覆盖一薄层该金属的氧
化物,然后浸入含有H+或OH-离子的溶液中而构成。 构成: 含H+或OH-溶液 ┃金属难溶氧化物 ┃ 金属
构成: 同阴离子易溶盐溶液 ┃金属难溶盐 ┃金属 示例: Cl-(a) ┃ Hg2Cl2 (s) ┃ Hg (l)
反应:
Hg2Cl2 (s) + 2e- →2 Hg (l) + 2 Cl- (a)
难溶盐电极 示例: Cl-(a) ┃ AgCl (s) ┃ Ag (l)
09可逆电池电动势及其应用
![09可逆电池电动势及其应用](https://img.taocdn.com/s3/m/187ab40f76c66137ee06198c.png)
电池反应: 电池反应:Hg2SO4(s)+Cd(Hg)(a)+8/3H2O→CdSO48/3H2O(s)+2Hg(l)
优点: 优点: 电动势稳定,随温度改变小. 电动势稳定,随温度改变小.
ET/V = 1.01845 – 4.05× 10-5(T/K –293.15) × – 9.5× 10-7(T/K –293.15)2 × + 1× 10-8 (T/K –293.15)3 ×
三 设计原电池 设计电池基本思路: 设计电池基本思路: (1)根据元素氧化数的变化,确定氧还电对,写出电 根据元素氧化数的变化,确定氧还电对, 极反应. 极反应. (必要时可在方程式两边加同一物质) 必要时可在方程式两边加同一物质) (2)设计可逆电池, 写出电池简式.考虑电极材料, 设计可逆电池, 写出电池简式.考虑电极材料, 溶液浓度,相界面(双液电池必须加盐桥) 溶液浓度,相界面(双液电池必须加盐桥)等实际因 素. (3)检查所设计电池反应是否与原给反应吻合. 检查所设计电池反应是否与原给反应吻合.
丹尼尔( 丹尼尔(Daniel)电池
放电时:
A Zn (-): Zn →Zn2+ + 2e: Cu(+): Cu2+ + 2e- →Cu : 电池反应: 电池反应: Zn + Cu2+ →Zn2+ + Cu + Zn (+) : Zn2+ + 2e- → Zn Cu (-) : Cu → Cu2+ + 2e电池反应: 电池反应: Zn2+ + Cu → Zn + Cu2+
4.计算原电池可逆放电时的反应热 4.计算原电池可逆放电时的反应热 对于可逆电池, 对于可逆电池,有 rSm = QR/T
可逆电池的电动势及其应用
![可逆电池的电动势及其应用](https://img.taocdn.com/s3/m/627b1c01a5e9856a5612606f.png)
z+
电极符号(负极) M(s)|Mz+(aq) Zn(s)|Zn2+(aq) Cu(s)|Cu2+(aq) Cd(Hg)(a)|Cd2+(a+) Na(Hg)(a)|Na+(a+) (Pt)H2(p)|H+(a+) (Pt)H2(p)|OH-(a-) (Pt)O2(p)|OH-(a-) (Pt)O2(p)|H+(a+) (Pt)Cl2(p)|Cl-(a-)
E x = Es ⋅
AH AC
二、标准电池 韦斯顿标准电池
特点:稳定、温度系数小、重现性好、高度可逆
负极:镉汞齐(含镉 5-14%) Cg(Hg)(12.5%) – 2e- → Cd2+(a+) + Hg(l) 正极:Hg(l)与 Hg2SO4(s)的糊状体 Hg2SO4(s) + 2e- → 2Hg(l) + SO 4 (a-) 电池反应:Cd(Hg)(12.5%)+Hg2SO4(s)+8/3H2O = CdSO4⋅8/3H2O(s)+2Hg(l) 注意: (1)正负极不要接反 (2)切勿倒置 (-)Cd(Hg)(12.5%)| CdSO4⋅8/3H2O(s) | CdSO4(a) | CdSO4⋅8/3H2O(s) | Hg2SO4(s)+ Hg(l) (+)
第九章 可逆电池的电动势及其应用
9.1 可逆电池和可逆电极
一、可逆电池 必须满足两个必要条件: (1)该化学反应可逆,即当 E > E 外时,电池放电;当 E < E 外时,电池充电 (2)能量的转移可逆(I → 0) Cu – Zn 电池 E > E 外时放电,为原电池 (-) Zn – 2e- → Zn2+ (+) Cu2+ + 2e- → Cu 电池反应:Zn + Cu2+ = Zn2+ + Cu E < E 外时充电,为电解池 (-) Zn2+ + 2e- → Zn (+) Cu – 2e- → Cu2+ 电池反应:Zn2+ + Cu = Zn + Cu2+ 说明:充放电时,电极反应和电池反应互为可逆反应,并且当 I → 0 时能量的转变也是可逆的。 Zn-Cu H2SO4 溶液电池 E > E 外时放电,为原电池 (-) Zn – 2e- → Zn2+ (+) 2H+ + 2e- → H2(p) 电池反应+ + H2(p) E < E 外时充电,为电解池 (-) 2H+ + 2e- → H2(p) (+) Cu – 2e- → Cu2+ 电池反应:Cu + 2H+ = H2(p) + Cu2+ 说明:不互为可逆反应 注意: (1)并不是所有反应可逆的电池都是可逆电池(如 E 外>>E) (2)丹尼尔电池实际上并不是可逆电池(因为存在离子的扩散) ,可插入盐桥处理;严格地说,凡是具有两 个不同电解质溶液接界的电池都是热力学不可逆的。 二、可逆电极 1.第一类电极 电极反应(氧化反应) 金属 电极 汞齐 电极 气体 电极 M(s)–ze →M (aq) Zn(s)–2e-→Zn2+(aq) Cu(s)–2e-→Cu2+(aq) Cd(Hg)(a)–2e-→Cd2+(a+)+Hg(l) Na(Hg)(a)–e-→Na+(a+)+Hg(l) H2(p)–2e-→2H+(a+) H2(p)+2OH-(a-)-2e-→2H2O(l) 4OH-(a-)–4e-→2H2O+O2(p) 2H2O–4e-→4H+(a+)+O2(p) Cl2(p)–2e-→2Cl-(a-) 2. 第二类电极 金属难溶盐 金属难熔氧化物 Ag(s)+Cl-(a-)–e-→AgCl(s) 2Hg(l)+2Cl-(a-)–2e-→Hg2Cl2(s) 2Ag(s)+H2O-2e-→Ag2O(s)+2H+(a+) 2Ag(s)+2OH-(a-)-2e-→Ag2O(s)+H2O Hg(l)+H2O-2e-→HgO(s)+2H+(a+) Hg(l)+2OH-(a-)-2e-→HgO(s)+H2O
第九章-可逆电池的电动势及其应用
![第九章-可逆电池的电动势及其应用](https://img.taocdn.com/s3/m/3bfe608732d4b14e852458fb770bf78a65293a9d.png)
常见电池的类型
单液电池
Pt
Pt
H2
Pt
H+
AgCl+Ag
常见电池的类型
双液电池 用素烧瓷分开
Zn
+
Cu
ZnSO4 (aq) 素瓷烧杯
CuSO4 (aq)
常见电池的类型
双液电池
用盐桥分开
Zn
盐桥
+
Cu
ZnSO4 (aq)
CuSO4 (aq)
组成可逆电池的必要条件
原电池 电解池
化学反应可逆
能量变化可逆
Ew
A
H
Es.c
K D
R CB G
步骤: 1 校正:调节R, 使G为 零 对消: I0RN= ES.C
2 测量:调节RX 对消 :Ex= I0Rx =(RX/RN)ES.C
Ex
AC Ex Es.c AH
对消法测电动势的实验装置
标准电池 待测电池
工作电源
检流计
电位计
注意事项:
1.无论是校正还是测量,都必须使检流计G指零,即 电池中无电流通过,否则,就失去电池的可逆性 。这也是不能用伏特计测量的原因。
问题
为什么在定温度下,含Cd的质量分数在0.05~0.14 之间,标准电池的电动势有定值?
从Hg-Cd相图可知,在室温 下,镉汞齐中镉的质量分数在 0.05~0.14之间时,系统处于熔化 物和固溶体两相平衡区,镉汞齐 活度有定值。
而标准电池电动势只与镉汞 齐的活度有关,所以也有定值。
RT
标准电池的电动势与温度的关系
净反应:
Zn(s)+2H+→Zn2++H2(p)
从化学反应设计电池(2)
9章_可逆电池的电动势及其应用分析
![9章_可逆电池的电动势及其应用分析](https://img.taocdn.com/s3/m/cb45addbec3a87c24028c4a2.png)
4。有其他附属设备,组成一个完整的电路
上一内容 下一内容 回主目录
返回池
Pt
Pt
H2
Pt
H+
上一内容 下一内容 回主目录
AgCl+Ag
返回
2020/10/18
常见电池的类型
双液电池 用素烧瓷分开
Zn
+
Cu
ZnSO4 (aq) 素瓷烧杯
物理化学电子教案—第九章
上一内容 下一内容 回主目录
返回
2020/10/18
第九章 可逆电池的电动势及其应用
主要内容
可逆电池和可逆电极 电动势的测定 可逆电池的书写方法及电动势的取号 可逆电池的热力学 电动势产生的机理 电极电势和电池的电动势 浓差电池和液体接界电势的计算公式 电动势测定的应用 生物电化学
组成可逆电池的必要条件
Zn(s)|ZnSO4||HCl|AgCl(s) | Ag(s)
作原电池 () Zn(s) Zn2 2e
() 2AgCl(s) 2e 2Ag(s) 2Cl
净反应 Zn(s) 2AgCl(s) 2Ag(s) 2Cl Zn2
作电解池 阴极: Zn2 2e Zn(s)
返回
2020/10/18
可逆电极的类型
⑴第一类电极
金属与其阳离子组成的电极 氢电极 氧电极 卤素电极 汞齐电极
⑵第二类电极
金属-难溶盐及其阴离子组成的电极 金属-氧化物电极
⑶第三类电极
氧化-还原电极
上一内容 下一内容 回主目录
返回
2020/10/18
第一类电极及其反应
电极
电极反应
Mz+(a+)|M(s) H+ (a+)|H2(p),Pt OH-(a-)|H2(p),Pt H+(a+)|O2(p),Pt OH-(a-)|O2(p),Pt Cl- (a-)|Cl2(p),Pt
物理化学——第9章-可逆电池
![物理化学——第9章-可逆电池](https://img.taocdn.com/s3/m/df8b877648d7c1c708a145fa.png)
3
2
4
2
§ 9.2 电动势的测定
Cell
Cell
V 不可逆电池的端电压
电位 差计 可逆电池的电动势
§ 9.2 电动势的测定
对消法测定可逆 电池电动势 (P65)
§ 9.3 可逆电池的书写方法
规定: 负极|电解质溶液|正极 负极|负极溶液| |正极溶液|正极
1. “|” 表示相界面,有电势差存在。 2.“||”表示盐桥,使液接电势降到可以忽略不计。 3. 要注明温度,不注明就是298.15 K; 要注明物态;气体要注明压力;溶液要注明浓度。
p77
1/2H2 (p ) H (aH =1) e
规定:
θ
H / H2 g
=0
氢电极
用途
测其它电极的相对电势 方法:
标准氢电极 || 任意电极x ( =?)
p78
标准氢电极做负极 待测电极做正极
θ E电池 = +– - = +– H
/ H2 g
= +
2、可逆电极
第二类电极(the second-class electrode)
金属表面覆盖一层该金属的难溶盐,然 后再浸入含有该盐的相同阴离子溶液中组成 的电极。
甘汞电极(calomel electrode) 电极符号: Hg, Hg2Cl 2 (s) KCl (a)
电极反应: Hg2Cl2 2e 2Hg Cl
1和3可消除或忽略,E只与2和4有关
即: E只和2个电极电势有关 E电池 = 2 + 4
§ 9.6 电极电势和电池的电动势
(1) 标准氢电极
物化下册09章_可逆电池
![物化下册09章_可逆电池](https://img.taocdn.com/s3/m/efe60c719b6648d7c1c7464e.png)
Zn
Cu
+
ZnSO4 (aq)
素瓷烧杯
CuSO4 (aq)
上一内容
下一内容
回主目录
返回
2016/3/2
常见的电池类型
双液电池
用盐桥分开
Zn
盐桥
Cu
+
ZnSO4 (aq)
上一内容 下一内容 回主目录
CuSO4 (aq)
返回
2016/3/2
可逆电池 组成可逆电池的必要条件
原电池
电解池
返回
2016/3/2
标准电池电动势与温度的关系
T E (T ) / V 1.018 45 4.05 10 293.15 K
5
T 9.5 10 293.15 K 3 8 T 110 293.15 K
7
化学反应可逆
上一内容 下一内容 回主目录
能量变化可逆
返回
2016/3/2
可逆电池
可逆电池必须满足二个条件:
(1)电极反应必须是可逆的。 即电极上的化学反应可以 向正、反两个方向进行。 当电流方向改变时, 电极反应随之逆向进行。
Zn
ZnCl2(aq)
AgCl+Ag
上一内容
下一内容
回主目录
第二类电极及其反应
电极
Cl-(a-)|AgCl(s)|Ag(s)
电极反应(还原)
AgCl(s)+e- →Ag(s)+Cl-(a-)
Cl-(a-)|Hg2Cl2(s)|Hg(l) Hg2Cl2(s)+2e- →2Hg(l)+2Cl-(a-) OH-(a-)|Ag2O|Ag(s) Ag2O(s)+H2O+2e- →2Ag(s)+2OH-(a-)
可逆电池的电动势及其应用
![可逆电池的电动势及其应用](https://img.taocdn.com/s3/m/5851e2ad8bd63186bcebbcf8.png)
5.电池的电动势等于右边正极的还原电极电势减去左边负极的还 原电极电势
电池表示式与电池反应“互译”
由电池表达式写出化学反应:分别写出左侧电极发生氧化反应, 右侧电极发生还原反应,然后两者相加。
通常用对消法测电池电动势.
对消法测定电池电动势
1. 校准工作电流: 开关K 打向D1.若在实验温度下 标准电池电动势为 1.01865 V, 将触点打在滑 线电阻AB上标记1.01865 V处,调节R使G中无电流 流过为止.
有: ES / VAB = AC1 / AB. VAB:A,B两点间电势差. ES:标准电池的电动势.
通常要把标准电池恒温、恒湿存放,使电动势稳定。
问题
为什么在定温度下,含Cd的质量分数在0.05~0.14之间,标准 电池的电动势有定值?
从Hg-Cd相图可知,在室温下 ,镉汞齐中镉的质量分数在 0.05~0.14之间时,系统处于 熔化物和固溶体两相平衡区, 镉汞齐活度有定值。
而标准电池电动势只与镉汞齐 的活度有关,所以也有定值。
Fe3 (a1) e Fe2 (a2 ) Sn4 (a1) 2e Sn2 (a2 ) Cu2 (a1) e Cu (a2 )
不同类型的可逆电极
M(s) M+(aq)
M(s), MX(s)
X-(aq)
Pt(s)
Pt(s)
X(aq)
M+(aq), M2+(aq)
净反应:
Hg2SO4(s)+Cd(Hg)(a)+8/3H2O →CdSO4·8/3H2O(s)+Hg(l)
第9章可逆电池的电动势及其应用解读
![第9章可逆电池的电动势及其应用解读](https://img.taocdn.com/s3/m/4becbd40804d2b160b4ec0e6.png)
阳极 (Ag+AgCl(s)): Ag (s) + Cl - → AgCl (s) + e 总反应: ½Zn2++ Ag(s)+Cl - → ½ Zn(s)+AgCl(s) ----- (2) 充放电时电流都很小,两个总反应正好相反,上述电池为可逆电池。 若充电时施以较大的外加电压,有较大的电流通过,虽然电池反应仍 可按(2)式进行,但能量是不可逆的,∴ 仍旧为不可逆电池。
氢电极
卤素电极 汞齐电极
Pt, H2 (g) | H + (aq)
Pt, Cl2 (g) | Cl Na+ (a+) | Na (Hg) (a) 正极 a—Na(Hg) 活度
(2)第二类电极
难溶氧化物电极:由金属表面覆盖一薄层该金属氧化物,插入含 H+ 或 OH- 的溶液中构成的电极。
OH- (a -) | Hg (l) + HgO (s)
Cd(Hg)│CdSO4 ·8/3H2O (s)│CdSO4 (饱和)│CdSO4 ·8/ 3H2O(s)│Hg2SO4+ Hg (l)
特点:电池反应可逆,电动势稳定,随温度( CdSO4· 8/ 3H2O(s)的溶解 度)变化波动小。 20℃ E =1. 01845 V 25℃ E =1. 01832 V
(2)由 电动势E 及其温度系数 (∂E / ∂T)p 求 r Hm 及 r Sm 吉布斯-亥姆霍兹公式: [ ∂ ( G /T ) / ∂ T ] P = - H / T 2 将 rGm = - zEF 代入 rHm= - zEF + zET (∂E / ∂T)p rHm= rGm + T rSm 常温下 QR=T rSm = zTF (∂E / ∂T)p
09章_可逆电池的电动势及其应用
![09章_可逆电池的电动势及其应用](https://img.taocdn.com/s3/m/be6184cc4431b90d6d85c75d.png)
本章学习目的和要求
1. 理解电动势与rGm的关系,温度对电动势的影响及了 解rHm和rSm的计算。
2. 理解标准电极电势表的应用(氧化能力的估计、平衡常 数的计算等)。
3. 能熟练地写出给定电池的电极反应和电池反应并能计算 其电动势。
4. 能根据简单化学反应来设计电池。 5. 了解电动势产生的机理及电动势测定的一些应用。
碱性:
OH-|H2(g)|Pt
电极反应:2H2O+2e-H2(g)+2OH-
(2)氧电极
结构:将镀有铂黑的铂片浸入含有H+或OH-的溶液中, 并不断通O2(g)就构成了酸性或碱性氧电极
酸性:
H+|O2(g)|Pt
电极反应:O2(g)+4H++4e-2H2O(g)
碱性:
OH-|O2(g)|Pt
电极反应:O2(g)+2H2O+4e-4OH-
298.15K时
E 1.018 32 V
标准电池的电动势与温度的关系
E(T
)
/
V
1.018
45
4.05 105
T K
293.15
9.5107
T K
2
293.15
1108
T K
293.15
3
通常要把标准电池恒温、恒湿存放,使电动势稳定。
我国在1975年提出的公式为:
ET/V=E(293.15K)/V-{39.94(T/K-293.15) +0.929(T/K-293.15)2 - 0.009(T/K-293.15)3 +0.00006(T/K-293.15)4}×10-6
物理化学全程导学及习题全解175-206 第九章可逆电池的电动势及其应用
![物理化学全程导学及习题全解175-206 第九章可逆电池的电动势及其应用](https://img.taocdn.com/s3/m/f7152873482fb4daa58d4b9a.png)
第九章 可逆电池的电动势及其应用1. 原电池是使化学能能为电能的装置,其主要组成是两个电极和电解液,在等温等压条件下,体系发生变化时,系统吉氏自由能的减少等于对外所做的最大膨胀功.此时转变过程以热力学可逆方式进行,电池为可逆电池.()f ,max r T,pG W =V若非膨胀功只有电功,则(),r T p G nEF =-V如果可逆电动势为E 的电池按电池反应进行进度ξ=1mol 时吉氏自由能的变化值可以写成: ()r T,p G zEF =-V2. 该式是联系热力学和电化学扩要桥梁.可逆电池必须满足的两个条件:1. 电极上的化学反应可向正、反两个方向进行。
可逆电池工作时,电池是在接近平衡养状态下工作的。
可逆电极有以下三种类型:第一类电极:由金属浸在含有该金属离子的溶液构成。
第二类电极:由金属表面覆盖一该金属难溶盐薄层,然后浸入含有该难溶盐负离子的溶液构成。
第三类电极:由惰性金属插入含有某种离子的不同氧化态的溶液中构成电极。
电池的电动势不能直接用伏特计测量。
一般使用对消法。
需要一个电动势已知并且稳定的辅助电池,即标准电池。
常用的标准电池是韦斯顿标准电池。
电极中还包括标准氢电极。
人为规定其电极电势为0电池的书面表示采用的规则是,负极写在在方,进行氧化反应,正极写在右方,进行还原反应用单垂线表示不同物相的界面,用双垂线表示盐桥。
不觉 应注意气体应注明压力,电解质溶液应注明活度。
在书面电极和电池反应时应遵守物量和电荷量守衡。
电动势产生机理:(1)电极与电解质溶液界面间形成的电势差。
(2)接触电势。
(3)液体接界电势。
液接电势可以通过盐桥来减小。
3.可逆电池的热力学及电动势测定的应用。
Nerst 方程 g hGHc dC DIn a a RT E E zF a a =- In RTE K zF=r m T p E S zF ∂⎛⎫= ⎪∂⎝⎭V ,m T r pE H zEF zFT ∂⎛⎫=-+ ⎪∂⎝⎭Vr m R pE Q T S zFT T ∂⎛⎫=⋅= ⎪∂⎝⎭V还原电极电势:Ina RT zF a ϕϕ=--还原态氧化态应用:求电解质溶液的平均活度因子; 求难溶盐的溶度积; pH 值的测定:()s r x s pH pH In10E EF RT -==典型例题讲解例1 以M 代表某金属,MCl 2是其氧化物,是强电解质,设下列电池:()12M|MCl 1mol kg |AgCl|Ag -⋅在0~60℃间的电动势E 与温度之间的关系为: 57 =1.200V+4.0010V+9.0010V E --⨯⨯,25℃时,()()2M |M 0.9636,Ag |Ag |Cl 0.2223V E E ++-==-==(1)写出电极反应及电池反应。
8-第九章 可逆电池的电动势及其应用(2010级)1
![8-第九章 可逆电池的电动势及其应用(2010级)1](https://img.taocdn.com/s3/m/b8a7d96ab84ae45c3b358cb0.png)
对消法测电动势
在外电路上加一反向 电势差,其数值与E相 同,这就相当于外电阻 无穷大了。如图:
Ew
−
R
+
H
A
− +
C
G
B
U AH = Es,c = IRAH
Es.c
E x = U AC = IRAC = Es,c × RAC RAH
D
K
− + Ex
材料科学与化学工程学院大学化学教学部 何明中
材料科学与化学工程学院大学化学教学部 何明中
可逆电池
可逆电池是在平衡态或无限接近于平衡态的情况 下工作。因此,在等温、等压条件下,当系统发生 变化时,系统Gibbs自由能的减少等于对外所做的 最大非膨胀功,用公式表示为: ∆ r G T , p , R = W f, m ax 如果非膨胀功只有电功,则上式又可写为 ∆ r G T , p , R = − nF E 式中 n 为电池输出电荷的物质的量,单位为mol, E 为可逆电池的电动势,单位为V。
材料科学与化学工程学院大学化学教学部 何明中
§9.2 电动势的测定
不能用伏特计测定原电池的电动势。因为: (1) 用伏特计测定时,就会有电流,即电池内反 应进行,电解质溶液的浓度发生变化,电动势也就 不断改变。这时,电池亦不是可逆电池了。 (2) 电池有内阻,有电流流过时,两电极间是电 势差不是电动势。 所以,测量可逆电池的电动势必须在几乎没有电 流通过的情况下进行。
−
−
Zn(s ) + 2 AgCl(s ) → Zn 2 + + 2 Cl − + 2 Ag(s )
− − → 阳极: 2Ag(s) + 2Cl 2AgCl(s) + 2e
第九章 可逆电池的电动势及应用.
![第九章 可逆电池的电动势及应用.](https://img.taocdn.com/s3/m/df8f2925763231126edb116b.png)
第九章 可逆电池的电动势及应用本章要求:1.掌握构成可逆电池的必要条件,可逆电极的类型和电池的书写方法,能熟练正确地写出电极反应和电池反应。
2.了解消去测电动势的基本原理和标准电池的作用。
3.能正确写出电极和电池反应,熟练应用Nernst 方程计算电极电势和电池电动势。
4.了解电动势产生的机理和氢标准电极的作用。
5.掌握热力学和电化学之间的联系、会利用电化学所测定的数据计算热力学函数的变化值。
6.熟悉电动势测定的主要应用,并能从可逆电池测定数据计算平均活度因子,解离平衡常数和溶液PH 等。
电池:化学能转变为电能的装置可逆电池:化学能转变为电能并按热力学可逆方程进行的装置在等温等压条件下,分流吉布斯自由能的减少等于系统对外所做的最大非膨胀功,若非膨胀功只是电功(本章只讨论此种情况)则:nEF G P T r -==∆M ax .f .w )(式中n 为电池输出电荷的物质的量,E 为可逆电池的电动势,单位 V 若电池反应的反应进度ε = 1 mol 时, 则:ZEF nEFG P T r -=-=∆ε.)(Z 为电极反应中电子的计量系数当电池为不可逆电池时,两电极间的不可逆电势差一定小于可逆电池电动势E§9.1可逆电池和可逆电极①该反应为氧化还原反应或反应过程经历了氧化还原反应结合P61图9.1分析电池的构成电极②适当的装置 单液 电解质溶液 分类双液 一.可逆电池必须具备的条件1.充放电的电极反应必须互为可逆,即充放电时整个电池反应必须互为可逆→物质的转变可逆。
2.充放电时即可逆电池工作时,所有通过的电流必须无限小,只有所通过的电流无限小,才不会有电功不可逆地转化为热,才符合热力学可逆过程的条件。
由此可见,可逆电池在充放电时,不仅物质的转化可逆,而且能量的转变也必须可逆。
判断某电池是否为可逆电池主要看电极反应和电池反应是否可逆,若可逆,只要满足充放电时所通过的电流很小,则可构成可逆电池。
物理化学 第九章 可逆电池的电动势及其应用
![物理化学 第九章 可逆电池的电动势及其应用](https://img.taocdn.com/s3/m/9f326ef4aef8941ea76e0544.png)
Mz+(a+)+ze- →M(s) M(s) -ze- → Mz+(a+)
• 氢电极
(阴极)H+ (a+)|H2(p),Pt (阴极)OH-(a-)|H2(p),Pt
2H+(a+)+2e- →H2(p) 2H2O+2e- →H2(p)+2OH-(a-)
• 阳电极 H+(a+)|O2(p),Pt OH-(a-)|O2(p),Pt • 卤素电极 Cl- (a-)|Cl2(p),Pt • 汞齐电极 Na+(a+)|Na(Hg)(a) 2、第二类电极
8 Cd − Hg CdSO4 ⋅ H 2O( s ) CdSO4饱和溶液 Hg + HgSO4 ( s ) Hg ( l ) 3
电池反应: (阳极, -) Cd(Hg) -2e- →Cd2++Hg(l)
(阴极, +) Hg2SO4(s)+2e-→2Hg(l)+SO42净反应: Hg2SO4(s)+Cd(Hg)(a)+8/3H2O→CdSO4·8/3H2O(s)+3Hg(l) 或 Hg2SO4(s)+Cd(Hg)(a) →Cd2++ SO42- +3Hg(l)
9.6 电极电势和电池的电动势
一、 标准电极电势 1、标准氢电极
ϕ \ (H + |H 2 ) = 0
标准氢电极 | |给定标准电极
电动势E=标准电极电势
(标准还原电极电势)
2、电极电势
标准氢电极 | |给定电极
电动势E=电极电势 (还原电极电势)
+ Pt|H 2 (p\ )|H + (a = 1)||Cu 2( aCu2+ )|Cu(s)
第9章_可逆电池电动势及其应用
![第9章_可逆电池电动势及其应用](https://img.taocdn.com/s3/m/5e2453ed9b89680203d825c2.png)
返回
2013-5-21
回主目录
第二类电极及其反应
电极
Cl-(a-)|AgCl(s)|Ag(s) OH-(a-)|Ag2O|Ag(s) H+(a+)|Ag2O(s)|Ag(s)
电极反应
AgCl(s)+e- →Ag(s)+Cl-(a-) Ag2O(s)+H2O+2 e→2Ag(s)+2OH-(a-) Ag2O+2H+(a+)+2e→2Ag(s)+H2O
过的电流必须十分微小,电池在几乎平衡态下工
作。此时,作为电池,可以对外做出最大有用功, 作为电解池所消耗的电能最小(即外电源所做电 功最小)。
上一内容
下一内容
回主目录
返回
2013-5-21
可逆电池的构成条件
• 换言之,如果把电池放电时所放出能量储存起 来,则用这些能量充电,恰好可以使体系与环
8.314 298.15 2.303 v EE lg a j j n 96485 j
0.05917 vj E lg a j n j
• 由标态下的化学反应等温方程式可知:
G RT ln (a j j ) e RT ln K a
v j
上一内容
上一内容下一内容回主目录返回201241能斯特方程8314298152303lg005917lgrtrt上一内容下一内容回主目录返回201241能斯特方程lnrt上一内容下一内容回主目录返回201241四可逆电极的类型金属与其阳离子组成的电极氢电极氧电极卤素电极汞齐电极金属难溶盐及其阴离子组成的电极金属氧化物电极氧化还原电极第一类电极第二类电极第三类电极上一内容下一内容回主目录返回201241第一类电极及其反应nanahgana电极电极反应ppt2hppt2hpptcl上一内容下一内容回主目录返回201241第二类电极及其反应电极电极反应clagclsagsagclseoagsagosagsag上一内容下一内容回主目录返回201241第三类电极及其反应电极电极反应feptfeptcuptsn上一内容下一内容回主目录返回20124192电动势的测定对消法测电动势的原理对消法测电动势的实验装置标准电池电动势与温度的关系为什么标准电池有稳定的电势值上一内容下一内容回主目录返回201241对消法测定电动势的原理图上一内容下一内容回主目录返回201241对消法测电动势的实验装置工作电源电位计检流计标准电池待测电池上一内容下一内容回主目录返回201241标准电池结构图电池反应
(完整版)可逆电池的电动势及其应用解读
![(完整版)可逆电池的电动势及其应用解读](https://img.taocdn.com/s3/m/ff6b75556f1aff00bfd51e02.png)
第九章 可逆电池的电动势及其应用教学目的与要求:使学生了解和掌握电池过程的热力学函数改变m m m S H G ∆∆∆,,与电功、电动势的关系,了解电动势产生的原因和熟悉电化学的惯用符号;熟练地从所给电池、电极写出有关的电化学反应方程式以及根据所给化学反应设计原电池;掌握电池电动势、电极电势的能斯特方程与电动势测定的应用。
石化学能转变为电能的装置称为原电池或电池。
如果这个转变过程是在热力学上的可逆的条件下进行的,则这个电池称为可逆电池。
在等温等压及可逆的条件下,系统Gibbs 自由能的减少等于系统所作的最大非体积功.()max,,f pT W G =∆如果非膨胀功只是电功,则上式可以写成()nEF W G f p T -==max ,,∆式中为电池输电荷的物质的量,单位为mol ,E 为可逆电池的电动势,单位为V ,F 是Faraday 常数。
如果电池在放电的过程中,按反应式发生了1=ξmol 的化学反应,系统的Gibbs 自由能的变化为()zEFnEFG pT m-=-=ξ∆,或中为按所写的电极反应,当反应进度1=ξmol 时,反应式中电子的计量系数,其单位为1。
上式是一个重要的关系式,是联系热力学和电化学的一个桥梁,可以使人们通过对可逆电池的电动势的测定等电化学方法求得电池反应的各种热力学函数的改变量。
同时上式也揭示了化学能转变为电能的最高限度,为改善电池性能或研制新的化学电源提供了理论依据。
重点与难点:电池过程和热力学的关系,即电池过程的热力学函数改变m m m S H G ∆∆∆,,与电功、电动势的关系以及可逆电池的条件, 电动势的测定;电池电动势产生的机理;电池电动势(包括浓差电池)的计算以及可逆电池电动势的测定的应用等。
§9.1 可逆电池与可逆电极要使化学能可逆的转化为电能,首先必要的条件是在电极上发生一个或几个氧化还原应(只有这样,才可能由电子的转移),并且是有适当的装置—电池,其次,这个电能与化学能之间的转换必须是可逆的。
第九章-可逆电池的电动势及其应用
![第九章-可逆电池的电动势及其应用](https://img.taocdn.com/s3/m/5e0a09ac0029bd64783e2ce3.png)
( r G)T , p , R Wf,max nEF
对任一化学反应:aA+bB = yY+zZ,等温、等压下 对一微小过程:Q=zF ξ 电池对外做功,为负: dG= δ W’ =-(zF dξ)E 摩尔吉布斯函数变为反应吉布斯函数随反应进度的变化率
( r Gm )T , p , R
§9.3
可逆电池的书写方法及电动势的取号
Zn
Cu
1. 左边为负极,起氧化作用,是阳极;
右边为正极,起还原作用,是阴极。
2. “|” 表示相界面,有电势差存在。 “┊” 表示半透膜。
ZnSO4 (aq)
素瓷烧杯
CuSO4 (aq)
3. “‖”或“┊┊”表示盐桥,使液
接电势降到忽略不计 4. 要注明温度,不注明就是298.15 K; 要注明物态;气体要注明压力和依附的 惰性金属;溶液要注明浓度或活度。 5. 电池的电动势等于右边正极的还原 电极电势减去左边负极的还原电极电势
8 8 电池总反应:Cd(汞齐) Hg2SO 4 (s) H 2O(l) 2Hg(l)+CdSO 4 H 2O(s) 3 3
Cd(Hg)(a) 中含镉
w(Cd) = 0.05~0.14
25℃时, Es = 1.01832 V
20 ℃时, Es = 1.01845 V
标准电池不允许晃动、侧放,并避免剧烈震动或倒置,否则会引起不可 逆的变化,甚至损坏。标准电池不能作为输出电功率的原电池,在使用 时通过标准电池的电流一般不能超过 1 微安,过大的电流将使电动势 产生不可恢复的改变。 用途:配合电位计测定原电池电动势
双液电池:用盐桥分开
1. 可逆电池
可逆电池: 充 电 放 电 体系复原 环境复原
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可逆电池电动势及其应用一、简答题1.标准电极电势等于电极与周围活度为1的电解质之间的电势差,这种说法对吗?为什么?2.为什么要提出标准氢电极?标准氢电极θϕ实际上是否为零?当H +的活度不等于1时,2,H H ϕ+是否仍为零?3.在公式m r H ∆=-zEF +zFT (E T ∂∂)p 中,当(ET ∂∂)p <0时,测定m r H ∆<-zEF ,则m r H ∆一部分转变为电功,一部分以热的形式放出。
所以在相同的始终态下,化学反应的m r H ∆比安排成电池的m r H ∆大,这种说法对不对?为什么?4.将下列化学反应设计成电池:(1)AgBr(s)→Ag ++Br -;(2) Fe 3++Ag→Fe 2++Ag +;(3) 2Br -+Cl 2(g)→Br 2(l)+2Cl -。
5.将下列反应物设计成电池:(1) Ti ++Sn 4+→Ti 3++Sn 2+;(2) 2Br -+Cl 2→Br 2+2Cl -;(3) AgCl+I -→AgI+Cl -。
6.为什么不能用普通电压表直接测量可逆电池的电动势?7.Zn 和Ag 插在HCl 溶液中所构成的原电池是否是可逆电池?为什么?8.下列两个反应设计成电池,此两个电池的E θ、电池反应的ΔG θ及K θ是否相同?为什么?(1)H 2(g)+1/2O 2(g)→H 2O(l)(2)2H 2(g)+ O 2(g)→2H 2O(l)9.已知电池Ag-AgCl(s)|HCl (m=0.01 mol·kg -1)| Cl 2 (g, p )| Pt 在25℃时,E=1.135V ,如果以m=0.10 mol·kg -1代替m=0.01 mol·kg -1的HCl ,电池电动势将改变多少?10.同一反应,如Cu 2+ + Zn = Cu + Zn 2+,化学反应的热效应和电池反应的热效应是否相同?为什么?二、计算题1. 已知丹聂尔电池在298.2K时,Eø=1.1000V,在313K时Eø=1.01961V。
若在298.2K~313K之间电池温度系数为常数,计算该电池在298.2K时放电2mol 电子的电量时电池反应的Δr S m及Q r。
[答案:ΔrS m= -50.86 J·K-1·mol-1 ;Q r= -15.17 kJ·mol-1 ]2.已知电极:φθ[H2(g)|OH-1(aq)]=-0.8277V,求水在292K时的离子积K s p。
[答案:K w=1.0×10-14 ]3.已知:φθ(AgBr/Ag)=0.0711 V;φθ(Ag/Ag+)=0.799V,计算298K时AgBr的溶度积。
[答案:K sp=4.866×10-13 ]4. 有一原电池Ag | AgCl(s) | Cl-(a=1)||Cu2+(a=0.01)| Cu。
(1)写出上述原电池的反应式;(2)计算该原电池在25℃时的电动势E;(3)25℃时,原电池反应的吉布斯函数变(∆r G m)和平衡常数K各为多少?已知:Eθ (Cu2+|Cu) = 0.3402V,Eθ (Cl-|AgCl|Ag) =0.2223 V。
[答案:(1)2Ag+2Cl-(a=1) + Cu2+(a=0.01) ==== 2AgCl(s) + Cu(2)E= 0.05875 V(3)∆r G m=-11.337 kJ·mol-1;Kθ=9.68×103 ]5. 25℃时,对电池Pt |Cl2(pθ) ⎢Cl-(a=1) || Fe3+(a=1) ,Fe2+(a=1) ⎢Pt:(1)写出电池反应;(2)计算电池反应的∆r G及Kθ值;(3)当Cl-的活度改变为a(Cl-) = 0.1时,E值为多少?(已知Eθ (Cl-|Cl2|Pt) =1.3583 V,Eθ (Fe3+,Fe2+ | Pt) = 0.771V。
)[答案:(1)2 Cl-(a=1) +2 Fe3+(a=1)=== Cl2(p)+2 Fe2+(a=1)(2)∆r G=113331 J·mol-1;Kθ=1.387×10-20(3)E=-0.6465 V]6. 下列电池:Pt,H2(pø)|H2SO4(aq)|O2(pø),Pt298K时E=1.228V,已知液体水的生成热Δf H mθ(298K,H2O,l) = -2.851×105J·mol-1。
(1)写出电极反应和电池反应;(2)计算此电池电动势的温度系数;(3)假定273K~298K之间此反应的Δr H m为一常数,计算电池在273K时的电动势。
[答案:(1) (-) H 2→2H ++2e (+)1/2O 2+2H ++2e→H 2O(l)电池反应:H 2(g)+1/2O 2(g)→H 2O(l)(2) (∂E/∂T)p =-8.537×10-4 (V·K -1) ;(3) E=1.25(V) ]7. 291K 时下述电池:Ag ,AgCl|KCl(0.05mol·kg -1,γ±=0.84)‖AgNO 3|(0.10mol·kg -1,γ±=0.72)|Ag 电动势E=0.4312 V ,试求AgCl 的溶度积K sp 。
[答案:K sp =1/K ø=1.03×10-10 ]8. 电池Hg|Hg 2Br 2(s)| Br -(aq)|AgBr(s)|Ag ,在标准压力下,电池电动势与温度的关系是:E=68.04/mV+0.312×(T/K-298.15)/ mV , 写出通过1F 电量时的电极反应与电池反应,计算25℃时该电池反应的Δr G m θ,Δr H m θ,Δr S m θ。
[答案:电极反应: (-)Hg(l) + Br -(aq)→1/2Hg 2Br 2(s) + e -(+)AgBr(s) + e -→Ag(s) + Br -(aq)电池反应: Hg(l)+ AgBr(s)→1/2 Hg 2Br 2(s)+ Ag(s)1565.6-⋅-∆mol kJ G m r θ;11103.30--⋅⋅=∆K mol J S mr θ;121.2410-⋅=∆mol J H m r θ] 9. 将AgCl 的溶解反应:AgCl(s) → Ag +(a Ag +) + Cl -(a Cl -)设计成电池,并写出阳极、阴极反应。
若已知V Ag AgCl Cl E 2222.0),/(=-θ, V Ag Ag E 7994.0)/(=+θ,计算该反应的溶度积SP K 。
[答案:阳极(-)氧化 )(s Ag ————→-+++e a Ag Ag )( 阴极(+)还原 )(s A g C l + e - ————→)()(--+Cl a Cl s Ag 电池为:-)+-+-+(),(|)(||)(|Ag s AgCl a Cl a Ag Ag Cl Ag RT FE Cl Ag SP e a a K /θ=⋅=-=298314.8)7994.02222.0(96500⨯-⨯e 101075.1-⨯=]10.有电池Ag s AgBr a Br a Ag Ag ),(|)(||)(|21-+,已知:AgBr(s)的活度积在25℃时为5×10-13,V E Ag Ag 799.0/=+θ,V E Pt Br Br 065.1,2/=-θ(1).写出此电池的电极反应与电池反应;(2).计算Br - | AgBr(s) | Ag 的标准电极电势;(3).计算AgBr(s)的标准生成Gibbs 函数))((s AgBr G m f θ∆。
[答案:(1) 阳极(-):Ag(s) ————→ Ag +(a 1)+e -阴极(+):AgBr(s)+e - ————→ Ag(s)+Br -(a 2)电池反应:AgBr(s) ————→ Ag +(a 1)+Br -(a 2)(2).电池的标准电动势θθθAg Ag Ag AgBr Br E E E /1,/+-+=V V 799.0727.0+-=V 072.0= (3).)(AgBr G rG m f m θθ∆=∆ 18.95-⋅-=mol kJ ] 11.有电池:Pt p g O kg mol SO H p g H Pt ),,(|)01.0(|),(,21422θθ-⋅已知298K 时H 2O(l )的标准摩尔生成焓18.285-⋅-=∆mol kJ H m f θ,H 2O(l )的标准摩尔生成Gibbs 函数114.237-⋅-=∆mol kJ G m f θ,①写出电池的电极反应与电池反应;②计算298K 时,电池电动势和电池的温度系数;③若电动势温度系数可视为与温度无关的常数,计算上述电池在0℃时的电动势。
[答案:① 阳极(-):),(2θp g H ————→--++⋅e kg mol H 2)01.0(21 阴极(+):-+++e H p g O 22),(212θ————→O H 2(l ) 电池反应:),(21),(22θθp g O p g H +————→O H 2(l )② V zF G E m r ]964852/10147.237([/3⨯⨯--=∆-=V 229.1= T E z F T H z F T G z F T H T E m r m r m r +∆=∆-∆=∂∂)(131085.0--⋅⨯-=K V ③ )298273(1085.03298273-⨯-=-E E V 250.1=]12. 电池Hg s Cl Hg KCl s AgCl Ag |)(|)(|)(|22溶液的电池反应为:Hg s AgCl s Cl Hg Ag +=+)()(2122已知25℃时,此反应的焓变15435-⋅=∆mol J H m r ,各物质的规定熵11/--⋅⋅molK J S m 分别为: Ag(s) 42.55AgCl(s) 96.2Hg(l ) 77.4Hg 2Cl 2(s) 195.8试计算25℃时电池的电场E 及电池的温度系数p T E )(∂∂。
[答案:1410436.396485115.33/)(--⋅⨯=⨯=∆=∂∂K V zF S T E m r P ] 13. 计算下列电池在25℃时电池反应的电势。
Ag kg mol b AgNO kg mol b AgNO Ag ⎪⎪⎭⎫ ⎝⎛=⋅=⎪⎪⎭⎫ ⎝⎛=⋅=±-±-720.01.0900.001.0|1313γγ[答案:1,12,21,2,ln ln ±±±±==γγb b F RT a a F RT E V 0534.0=] 14.298K 时,电池Cd|CdCl 2 (0.01 mol•dm -3)|AgCl(s)|Ag 的电动势为0.7588V ,标准电动势为0.5732V 。