小升初-几何模块详解

合集下载

小升初试题——几何篇含解析

小升初试题——几何篇含解析

小升初名校真题专项测试-----几何篇引言:随着小升初考察难度的增加,几何问题变越来越难,一方面,几何问题仍是中学考察的重点,各学校更喜欢几何思维好的学生,这样更有利于小学和初中的衔接;另一方面几何问题由于类型众多,很多知识点需要提前学,这就加快了学生知识的综合运用,而这恰恰是重点中学学校所期望的;所以近几年的几何难度年年在增加,很多学校的考题可以说超出小学的范围,本节主要是通过分析例题来讲解其中的相关知识点和解题思维;测试时间:15分钟 姓名_________ 测试成绩_________1、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=13AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积.解根据定理:ABC BED ∆∆=3211⨯⨯=61,所以四边形ACDE 的面积就是6-1=5份,这样三角形35÷5×6=42;2、四个完全一样的直角三角形和一个小正方形拼成一个大正方如图如果小正方形面积是1平方米,大正方形面积是5平方米,那麽直角三角形中,最短的直角边长度是______米.解小正方形面积是1平方米,大正方形面积是5平方米,所以外边四个面积和是5-1=4,所以每个三角形的面积是1,这个图形是“玄形”,所以长直角边和短直角边差就是中间正方形的边长,所以求出短边长就是1;3、如图在长方形ABCD 中,△ABE 、△ADF 、四边形AECF 的面积相等;△AEF 的面积是长方形ABCD 面积的______ 填几分之几;;解连接AC,首先△ABC 和△ADC 的面积相等,又△ABE 和△ADF 的面积相等,则△AEC 和△AFC 的面积也相等且等于ABCD 的1/6,不难得△AEC 与△ABE 的面积之比为1/2,由于这两个三角形同高,则EC 与BE 之比为1/2,同理FC 与DF 之比也为1/2;从而△ECF 相当于ABCD 面积的1/18,而四边形AECF 相当于ABCD 面积的1/3,从而答案为1/3-1/18=5/18; A F E DC B4、如图1,一个长方形被切成8块,其中三块的面积分别为12,23,32,则图中阴影部分的面积为_____解设图示两个三角形的面积分别为a 和b,因为△AED 面积等于ABCD 的一半,则△ABE 加上△DEC 的面积也等于ABCD 的一半;而△FDC 的面积也等于ABCD 的一半,即23+a+32+12+b=a+b+阴影面积,可见阴影面积=23+32+12=67;AE DC B ab233212F5、右图中AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米.四边形ABDE 的面积是 平方厘米.解:连接AD,则AF 是三角形AED 的底ED 的高,CD 是三角形ABD 的底AB 的高.四边形ABDE的面积=三角形AED 的面积+三角形ABD 的面积=21×ED ×AF+21×AB ×CD=21×8×7+21×3×12=28+18=46;6、一块三角形草坪前,工人王师傅正在用剪草机剪草坪.一看到小灵通,王师傅热情地招呼,说:“小灵通,听说你很会动脑筋,我也想问问你,这块草坪我把它分成东、西、南、北四部分如图.修剪西部、东部、南部各需10分钟,16分钟,20分钟.请你想一想修剪北部需要多S△S△S△典型例题解析1.★★如图,已知四边形ABCD 中,AB=13,BC=3,CD=4,DA=12,并且BD 与AD 垂直,则四边形的面积等于多少思 路:显然四边形ABCD 的面积将由三角形ABD 与三角形BCD 的面积求和得到.三角形ABD是直角三角形,底AD 已知,高BD 是未知的,但可以通过勾股定理求出,进而可以判定三角形BCD 的形状,然后求其面积.这样看来,BD 的长度是求解本题的关键.解::由于BD 垂直于AD,所以三角形ABD 是直角三角形.而AB=13,DA=12,由勾股定理,BD 2=AB 2-AD 2=132—122=25=52,所以BD=5.三角形BCD 中BD=5,BC=3,CD=4,又32十42=52,故三角形BCD 是以BD 为斜边的直角三角形,BC 与CD 垂直.那么:ABCD S 四边形=ABD S ∆+BCD S∆=12×5÷2+4×3÷2=36..即四边形ABCD 的面积是36.总 结:勾股定理是几何问题中非常重要的定理.请同学们注意到这样一个问题:勾股定理实际上包含两方面的内容:①如果一个三角形是直角三角形,那么两条直角边的平方之和等于斜边的平方;②如果一个三角形有两边的平方和等于第三边的平方,那么它一定是直角三角形.本例同时用到了这两方面的内容,在解题中要注意体会.2、已知如下图,一个六边形的6个内角都是120º,其连续四边的长依次是1,9,9,5厘米;求这个六边形的周长;思 路:3、★★将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3;已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为多少解:思路:小升初中常把分数,百分数,比例问题处理成份数问题,这个思想一定要养成;解:粗线面积:黄面积=2:3绿色面积是折叠后的重叠部分,减少的部分就是因为重叠才变少的,这样可以设总共3份,后来粗线变2份,减少的绿色部分为1份,所以阴影部分为2-1=1份,总结:份数在小升初中运用的相当广,一定要养成这个思想4、★★★如图,长方形的面积是小于100的整数,它的内部有三个边长是整数的正方形,①号正方形的边长是长方形长的5/12,②号正方形的边长是长方形宽的1/8;那么,图中阴影部分的面积是多少思路:从整除入手,我们可以推出长方形的面积只能是8×12=96,再入手就很简单可;解:①的面积就是5×5=25②的面积是1×1=1最大的空白正方形面积=8-1×8-1=49阴影面积=96-49-25-1=21总结:整除的一些讨论能提高我们的速度5、★★★如图,已知四边形ABCD和CEFG都是正方形,且正方形ABCD的边长为10厘米,那么图中阴影三角形BFD的面积为多少平方厘米方法一:思路:充分利用图形中的同等底,同等高关系,这是小升初最基础的考点;解:连接CF,CF//BD;可以得到阴影部分面积就是梯形BCDF面积的一半,也等于BCD 的面积利用同底等高;∴BFD=DCB=10×10/2=50方法二:思路由于没有告诉我们小正方形的边长,我们可以判断阴影的面积跟小正方形的边长没关系,这样我们大胆的设小正方形的边长为a;解:阴影面积=四边形BEFD面积-三角形BEF面积四边形BEFD面积=三角形BCD+梯形CDEF面积=10×10÷2+a+10×a÷2三角形BEF面积=BE×EF÷2=a+10×a÷2所以阴影面积=四边形BEFD面积-三角形BEF面积=10×10÷2+a+10×a÷2-a+10×a÷2=10×10÷2=50总结:小升初考试对面积的处理方法中,“加减法”和“切割法”是最常用的方法,本题是对这两个方法的综合运用,建议学生要深刻理解方法的运用,多做练习;方法三:极限判断思路:由于没有告诉我们小正方形的边长,我们可以判断阴影的面积跟小正方形的边长没关系,这样我们考虑边长的特殊情况,如果小正方形的边长小到0,这样的话G,F,E都缩到C点上,这样原来阴影面积B,D两点没变,F点变到C点;所以阴影面积为10×10÷2=50;也可以让小正方形的边长和大正方形相等,这样就得下面的图形,所以阴影面积也是10×10÷2=50;总结:这种极限考虑的思路一定要注意是使用的条件,如果能熟练的运用可以大大的提高解题的时间;拓展:已知正方形ABCD边长为10,正方形BEFG边长为6,求阴影面积6、★★★如图,ABCG是4×7的长方形,DEFG是2×10的长方形,那么,三角形BCM的面积与三角形DCM的面积之差是多少方法一:思路:公共部分的运用,这是小升初的常用方法,熟练找出公共部分是解题的关键; 解: GC=7,GD=10推出HE=3;BC=4,DE=2阴影BCM 面积-阴影MDE 面积=BCM 面积+空白面积-MDE 面积+空白面积=三角形BHE 面积-长方形CDEH 面积=3×6÷2-3×2=3总 结:对于公共部分要大胆的进行处理,这样可以把原来无关的面积联系起来,达到解题的目的.拓 展:如图,已知圆的直径为20,S1-S2=12,求BD 的长度方法二:思 路:画阴影的两个三角形都是直角三角形,而BC 和DE 均为已知的,所以关键问题在于求CM 和DM .这两条线段之和CD 的长是易求的,所以只要知道它们的长度比就可以了,这恰好可以利用平行线BC 与DE 截成的比例线段求得.解: GC=7,GD=10 知道CD=3;BC=4, DE=2 知道BC:DE=CM:DM 所以CM=2,MD=1;阴影面积差为:4×2÷2-1×2÷2=3方法三:连接BDS BCM ∆—S DEM ∆=S BCD ∆—S BDE ∆=3×4—2×3÷2=3.总 结:比例的灵活运用能大大提高解题的速度,特别是这种一个平行线截相交线段得比例的典型图,AB 平行于DE,有比例式AB :DE=AC :CE=BC :CD,三角形ABC 与三角形DEC 也是相似三角形.下图形状要牢记并且要熟练掌握比例式.以下我们来看看上面结论和燕尾定理的运用:7.★★★如右图,单位正方形ABCD,M 为AD 边上的中点,求图中的阴影部分面积;来源:第四界“华赛杯”试题解1:两块阴影部分的面积相等,AM/BC=GM/GB=21,所以GB/BM=32,而三角形ABG 和三角形AMB 同高,所以S △BAG=32S △ABM=32×21×1÷2=61,所以阴影面积为61×2=31 解2:四边形AMCB 的面积为0.5+1×1÷2=43,根据燕尾定理在梯形中的运用,知道AMG ∆:BCG ∆:BAG ∆:CMG ∆ =AM 2:BC 2:AM ×BC :AM ×BC=212:12:21:21=1:4:2:2;所以四边形AMCB 的面积分成1+4+2+2=9份,阴影面积占4份,所以面积为43×224122++++=31; 解3:如右图,连结DG,有:S △ACM=S △BAM 同底等高,又S △BAG=S △ADG △BAG 与△ADG 关于AC 对称又S △AGM=S △GDM 等底同高8、★★★三角形ABC 中,C 是直角,已知AC =2,CD =2,CB=3,AM=BM,那么三角形AMN 阴影部分的面积为多少解答:因为缺少尾巴,所以连接BN 如下,ABC ∆的面积为3×2÷2=3这样我们可以根据燕尾定理很容易发现ACN ∆:ANB ∆=CD :BD=2:1;同理CBN ∆:ACN ∆=BM :AM=1:1;设AMN ∆面积为1份,则MNB ∆的面积也是1份,所以ANB ∆得面积就是1+1=2份,而ACN ∆:ANB ∆=CD :BD=2:1,所以ACN ∆得面积就是4份;CBN ∆:ACN ∆=BM :AM=1:1,所以CBN ∆也是4份,这样ABC ∆的面积总共分成4+4+1+1=10份,所以阴影面积为3×101=103;9、★★★★如图,ABCD 是平行四边形,面积为72平方厘米,E,F 分别为边AB,BC 的中点;则图形中阴影部分的面积为多少平方厘米方法一:思 路:出现梯形时可以考虑一下”燕尾定理”的运用.解:连接AC,OE,OF 这样我们可以发现S1的面积是整个四边形的1/4=18,在梯形BCOF中,BC=2×OF,这样我们运用”燕尾定理”得:S5:S3:S2:S4=1:4:2:2,把面积分成9份,求出阴影面积占5份,同理可以求出梯形CDEO 中阴影也占5份,所以阴影面积=72-18 ×5/9=30,总阴影面积为30+18=48平方厘米总 结:”燕尾定理”的结论对解题速度有很大的提高,建议学生牢记方法二:解:可以得到空白部分是DEBF 面积的2/3;空白部分面积为72÷2÷3×2=24平方厘米72-24=48平方厘米;10、★★★★图是一个正方形,其中所标数值的单位是厘米;问:阴影部分面积是多少平方厘米方法一:思路已知的都是空白部分的长度,所以阴影面积肯定是通过“加减法”来求,这样我们就退求空白面积,但空白部分是两个三角形的重叠,所以我们可以“切割”三角形;解:给各点标字母,连接GC,空白部分就分成4个三角形,很明显,GEC,GED等底同高,面积相等;GFB和GFC也面积相等;设4个面积如图,得:DFC的面积=X+X+Y=10+10×10÷2=100BEC的面积=Y+Y+X=10+10×10÷2=100解得X=100/3,所以阴影面积=20×20-100/3×4=800/3总结:此解可以用以这种条件的任一个题中,但要求学生对二元一次方程做基础练习; 方法二:燕尾定理的运用思路:构建燕尾定理,通过总结的定理来求解解:构建燕尾定理的条件,如果连接BD,这样我们可以发现三角形DCF和ECB的面积相等,而两个面积都减去四边形ECFG的面积还是相等,这样我们知道左下角的X和右上角的Y 面积相等;而根据燕尾定理我们可以知道三角形BDG的面积和BGC的面积比就是DE和EC的比,即1:1;所以面积为2Y,这样我们就把正方形面积的一半即三角形BCD的面积表示成X+X+Y+Y+2Y=20×20÷2=200,X=Y,所以X=Y=100/3,所以阴影面积就是=20×20-X+X+Y+Y=20×20-400/3=800/3小升初专项训练模拟测试卷------几何11、在三角形ABC的各边上,分别取AD、BE、CF各等于AB、BC、CA长的三分之一,如果三角形DEF的面积为2平方厘米,求三角形ABC的面积是多少2、在图中,四边形ABCD的对角线AC与BD交于点E,且AF=CE,BG=DE,当四边形ABCD的面积为25平方厘米时,三角形EFG的面积是多少3、如图,正方形ABCD的面积是120平方厘米,E是AB的中点,F是BC的中点,四边形BGHF 的面积是________平方厘米;来源:02年小学数学奥林匹克试题解:延长EB到K,使BK=CD; 三角形EGK与三角形DGC成比例,DC:EK=2:3,所以DG:GK=2:3,由于三角形DEK=90,所以EGK=90÷3/5=54,所以四边形EBFG=EGK-BKF=24;同理,EB:DC=1:2,所以BH:HD=1:2,所以三角形EBH=1/3EBD=10所以,四边形BGHF的面积是24-10=144、直线CF与平行四边形ABCD的AB边相交于E点,如果三角形BEF的面积为6平方厘米,求三角形ADE的面积是多少5、★★★如图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长DG为5厘米,求它的宽DE等于多少厘米解答:连结AG,自A作AH垂直于DG于H,在△ADG中,AD=4,DC=4AD上的高.∴S△AGD=4×4÷2=8,又DG=5,∴S△AGD=AH×DG÷2,∴AH=8×2÷5=3.2厘米,∴DE=3.2厘米;答案1.6平方厘米;2.25平方厘米;3.6平方厘米;4.6平方厘米;5.10平方厘米;。

小升初复习重难点一几何五大模型

小升初复习重难点一几何五大模型

几何五大模型一、五大模型简介(1)等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比,如图①所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b;3、两个三角形底相等,面积在之比等于高之比,如图②所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b;4、在一组平行线之间的等积变形,如图③所示,S[sub]△ACD[/sub]=S[sub]△BCD[/sub];反之,如果S[sub]△ACD[/sub]=S[sub]△BCD[/sub],则可知直线AB平行于CD。

例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点则有:S[sub]△ABC[/sub]:S[sub]△ADE[/sub]=(AB×AC):(AD×AE)我们现在以互补为例来简单证明一下共角定理!如图连接BE,根据等积变化模型知,S[sub]△ADE[/sub]:S[sub]△ABE[/sub]=AD:AB、S[sub]△ABE[/sub]:S[sub]△CBE[/sub]=AE:CE,所以S[sub]△ABE[/sub]:S[sub]△ABC[/sub]=S[sub]△ABE[/sub]:(S[sub]△ABE[/sub]+S[sub]△CBE[/sub])=AE:AC,因此S[sub]△ADE[/sub]:S[sub]△ABC[/sub]=(S[sub]△ADE[/sub]:S[sub]△ABE[/sub])×(S[sub]△ABE[/sub]:S[sub]△ABC[/sub])=(AD:AB)×(AE:AC)。

小升初数学必备专题之几何模块

小升初数学必备专题之几何模块

目录几何知识网络 (2)第一章几何图形的认知 (13)第二章长度与角度的计算 (16)第三章直线形计算一 (22)第四章几何图形剪拼 (26)第五章格点与割补 (30)第六章直线形计算二 (35)第七章圆与扇形 (40)第八章直线形计算三 (45)第九章立体几何 (50)第十章几何综合一 (55)第十一章几何综合二 (60)几何知识网络⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧=+-⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧=+-⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧.2)(.1/////////....面数棱数顶点数任何一个立体图形都有欧拉公式:转化推算公式测量解题方法求体积求面积求棱长问题类型球体圆锥圆柱体棱锥长方体正方体多面体立体图形区域面积小线段面图形:其交点数对于任何一个复杂的平共角定理:锯齿定理:长方形相关结论:相似三角形:中位线定理:梯形蝴蝶定理:蝴蝶定理:沙漏定理:鸟头定理:燕尾定理:三角形等积变形:勾股定理:容斥原理:定理比例对称添补法重叠法转法旋平移法割补法重新组合法辅助线法直接求法加、减法常用法方题解求面积求周长求角度求长度问题类型复合图形多边形不规则图形弧长直径半径扇形半圆圆正多边形梯形平行四边形长方形正方形形边四等边三角形等腰三角形钝角三角形直角三角形锐角三角形形角三规则图形面周角平角钝角直角锐角角直线:射线:线段:线点:形图面平何几古希腊人的形数观: (1)点:(2)线:两点连成一条直线。

小升初数学几何五大几何模型

小升初数学几何五大几何模型

.五大几何模型知识框架一、等积模型A BC D①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如右图S△ACDS△BCD;反之,如果 S△ACD S△BCD,那么可知直线AB 平行于CD.④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.S△ABC : S△ADE(AB AC) : (AD AE)(1)(2)(3)(4)三、蝴蝶定理任意四边形中的比例关系( “蝴蝶定理〞):① S1 :S2S4:S3或者S1S3S2S4②AO:OC1243 S S : S S蝴蝶定理为我们提供了解决不规那么四边形的面积问题的一个途径.通过构造模型,一方面可以使不规那么四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.DA S 1S 2S 4 OS 3B C梯形中比例关系 ( “梯形蝴蝶定理〞):① S1 : S3 a 2 : b2② S1 :S3 :S2 :S4 a 2 : b 2 : ab : ab ;③S的对应份数为 a b 2 .AaDS 1S 2S 4OS 3BbC④四、相似模型(一)金字塔模型(二) 沙漏模型A E F DAD F EB GC BG C① AD AE DE AF ;AB AC BC AG② S△ADE:S△ABC AF2 :AG2.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不管大小怎样改变它们都相似 ),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理〔燕尾定理〕有一条公共边的三角形叫做共边三角形。

小升初几何高频考点汇总与方法总结(上)

小升初几何高频考点汇总与方法总结(上)

小升初几何高频考点汇总与方法总结(上)几何是小升初数学中的重要内容之一。

掌握几何的高频考点是提高学生成绩的关键。

本文将汇总小升初几何的高频考点,并总结一些解题方法。

1. 直线、线段与射线- 直线:没有端点的线段。

- 线段:由两个端点确定的部分。

- 射线:由一条直线和一个端点组成的部分。

2. 角的基本概念- 锐角:小于90度的角。

- 直角:等于90度的角。

- 钝角:大于90度但小于180度的角。

- 平角:等于180度的角。

3. 三角形- 等边三角形:三条边都相等的三角形。

- 等腰三角形:两条边相等的三角形。

- 直角三角形:有一个90度角的三角形。

4. 平行线和垂直线- 平行线:在同一个平面上,永远不相交的直线。

- 垂直线:相交成直角的两条线。

5. 长方形和正方形- 长方形:四个角都是直角的四边形。

- 正方形:四条边和四个角都相等的四边形。

解题方法总结1. 画图:根据题目条件,画出几何图形,有助于理清思路和找出解题方法。

2. 角的性质:利用角的性质分析题目,包括角的大小关系、角的补角和余角等。

3. 图形分割:将复杂的几何图形分割成简单的几何图形,利用简单图形的性质解题。

4. 度量关系:利用已知条件和角的度量关系求解未知量。

5. 图形相似:利用图形相似的性质,推导出未知量的关系式,求解题目。

以上是小升初几何的高频考点和解题方法的总结,希望能对学生在几何方面的研究和备考有所帮助。

参考资料:- 教材《小学数学》- 教辅资料《小升初数学模拟试卷》注意:以上内容仅为个人总结,不能确认是否完全准确。

如有不妥之处,请以正式教材为准。

小升初数学几何奥赛几何五大模型

小升初数学几何奥赛几何五大模型

小升初数学几何奥赛几何五大模型The following text is amended on 12 November 2020.小升初几何五大模型一、五大模型简介(1)等积变换①、等底等高的两个三角形面积相等②、两个三角形高相等,面积之比等于底之比,如图1③、两个三角形底相等,面积在之比等于高之比,如图2④、在一组平行线之间的等积变形,如图3图1 图2 图3例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

解:S△ADC=12S△ABC=12×24=12S△ADE=12S△ADC=12×12=6;S△DEF=12S△ADE=12×6=3(2)鸟头(共角)定理模型①、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;②、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点S△ABC S△ADE =SS×ACSS×AE例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC的面积。

解:由题意知:S△ABCS△ADE =AB×ACAD×AE=52×53=256∴S△ABC=256×S△ADE=256×12=50(平方厘米)(3)蝴蝶模型1、梯形中比例关系(“梯形蝴蝶定理”)①S2=S4(梯形两翼相等)②S1:S3:S2:S4=a2:b2:ab:ab③梯形S对应的分数为(a+b)2例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。

解:S△AOB:S△BOC=25:35=5:7S△AOB:S△DOC=SS2:SS2=52:72=25:49∴S△DOC=49又S△AOD=S△BOC=35∴S SSSS=25+35+35+49=144(平方厘米)2、任意四边形中的比例关系(“蝴蝶定理”):①S1:S2=S4:S3或S1×S3=S2×S4②AO:OC=S1:S4=S2:S3=(S1+S2):(S4+S3)例、如图,四边形ABCD的对角线AC、BD交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2,求OC解:AO:OC=S△ABD:S△BCD=1:3OC=2×3=6(4)相似模型1、相似三角形:形状相同,大小不相等的两个三角形相似;2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

小升初面试几何知识点总结

小升初面试几何知识点总结

小升初面试几何知识点总结小升初是一个非常重要的阶段,学生需要经历小升初考试,而数学是小升初考试中的一个重要科目。

几何是数学中的一个重要分支,几何知识在小升初考试中也是非常关键的。

下面我将对小升初几何知识点进行总结。

一、图形与尺寸(一)图形的种类1. 三角形:直角三角形、等腰三角形、等边三角形2. 四边形:矩形、正方形、梯形、菱形、平行四边形3. 多边形:五边形、六边形、正多边形4. 圆、半圆、扇形(二)图形尺寸计算1. 计算周长2. 计算面积3. 计算直角三角形斜边长4. 计算圆的直径、周长、面积(三)图形的转动、平移和反射1. 图形的转动2. 图形的平移3. 图形的反射二、角与直线(一)角的种类1. 锐角、直角、钝角2. 余角3. 对顶角4. 邻补角、互补角(二)角的运算1. 角的相加、相减2. 角的度、分、秒换算(三)直线相关知识1. 平行线、垂直线2. 垂直平分线3. 平行线交与一条直线上的角三、相似与全等(一)相似的判定与性质1. 几何图形的相似判定2. 相似三角形的性质(二)全等的判定与性质1. 几何图形的全等判定2. 全等三角形的性质四、立体几何(一)立体图形的种类1. 正方体、长方体、正方锥、圆柱、圆锥、球(二)几何体的表面积和体积计算1. 计算长方体、正方体、正方锥、圆柱、圆锥、球的表面积2. 计算长方体、正方体、正方锥、圆柱、圆锥、球的体积五、坐标系(一)直角坐标系的概念1. 直角坐标系的构成2. 点的坐标(二)平面坐标系中的图形1. 点的坐标2. 直线、圆、抛物线的方程3. 图形的旋转、平移以上是小升初几何知识点的总结,通过对这些知识点的理解和掌握,考生可以更好地备战小升初考试。

希望对大家有所帮助。

小升初复习重难点一几何五大模型

小升初复习重难点一几何五大模型

一、五大模型简介(1)等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比,如图①所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b;3、两个三角形底相等,面积在之比等于高之比,如图②所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b;4、在一组平行线之间的等积变形,如图③所示,S[sub]△ACD[/sub]=S[sub]△BCD[/sub];反之,如果S[sub]△ACD[/sub]=S[sub]△BCD[/sub],则可知直线AB平行于CD。

例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点则有:S[sub]△ABC[/sub]:S[sub]△ADE[/sub]=(AB×AC):(AD×AE)我们现在以互补为例来简单证明一下共角定理!如图连接BE,根据等积变化模型知,S[sub]△ADE[/sub]:S[sub]△ABE[/sub]=AD:AB、S[su b]△ABE[/sub]:S[sub]△CBE[/sub]=AE:CE,所以S[sub]△ABE[/sub]:S[sub]△ABC[/sub]=S[sub]△ABE[/sub]:(S[sub]△ABE[/sub]+S[sub]△CBE[/sub])=AE:AC,因此S[sub]△ADE[/sub]:S[sub]△ABC[/sub]=(S[sub]△ADE[/sub]:S[sub]△ABE[/sub])×(S[sub]△ABE[/sub]:S[sub]△ABC[/sub])=(AD:AB)×(AE:AC)。

小升初数学---《几何的初步知识》基本概念

小升初数学---《几何的初步知识》基本概念

小升初数学---《几何的初步知识》基本概念一线和角(1)线* 直线直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。

* 射线射线只有一个端点;长度无限。

* 线段线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。

* 平行线在同一平面内,不相交的两条直线叫做平行线。

两条平行线之间的垂线长度都相等。

* 垂线两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。

从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。

(2)角(1)从一点引出两条射线,所组成的图形叫做角。

这个点叫做角的顶点,这两条射线叫做角的边。

(2)角的分类锐角:小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:角的两边成一条直线,这时所组成的角叫做平角。

平角180°。

周角:角的一边旋转一周,与另一边重合。

周角是360°。

二平面图形1长方形(1)特征对边相等,4个角都是直角的四边形。

有两条对称轴。

(2)计算公式c=2(a+b)s=ab2正方形(1)特征:四条边都相等,四个角都是直角的四边形。

有4条对称轴。

(2)计算公式c=4as=a²3、三角形(1)特征由三条线段围成的图形。

内角和是180度。

三角形具有稳定性。

三角形有三条高。

(2)计算公式s=ah/2(3)分类按角分锐角三角形:三个角都是锐角。

直角三角形:有一个角是直角。

等腰三角形的两个锐角各为45度,它有一条对称轴。

钝角三角形:有一个角是钝角。

按边分不等边三角形:三条边长度不相等。

等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。

等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。

4、平行四边形(1)特征两组对边分别平行的四边形。

相对的边平行且相等。

对角相等,相邻的两个角的度数之和为180度。

总集篇-七种典型几何模型【七大考点】-2024年小升初数学(解析版)

总集篇-七种典型几何模型【七大考点】-2024年小升初数学(解析版)

总集篇·七种典型几何模型【七大考点】【第一篇】专题解读篇本专题是难点03:总集篇·七种典型几何模型。

本部分内容以七种典型几何模型为主,其中包括一半模型、等高模型、等积变形模型、鸟头模型、蝴蝶模型、相似模型、燕尾模型等,绝大部分考点属于思维拓展内容,考点考题综合性极强,难度极大,建议作为小升初复习难点内容,再根据学生实际水平和总体掌握情况,选择部分考点进行讲解,一共划分为七个考点,欢迎使用。

【第二篇】目录导航篇【考点一】几何模型其一:一半模型 (2)【考点二】几何模型其二:等高模型 (3)【考点三】几何模型其三:等积变形 (7)【考点四】几何模型其四:鸟头模型 (13)【考点五】几何模型其五:蝴蝶模型(风筝模型或任意四边形模型) (16)【考点六】几何模型其六:相似模型 (20)【考点七】几何模型其七:燕尾模型 (24)【第三篇】知识总览篇【第四篇】典型例题篇【考点一】几何模型其一:一半模型。

【方法点拨】对于长方形来说,最简单的一半就是连接对角线,当然通过等积变形还可以得到很多很多一半,最为常见的就是长方形中的一座山的样子的三角形。

【典型例题】如图,在长方形中有3块面积已经给出,求阴影部分的面积是( )。

A.10B.11C.12D.13解析:通过观察图形发现,已知三角形的面积和阴影部分图形的面积没有直接的联系,那不妨换个角度,在这个长方形中有两个长方形一半的三角形,那么这两个三角形的面积相加应该等于长方形面积,但是由于有重叠部分,两个三角形没有占满整个长方形,那么空出来的部分其实就和重叠部分面积相同,即重叠等于未覆盖。

阴影面积=5+3+4=12,选C。

【对应练习】如图所示,长方形ABCD中,三角形APD的面积是25,三角形BQC的面积为35,则阴影部分面积为多少?【考点二】几何模型其二:等高模型。

【方法点拨】三角形面积的计算公式是三角形面积=底×高÷2。

从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积。

小升初-几何模块详解

小升初-几何模块详解

小升初——几何模型小升初数学一般分为计算、几何、应用题、行程、数论、计数、组合七大模块。

其中几何模块占比大概20%-25%,几何问题涵盖了小学所有关于图形的知识点,可以说是重中之重,更是各类数学杯赛以及小升初考试中最常见的一类题型,同时也是课本中常考的题型。

以下是对几何相关知识点的归纳梳理,希望对小升初复习起到事半功倍的效果。

一、直线型几何 1、角度问题(1)n 边形的内角和是180°×(n-2); (2)n 边形的外角和为360°. 2、面积计算高下底)(上底21梯形:S (5)对角线对角线21S 或边长边长正方形:S (4)宽长(3)长方形:S 高底(2)平行四边形:S 高底21(1)三角形:S ⨯+⨯=⨯⨯=⨯=⨯=⨯=⨯⨯=3、直角三角形 (1) 勾股定理;(2) 斜边上的中线是斜边的一半;(3) 一个角为30°的直角三角形中,短直角边为斜边的一半。

直线型几何的几种基本模型模型基本图形相关性质一半模型四边形阴影S 21S =等高三角形ba S2S1=共边长方形S3S2S4S1b a S4S3S2S1⨯=⨯== 四边形中的比例S3S2S4S1S4S3S2S1⨯=⨯=梯形中的比例 (蝴蝶模型)22b :ab :ab :a S4:S3:S2:S1S3S2==共角三角形 (鸟头模型)ACAE AB AD S2S1⨯= 沙漏模型22ba S S fe d c b a ===下上金字塔模型c2c1b2b1b1a2a1a1b2b1a2a1=+=+=燕尾模型ODAO S S S S S S S S 内比:CD BD S S S S S S S S 外比:4321423142314321=++===++==二、曲线型几何1、基本公式2、基本题型求面积图形基本图形割补法平移法容斥法栓线问题图形周长面积d πr π2C ⨯=⨯⨯=4πC 4πd r πS 222==⨯=r;π2360n弧长:l ⨯⨯⨯=2扇形半径(扇形弧长 2rl 周长:C ⨯++=2rl r π360n S 2⨯=⨯⨯=滚球问题三、立体型几何 1、基本公式图形体积表面积V=abcV=2×(ab+bc+ac)V=a 3V=6a 2V=πr 2hS=2πr 2+2πrhh πr 31V 2不做要求2、基本题型求表面积图形切面:切一多二割补:挖孔问题(1)角上:面积不变(2)棱上:增加2个小面积(3)面上:增加4个小面积三视图:立方体的叠放平面展开图:最短路线染色问题:角上染3面,棱上染2面,面上染1面,体内染0面求体积图形平面图形的旋转割补法:挖孔问题体积不变:瓶子倒立占比问题水中浸物:浸入水中的物体体积=水上升部分的体积---精心整理,希望对您有所帮助。

小学几何模块知识点总结

小学几何模块知识点总结

小学几何模块知识点总结一、基本概念几何是研究点、线、面及其相互关系的一门数学学科。

在小学阶段,几何主要包括平面几何和立体几何两部分。

平面几何是研究在一个平面上的点、线、角和图形的性质以及它们之间的关系;立体几何是以三维空间中的图形为研究对象,研究它们的性质和关系。

二、平面几何的基本知识点1. 点、线、线段和射线(1)点:没有长度、宽度和厚度的几何图形。

(2)线:无限延伸,没有宽度的几何图形。

(3)线段:两个端点及其之间的部分构成的几何图形。

(4)射线:一个端点和沿着某一方向无限延伸的部分构成的几何图形。

2. 角(1)角的概念:由两条射线共同的端点所构成的几何图形。

(2)角的度量:用度、分、秒等单位来表示角的大小。

(3)角的分类:锐角、直角、钝角、平角等。

3. 图形(1)点、线、角的组合形成了各种不同的图形,如:三角形、四边形、五边形、六边形等。

(2)图形的性质:各种图形都有其固有的性质,如:三角形的内角和等于180度;平行四边形的对角线互相垂直等。

4. 等腰三角形和等边三角形(1)等腰三角形:有两条边相等的三角形。

(2)等边三角形:三条边都相等的三角形。

5. 直角三角形(1)直角三角形:三角形中有一个角是直角的三角形。

(2)勾股定理:直角三角形中,直角边上的正方形的面积等于斜边上的两个正方形的面积之和。

即a² + b² = c²。

6. 平行四边形(1)平行四边形:对角线互相垂直的四边形。

(2)平行四边形的性质:对角线互相平分;相对边互相平行且相等。

7. 长方形和正方形(1)长方形:对角线相等,具有两对相等的边的四边形。

(2)正方形:对角线相等,具有四条边相等的四边形。

8. 直线、射线和线段的垂直平分(1)直线、射线和线段的垂直平分:一个直线、射线或线段被一条垂直线分为两个相等的部分。

9. 对称性(1)对称性:图形关于某一条直线、一点或一条直线关于一个中心对称的性质。

小升初平面几何常考五大模型

小升初平面几何常考五大模型

一、等积变换模型1、等底等高的两个三角形面积相等。

2、两个三角形高相等,面积比等于它们的底之比。

3、两个三角形底相等,面积比等于它的的高之比。

二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。

三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。

)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。

相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。

相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模型正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为由题知DC/GP=GC/PK,即DC/(DC-4)=(4+PK)/PK,令DC=a,PK=c,则a=4+c,则S△DEK=a^2+16+c*(4-c)/2+c^2-ac-a(4+a)/2=a^2/2+c^2/2-ac-2a+2c+16=(c+4)^2/2+c^2/2 -c(c+4)-2(c+4)+2c+16=16。

1、图17是一个正方形地板砖示意图,在大正方形ABCD中AA1=AA2=BB1=BB2=CC1=CC2=DD1=D D2,中间小正方形 EFGH的面积是16平方厘米,四块蓝色的三角形的面积总和是72平方厘米,那么大正方形ABCD的面积是多少平方厘米?分析与解连AC和BD两条大正方形的对角线,它们相交于O,然后将三角形AOB放在D PC处(如图18和图19)。

已知小正方形EFGH的面积是16平方厘米,所以小正方形EFGH的边长是4厘米。

又知道四个蓝色的三角形的面积总和是72平方厘米,所以两个蓝色三角形的面积是72÷2=36平方厘米,即图19的正方形OCPD中的小正方形的面积是36平方厘米,那么这个正方形的边长就是6厘米。

小升初试题——几何篇含解析

小升初试题——几何篇含解析

小升初名校真题专项测试-----几何篇引言:随着小升初考察难度的增加,几何问题变越来越难,一方面,几何问题仍是中学考察的重点,各学校更喜欢几何思维好的学生,这样更有利于小学和初中的衔接;另一方面几何问题由于类型众多,很多知识点需要提前学,这就加快了学生知识的综合运用,而这恰恰是重点中学学校所期望的。

所以近几年的几何难度年年在增加,很多学校的考题可以说超出小学的范围,本节主要是通过分析例题来讲解其中的相关知识点和解题思维。

测试时间:15分钟 姓名_________ 测试成绩_________1、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=13AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积.【解】根据定理:ABC BED ∆∆=3211⨯⨯=61,所以四边形ACDE 的面积就是6-1=5份,这样三角形35÷5×6=42。

2、四个完全一样的直角三角形和一个小正方形拼成一个大正方(如图)如果小正方形面积是1平方米,大正方形面积是5平方米,那麽直角三角形中,最短的直角边长度是______米.【解】小正方形面积是1平方米,大正方形面积是5平方米,所以外边四个面积和是5-1=4,所以每个三角形的面积是1,这个图形是“玄形”,所以长直角边和短直角边差就是中间正方形的边长,所以求出短边长就是1。

3、如图在长方形ABCD 中,△ABE 、△ADF 、四边形AECF 的面积相等。

△AEF 的面积是长方形ABCD 面积的______ (填几分之几)。

【解】连接AC,首先△ABC和△ADC的面积相等,又△ABE和△ADF的面积相等,则△AEC 和△AFC的面积也相等且等于ABCD的1/6,不难得△AEC与△ABE的面积之比为1/2,由于这两个三角形同高,则EC与BE之比为1/2,同理FC与DF之比也为1/2。

从而△ECF相当于ABCD面积的1/18,而四边形AECF相当于ABCD面积的1/3,从而答案为1/3-1/18=5/18。

小升初几何模型

小升初几何模型

第一讲等积模型【知识要点】1、等(同)底等(同)高的两个三角形面积相等(等(同)底等(同)高,等面积)。

2、两个三角形高相等(相同),面积之比等于它们的底之比(等(同)高倍底,倍面积)。

如下图所示:两个三角形有公共的高,所以CD BD S S ::21=。

3、两个三角形的底相等(相同),它们的面积之比等于它们的高之比(等(同)底倍高,倍面积)。

如下图所示:CD 为公共的底,所以BF AE S S BCD ACD ::=∆∆。

4、两个三角形的面积之比等于这两个三角形底与各自对应高的乘积之比(倍底倍高,倍面积)。

如下图所示:两个三角形的底和高都不一样,所以)(:)(:12h CD h BD S S CDE ABC ⨯⨯=∆∆。

1S 2S例如:两个三角形的底之比为5:2,高之比为7:6,那么他们的面积之比为35:12。

5、夹在一组平行线之间的等积变形,如图BCD ACD S S ∆∆=。

反之,如果BCD ACD S S ∆∆=,则可知直线AB 平行于直线CD 。

6、等(同)底等(同)高的两个平行四边形面积相等(长方形和正方形是特殊的平行四边形)。

7、三角形的面积等于与它等底等高的平行四边形面积的一半。

8、两个平行四边形的高相等(相同),面积比等于底之比;两个平行四边形的底相等(相同),面积比等于高之比。

【例题精讲】例1、如图,正方形ABCD 的边长为6,AE=1.5,CF=2,那么长方形EFGH 的面积是多少?练1、如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽是多少厘米?例2、长方形ABCD 的面积为36平方厘米,E 、F 、G 为各边中点,H 为AD 边上任意一点,求阴影部分的面积?练2、在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P点连接,阴影部分的面积是多少?例3、如图,已知CD=5,DE=7,EF=15,FG=6,线段AB 将图形分成两部分,左边部分的面积是38,右边部分面积是65,那么三角形ADG 的面积是多少?GF E DC B A例4、四边形ABCD 的对角线AC 、BD 交于点O (如图所示),如果三角形ABD 的面积等于三角形BCD 的面积的三分之一,且AO=2,DO=3,那么CO 的长度是DO的长度的多少倍?练4、如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求(1)三角形BGC 的面积?(2)?: GCAG BC 例5、如图,平行四边形ABCD 的对角线交于点O ,三角形CEF 、三角形OEF 、三角形ODF 、三角形BOE 的面积依次是2、4、4、6,求(1)三角形OCF 的面积是多少?(2)三角形GCE 的面积是多少?OGFE D C B A例6、如图,长方形ABCD 中,BE:EC=2:3,DF:FC=1:2,三角形DFG 的面积是2平方厘米,长方形的面积是多少?A B C DEFG 例7、如图,三角形ABC 是等腰直角三角形,四边形DEFG 是正方形,线段AB 与CD 相交于点K ,已知正方形DEFG 的面积为48,AK:KB=1:3,则三角形BKD的面积是多少?例8、下图中,四边形ABCD 都是边长为1的正方形,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数n m ,那么)(n m的值等于多少?B EE 【自我巩固】1、如图,已知AB=3AE ,AC=2AD ,三角形ABC 的面积是36,求三角形AED的面积?2、如图,BC=3BE ,AC=4CD ,那么三角形AED 的面积是6,那么三角形ABC的面积是多少?3、如图,三角形ABC 的面积是30平方厘米,D 是BC 中点,AE=2ED ,那么三角形CDE的面积是多少?4、如图,长方形ABCD中,AB=24cm,BC=26cm,E是BC的中点,F、G是AB、CD的四等分点,H为AD上任意一点,求阴影部分的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初——几何模型
小升初数学一般分为计算、几何、应用题、行程、数论、计数、组合七大模块。

其中几何模块占比大概20%-25%,几何问题涵盖了小学所有关于图形的知识点,可以说是重中之重,更是各类数学杯赛以及小升初考试中最常见的一类题型,同时也是课本中常考的题型。

以下是对几何相关知识点的归纳梳理,希望对小升初复习起到事半功倍的效果。

一、直线型几何 1、角度问题
(1)n 边形的角和是180°×(n-2); (2)n 边形的外角和为360°. 2、面积计算
高下底)(上底2
1梯形:S (5)对角线对角线2
1
S 或边长边长正方形:S (4)宽长(3)长方形:S 高底(2)平行四边形:S 高底2
1
(1)三角形:S ⨯+⨯=
⨯⨯=
⨯=⨯=⨯=⨯⨯=
3、直角三角形 (1) 勾股定理;
(2) 斜边上的中线是斜边的一半;
(3) 一个角为30°的直角三角形中,短直角边为斜边的一半。

直线型几何的几种基本模型
模型
基本图形
相关性质
一半模型
四边形阴影S 2
1
S =
等高三角形
b
a S2S1=
共边长方形
S3
S2S4S1b a S4S3S2S1⨯=⨯== 四边形中的比例
S3
S2S4S1S4S3S2S1⨯=⨯=
梯形中的比例 (蝴蝶模型)
2
2b :ab :ab :a S4:S3:S2:S1S3
S2==
共角三角形 (鸟头模型)
AC
AE AB AD S2S1⨯= 沙漏模型
22
b
a S S f
e d c b a ===下上
金字塔模型
c2
c1
b2b1b1a2a1a1b2b1a2a1=
+=+=
燕尾模型
OD
AO S S S S S S S S 内比:
CD BD S S S S S S S S 外比:
4321423142314321=++===
++==
二、曲线型几何
1、基本公式
2、基本题型
求面积
图形
基本图形
割补法
平移法
容斥法
栓线问题
图形
周长
面积
d πr π2C ⨯=⨯⨯=
4πC 4πd r πS 222
=
=⨯=
r;π2360n
弧长:l ⨯⨯⨯=
2扇形半径(扇形弧长 2r
l 周长:C ⨯++=
2r
l r π360n S 2⨯=⨯⨯=
滚球问题
三、立体型几何 1、基本公式
图形
体积
表面积
V=abc
V=2×(ab+bc+ac)
V=a 3
V=6a 2
V=πr 2h S=2πr 2
+2πrh
h πr 3
1V 2
不做要求
2、基本题型
求表面积图形切面:切一多二
割补:挖孔问题
(1)角上:面积不变
(2)棱上:增加2个小面积
(3)面上:增加4个小面积
三视图:立方体的叠放
平面展开图:最短路线
染色问题:角上染3面,棱上染2面,面
上染1面,体染0面
求体积图形平面图形的旋转
割补法:挖孔问题
体积不变:瓶子倒立占比问题
水中浸物:浸入水中的物体体积=水上
升部分的体积。

相关文档
最新文档