七年级下册平方根练习题及答案
人教版七年级下册数学 平方根 知识点练习题(含答案)
6.1 平方根知识点 1 算术平方根的定义1.下列说法正确的是 ( )A .因为52=25,所以5是25的算术平方根B .因为(-5)2=25,所以-5是25的算术平方根C .因为(±5)2=25,所以5和-5都是25的算术平方根D .以上说法都不对2.“9的算术平方根”这句话用数学符号表示为 ( )A .√9B .±√9C .√3D .±√3知识点 2 求算术平方根3.4的算术平方根是 ( )A .2B .-2C .±2D .√24.若√a =2,则a 的值为 ( )A .-4B .4C .-2D .√15. 求下列各数的算术平方根:(1)0.64; (2)916; (3)(-3)2; (4)214.6. 求下列各式的值:(1)√25; (2)√169; (3)√42.知识点 3 算术平方根的非负性7.任何一个数的平方都不会是负数,所以负数没有算术平方根,即当a 0时,√a 有意义;当a 0时,√a 无意义.由此可知在√a 中,被开方数a 是非负数,√a 也是非负数,即√a 0.8.下列各数中,没有算术平方根的是 ( )A .2B .0C .-4D .0.0019.下列式子有意义的是 ( )A .√-3B .√-32C .-√(-3)2D .√-(-3)2 知识点 4 算术平方根的估算10. 估计√22的值在 ( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间11.已知a,b是两个连续整数,若a<√7<b,则a,b的值分别是()A.2,3B.3,2C.3,4D.6,812.与√14-2最接近的自然数是.13.比较下列各组数的大小:(1)√3与1.7;(2)√8-1与1.214.算术平方根等于它的相反数的数是()A.0B.1C.0,1D.0,±115.估计√5-1的值在()2A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间16.如图,按下面的程序计算,若开始输入的x值为1,则最后输出的结果是()A.√7B.4C.7D.13xy=.17.若|x-2|+√x+y=0,则-1218.已知一个数的算术平方根是a,则比这个数大8的数是.19.算术平方根等于它本身的数是,√16的算术平方根是,√9的算术平方根是.20.规定用符号[x]表示一个数的整数部分,例如[3.69]=3,[√3]=1,按此规定,[√13-1]=.21.小亮房间的地板面积为9平方米,恰好由25块大小相同的正方形地板砖铺成,求每块正方形地板砖的边长.22.某工厂计划将原有的正方形场地改建成800平方米的长方形场地,且其长、宽的比为5∶2.(1)求改建后的长方形场地的长和宽分别为多少米;(2)如果把原来面积为900平方米的正方形场地的金属栅栏围墙全部利用,来作为新场地的长方形围墙,栅栏围墙是否够用?为什么?23.已知2a+1的算术平方根是0,b -a 的算术平方根是12,求12ab 的算术平方根.24.乔迁新居,小明家买了一张边长是1.3米的正方形新桌子,原有边长是1米的两块正方形台布都不适用了,丢掉又太可惜了.小明的姥姥按图所示的方法,将两块台布拼成一块正方形大台布,请你帮小明的姥姥算一算,这块大台布能盖住现在的新桌子吗?参考答案1.A2.A3.A4.B5.解:(1)0.8. (2)34. (3)3. (4)32.6.解:(1)因为52=25,所以√25=5.(2)因为432=169,所以√169=43. (3)因为42=16,所以√42=√16=4.7.≥ < ≥8.C 9.C 10.B 11.A 12.213.解:(1)√3>1.7. (2)√8-12<1.14.A15.C 解析:√5≈2.236,则√5-12≈0.618.16.A 解析: 当输入1时,3×1+1=4,取算术平方根可得2,则3×2+1=7,取算术平方根可得√7,√7>2.故选A . 17.2 解析: 由“几个非负数之和等于0,则这几个数都为0”可得,x -2=0,x+y=0,解得x=2,y=-2,所以-12xy=-12×2×(-2)=2.18.a 2+8 解析: 因为一个数的算术平方根是a ,所以这个数为a 2,则比这个数大8的数是a 2+8.19.0,1 2 √320.2 解析: 因为3<√13<4,所以2<√13-1<3,所以[√13-1]=2.21.解:由题意可知,每块正方形地板砖的面积是925平方米,所以每块正方形地板砖的边长是√925=35(米).22.解:(1)设改建后的长方形场地的长为5x 米,则宽为2x 米.根据题意,得5x ·2x=800,解得x=√80,∶长为5√80米,宽为2√80米.答:改建后的长方形场地的长和宽分别为5√80米、2√80米.(2)栅栏围墙不够用.理由如下:设原正方形场地的边长为y 米,则y 2=900,解得y=30,∶原正方形场地的周长为120米.新长方形场地的周长为(5√80+2√80)×2=14√80(米).∶124.6=14×8.9<14√80<14×9=126,∶120<14√80,∶栅栏围墙不够用.23.解:因为2a+1的算术平方根是0,所以2a+1=0,所以a=-12.因为b -a 的算术平方根是12,所以b -a=14,所以b=-14,所以12ab=12×(-12)×(-14)=116,所以12ab 的算术平方根是14.24.解:由题意,得拼成的正方形大台布的面积为2平方米.设它的边长为x 米,则x 2=2.因为1.412=1.9881,1.422=2.0164,所以1.412<x 2<1.422,即1.41<x<1.42.因为新正方形桌子的边长为1.3米,x>1.3,所以这块大台布能盖住现在的新桌子.6.2 立方根一.选择题(共14小题)1.下列计算中错误的是( )A .=6B .﹣=﹣4C .﹣=﹣3D .﹣=﹣0.12.﹣的立方根是( )A .﹣B .C .﹣D .3.下列叙述中,错误的是( )①﹣27立方根是3;①49的平方根为±7;①0的立方根为0;①的算术平方根为.A .①①B .①①C .①①D .①①4.若=2,则x 的值为( )A .4B .8C .﹣4D .﹣55.如果=﹣,那么a ,b 的关系是( )A.a=b B.a=±b C.a=﹣b D.无法确定6.立方根是﹣3的数是()A.9B.﹣27C.﹣9D.277.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是()A.2B.C.D.8.若=a,则a的值不可能是()A.﹣1B.0C.1D.39.下列说法不正确的是()A.的平方根是B.﹣9是81的一个平方根C.=﹣3D.0.2 的算术平方根是0.0210.正方体的体积为7,则正方体的棱长为()A.B.C.D.7311.若a满足,则a的值为()A.1B.0C.0或1D.0或1或﹣1 12.下列等式成立的是()A.B.C.D.13.若=1.02,=10.2,则y等于()A.1000000B.1000C.10D.10000 14.利用计算器计算出的下表中各数的算术平方根如下:………0.250.7906 2.57.9062579.06250…根据以上规律,若≈1.30,≈4.11,则≈()A.13.0B.130C.41.1D.411二.填空题(共6小题)15.若有意义,则x的取值范围是.16.小明设计了一个如下图所示的电脑运算程序:(1)当输入x的值是64时,输出的y值是.(2)分析发现,当实数x取时,该程序无法输出y值.17.将一块体积为1000cm3的正方体木块锯成8块同样大小的小正方体木块,则每个小正方体木块的棱长为cm.18.若的整数部分为2,则满足条件的奇数a有个.19.已知2a﹣1的平方根是±3,则7+4a的立方根是.20.如果=2.872,=0.2872,则x=.三.解答题(共5小题)21.用计算器探索.已知按一定规律排列的一组数:1,,,…,,,如果从中选择出若干个数,使它们的和大于3,那么至少要选几个数?22.如图,这是由8个同样大小的立方体组成的魔方,体积为8cm3.(1)这个魔方的棱长为.(2)图中阴影部分是一个正方形,求出阴影部分的周长.23.请认真阅读下列材料,再解决后面的问题.依照平方根(即二次方根)和立方根(即三次方根)的定义,可给出四次方根、五次方根的定义.比如:若x2=a(a≥0),则x叫a的二次方根;若x3=a,则x叫a的三次方根:若x4=a(a≥0),则x叫a的四次方根;(1)依照上面的材料,请你给出五次方根的定义,并求出﹣32的五次方根;(2)解方程:(2x﹣4)4﹣8=024.一个正方体的体积是125cm3,现将它锯成8块同样大小的正方体小木块.(1)求每个小正方体的棱长.(2)现有一张面积为36cm2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.25.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的表面积.参考答案一.选择题(共14小题)1.C.2.A.3.D.4.B.5.C.6.B.7.C.8.D.9.D.10.B.11.C.12.C.13.B.14.C.二.填空题(共6小题)15.任意实数.16.(1);(2)0或1或负数.17.5.18.9.19.320.0.0237.三.解答题(共5小题)21.解:左边第一个数是1,第二个是=≈0.7,第三个数是=≈0.57,第四个数是==0.5,第五个数是=≈0.44,第六个数是=≈0.41,1++++=1+0.7+0.56+0.5+0.44=3.2,所以可以把这些数加起来,得出至少要5个数和才大于3.22.解:(1)=2(cm).故这个魔方的棱长是2cm.故答案为:2cm.(2)①魔方的棱长为2cm,①小立方体的棱长为1cm,①阴影部分是正方形,其边长为:=(cm),①出阴影部分的周长4cm.23.解:(1)如果x5=a,那么x叫做a的五次方根,﹣32的五次方根为﹣2;(2)(2x﹣4)4﹣8=0,(2x﹣4)4﹣16=0,(2x﹣4)4=16,2x﹣4=±,2x﹣4=±2,x=3或x=1.24.解:((1),所以立方体棱长为cm;(2)最多可放4个.设长方形宽为x,可得:4x2=36,x2=9,①x>0,①x=3,,横排可放4个,竖排只能放1个,4×1=4个.所以最多可放4个.25.解:(1)设魔方的棱长为xcm,可得:x3=216,解得:x=6答:该魔方的棱长6cm;(2)设该长方体纸盒的长为ycm,则6y2=600,故y2=100,解得:y=±10因为y是正数,所以y=1010×10×2+10×6×4=440(平方厘米)答:该长方体纸盒的表面积为440平方厘米.6.3实数一.选择题1.在实数,,,,0.3中,无理数有()A.1个B.2个C.3个D.4个2.下列运算正确的是()A.B.C.D.3.已知k<<k+1,k为整数,则k和k+1分别为()A.1,2B.2,3C.3,4D.4,5 4.下列说法正确的是()A.2的平方根是B.(﹣4)2的算术平方根是4C.近似数35万精确到个位D.无理数的整数部分是55.下列关于的说法中,错误的是()A.是无理数B.2<<3C.5的平方根是D.是5的算术平方根6.下列实数中,无理数有(),,,|﹣1|,,,0.1010010001…(相邻两个1之间的0的个数逐次增加1)A.1个B.2个C.3个D.4个7.实数2介于()A.7和8之间B.6和7之间C.5和6之间D.4和5之间8.若的整数部分为a,小数部分为b,则数轴上表示实数﹣a,b的两点之间距离为()A.B.C.D.9.定义新运算:a*b=(a≠b且a+b>0),例如:3*2==,则6*(6*3)的值为()A.1B.C.D.10.下列各组数中互为相反数的一组是()A.2与B.|﹣2|与C.﹣2与D.2与二.填空题11.已知x为整数,且x<﹣1<x+1,则x的值为.12.选用适当的不等号填空:﹣﹣π.13.计算﹣12020+﹣|﹣|=.14.已知a,b为实数,下列说法:①若ab<0,且a,b互为相反数,则=﹣1;①若a+b<0,ab>0,则|2a+3b|=﹣2a﹣3b;①若|a﹣b|+a﹣b=0,则b>a;①若|a|>|b|,则(a+b)×(a﹣b)是正数;①若a<b,ab<0且|a﹣3|<|b﹣3|,则a+b>6,其中正确的是.15.实数a、b、c、d在数轴上对应的点的位置如图所示,在这四个数中,绝对值最小的数是.三.解答题16.2﹣;(2)求x的值:(x﹣3)3=﹣1.17.计算(1);(2).18.将下列各数在数轴上表示出来,并比较它们的大小(用“<”连接).﹣(﹣4),﹣|﹣3.5|,+(﹣1),0,+(+2.5)19.(1)画出数轴并表示下列有理数,﹣2,﹣2.5,0,,,并用“<”号连接.(2)已知有理数a、b在数轴上的对应点如图,化简|a|﹣|a+b|+|c﹣b|.参考答案与试题解析一.选择题1.【解答】解:=9,无理数有:,,共有2个.故选:B.2.【解答】解:A、=3,故此选项错误;B、=3,故此选项错误;C、=2﹣,故此选项错误;D、﹣=﹣3,正确.故选:D.3.【解答】解:①3<<4,k<<k+1,①k=3,k+1=4,故选:C.4.【解答】解:A.2的平方根是±,故错误;B.(﹣4)2的算术平方根是4,故正确;C.近似数35万精确到万位,故错误;D.①4<<5,①无理数的整数部分是4,故错误.故选:B.5.【解答】解:A、是无理数,本选项不符合题意;B、2<<3,本选项不符合题意;C、5的平方根是±,本选项符合题意;D、是5的算术平方根,本选项不符合题意;故选:C.6.【解答】解:,是分数,属于有理数;,|﹣1|=1,是整数,属于有理数;无理数有,,0.1010010001…(相邻两个1之间的0的个数逐次增加1)共3个.故选:C.7.【解答】解:①2=,且6<<7,①6<2<7.故选:B.8.【解答】解:①4<7<9,①2<<3,①a=2,b=﹣2,则|﹣a﹣b|=|﹣2﹣(﹣2)|=.故选:B.9.【解答】解:根据题中的新定义得:6*3==1,则原式=6*1==.故选:B.10.【解答】解:A、2与不是互为相反数,不合题意;B、|﹣2|与,两数相等,不是互为相反数,不合题意;C、﹣2与是互为相反数,符合题意;D、2与两数相等,不是互为相反数,不合题意;故选:C.二.填空题(共5小题)11.【解答】解:①x<﹣1<x+1,①﹣2<x<﹣1,①4<<5,①3<﹣1<4,2<﹣2<3,①x=3.故答案为:3.12.【解答】解:①5<<6,①>π,①﹣<﹣π,故答案为:<.13.【解答】解:原式=﹣1﹣2﹣2=﹣5.故答案为:﹣5.14.【解答】解:①若ab<0,且a,b互为相反数,则=﹣1,本选项正确;①若ab>0,则a与b同号,由a+b<0,则a<0,b<0,则|2a+3b|=﹣2a﹣3b,本选项正确;①①|a﹣b|+a﹣b=0,即|a﹣b|=﹣(a﹣b),①a﹣b≤0,即a≤b,本选项错误;①若|a|>|b|,当a>0,b>0时,可得a>b,即a﹣b>0,a+b>0,所以(a+b)(a﹣b)为正数;当a>0,b<0时,a﹣b>0,a+b>0,所以(a+b)(a﹣b)为正数;当a<0,b>0时,a﹣b<0,a+b<0,所以(a+b)(a﹣b)为正数;当a<0,b<0时,a﹣b<0,a+b<0,所以(a+b)(a﹣b)为正数,本选项正确;①①a<b,①a﹣3<b﹣3,①ab<0,①a<0,b>0,当0<b<3时,|a﹣3|<|b﹣3|,①3﹣a<3﹣b,不符合题意;所以b≥3,|a﹣3|<|b﹣3|,①3﹣a<b﹣3,则a+b>6,本选项正确;则其中正确的有4个.故答案为:①①①①.15.【解答】解:绝对值最小的数是b,故答案为:b.三.解答题(共4小题)16.【解答】解:(1)原式=4﹣4=0;(2)(x﹣3)3=﹣1,则x﹣3=﹣1,解得:x=2.17.【解答】解:(1)原式=﹣(3+2﹣2)﹣=5﹣5+2﹣=;(2)原式=5+﹣﹣2+=8﹣.18.【解答】解:如图所示:则﹣|﹣3.5|<+(﹣1)<0<+(+2.5)<﹣(﹣4).19.【解答】解:(1),则﹣2.5<﹣2<﹣<0<;(2)由数轴可得:a+b<0,c﹣b>0,a<0,原式=﹣a﹣[﹣(a+b)]+(c﹣b)=﹣a+a+b+c﹣b=c.。
人教版七年级数学下册第六章第一节平方根复习试题(含答案) (51)
人教版七年级数学下册第六章第一节平方根习题(含答案) ≈_____(结果精确到0.1).【答案】5.1【解析】【分析】根据求算术平方根的按键顺序,计算即可.【详解】 25.7=,显示5.069516742.5.1≈故答案为:5.1.【点睛】此题考查的是用计算器计算一个数的算术平方根,掌握求算术平方根的按键顺序是解决此题的关键.72.=____;2(6)-的算术平方根为____;2(6)±的算术平方根为_____:|81|-的算术平方根为_____.【答案】-6 6 6 9【解析】【分析】根据乘方的性质、绝对值的定义和算术平方根的定义计算即可【详解】解:因为2(6)36-=,所以36的算术平方根为6,所以6=-;因为2-=,所以36的算术平方根为6;(6)36因为2±=,所以36的算术平方根为6;(6)36因为|81|81-=,所以81的算术平方根为9.故答案为:-6;6;6;9.【点睛】此题考查的是实数的运算,掌握乘方的性质、绝对值的定义和算术平方根的定义是解决此题的关键.73.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】-3 25【解析】【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.三、解答题74.若一个数(5a+1)和另一个(a-19)是数m的平方根,求m的值。
【答案】m的值为256或576.【解析】【分析】根据平方根的定义,分5a+1和a-19互为相反数和相等两种情况讨论,求得a的值,根据平方根的定义求得m的值.【详解】解:①当(5a+1)+(a-19)=0,解得:a=3,则m=(5a+1)2=162=256.②当5a+1=a-19时,解得:a=-5,则m=(-25+1)2=576.故m的值为256或576.【点睛】本题考查了平方根的定义.解答关键是注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.75.求下列各式中实数的x值.(1)25x2﹣36=0(2)|x+2|=π【答案】(1)x=±6;(2)x=﹣2﹣π或x=﹣2+π5【解析】【分析】(1)先移项,再将两边都除以25,再开平方即可求解;(2)根据绝对值的性质即可求解.【详解】解:(1)25x2﹣36=0,25x2=36,,x2=3625;x=±65(2)|x+2|=π,x+2=±π,x=﹣2﹣π或x=﹣2+π.【点睛】本题主要考查了绝对值及平方根,注意一个正数的平方根有两个,它们互为相反数.76.已知某正数的两个平方根分别是a+3和5﹣3a,(1)求这个正数;(2)若b的立方根是2,求b﹣a的算术平方根.【答案】(1)49;(2)2.【解析】【分析】(1)由平方根的性质知a+3+5-3a=0,解之可得a=4,据此知这个数为(a+3)2,再代入计算可得;(2)先得出b=8【详解】解:(1)根据题意知a +3+5﹣3a =0,解得:a =4,所以这个数为(a +3)2=72=49;(2)根据题意知b =8, =2.【点睛】本题主要考查立方根、平方根,解题的关键是熟练掌握平方根和立方根的定义.77.一个正数x 的两个不同的平方根分别是21a -和 2.a -+(1)求a 和x 的值;(2)化简23a a x +-+【答案】(1)-1;9 (2)8-+【解析】【分析】(1)根据正数的平方根的性质可知,一个正数有两个平方根,且互为相反数,得到2a-1+(-a+2)=0,解得a ,求出x 即可;(2)把1a =-,9x =代入原式计算化简即可.【详解】(1)根据题意知,()()2120a a -+-+=解得1a =-,所以-a+2=3,可得9x =,故答案为:-1;9;(2)把1a =-,9x =代入23a a x -+,()21319=--⨯-+,268=-+=-+ 故答案为:8-+.【点睛】本题考查了正数的平方根的性质,相反数的性质,代数式化简求值,掌握正数的两个平方根互为相反数是解题的关键.78.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为2360cm ?【答案】(1)20;(2)无法裁出这样的长方形.【解析】【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为4x cm,宽为3x cm,根据题意列出方程,解方程比较4x与20的大小即可.【详解】解:(1)由题意得,大正方形的面积为200+200=400cm2,∴cm;()2根据题意设长方形长为4x cm,宽为3x cm,x x⋅=由题:43360则230x=x∴=x∴长为43020>∴无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.79.如图,一根细线上端固定,下端系一个小球,让这个小球来回自由摆动,来回摆动一次所用的时间t(单位:s)与细线的长度l(单位:m)之间满足关系2t=0.4m时,小球来回摆动一次所用的时间是多少?(结果保留小数点后一位)【答案】1.3【解析】【分析】直接把l=0.4m 代入关系式2t =t 的值. 【详解】把l=0.4m 代入关系式2t =∴12=0.45t πππ=⨯=1.3(秒). 【点睛】此题考查算术平方根,解题关键在于掌握运算法则.80.(1)如图,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm ;(2)若一个圆的面积与一个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆_____C 正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm ,李明同学想沿这块正方形边的方向裁出一块面积为2300cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?【答案】(1;(2)<;(3)不能裁剪出,详见解析【解析】【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,∴cm ,(2)∵22r ππ=,∴r =∴2=2C r π=圆,设正方形的边长为a∵22a π=, ∴a =∴=4C a =正∴1C C ===<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.。
人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)
《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。
七年级下册练习及答案平方根
平方根一、单选题(共49题;共98分)1.25的平方根是( )A. 5B. -5C. ±5D. ±2.16的平方根是()A. 2B. ±4C. ±2D. 43.(﹣2)2的平方根是()A. 2B. ﹣2C. ±2D.4.4的算术平方根是()A. 2B. -2C. ±2D. 45.下列说法:①平方根等于其本身的数有0,±1;②32xy3是4次单项式;③将方程中的分母化为整数,得;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A. 1个B. 2个C. 3个D. 4个6.下列说法正确的是()A. 1的立方根是B.C. 的平方根是±3D.7.在,-π,,0.101 001 000 1…(每两个“1”之间依次多一个“0”),,0中,无理数的个数是()A. 2B. 3C. 4D. 58.4的算术平方根是()A. -4B. 4C. ±2D. 29.的平方根是()A. 6B. ±6C.D. ±10.一个正数的两个平方根分别是2a﹣1与﹣a+2,则a的值为()A. ﹣1B. 1C. 2D. ﹣211.一个数的立方根是4,这个数的平方根是( )A. 8B. -8C. 8 或-8D. 4 或-412.64的平方根是()A. ±8B. ±4C. ±2D.13.9的平方根等于()A. -3B. 3C. ±3D.14.的值等于()A. B. ﹣ C. ± D.15.下列等式正确的是()A. -=14B. =C. =aD. =416.如果一个数的平方根和它的立方根相等,则这个数是()A. 0B. 0,1C. ±1D. 0,±117.下列说法中:①-1的平方根是±1;②(-1)2的平方根是±1;③实数按性质分类分为正实数,0和负实数;④-2是-8的立方根;其中正确的个数是()A. 0B. 1C. 2D. 318.已知边长为m的正方形面积为12,则下列关于m的说法中:①m2是有理数;②m的值满足m2﹣12=0;③m满足不等式组;④m是12的算术平方根. 正确有几个()A. 1个B. 2个C. 3个D. 4个19.下列运算正确的是( )A. B. C. D.20.的值等于()A. 3B.C.D.21.下列说法正确的是()A. 0的平方根是0B. 1的平方根是1C. -1的平方根是-1D. (-1)2的平方根是-122.若一个数的平方根是±8,那么这个数的立方根是( )A. 4B. ±4C. 2D. ±223.的值是()A. 4B. 2C.D.24.下列说法中正确的是()A. 如果两条直线被第三条直线所截,那么同旁内角互补B. 垂线段最短C. 垂直于同一条直线的两条直线平行D. 如果a =b ,那么a=b25.下列说法正确的是()A. a的平方根是±B. a的立方根是C. 的平方根是0.1D.26.9的算术平方根是()A. 81B. 3C. -3D. ±327.在下列各式中正确的是()A. =﹣2B. =3C. =8D. =228.下列各式中,计算正确的是()A. =4B. =±5C. =1D. =±529.下列命题中①无理数都是无限小数;② 的平方根是±4;③无理数与数轴上的点一一对应;④﹣<﹣;正确的语句个数是()A. 1个B. 2个C. 3个D. 4个30.4的平方根是()A. ±2B. ﹣2C. 2D.31.对于有理数x,的值是()A. B. 2020 C. -2020 D. 032.如果一个数的平方根等于它的立方根,则这个数是()A. 0B. 1C. ﹣1D. ±133.下列说法正确的是()A. 4的平方根是2B. 27的立方根是±3C. –8没有立方根D. 表示4的算术平方根34.平方根等于它本身的数有()A. 0B. 0、1C. 1D. -1、0、1、35.小明在作业本上做了4道题① =﹣5;②± =4;③ =9;④ =﹣6,他做对的题有( )A. 1道B. 2道C. 3道D. 4道36.下列各式中正确的是()A. ± =±3B. 16平方根是4C. (﹣4)2的平方根是4D. ﹣(﹣25)的平方根是﹣537.64的算术平方根是()A. 4B. ±4C. 8D. ±838.下列关于的说法中,错误的是()A. 是无理数B. 是15的算术平方根C. 15的平方根是D.39.9的平方根为()A. 3B. -3C. ±3D. ±40.下列说法中错误的是()A. 5是25的算术平方根B. 是的一个平方根C. 9的平方根是3D. 0的平方根与算术平方根都是041.若2m-4与3m-1是同一个正数的平方根,则m为()A. -3B. 1C. -1D. -3或142.若一个正数的平方根为2a+1和2-a,则a的值是()A. B. 或-3 C. -3 D. 343.若|x﹣5|+2=0,则x﹣y的值是()A. -7B. -5C. 3D. 744.估计﹣的值在()A. 3到4之间B. ﹣5到﹣4之间C. ﹣3到﹣2之间D. ﹣4到﹣3之间45.已知x,y是实数,且+(y﹣3)2=0,则xy的值是()A. 4B. ﹣4C.D. ﹣46.下列计算正确的是( )A. =±3B. =-3C. =-2D.47.设x为实数,下列式子成立的是()A. =()2B. =C. =|﹣x|D. = •48.下列结论中: ①若a=b,则= ,②在同一平面内,若a⊥b,b//c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;④| -2|=2- ,正确的个数有( )A. 1个B. 2个C. 3个D. 4个49.已知,,且.则的值为()A. 4B. -4C. 4或-4D. 2或-2二、填空题(共1题;共2分)50.平方等于16的数是________,立方等于﹣27的数是________.答案解析部分一、单选题1.【答案】C2.【答案】B3.【答案】C4.【答案】A5.【答案】A6.【答案】C7.【答案】B8.【答案】D9.【答案】D10.【答案】A11.【答案】C12.【答案】A13.【答案】C14.【答案】A15.【答案】D16.【答案】A17.【答案】D18.【答案】C19.【答案】C20.【答案】A21.【答案】A22.【答案】A23.【答案】B24.【答案】B25.【答案】B26.【答案】B27.【答案】D28.【答案】A29.【答案】A30.【答案】A31.【答案】A32.【答案】A33.【答案】D34.【答案】A35.【答案】A36.【答案】A37.【答案】C38.【答案】C39.【答案】C40.【答案】C41.【答案】D42.【答案】C43.【答案】D44.【答案】D45.【答案】B46.【答案】C47.【答案】D48.【答案】B49.【答案】C二、填空题50.【答案】±4;﹣3。
最新人教版初中七年级下册数学《平方根》同步练习题
《平方根》同步测试(第1课时)一、选择题1.9的算术平方根是( ).A. 3 B.±3 C.81 D.±81考查目的:本题考查算术平方根的概念.答案:A.解析:根据算术平方根的概念,因为,所以9算术平方根为3.故答案选A.2.已知,则=( ).A.0. 5 B.±0.5 C.0.0625 D.±0.0625考查目的:考查算术平方根的概念和符号表示.答案:C.解析:符号表示的算术平方根.因为算术平方根等于0.25的数是0.0625,即,所以.3.(2010?贺州)的算术平方根是( ).A.±2 B.2 C.±4 D.4考查目的:本题考查算术平方根的概念和符号表示.答案:B.解析:表示16的算术平方根.因此本题应先求“=?”,再求“?”的算术平方根.由于,4的算术平方根是2,故答案选B.二、填空题4.一个面积为0.64m的正方形桌面,它的边长是.考查目的:本题考查运用算术平方根的概念解决问题.答案:0.8m.解析:因为正方形的面积为边长的平方,所以边长是面积的算术平方根,故边长为.5.算术平方根等于它的相反数的数是______.考查目的:本题考查算术平方根的性质.答案:0.解析:因为算术平方根一定是非负数(0和正数),所以算术平方根等于它的相反数的数是一定是非正数(0和负数).既是非负数,又是非正数的数只有0,故算术平方根等于它相反数的数是0.6.请你观察思考下列计算过程:因为,所以;同样:因为,所以;…,由此猜想=__________.考查目的:本题考查运用算术平方根概念探究规律.答案:111111111.解析:观察过程:“因为,所以;同样:因为,所以;…”可发现:算术平方根全由1组成,1的个数与被开方数的中间的数字相同.由此猜想=111111111.三、解答题7.“欲穷千里目,更上一层楼,”说的是登得高看得远,如图,若观测点的高度为,观测者视线能达到的最远距离为,则=,其中是地球半径(通常取6400km).小丽站在海边一块岩石上,眼睛离海平面的高度为20m,她观测到远处一艘船刚露出海平面,求此时的值.考查目的:本题考查算术平方根的应用.答案:16km.解析:根据题意,将,代入=,得=16(km).8.(1)计算:①,②,③,④;(2)观察你计算的结果,用你发现的规律直接写出下面式子的值:.考查目的:本题考查算术平方根的求法以及分析结果发现规律的能力.答案:(1)①1,②3,③6,④10;(2)406.解析:(1)根据算术平方根的求法,可得:①,②,③,④;(2)分析①②③④的结果,可发现:①=1,②=3=1+2,③=6=1+2+3,④=10=1+2+3+4.所以=1+2+3+4+…+28=406.《平方根》同步测试(第2课时)一、选择题1.估计的值在( ).A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间考查目的:本题考查用有理数估计一个带算术平方根符号的(无理)数的大致范围.答案:B.解析:解题的关键是找出10在哪两个连续整数的平方之间.因为,,所以3<<4,故在3与4之间.答案选B.2.是的( ).A.10倍B.100倍C.1000倍 D.10000倍考查目的:本题考查被开方数的变化与算术平方根的变化之间的规律的应用.答案:A.解析:根据被开方数的变化与算术平方根的变化之间的规律“被开方数的小数点向左或向右移动位,它的算术平方根的小数点就相应地向左或向右移动位(为正整数)”解答.因为110是1.1的小数点向右移动2位,所以的小数点相应的向右移动1位,就得到的值,即是的10倍.3.下列关于的说法错误的是( ).A.1<<2 B.1.7<<1.8 C. D.是一个无限不循环小数考查目的:本题考查无限不循环小数的概念以及用有理数估计无理数的大小.答案:C.解析:因为,,所以1<<2,即选项A正确;因为,,所以1.7<<1.8,即选项B正确;因为是一个无限不循环小数,而1.732是一个有限小数,所以选项C错误,选项D正确.故答案选C.二、填空题4.若将边长为1的五个正方形拼成图1的形状,然后将图1按斜线剪开,再将剪开后的图形拼成图2所示的正方形,那么图1中剪开的斜线的长是_______.考查目的:本题考查运用算术平方根解决问题.答案:.解析:由于每个小正方形面积为1,所以图1的面积为5.剪开后拼成图2的正方形的面积也是5,边长是.因为图1中剪开的斜线的长就是图2正方形的边长,所以图1中剪开的斜线的长是.5.已知,则约是_______.考查目的:本题考查被开方数的变化与算术平方根的变化之间的规律,以及算术平方根的符号表示.答案:0.0735.解析:由于被开方数0.005403是由54.03小数点向左移动四位得到的,则0.005403的算术平方根就是54.03的算术平方根的小数点向左移动两位得到,即.故答案选B.6.已知,为两个连续整数,且<<,则.考查目的:本题考查用有理数估计一个(带算术平方根符号的)无理数的大致范围.答案:5.解析:因为,,所以2<<3,对比已知条件,可得,,所以.三、解答题7.根据下表回答下列问题:28.028.128.228.328.428.528.628.728.8784.00789.61795.24800.89806.56812.25817.96823.69829.44(1)795.24的算术平方根是;(2)≈;(3)在哪两个数之间?考查目的:本题考查算术平方根的概念,以及用文字语言、符号语言表示算术平方根的能力和估算能力.答案:(1)28.2;(2)28.7;(3)28.4与28.5之间.解析:可根据算术平方根的定义解答,但需要一定的估算能力.(1)从表中可直接看出795.24的算术平方根是28.2;(2)表示823.7的算术平方根,表中平方数最接近823.7数是823.69,而,所以≈28.7;(3)因为 806.56<810<812.25,所以28.4<<28.5.8.某农场有一块长30米,宽20米的场地,要在这块场地上建一个正方形鱼池,使它的面积为场地面积的一半,问能否建成?若能建成,请你估计鱼池的边长为多少?(精确到0.1米)考查目的:本题考查估计算术平方根的大小的实际应用.答案:能,约17.3米.解析:设鱼池的边长为米,则,,<20,故能建成.因为,,所以17.3<<17.4,且与17.3更接近,所以可以估计鱼池的边长为17.3米.《平方根》同步测试(第3课时)一、选择题1.“16的平方根是±4”用数学式子表示正确的是( ).A.=±4 B.±=±4 C.=4 D.- =-4考查目的:本题考查平方根的符号表示.答案:B.解析:“16的平方根”用符号表示是“”,因此“16的平方根是±4”用符号表示是“”.故答案选B.2.下列命题中,正确的个数有( ).①=±3;②2的平方根是4;③的平方根是±1.A.0个 B.1个 C.2个 D.3个考查目的:本题考查平方根的概念,以及平方根与算术平方根的区别.答案:B.解析:因为,所以①错误;因为2的平方根是,所以②错误;因为=1,1的平方根是±1,所以③正确,故答案选B.3.如果一个正数的平方根为和,则这个正数为( ).A.25 B.36 C.49 D.64考查目的:本题考查平方根的定义以及相反数的概念.答案:C.解析:由平方根的定义可知,和是一对相反数,即,解这个方程得.当时,,,所以这个正数为.故答案选C.二、填空题4.已知=,则20.14的平方根为__________(用含的代数式表示).考查目的:本题考查平方根与算术平方根之间的区别,以及被开方数的变化与算术平方根的变化之间的规律.答案:.解析:因为20.14是2014的小数点向右移动2位得到的,所以应由小数点向右移动1位得到.根据可得,所以20.13的平方根为.5.如果的平方根等于±2,那么=______.考查目的:本题考查平方根与算术平方根的概念以及它们之间的区别.答案:16.解析:根据平方根的定义,可知,4的平方根等于±2,所以;再根据算术平方根的定义,可知,算术平方根等于4的数是16.故答案应填16.6.若和是数的平方根,则=______.考查目的:本题考查平方根概念的运用.答案:256或576.解析:本题没有说明和是否为数的不同的平方根,所以有两种情况.当+=0时,解得,所以,,所以;当=时,解得,则,故答案为256或576.(注意本题与“数的平方根是和”的区别)三、解答题7.如图所示是计算机程序计算,(1)若开始输入,则最后输出= ;(2)若输出的值为22,则输入的值= .考查目的:本题考查平方运算与开平方运算是互逆运算.答案:(1)-2;(2)±3.解析:(1);(2)根据题意,可得,整理得,.8.已知正数的两个平方根分别是、.请计算代数式的值.考查目的:本题考查平方根的概念和性质.答案:0.解析:由平方根的性质:正数有两个平方根,它们互为相反数.可得;由平方根的概念和性质,可得,所以.。
人教版七年级数学下册第六章第一节平方根习题(含答案) (23)
人教版七年级数学下册第六章第一节平方根复习试题(含答案)已知一个正数的平方根为2a+2与a-5,则这个正数为______.【答案】16 ;【解析】分析:利用正数的平方根有两个,且互为相反数求出a的值,即可确定这个正数为多少.详解:由题意得:2a+2=-(a-5),∴a=1,∴这个正数的平方根为:4±,∴这个正数为:16.点睛:本题考查了平方根.72.已知一个正数的平方根是3x-2和5x-6,则这个数是_____.【答案】1【解析】【详解】试题解析:根据题意,得:32560,x x-+-=解得:1,x=∴-=-=-x x321,56 1.()21 1.±=故答案为1【点睛】:一个正数有2个平方根,它们互为相反数.73.已知一块长方形地的长与宽的比为3∶2,面积为2400平方米,则这块地的长为________米.【答案】60【解析】分析:这个长方形的长为3x米,宽为2x米,则3x•2x=2400,求出x的值即可.详解:设这个长方形的长为3x米,宽为2x米,则3x•2x=2400,x2=400,∵x为正数,∴x=20,∴3x=60,故答案为:60.点睛:本题考查了平方根的应用,关键是能根据题意得出方程.74x的取值范围为_____.x≥-.【答案】2【解析】【分析】根据二次根式有意义的条件:二次根号下被开方数≥0,即可解答.【详解】x+≥,根据题意得,20x≥-.解得2x≥-.故答案为:2【点睛】本题考查二次根式有意义的条件,熟练掌握二次根号下被开方数≥0是解题关键.75.用字母表示的实数m﹣2有算术平方根,则m取值范围是________【答案】m≥2.【解析】分析:根据用字母表示的实数m-2有算术平方根,可得m-2≥0,据此求出m取值范围即可.详解:∵用字母表示的实数m-2有算术平方根,∴m-2≥0,解得m≥2,即m取值范围是m≥2.故答案为:m≥2.点睛:此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.76,则x2018+y2018的值为_____;【答案】2【解析】分析:先根据非负数的性质列出关于x、y的方程组,求出x、y的值,再代入20182018+进行计算即可.x y详解:0=,∴100 xx y-=⎧⎨+=⎩,解得11 xy=⎧⎨=-⎩,代入所求代数式得,2018201811 2.x y+=+=故答案为:2点睛:考查非负数的性质,根据非负数的性质得到,x y的值是解题的关键.77.设n为正整数,且n3+2n2是一个奇数的平方,则满足条件的n中,最小的两个数之和为_____.【答案】30.【解析】分析:首先把所给的代数式进行因式分解,然后结合已知条件合理分析,从而求得最小的两个数之和.详解:∵n3+2n2=n2(n+2),而它是一个奇数的平方,∴n必是奇数,n+2必为某个奇数的平方,∴符合条件的n中,最小的两个正整数是7和23,则最小的两个数的和是7+23=30.故答案为:30.点睛:本题考查了平方根.三、解答题78.若实数x y z ,,1(9)4x y z =+++,求xyz 的值.【答案】120【解析】【分析】分析题中条件不难发现等号左边含有未知数的项都有根号,而等号右边的则都没有.由此可以想到将等式移项,并配方成三个完全平方数之和等于0的形式,从而可以分别求出x 、y 、z 的值.【详解】将题中等式移项并将等号两边同乘4得90x y ---= ,∴()()()414240x y z -+--+--= ,∴)))2222220++=,20= ,2=0,2=0,∴ 2=,2=,2=,∴x=4 y-1=4 z-2=4∴x=4 y=5 z=6∴xyz=120.【点睛】此题需将已知条件移项后观察特征,将已知条件配方成三项完全平方数之和等于0的形式,从而求出x 、y 、z 的值.79.已知2?012a a -=,求2a 2?012-的值.【答案】2013【解析】【分析】根据二次根式有意义的条件和绝对值的定义即可得到结论.【详解】解:由题意得:a-2013≥0,解得:a≥2013,∴,,∴a-2013=20122,∴a=20122+2013,∴a-20122=20122+2013-20122=2013.【点睛】本题考查了二次根式有意义的条件,绝对值的定义,熟练掌握二次根式有意义的条件是解题的关键.80.求x的值:(x﹣1)2﹣25=0【答案】x=6或x=﹣4【解析】【分析】移项后,利用平方根的定义进行求解即可得.【详解】(x﹣1)2﹣25=0,(x﹣1)2=25,x-1=±5,所以x=6或x=﹣4.【点睛】本题考查了利用平方根的定义解方程,熟知平方根的定义是解题的关键.。
七年级数学算术平方根(人教版)(基础)(含答案)
故选B.
试题难度:三颗星知识点:算术平方根
6.算术平方根等于它本身的数是( )
A.1 B.﹣1
C.0 D.0或1
答案:D
解题思路:
算术平方根等于它本身的数是0或1.
故选D.
试题难度:三颗星知识点:算术平方根
7. =________; =________.( )
;
.
故选B.
试题难度:三颗星知识点:算术平方根
4. 的算术平方根是( )
A.9 B.±9
C.±3 D.3
答案:D
解题思路:
9,9的算术平方根为3.
故选D.
试题难度:三颗星知识点:算术平方根
5.下列各数,没有算术平方根的是( )
A. B.﹣4
C. D.0.001
答案:B
解题思路:
负数没有算术平方根;
, ;
答案:A
解题思路:
设该广场的宽为x,则长为3x.
由题意得:
解得x=80或x=﹣80(舍去)
所以 ;
所以该广场的长为240;
故选A.
试题难度:三颗星知识点:算术平方根
A.﹣0.1,9 B.0.1,3
C.±0.1,±3 D.0.1,﹣3
答案:B
解题思路:
0.01的算术平方根是0.1;
,9的算术平方根为3.
故选B.
试题难度:三颗星知识点:算术平方根
3. 的值等于________; 的值等于________.( )
A.﹣4, B.4,
C.±4,± D.16,
答案:B
解题ห้องสมุดไป่ตู้路:
A. ,36 B. ,
平方根(基础篇)(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题6.2平方根(基础篇)(专项练习)一、单选题1.4的平方根是()A .2B .2-C .16D .2±2.)A .﹣2B .2C .﹣12D .123的值().A .在3到4之间B .在4到5之间C .在5到6之间D .在6到7之间4.下列计算正确的是()A2=B 5=±C .4D .7=±5.平方根是13±的数是()A .13B .16C .19D .19±6.若是169的算术平方根,是121的负的平方根,则(+)2的平方根为()A .2B .4C .±2D .±47.下列命题是真命题的是()A .25的平方根是5B .0.01的平方根是0.001±C .只有正数才有算术平方根D .平方根是其本身的数只有08.实数a ,b ,c 在数轴上的对应点如图所示,化简a b a -+-+的结果是()A .b c --B .c b -C .222a b c -+D .2a b c++9.将边长分别为1和2的长方形如图剪开,拼成一个与长方形面积相等的正方形,则该正方形的边长是()A B .2C .1.5D .110.有一个如图的数值转换器,当输出值是4时,输入的是()A .8B .16C .D .二、填空题11.如果0x <,0y >且24x =,29y =,则x y +=___________.12.若2y ,则yx =________.13a ,小数部分为b ,则=a _________,b =_________.14 3.873≈ 1.225≈≈___.151=,则2x +6的平方根是______.16.某正数的平方根是a 和5a -,则这个数为_________.17.()29-的四次方根是______.18.七巧板被西方人称为“东方魔术”,下面的两幅图是由同一个七巧板拼成的.已知七巧板拼成的正方形(如图1边长为a (cm ).若图2的“小狐狸”图案中阴影部分面积为162cm ,那么a 的值为__.三、解答题19.求下列各式中的x .(1)29250x -=;(2)24(2)90x --=.20.计算:(1)()()2202131---;(2)233--21.已知2a b +(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.22.(1=__________;(2=__________;(3)实数a 、b 、c 在数轴上的位置如图所示,请化简:a -23.定义:若A B m -=,则称A 与B 是关于m 的关联数.例如:若2A B -=,则称A 与B 是关于2的关联数.(1)若49与a 是关于2的关联数,则=a ________;(2)若21x -与53x -是关于2的关联数,求51x +的平方根;(3)若M 与N 是关于m 的关联数,53M mn n =++,N 的值与m 无关,求N 的值.24.发现:(1)面积为249cm 的正方形纸片,它的边长是______cm ;拓展:(2)面积为226cm 的长方形纸片,如果它的长是宽的2倍,则长和宽各是多少cm ?延伸:(3)在面积为249cm 的正方形纸片中能否沿着边的方向(如图所示)裁出一块面积为226cm 的长方形纸片,使它的长是宽的2倍?说明理由.参考答案1.D【分析】根据平方根的意义,一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.【详解】∵()22=4±∴4的平方根为2±.故选:D.【点拨】本题考查了平方根的定义,掌握一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根是解题的关键.2.C【分析】先化简,再计算倒数.【详解】解:=−2,-2的倒数是1 2-.故选:C.【点拨】本题考查了倒数,算术平方根,熟练掌握相关知识是解题的关键.3.C【分析】根据题意可直接进行求解.【详解】解:∵56<,5到6之间.故选C.【点拨】本题主要考查算术平方根,熟练掌握求一个算术平方根的整数部分与小数部分是解题的关键.4.D【分析】A、根据负数没有平方根即可判定;B、根据算术平方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据平方根的定义即可判定.【详解】解:AB5=,故选项错误;C、4==-,故选项错误;D、7=±,故选项正确.故选:D.【点拨】此题考查了平方根、算术平方根的定义.此题比较简单,注意熟记定义是解此题的关键.5.C【分析】根据平方根的定义求解即可.【详解】解:∵211 39⎛⎫±=⎪⎝⎭,∴平方根是13±的数是19.故选C.【点拨】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根.6.C【分析】求出m、n的值,求出m+n的值,再根据平方根定义求出即可.【详解】解:∵m是169的算术平方根,n是121的负的平方根,∴m=13,n=-11,∴m+n=2,∴(m+n)2的平方根是,故答案为C.【点拨】本题主要考查了平方根的定义和性质,以及根据平方根求被开方数;注意:一个正数有两个平方根,它们互为相反数.7.D【分析】根据平方根的概念判断即可.【详解】解:A、25的平方根是±5,故本选项命题是假命题;B、0.01的平方根是±0.1,故本选项命题是假命题;C、正数和0都有算术平方根,故本选项命题是假命题;D、平方根是其本身的数只有0,故本选项命题是真命题;故选:D.【点拨】本题考查的是平方根及算术平方根的概念,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.A【分析】先判断0b c a <<<,可得0b a -<,再结合算术平方根的含义可得0c <c =-,再化简绝对值即可.【详解】解:∵0b c a <<<,∴0b a -<,∴a b a -+-+()()a b a c =---+-a b a c=--+-b c =--.故选A .【点拨】本题考查的是算术平方根的含义,化简绝对值,整式的加减运算,掌握“算术平方根的含义与化简绝对值”是解本题的关键.9.A【分析】求出长方形的面积,即为正方形的面积,开方即可求出正方形边长.【详解】解:根据题意得:故选:A .【点拨】此题考查了算术平方根,弄清题意是解本题的关键.10.B【分析】设输入的数为x ,根据输出值是4即可求出答案.【详解】解:设输入的数为x ,∴4=,16x ∴=,故选:B .【点拨】本题考查的是算术平方根的概念和性质,解题的关键是掌握一个正数的正的平方根是这个数的算术平方根是解题的关键,注意有理数的概念.11.1【分析】24x =即x 是4的平方根,29y =即y 是9的平方根,因而根据0x <,0y >且24x =,29y =就可确定x ,y 的值,进而求解.【详解】解:∵24x =,29y =,∴2x =±,3=±y ,又∵0x <,0y >,∴2x =-,3y =,∴231x y +=-+=.故答案为:1.【点拨】本题考查平方根的意义,求代数式的值,有理数的加法运算.根据条件正确确定x ,y 的值是解题关键.12.94【分析】根据算术平方根的非负性求得,x y 的值,代入代数式即可求解.【详解】解:∵2y ,∴230,320x x -≥-≥,∴230x -=,解得32x =,∴2y =,∴23924yx ⎛⎫== ⎪⎝⎭,故答案为:94.【点拨】本题考查了算术平方根的非负性,掌握算术平方根的非负性是解题的关键.13.33【分析】根据34<首先确定a 的值,则小数部分即可确定.【详解】解:34<< ,3a ∴=,则3b =.故答案是:33.【点拨】本题主要考查了无理数的估算,解题的关键是确定无理数的整数部分即可解决问题.14.12.25【分析】根据算术平方根与被开方数的关系:“被开方数每向左或向右移动2个位数,则它的算术平方根就向左向右移动1个位数”可知答案.1.225≈,≈12.25故答案为:12.25【点拨】本题考查了求算术平方根,掌握规律是解题的关键.15.±21=,解得=1x -,继而计算264x +=,再根据平方根的定义解答.【详解】解:1=,21x ∴+=1x ∴=-264x ∴+=4的平方根是±2故答案为:±2.【点拨】本题考查平方根与算术平方根,是基础考点,掌握相关知识是解题关键.16.254【分析】根据正数的两个平方根互为相反数可得50a a +-=,解方程求出a ,然后根据平方根的意义求出这个正数.【详解】解: 某正数的平方根是a 和5a -,50a a ∴+-=.解得52a =.2525()24±= .∴这个数为254.故答案为:254.【点拨】本题考查了平方根的性质与意义,解题的关键是掌握一个正数有两个平方根,且它们互为相反数.17.3±【分析】计算出()2981-=,再找出四次方等于81的数即可.【详解】解:∵()2981-=,又∵()4381±=∴()29-的四次方根是3±,故答案为:3±.【点拨】本题考查平方根的推广,有理数的乘方.解题的关键是正确找出四次方等于81的数.18.8【分析】设阴影小正方形的边长为x cm ,根据阴影部分的面积列出方程,求出x 的值,进而得出大正方形的对角线的长度是4x cm ,最后求出边长a 即可.【详解】设“小狐狸”脸部小正方形的边长为x cm ,由题意得:21(24)162x x x x +⨯-=,解得:x =x =-∴小正方形的边长为,∴大正方形的对角线为:,∴大正方形的边长为8(cm)=,8a ∴=.故答案为:8.【点拨】本题主要考查七巧板的知识,熟练掌握七巧板各边的关系是解题的关键.19.(1)1255,33x x ==-(2)1271,22x x ==【分析】(1)先移项,然后利用平方根求解方程即可;(2)先移项,然后利用平方根求解方程即可.【详解】(1)解:29250x -=移项得:2925x =,∴2259x =,∴53x =±,∴1255,33x x ==-(2)24(2)90x --=24(2)9x -=,∴29(2)4x -=∴32=2x -±∴1271,22x x ==.【点拨】题目主要考查利用平方根解方程,熟练掌握解方程方法是解题关键.20.(1)5;(2)8--【分析】(1)先化简各式,然后再进行计算即可;(2)先化简各式,然后再进行计算即可.【详解】(1)解:22021(3)(1)--93(1)=-+-6(1)=+-5=;(2)解:233|-+932=-+8=-【点拨】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:02a b ++=由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x =解得3x =±.【点拨】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.22.(1)5;5;(2)()0(0)a a a a ⎧≥⎨-<⎩;(3)b a -【分析】(1)根据算术平方根求解即可;(2)结合(1)中结果求解即可;(3)根据数轴得出0c a b <<<,且a b <,然后将各式化简合并同类项求解即可.【详解】解:(15=5==;故答案为:5;5;(2)当0a ≥a =;当0a <a =-;()0(0)a a a a ⎧≥=⎨-<⎩,故答案为:()0(0)a a a a ⎧≥⎨-<⎩;(3)由数轴得:0c ab <<<,且a b <,∴a +∴a -()()a abc c a =-++-+-a a b c c a=-++-+-b a =-.【点拨】题目主要考查算术平方根的化简及根据数轴判断式子的正负,整式的加减法等,理解题意,熟练掌握各个运算法则是解题关键.23.(1)47;(2)3±;(3)165.【分析】(1)根据关联数的含义,列方程求解即可;(2)根据关联数的含义,列方程求得x 的值,即可求解;(3)根据关联数的含义,可得M N m -=,可得N M m =-,根据题意,求解即可.【详解】(1)解:由题意可得:492a -=解得47a =,故答案为:47;(2)由题意可得:21(53)2x x ---=解得:85x =,519x +=9的平方根为3±(3)由题意可得:M N m -=,则53(51)3N M mn n m n m n m ++--==+=+-,∵N 的值与m 无关∴510n -=,解得15n =则116355N =+=【点拨】本题考查了新型定义题型,解一元一次方程、整式的值与字母无关,解题的关键是准确理解题干,列出方程,进行解答.24.(1)7;(2,长为;(3)不能,理由见解析【分析】(1)根据正方形的面积公式和正方形的面积即可求出正方形的边长;26cm列出方程求解即可;(2)设长方形的宽为x cm,则长为2x cm,根据长方形的面积为2(3)根据题意比较正方形的边长和长方形的长即可判断.49cm,【详解】解:(1)∵正方形的面积为2∴边长7==cm.(2)设长方形的宽为x cm,则长为2x cm,根据题意得x·2x=26,x2=13,解得x=∵x∴x∴长为2x=,,长为,(3)不能.理由:因为7,即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片.【点拨】此题考查了正方形和长方形面积公式,算数平方根的性质,解题的关键是根据题意求出正方形的边长和长方形的长和宽.。
人教版七年级数学下册第六章第一节平方根复习试题(含答案) (49)
人教版七年级数学下册第六章第一节平方根复习试题(含答案)某地开辟了一块长方形的荒地,新建一个以环保为主题的公园.已知这块荒地的长是宽的2倍,它的面积为400000m2.(1)公园的宽大约是多少?它有1000m吗?(2)如果要求误差小于10m,它的宽大约是多少?(3)该公园中心有一圆形花坛,面积是800m2,它的半径大约是多少米(误差小于1m)?【答案】(1)公园的宽大约有400多m,没有1000m宽(2) 440 m或450 m(3) 15m或16m【解析】分析:(1)设公园的宽为xm,根据长方形的面积公式,可得关于x的方程,解方程可得答案;(2)由误差小于10m,根据四舍五入的方法,可得答案;(3)设它的半径为rm,根据圆的面积公式,可得关于r的方程,解方程可得答案.详解:(1)设公园的宽为x m,则x·2x=400 000,x因为4002=160 000<200 000,5002=250 000>200 000,所以400<x<500.答:公园的宽大约有400多m,没有1 000 m宽.(2)因为4402=193 600,4502=202 500,所以193 600<200 000<202 500.于是可知440<x<450.因为误差可以小于10 m,所以公园的宽可以是440 m或450 m.(3)设花坛的半径为R m,则πR2=800,可得R2≈254.6.因为225<254.6<256,所以152<R2<162.因为误差可以小于1 m,所以花坛的半径大约是15 m 或16 m.点睛:考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.也考查了估算无理数的大小.a的立方根是﹣2,求a+b的值.82.已知实数a+b的平方根是±4,实数13【答案】16【解析】分析:根据“a+b的平方根是±4”可求得a+b.详解:∵实数a+b的平方根是±4,∴a+b=16.点睛:本题考查了平方根的意义,如果一个数的平方等于a(a≥0),那么这个数叫做a的平方根;一个正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根.83.一个底为正方形的水池的容积是450m3,池深2m,求这个水池的底边长.【答案】水池的底边长为15米【解析】分析:设底面正方形的边长为xm,根据长方体的体积公式列出方程,解方程求得x的值,即可得这个水池的底边长.详解:设底面正方形的边长为xm,根据题意可得,2x ,2450解得x=±15,又因x>0,∴x=15.即水池的底边长为15米.答:水池的底边长为15米.点睛:本题考查了平方根的实际应用,利用长方体的体积公式列出方程是解决本题的关键.84.如图是一块面积为144cm2的正方形纸片,小欣想沿着边的方向用它裁出一块面积为98cm2无拼接的长方形纸片,且使它的长、宽之比为2:1,不知能否裁出来,正在发愁,小亮看见了说:“肯定能用一块面积大的纸片裁出一块面积小的纸片呀!”你同意小亮的观点吗?你能用这块正方形纸片裁出符合要求的长方形纸片吗?说说你的理由.【答案】小亮的观点错误,不能用这块正方形的纸片裁剪出符合条件的长方形纸片【解析】分析:设长方形的宽为xcm,则长方形的长为2xcm,根据面积的值列方程求x,长方形的长2x不能大于原正方形的边长.详解:不同意小亮的观点,不能用这块正方形的纸片裁出符合条件的长方形纸片.理由是:设长方形的宽为xcm,则长方形的长为2xcm,根据题意,得:2x2=98,解得:x=7(负值舍去),则长方形的长为2x=14(cm),∵cm,即12cm,∴14>12,∴小亮的观点错误,不能用这块正方形的纸片裁剪出符合条件的长方形纸片.点睛:本题考查了平方根的实际应用,与实际问题相关的应用中,求出的值要检验是否符合实际意义.85+(1-y)2=0.(1)求x,y的值;(2)求1xy +()()1x1y1+++()()1x2y2+++…+()()1x2016y2016++的值.【答案】(1)21xy=⎧⎨=⎩;(2)20172018分析:(1)由已知条件易得:2-xy=0且1-y=0,由此即可求得x 、y 的值;(2)将(1)中所求x 、y 的值代入(2)中的式子可得:111121324320182017++++⨯⨯⨯⨯,然后利用()11111n n n n =-++(n 为正整数)将所得式子变形即可完成计算得到所求结果.详解:(1)根据题意得2010xy y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩; (2)∵x=2,y=1,∴原式=121⨯+132⨯+143⨯+…+120182017⨯ =1-12+12-13+13-14+…+12017-12018=1-12018=20172018. 点睛:(1)知道:“①一个式子的算术平方根和平方都是非负数;②若两个非负数的和为0,则这两个非负数都为0”是解答第1小题的关键;(2)知道:“()11111n n n n =-++(n 为正整数),且能由此将原式变形化简”是解答第2小题的关键.86.(1)-(12)-1+20140; (2)求4x 2-100=0中x 的值.【答案】(1)3;(2)x=±5【解析】(1)结合“零指数幂的意义、负整数指数幂的意义和算术平方根的定义”进行分析计算即可;(2)按“平方根”的定义进行分析解答即可.详解:(1)原式=4-2+1=3;(2)∵4x2-100=0,∵4x2=100,∵x2=25,∵x=±5.点睛:熟记“零指数幂的意义、负整数指数幂的意义、平方根和算术平方根的定义”是正确解答本题的关键.87.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.(1)请求出图中阴影部分(正方形)的面积和边长(2)若边长的整数部分为a,小数部分为b,求2+的值.a b【答案】(1)S=13,边长为(2)6【解析】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.详解:解:(1)S=25-12=13, 边长为, (2)a=3,b= -3 原式=9+-3-=6.点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.88.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c数部分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.【答案】(1)a=5,b=2,c=3 ;(2)±4.【解析】【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c∴c=3,(2)∵a=5,b=2,c=3,∴3a-b+c=16,3a-b+c 的平方根是±4.【点睛】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.89.已知(x-1)2 =4,求x 的值.【答案】x=3或x=-1.【解析】分析:先开平方求出(x ﹣1)的值,继而求出x 的值.详解:(x ﹣1)2=4,开平方得:x ﹣1=±2,解得:x =3或x =﹣1.点睛:本题考查了平方根的知识,解答本题关键是掌握开平方的运算.90.已知a ,b 满足4a -=0,解关于x 的方程2(3)15a x b --=.【答案】x=±6【解析】分析:利用非负性质求出a,b 的值,代入方程求解.详解:由题意得: a -4=0, b -7=0∵a =4,b =7将a =4,b =7代入(a -3)2x -1=5b ,得(4-3)2x -1=5×7∵2x =36x =±6点睛:0≥,0a ≥,20a ≥,所以题目经常就是这三种任意两种的和为0,或者三者的和为0.。
七年级下数学实数平方根习题含答案解析
七年级下实数平方根练习题含答案解析一、单选题(共10题;共20分)1.下列等式正确是A. B. C. D.2.下列说法中正确的是()A. 9的平方根为3B. 化简后的结果是C. 最简二次根式D. ﹣27没有立方根3.在下列式子中,正确的是()A. =﹣B. ﹣=﹣0.6C. =﹣13D. =±64.下列说法正确的是( )A. 3的平方根是B. 对角线相等的四边形是矩形C. 近似数0.2050有4个有效数字D. 两个底角相等的梯形一定是等腰梯形5.下列说法错误的是()A. 一个正数的算术平方根一定是正数B. 一个数的立方根一定比这个数小C. 一个非零的数的立方根,仍然是一个非零的数D. 负数没有平方根,但有立方根6.下列说法不正确的是()A. 的平方根是B. ﹣2是4的一个平方根C. 0.2的算术平方根是0.04D. ﹣27的立方根是﹣37.下列运算正确的是()A. =±3B. (﹣2)3=8C. ﹣22=﹣4D. ﹣|﹣3|=38.4的平方根是()A. ±16B. 16C. ±2D. 2B.9.求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如.但可以利用计算器求得,还可以通过一组数的内在联系,运用规律求得.请同学们观察下表:运用你发现的规律解决问题,已知≈1.435,则≈()A. 14.35B. 1.435C. 0.1435D. 143.510.若a2=36,b3=8,则a+b的值是()A. 8或﹣4B. +8或﹣8C. ﹣8或﹣4D. +4或﹣4二、填空题(共4题;共6分)11.0的平方根是________12.-64的立方根是________,的平方根是________.13.已知时,.请你根据这个结论直接填空:(1)________;(2)若,则________.14.=a,=b,则=________.三、解答题(共4题;共20分)15.已知2a-1的算术平方根是3,3a+b-1的平方根是±4,c是的整数部分,求a+2b-c的平方根.16.已知2x﹣y的算术平方根为4,﹣2是y的立方根,求﹣2xy的平方根.17.2a-1和3a-4是一个数的平方根,b的立方根是-2,求a-b的算术平方根.18.已知的立方根是3,16的算术平方根是,求:的平方根.四、综合题(共2题;共38分)19.判断下列各数是否有平方根?并说明理由.(1)(﹣3)2;(2)0;(3)﹣0.01;(4)﹣52;(5)﹣a2;(6)a2﹣2a+2.20.观察发现:…(1)表格中x=________,y=________.(2)应用:利用a与数位的规律解决下面两个问题:①已知≈ 3.16,则≈________,≈________;②已知= k,=________,=________(用含k的式子表示).(3)拓展:= m,=________,=________(用含m的式子表示)答案解析部分一、单选题1.【答案】D【解析】【解答】、原式,不符合题意;、原式,不符合题意;、原式没有意义,不符合题意;、原式,符合题意.故答案为:.【分析】原式利用平方根定义及二次根式的性质判断即可得到结果.2.【答案】B【解析】【解答】解:A、9的平方根是±3,所以选项A不正确;B、= = ,所以选项B正确;C、=2 ,所以不是最简二次根式,选项C不正确;D、﹣27的立方根是﹣3,所以选项D不正确.故选B.【分析】根据平方根和立方根的定义作判断.3.【答案】A【解析】【解答】解:A,=﹣,故A选项正确;B、﹣≈﹣1.9,故B选项错误;C、=13,故C选项错误;D、=6,故D选项错误.故选:A.【分析】A、根据立方根的性质即可判定;B、根据算术平方根的定义即可判定;C根据算术平方根的性质化简即可判定;D、根据算术平方根定义即可判定.4.【答案】C【解析】【分析】A、根据平方根的定义,可判断;B、根据矩形的定义可判定;C、根据有效数字的定义,可判定;D、根据等腰梯形的定义,即可判定.【解答】A、根据一个正数有两个平方根,它们互为相反数;故本选项错误;B、根据对角线相等且平分的四边形是矩形;故本选项错误;C、根据有效数字的定义,近似数0.2050有4个有效数字;故本选项正确;D、根据同一底上两个角相等的梯形是等腰梯形;故本选项错误.故选C.【点评】本题考查了平方根、矩形、有效数字及等腰梯形的定义及性质,熟记这些概念才能熟练应用,是解答这类题目的关键.5.【答案】B【解析】【分析】根据立方根,算术平方根,平方根的定义对各选项分析判断后利用排除法求解.【解答】A、一个正数的算术平方根一定是正数正确,故本选项不符题意;B、一个数的立方根一定比这个数小错误,例如:-8的立方根是-2,-2>-8,故本选项符合题意;C、一个非零的数的立方根,仍然是一个非零的数正确,故本选项不符题意;D、负数没有平方根,但有立方根正确,故本选项不符题意.故选B.【点评】本题考查了立方根,平方根算术平方根的定义,是基础题,熟记概念是解题的关键6.【答案】C【解析】【解答】解:A、的平方根是,正确;B、﹣2是4的一个平方根,正确;C、0.04的算术平方根为0.2,不正确;D、﹣27的立方根是﹣3,正确;故选C.【分析】利用立方根,平方根以及算术平方根的定义判断即可.7.【答案】C【解析】【解答】解:A、,故原选项计算错误,故此选项不符合题意;B、,故原选项计算错误,故此选项不符合题意;C、,计算正确,故此选项符合题意;D、,故原选项计算错误,故此选项不符合题意.故答案为:C.【分析】根据算术平方根的定义,有理数的乘方,绝对值及相反数分别进行计算,然后判断即可.8.【答案】C【解析】【解答】解:∵4=(±2)2,∴4的平方根是±2.故选C.【分析】由于某数的两个平方根应该互为相反数,所以可用直接开平方法进行解答.9.【答案】A【解析】解答:根据表格的规律:,,可知≈1.435,则≈14.35.分析:根据被开方数的小数点移动两位,算术平方根的小数点每移动一位求出即可.10.【答案】A【解析】【解答】a2=36,得a=6或a=﹣6;b3=8,得b=2;故a+b=8或﹣4.【分析】根据已知可得a=6或﹣6,b=2,所以a+b=8或﹣4..二、填空题11.【答案】0【解析】【解答】解:0的平方根是0,故答案为:0.【分析】根据如果一个数的平方等于a,这个数就叫做a的平方根进行解答即可.12.【答案】-4;±2【解析】【解答】解:-64的立方根是-4=4,4的平方根是±2,即的平方根是±2,故答案为:-4,±2.【分析】根据立方根及算术平方根、平方根的定义填空即可.13.【答案】(1)3(2)4039【解析】【解答】(1);(2),,,.故答案为:3,4039.【分析】(1)根据时,,直接计算,即可;(2)根据平方差公式可得x的值,进而得2x+1的值,即可求出的值.14.【答案】0.1b【解析】【解答】解:∵=b,∴= = = =0.1b.故答案为:0.1b.【分析】算数平方根的小数点移动法则为”内2外1“,根号里边移动2位,外边移动1位,5.67与567小数点相差2位,以为标准移动小数点.三、解答题15.【答案】解:由题意得:,∴a=5,b=2.∵9<13<16,∴3<<4.∴c=3.∴a+2b-c=6.∴a+2b-c的平方根是± .【解析】【分析】根据算数平方根和平方根的定义,可列出方程组,计算得出结果。
人教版七年级数学下册第六章第一节平方根习题(含答案) (45)
人教版七年级数学下册第六章第一节平方根复习试题(含答案)先化简,再求值:()()222244324m n mn mn m n -+-+-,其中2|1|(2)0m n ++-=.【答案】2 22-m mn ;6.【解析】【分析】原式去括号合并得到最简结果,再根据非负性把m 与n 的值代入计算即可求出值.【详解】原式222244324m n mn mn m n =-+--+222m mn =-.∵2|1|(2)0m n ++-=,∴1m =-,2n =.原式246=+=.【点睛】此题考查整式的加减-化简求值,绝对值和平方根的非负性,熟练掌握运算法则是解本题的关键.92.已知2a-1的平方根是±1,3a+b-1的平方根是±4,c 的整数部分,求a+2b+c 的平方根。
【答案】±6【解析】先依据平方根的定义列出关于a 、b 的方程组求得a 、b 的值,的大小,可求得c 的值,即可求得a+2b+c 的值,最后求它的平方根即可.【详解】由题意得211,3116a a b -=+-=,则1,14a b ==49<<,即 78<<∴c=7∴6==±,故答案为:±6.【点睛】本题主要考查的是平方根的定义、估算无理数的大小,熟练掌握相关定义和方法是解题的关键.93.已知x 、y 都是实数,且2y =(1.(2)求x+4y 的平方根.【答案】(1,(2)3±【解析】【分析】(10,求出x ,进而求解.(2)题干要求x+4y 的平方根,根据二次根式被开方数大于等于0,求出x 和y 值代入即可求值.解:(1)已知x 、y 都是实数,且2y =,得到220,220,x x -≥-≥求得 1x =,回代求得y=2.(2)由(1)知x=1,y=2,有x+4y=1+8=9,则x+4y 的平方根为±3.【点睛】本题考查平方根的运算,结合被开方数大于等于0,进行分析求值,注意平方根为正负两种情况.94.求下列各式中x 的值(1)2160x -=(2)64x 3+27=0【答案】(1) 4,x =±(2) 34x =- 【解析】【分析】(1)利用直接开方法即可求解x 的平方根即可,注意正负性.(2)对27移项,并化3次项系数为1,对3次项开立方求立方根即可.【详解】解:(1)2160x -=,216x =,x =4x =±(2)64x 3+27=0,332736427,,.644x x x x -=-==-= 【点睛】本题考查实数的运算,对x 分别进行化系数为1以及开平方根开立方根即可.95.已知2x -的平方根是2±,27x y ++的立方根是3,求22x y +的平方根和立方根.【答案】平方根是10±【解析】【分析】根据平方根和立方根的定义,列出方程求出x 、y ,再求22xy +的平方根和立方根.【详解】 解:由题意得 x-2=42x+y+7=27⎧⎨⎩,解得68x y =⎧⎨=⎩所以2222=68=100++x y ,100的平方根是10±所以22x y +的平方根是10±.【点睛】本题考查平方根和立方根,熟练掌握定义,列出方程是关键.96.先化简再求值:()()23223232324xy y x y x y y xy y +---++-,其中()2230x y -++= 【答案】-9【解析】【分析】 先根据整式的运算法则,将原式进行合并同类项整理,再根据()2230x y -++=,可得x-2=0,y+3=0,从而可以得知x ,y 的值,代入原式解得即可.【详解】解:原式整理得:23223232326224xy y x y x y y xy y xy y =+-+---=+ ∵()2230x y -++=,2x -具有非负性,()23y +具有非负性, ∴x-2=0,y+3=0∴x=2,y=-3将其代入上式中得:()()2323318279⨯-+-=-=-【点睛】本题考查的是绝对值和乘方的非负性以及整式的合并同类项,根据绝对值和乘方的非负性求出x 、y 的值是解题的关键.97.已知||0a =,29c =,求c+(a-b )的值.【答案】4或-2【解析】【分析】根据绝对值和算术平方根的非负性求出a 、b 的值,再根据平方根的定义求出C,然后代入求值即可.【详解】解:由||0a =,可得a=0,b+1=0即a=0,b=-1又由29c =,则c=±3则c+(a-b )=±3+(0-(-1))=±3+1即结果为4或-2【点睛】本题考查了绝对值和算术平方根的非负性以及平方根的相关知识,初中阶段涉及到非负性的有偶次方、算术平方根、绝对值.98.已知2+a b(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.【答案】(1)23a b -的平方根为4±;(2)3x =±.【解析】【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:20a b +=由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x =解得3x =±.【点睛】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.99.已知1a -和52a -都是非负数m 的平方根,求m 的值。
七年级数学-平方根练习含解析
七年级数学-平方根练习含解析一、选择题(本大题共10小题,共30.0分)1.若2x−5没有平方根,则x的取值范围为()A. x>52B. x≥52C. x≠52D. x<522.当√4x+1的值为最小值时,a的取值为()A. −1B. 0C. −14D. 13.√9的平方根是()A. 3B. ±3C. √3D. ±√34.已知等腰三角形的两边a、b满足|2x−3x+5|+√2x+3x−13=0,则此等腰三角形的周长为()A. 7或8B. 6或10C. 6或7D. 7或105.下列说法中,其中不正确的有()①任何数都有算术平方根;②一个数的算术平方根一定是正数;③x2的算术平方根是a;④算术平方根不可能是负数.A. 0个B. 1个C. 2个D. 3个6.若m,n满足(x−1)2+√x−15=0,则√x+x的平方根是()A. ±4B. ±2C. 4D. 27.若一个数的平方根等于它本身,则这个数是()A. 0B. 1C. 0 或 1D. 0 或±18.下列说法正确的是()A. 一个有理数的平方根有两个,它们互为相反数B. 负数没有立方根C. 无理数都是开不尽的方根数D. 无理数都是无限不循环小数9.对实数a、b,定义运算x∗x={x2x(x≥x)xx2(x<x),已知3∗x=36,则m的值为()1A. 4B. ±√12C. √12D. 4或±√1210.已知√−x=x,那么x=()A. 0B. 0或1C. 0或−1D. 0,−1或1二、填空题(本大题共10小题,共30.0分)11.若|x+2|+√x−3=0,则x x的值为______.12.3的算术平方根是______ .13.√x的算术平方根是3,则x的值是______.14.若直角三角形的两边长为a、b,且满足√x2−6x+9+|x−4|=0,则该直角三角形的第三边长为______.15.如图,在4×4的方格图中,每个小正方形的边长都为1.图中阴影是个正方形,顶点均在格点上,则这个正方形的边长是______ .16.正方形的边长为a,它的面积与长为4cm、宽为12cm的长方形的面积相等,则x=______cm.17.若√2≈1.414,√20≈4.472,则√2000≈______.18.若√4x2−4x+1=1−2x,则x的范围是__________.19.如图,在长方形内有两个相邻的正方形A,B,正方形A的面积为3,正方形B的面积为24,则图中阴影部分的面积是_________.20.若√1−x+x2+2x−1=0,则x−x=_________三、解答题(本大题共4小题,共40.0分)21.已知25x2−144=0,且x是正数,求代数式2√5x+13的值.22.已知a,b是有直角三角形的两边,且满足√x−5=8x−x2−16,求此三角形第三边长。
人教版七年级数学下册第六章第一节平方根复习试题(含答案) (73)
人教版七年级数学下册第六章第一节平方根习题(含答案) 平方根等于它本身的数是()A.0 B.1 C.0和1 D.1和-1【答案】A【解析】试题分析:只有0的平方根是0,等于它本身,故选A.考点:平方根.12.4的算术平方根是()A B.2 C.±2 D.【答案】B【解析】试题分析:根据算术平方根的定义可得4的算术平方根是2,故答案选B.考点:算术平方根的定义.13.下列判断中,错误的有()①0的绝对值是0;②13是无理数;③4的平方根是2;④1的倒数是-1.A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据绝对值可判断①,根据无理数是无限不循环小数,可判断②,根据平方根的意义,可判断③,根据倒数的意义,可判断④.【详解】①|0|=0,故①正确; ②13是有理数,故②错误;③=±2,故④错误;④1的倒数是1,故④错误;故选C .14.√16的值等于( )A .4B .C . 2D .2【答案】A【解析】试题分析:“√”表示某一个数的算术平方根.考点:二次根式的计算.15.下列说法中,正确的...是( ) ①3243->- ②a 一定是正数③无理数一定是无限小数④ 16.8万精确到十分位⑤2)8(-的算术平方根是 8A .①②③B .④⑤C .②④D .③⑤【答案】D .【解析】试题分析:根据两个负数,绝对值大的反而小可得3243-- ,①错误;a 是正数或0,②错误;无理数一定是无限小数,③正确;16.8万精确到千位,④错误;2)8(-的算术平方根是8,⑤正确.所以正确的有③⑤两个,故答案选D .16.4的平方根是()A.2 B.-2 C.±2 D.±2【答案】C【解析】试题分析:根据平方根的意义,一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,可有(±2)²知4的平方根为±2.故选C考点:平方根17.下列说法中正确的是()A.4的算术平方根是±2B.-a一定没有平方根C.-表示5的算术平方根的相反数D.0.9的算术平方根是0.3【答案】C【解析】试题分析:根据2x a=(a≥0),可知x就是a的一个平方根,可知一个非负数的平方根有两个,它们互为相反数.因此由4是16的算术平方根,故A错误;而-2a≤0,可知当a=0时,有平方根0,故B错误;由2=,可知5,故C正确;由2(5=,0.30.09故D错误.故选C18.下列几种说法正确的是()A.0是最小的数B.最大的负有理数是-1C.1是绝对值最小的正数D.平方等于本身的数只有0和1【答案】D【解析】试题分析:因为负数都小于0,所以0不是最小的数,所以A错误;因为-1<-0.1,所以B错误;因为没有最小的正数,所以没有绝对值最小的正数,所以C错误;因为平方等于本身的数只有0和1,所以D正确;考点:正负数、绝对值、有理数的平方19.一个数的平方是49,这个数是()A.7 B.-7 C.+7或—7 D.+9或—9【答案】C【解析】试题分析:求出49的平方根即可.即这个数为:±7.故选C.考点:平方根.20.下列各数在2与3之间的是()A.1 B C D【答案】D.【解析】=2,D,故选D.考点:估算无理数的大小.。
人教版七年级数学下册《平方根》基础练习
《平方根》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)下列说法正确的是()A.的平方根是B.﹣8是64的一个平方根C.的算术平方根是4D.=±92.(5分)下列计算正确的是()A.(﹣2)×(﹣)=﹣B.(﹣3)2=9C.=±2D.(﹣1)5=﹣53.(5分)如果x2=4,那么x等于()A.2B.±2C.4D.±44.(5分)整数100的算术平方根是()A.10B.±10C.100D.±1005.(5分)小明房间的面积为10.8m2,房间地面恰由120块相同的正方形地砖铺成,每块地砖的边长是()m.A.0.3B.0.45C.0.9D.0.09二、填空题(本大题共5小题,共25.0分)6.(5分)a2的算术平方根是.7.(5分)若一个正数x的两个平方根分别是3m+1与﹣2m﹣3,则x的值是.8.(5分)若一个数的两个平方根分别是a+3和2a﹣15,则这个数为.9.(5分)如果一个正数a的平方根是3x﹣2和5x+6,则a=.10.(5分)若一个正数的平方根是3x﹣5与7﹣x,则这个正数是.三、解答题(本大题共5小题,共50.0分)11.(10分)有一个边长为9cm的正方形和一个长为24cm、宽为6cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?12.(10分)已知﹣8的平方等于a,b的平方等于121,c的立方等于﹣27,d 的算术平方根为5.(1)写出a,b,c,d的值;(2)求d+3c的平方根;(3)求代数式a﹣b2+c+d的值.13.(10分)求下列x的值(1)5x2﹣4=11;(2)(x﹣1)2=9.14.(10分)求下列式子中x的值:25x2﹣64=0.15.(10分)小龙的房间地面是正方形,恰好由60块边长为50cm的正方形地砖铺成,请估算小龙房间地面正方形的边长是多少米?(要求写出必要的估算过程,误差小于0.1米)《平方根》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)下列说法正确的是()A.的平方根是B.﹣8是64的一个平方根C.的算术平方根是4D.=±9【分析】依据平方根的定义、算术平方根的定义进行解答即可.【解答】解:的平方根是±,故A错误;﹣8是64的一个平方根,故B正确;=4,4的平方根是±2,故C错误;=9,故D错误.故选:B.【点评】本题主要考查的是算术平方根、平方根的定义,熟练掌握相关概念是解题的关键.2.(5分)下列计算正确的是()A.(﹣2)×(﹣)=﹣B.(﹣3)2=9C.=±2D.(﹣1)5=﹣5【分析】根据有理数的运算法则即可求出答案.【解答】解:(A)原式=,故A错误;(C)原式=2,故C错误;(D)原式=﹣1,故D错误;故选:B.【点评】本题考查有理数的运算,解题的关键是熟练运用有理数的运算法则,本题属于基础题型.3.(5分)如果x2=4,那么x等于()A.2B.±2C.4D.±4【分析】根据平方根的定义即可求出答案.【解答】解:由题意可知:x=±=±2,故选:B.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(5分)整数100的算术平方根是()A.10B.±10C.100D.±100【分析】根据算术平方根的定义即可求出答案.【解答】解:100的算术平方根为10,故选:A.【点评】本题考查算术平方根,解题的关键是正确理解算术平方根的定义,本题属于基础题型.5.(5分)小明房间的面积为10.8m2,房间地面恰由120块相同的正方形地砖铺成,每块地砖的边长是()m.A.0.3B.0.45C.0.9D.0.09【分析】利用除法先算出每块地砖的面积,再利用算术平方根计算出地砖的边长.【解答】解:每块地砖的面积为:10.8÷120=0.09,每块地砖的边长为:=0.3(m).故选:A.【点评】本题考查了算术平方根.计算一个数的算术平方根可以用乘方的办法.二、填空题(本大题共5小题,共25.0分)6.(5分)a2的算术平方根是|a|.【分析】根据算术平方根的定义即可求出答案.【解答】解:由题意可知:=|a|,∴a2的算术平方根为|a|,故答案为:|a|.【点评】本题考查算术平方根,解题的关键是正确理解算术平方根的定义,本题属于基础题型.7.(5分)若一个正数x的两个平方根分别是3m+1与﹣2m﹣3,则x的值是49.【分析】根据平方根的定义即可求出答案.【解答】解:由题意可知:3m+1﹣2m﹣3=0,解得:m=2,∴3m+1=7,∴x=72=49,故答案为:49.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.8.(5分)若一个数的两个平方根分别是a+3和2a﹣15,则这个数为49.【分析】根据平方根的性质建立等量关系,求出a的值,再求出这个数的值.【解答】解:由题意得:a+3+(2a﹣15)=0,解得:a=4.∴(a+3)2=72=49.故答案为:49.【点评】本题考查了平方根,先根据平方根互为相反数,求出a的值再求出这个数是解题的关键.9.(5分)如果一个正数a的平方根是3x﹣2和5x+6,则a=.【分析】根据正数的两个平方根互为相反数,即可列方程求得x的值,进而求解.【解答】解:根据题意得:3x﹣2+(5x+6)=0,解得:x=﹣0.5,则这个数a是(3x﹣2)2=(﹣)2=;故答案是:.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.10.(5分)若一个正数的平方根是3x﹣5与7﹣x,则这个正数是64.【分析】根据一个正数有2个平方根,且互为相反数,求出x的值,即可确定出所求.【解答】解:根据题意得:3x﹣5+7﹣x=0,解得:x=﹣1,即3x﹣5=﹣8,7﹣x=8,则这个正数为64,故答案为:64【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)有一个边长为9cm的正方形和一个长为24cm、宽为6cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?【分析】利用已知得出新正方形的面积,进而求出其边长.【解答】解:设正方形的边长为x厘米.依题意得:x2=9×9+24×6,即x2=225,∴x=15.答:正方形的边长为15厘米.【点评】此题主要考查了算术平方根的定义,求的这个正方形的面积是解题的关键.12.(10分)已知﹣8的平方等于a,b的平方等于121,c的立方等于﹣27,d 的算术平方根为5.(1)写出a,b,c,d的值;(2)求d+3c的平方根;(3)求代数式a﹣b2+c+d的值.【分析】(1)根据平方根、立方根、算术平方根的定义即可求出答案.(2)求出d+3c的值后即可求出该数的平方根.(3)将a、b、c、d的值代入原式即可求出答案.【解答】解:(1)由题意可知:a=64,b=±11,c=﹣3,d=25;(2)当c=﹣3,d=25时,∴d+3c=25+3×(﹣3)=25﹣9=16,因此它的平方根为±4;(3)当a=64,b=±11,c=﹣3,d=25时,∴a﹣b2+c+d=64﹣121﹣3+25=﹣35.【点评】本题考查平方根与立方根,解题的关键是熟练运用平方根与立方根的定义,本题属于基础题型.13.(10分)求下列x的值(1)5x2﹣4=11;(2)(x﹣1)2=9.【分析】根据平方根的定义即可求出答案.【解答】解:(1)5x2=15,x2=3,x=;(2)x﹣1=±3,x=4或x=﹣2.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.14.(10分)求下列式子中x的值:25x2﹣64=0.【分析】根据平方根的定义即可求出答案.【解答】解:25x2=64,x2=,x=±,【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.15.(10分)小龙的房间地面是正方形,恰好由60块边长为50cm的正方形地砖铺成,请估算小龙房间地面正方形的边长是多少米?(要求写出必要的估算过程,误差小于0.1米)【分析】先计算小明房间的面积,再求该地面正方形的边长,最后利用平方的办法估值.【解答】解:小龙房间的面积:50×50×60=150000(cm)2,由于小龙的房间地面是正方形,所以该地面正方形的边长为=100(cm)=m∵32<15<42,3.872=14.9769<15<3.882=15.0544,∴小龙房间地面的边长约为3.87米.【点评】本题主要考查了算术平方根和利用平方的办法进行估值.注意精确度的要求.。
七年级下册平方根练习题及答案
七年级下册平方根〔一〕填空1.16的平方根是________.3.49的平方根是____.5.4的平方根是_______7.81的平方根是________.8.25的算术平方根是_________.9.49的算术平方根是_________.]11.62的平方根是______.12.0.0196的算术平方根是________.13.4的算术平方根是________;9的平方根是________.14.64的算术平方根是________.15.36的平方根是________; 4.41的算术平方根是_______.18.4的平方根是____, 4的算术平方根是___.19.256的平方根是____.______.37.与数轴上的点一一对应的数是________.38.________统称整数;有理数和无理数统称_________.0.1010010001…各数中,属于有理数的有________;属于无理数的有________.40.把以下各数中的无理数填在表示无理数集合的大括号里:无理数集合:{ }41.绝对值最小的实数是________.44.无限不循环小数叫做________数.45.在实数范围内分解因式:2x3+x2-6x-3=________.〔二〕选择46.36的平方根是 [ ]48.在实数范围内,数0,7,-81,(-5)2中,有平方根的有 [ ]A.1个; B.2个; C.3个; D.4个.A.-36; B.36; C.±6; D.±36.50.以下语句中,正确的选项是 [ ]51.0是 [ ]A.最小的有理数; B.绝对值最小的实数;C.最小的自然数; D.最小的整数.52.以下四种命题,正确的命题是[ ]A.0是自然数; B.0是正数; C.0是无理数; D.0是整数.53.和数轴上的点一一对应的数为 [ ]A.整数; B.有理数; C.无理数; D.实数.54.和数轴上的点一一对应的数是 [ ]A.有理数; B.无理数; C.实数; D.不存在这样的数.55.全体小数所在的集合是 [ ]A.分数集合; B.有理数集合;C.无理数集合; D.实数集合.56.以下三个命题:〔1〕两个无理数的和肯定是无理数;〔2〕两个无理数的积肯定是无理数;〔3〕一个有理数与一个无理数的和肯定是无理数.其中真命题是[ ]A.〔1〕,〔2〕和〔3〕; B.〔1〕和〔3〕;C.只有〔1〕;D.只有〔3〕.数是[ ] A.4; B.3; C.6; D.5.A.2360; B.236 C.23.6; D.2.36.59.数轴上全部的点表示的数是[ ]A.自然数 B.整数; C.实数; D.无理数; E.有理数.60.和数轴上的点成一一对应关系的数是 [ ]A.无理数; B.有理数; C.实数; D.自然数.61.数轴上全部的点表示的数是 [ ]A.有理数;B.无理数;C.实数.63.和数轴上的点是一一对应的数是 [ ]A.自然数; B.整数; C.有理数; D.实数.A.1个; B.2个; C.3个; D.5个.65.不管x,y为什么实数,x2+y2+40-2x+12y的值总是[ ]A.正数; B.负数; C.0; D.非负数.数为 [ ] A.2; B.3; C.4; D.5.A.1; B.是一个无理数; C.3; D.无法确定.A.n为正整数,a为实数; B.n为正整数,a为非负数;C.n为奇数,a为实数; D.n为偶数,a为非负数.69.以下命题中,真命题是[ ] A.绝对值最小的实数不存在; B.无理数在数轴上的对应点不存在;C.与本身的平方根相等的实数不存在; D.最大的负数不存在.[ ] A.0.0140; B.0.1410; C.4.459; D.0.4459.A.1.525; B.15.25; C.152.5; D.1525.A.4858; B.485.8; C.48.58; D.4.858.A.0.04858; B.485.8; C.0.0004858; D.48580.74.a,b是两个实数,在数轴上的位置如图10-1所示,下面正确的命题是 [ ]A.a与b互为相反数;B.a+b<0; C.-a<0;D.b-a<0.练习题〔二〕一、填空、1.144的平方根是________.5.-216000的立方根是________.6.-64000的立方根是_________.8.0的平方根有_______个,其根值是_______.9.正数a的平方根有_______个,即为_______.10.负数有没有平方根?_______.理由_______.11.25=( )2.12.3=( )2.〔二〕计算16.求0.000169的平方根.20.求0.0064的平方根.22.求0.000125的立方根. 23.求0.216的立方根.1.求以下各数的平方根,算术平方根:(1)121(2)0.0049(3) (4)4 (5)|a|22.求以下各式中的x: (1)49x2=169 (2) 9(3x-2)2=(-7)2(3) =11 (4) 27(x-3)3=-643.推断正误: (1) 的平方根是±3。
人教版七年级数学下册第六章第一节平方根试题(含答案) (40)
人教版七年级数学下册第六章第一节平方根复习试题(含答案)已知2a ﹣1的平方根是±3,3a+b ﹣1的立方根是2,求2a ﹣b 的平方根.【答案】±4【解析】试题分析:根据平方根和立方根得出2a ﹣1=9,3a+b ﹣1=8,求出a 、b 的值即可.解:∵2a ﹣1的平方根是±3,∴2a ﹣1=9,a=5,∵3a+b ﹣1的立方根是2,∴3a+b ﹣1=8,∴b=﹣6,∴2a ﹣b=16,∴2a ﹣b 的平方根是±4.【点评】本题考查了对平方根和立方根定义的应用,关键是能根据题意得出算式2a ﹣1=9和3a+b ﹣1=8.52.|5|+(-12)-2--1)0.【答案】9.【解析】试题分析:原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及平方根、立方根定义计算即可得到结果.试题解析:原式=5+4+3-2-1=9.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.53.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.【答案】9【解析】试题分析:由于3<<4,由此可确定的整数部分x,接着确定小数部分y,然后代入所求代数式中计算出结果即可.解:∵3<<4,∴的整数部分x=3,小数部分y=﹣3,∴﹣y=3,∴x(﹣y)=3×3=9.54.求下列x的值.(1)2x3=﹣16 (2)(x﹣1)2=4.【答案】【解析】试题分析:(1)先求出x3,再根据立方根的定义求出x.(2)根据平方根的意义先求出x﹣1,再求出x.解:(1)∵2x3=﹣16,∴x2=﹣8,∴x=﹣2.(2)∵(x﹣1)2=4,∴x﹣1=±2,∴x=﹣1或3.55.求下列各式的值(1)﹣﹣(2)﹣12+(﹣2)3×.【答案】(1)原式=0;(2)原式=﹣3【解析】试题分析:(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.解:(1)原式=3﹣6+3=0;(2)原式=﹣1﹣1﹣1=﹣3.三、填空题56.25的平方根是__________【答案】±5【解析】试题分析:根据算术平方根的计算法则可得:25=5,则5的平方根为±5.考点:平方根的计算的立方根是,81的平方根是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册平方根练习题及窃案
(一)填空1.16的平方根是________.
3.49的平方根是____.
11.62的平方根是______.
12.的算术平方根是________.
19.256的平方根是____.
______.37.与数轴上的点一一对应的数是________.38.________统称整数;有理数和无理数统称_________.
…各数中,属于有理数的有________;属于无理数的有________.
40.把下列各数中的无理数填在表示无理数集合的大括号里:
无理数集合:
{ }
44.无限不循环小数叫做________数.
(二)选择
48.在实数范围内,数0,7,-81,(-5)2中,有平方根的有 [ ]
A.1个; B.2个; C.3个; D.4个.
A.-36; B.36; C.±6; D.±36.
50.下列语句中,正确的是 [ ]
51.0
是 [ ]
A.最小的有理数; B.绝对值最小的实数;C.最小的自然数; D.最小的整数.
52.以下四种命题,正确的命题是[ ]
A.0是自然数; B.0是正数; C.0是无理数; D.0是整数.
53.和数轴上的点一一对应的数为 [ ]
A.整数; B.有理数; C.无理数; D.实数.
55.全体小数所在的集合是 [ ]
A.分数集合; B.有理数集合; C.无理数集合; D.实数集合.
56.下列三个命题:(1)两个无理数的和一定是无理数;(2)两个无理数的积一定是无理数;
(3)一个有理数与一个无理数的和一定是无理数.其中真命题是[ ]
A.(1),(2)和(3); B.(1)和(3);C.只有(1);D.只有(3).
数是[ ] A.4; B.3; C.6; D.5.
A.2360; B.236 C.; D..
60.和数轴上的点成一一对应关系的数是 [ ]A.无理数; B.有理数; C.实数; D.自然数.
A.1个; B.2个; C.3个; D.5个.
数为 [ ]
A.2; B.3; C.4; D.5.
A.1; B.是一个无理数; C.3; D.无法确定.
69.下列命题中,真命题是[ ]
A.绝对值最小的实数不存在; B.无理数在数轴上的对应点不存在;
C.与本身的平方根相等的实数不存在; D.最大的负数不存在.
[ ]
A.; B.; C.; D..
A.; B.; C.; D.1525.
A.4858; B.; C.; D..
A.; B.; C.; D.48580.
74.a,b是两个实数,在数轴上的位置如图10-1所示,下面正确的命题是 [ ]
A.a与b互为相反数;B.a+b<0; C.-a<0;D.b-a<0.
练习题(二)
一、填空、1.144的平方根是________.
5.-216000的立方根是________.6.-64000的立方根是_________.
8.0的平方根有_______个,其根值是_______.9.正数a的平方根有_______个,即为_______.10.负数有没有平方根_______.理由_______.11.25=( )2.12.3=( )2.
(二)计算
16.求的平方根.
20.求的平方根.
22.求的立方根. 23.求的立方根.
1.求下列各数的平方根,算术平方根: (1)121 (2) (3) (4)4 (5)|a|2
2.求下列各式中的x: (1)49x2=169 (2) 9(3x-2)2=(-7)2 (3) =11 (4) 27(x-3)3=-64
3.判断正误: (1) 的平方根是±3。
() (2) =± 。
()(3)16的平方根是4。
()
(4)任何数的算术平方根都是正数。
()(5) 是3的算术平方根。
()(6)若a2=b2,则a=b。
()
(7)若a=b,则a2=b2。
() (8)729的立方根是±9()(9)-8的立方根是-2。
()
(10) 的平方根是± 。
()(11)- 没有立方根。
() (12)0的平方根和立方根都是0()
4.填空: (1)(-3)2的平方根是______,算术平方根是______。
(2)169的算术平方根的平方根是______。
(3) 的负的平方根是______。
(4)- 是______的一个平方根,(- )2的算术平方根是______。
(5)当m=______时, 有意义;当m=______时, 值为0。
(6)当a为______时,式子有意义。
(7) 是4的______,一个数的立方根是-4,这个数是______。
(8)当x为______时, 有意义。
(9)已知x2=11,则x=______。
(10)当a<0时, = ______。
5.选择题:(单选)
(1)在实数运算中,可进行开平方运算的是( )。
(A)负实数 (B)正数和零 (C)整数 (D)实数
(2)若=5,则x=( ) (A)0 (B)10 (C)20 (D)30
(3)下列各式中无意义的是( )。
(A)- (B) (C) (D)
(4)下列运算正确的是( )(A)- =13 (B) =-6 (C)- =-5 (D) =±
(5)如果a<0,那么a的立方根是( )(A) (B) (C)- (D)±
(6)下列各题运算过程和结果都正确的是( )(A) (B) =2× =
(C) =7+ =7 (D) =a+b
4.求下列各式中x的值:(1)4x2-100=0 (2)64(x+1)3+27=0
5.如果+|6y-5|=0,求xy的值。
选择题 1.等式成立的条件是( ) A、a是任意实数 B、a>0 C、a<0 D、a≥0
2.一个自然数的算术平方根是x,则下一个自然数的算术平方根是() A、x+1 B、x2+1 C、+1 D、
3.在实数范围内下列判断正确的是()
A、若|m|=|n|,则m=n B,若a2>b2,则a>bC、若()2=|b|,则a=b D、若,则a=b
4.下列四个命题中,正确的是()
A、绝对值等于它本身的实数只有零
B、倒数等于它本身的实数只有1
C、相反数等于它本身的实数只有零
D、算术平方根等于它本身的实数只有1
5.在实数范围内,A、无法确定B、只能等于2 C、只能等于1 D、以上都不对
6.下面说法正确的是()A、-1的平方根是-1;B、若x2=9,则x=3;C、10-6没有平方根;D、6是(-6)2的算术平方根
9.下列各式中,无意义的一个是()A、; B、; C、; D、
10.若=0,则()A、x=2;B、x>2;C、x<2;D、x为任意数
自测题答案
(一)填空
23.-2,2 24.4 25.5 26.3;4
(二)选择
46.B 47.D 48.C 49.C 50.C
51.B 52.D 53.D 54.C 55.D
56.D 57.B 58.D 59.C 60.C
61.C 66.A 63.D 64.B 65.A
66.B 67.C 68.A 69.D 70.D
71.D 72.C 73.A 74.B
(一)填空
15.-1.提示:由非负数和为零的性质可知x+1=0,x+y=0,所以x=-1,y=1,所以2x+y=-2+1=-1.(二)计算
1.判断正误:
(1)×(2)×(3)×(4)×(5)√(6)×
(7)√(8)×(9)√(10)√(11)×(12)√
2.填空:(1)±3;3 (2)± (3)-
(4)3;(5)m≥ ;m=3 (6)a≥2且a≠3
(7)立方根;-64 (8)x为任意实数(9) ± (10)-a
3.选择题:
(1)B (2)D (3)D (4)C (5)A (6)A
4.求x的值:
(1)x=±5 (2)x=-
= ,y=,xy= 。
答案:1、D 2、D 3、D 4、C 5、C 6、D 7、C 8、A 9、B 10、A。