2019-2020洛阳市第一高级中学中考数学模拟试题及答案

合集下载

河南省洛阳市2019-2020学年中考数学一月模拟试卷含解析

河南省洛阳市2019-2020学年中考数学一月模拟试卷含解析

河南省洛阳市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在Rt ABC ∆中,90C =o ∠,10AB =,8AC =,则sin A 等于( )A .35B .45C .34D .432.如图,等边△ABC 的边长为4,点D ,E 分别是BC ,AC 的中点,动点M 从点A 向点B 匀速运动,同时动点N 沿B ﹣D ﹣E 匀速运动,点M ,N 同时出发且运动速度相同,点M 到点B 时两点同时停止运动,设点M 走过的路程为x ,△AMN 的面积为y ,能大致刻画y 与x 的函数关系的图象是( )A .B .C .D .3.已知△ABC ,D 是AC 上一点,尺规在AB 上确定一点E ,使△ADE ∽△ABC ,则符合要求的作图痕迹是( )A .B .C.D.4.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣bPA=,5.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B,如果60∠=o,8APB那么弦AB的长是()A.4B.43C.8D.836.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx-k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°8.如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°9.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616; ②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1. 其中合理的是( ) A .①B .②C .①②D .①③10.1﹣2的相反数是( ) A .1﹣2B .2﹣1C .2D .﹣111.如图,已知△ABC 中,∠ABC=45°,F 是高AD 和BE 的交点,CD=4,则线段DF 的长度为( )A .22B .4C .32D .4212.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( ) A .12B .14C .16D .116二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在Rt △ABC 内有边长分别为2,x ,3的三个正方形如图摆放,则中间的正方形的边长x 的值为_____.14.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分. 15.化简))201720182121的结果为_____.16.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加_____m.17.分解因式:2x2﹣8=_____________18.甲、乙两点在边长为100m的正方形ABCD上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A点出发,乙从CD边的中点出发,则经过__秒,甲乙两点第一次在同一边上.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)20.(6分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.(1)求点D沿三条圆弧运动到点G所经过的路线长;(2)判断线段GB与DF的长度关系,并说明理由.21.(6分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.如图1,求证:∠ANE=∠DCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.22.(8分)先化简,再求值:(x﹣2﹣5 2x+)÷2(3)2xx++,其中x=3.23.(8分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)24.(10分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC 的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE= ;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.25.(10分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一2 0.04二10 0.2三14 b四 a 0.32五8 0.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a= ,b= ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.26.(12分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.27.(12分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为3BC的坡度i=1:3.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.(1)求坡角∠BCD;(2)求旗杆AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.详解:在Rt△ABC中,∵AB=10、AC=8,∴2222=108=6AB AC--,∴sinA=63105 BCAB==.故选:A.点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.2.A【解析】【分析】根据题意,将运动过程分成两段.分段讨论求出解析式即可.【详解】∵BD=2,∠B=60°,∴点D到AB3当0≤x≤2时,y=2133•224x x x ⨯=; 当2≤x≤4时,y=13 •32x x =. 根据函数解析式,A 符合条件. 故选A . 【点睛】本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式. 3.A 【解析】 【分析】以DA 为边、点D 为顶点在△ABC 内部作一个角等于∠B ,角的另一边与AB 的交点即为所求作的点. 【详解】如图,点E 即为所求作的点.故选:A .【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D 作一角等于∠B 或∠C ,并熟练掌握做一个角等于已知角的作法式解题的关键. 4.D 【解析】试题分析:A .如图所示:﹣3<a <﹣2,故此选项错误; B .如图所示:﹣3<a <﹣2,故此选项错误;C .如图所示:1<b <2,则﹣2<﹣b <﹣1,又﹣3<a <﹣2,故a <﹣b ,故此选项错误;D .由选项C 可得,此选项正确. 故选D .考点:实数与数轴 5.C 【解析】 【分析】先利用切线长定理得到PA PB =,再利用60APB ∠=o 可判断APB V 为等边三角形,然后根据等边三角形的性质求解. 【详解】解:PA Q ,PB 为O e 的切线,PA PB ∴=,60APB ∠=o Q ,APB ∴V 为等边三角形,8AB PA ∴==.故选C . 【点睛】本题考查切线长定理,掌握切线长定理是解题的关键. 6.B 【解析】试题分析:当x 1<x 2<0时,y 1>y 2,可判定k >0,所以﹣k <0,即可判定一次函数y=kx ﹣k 的图象经过第一、三、四象限,所以不经过第二象限,故答案选B .考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系. 7.B 【解析】 【分析】由图形可知AC =AC ,结合全等三角形的判定方法逐项判断即可. 【详解】解:在△ABC 和△ADC 中 ∵AB =AD ,AC =AC ,∴当CB =CD 时,满足SSS ,可证明△ABC ≌△ACD ,故A 可以;当∠BCA =∠DCA 时,满足SSA ,不能证明△ABC ≌△ACD ,故B 不可以; 当∠BAC =∠DAC 时,满足SAS ,可证明△ABC ≌△ACD ,故C 可以; 当∠B =∠D =90°时,满足HL ,可证明△ABC ≌△ACD ,故D 可以; 故选:B. 【点睛】本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键. 8.D【解析】解:∵EC=EA .∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB ∥CD ,∴∠BAF=∠AED=60°.故选D .点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.9.B【解析】①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,故选B.【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.10.B【解析】【分析】根据相反数的的定义解答即可.【详解】根据a的相反数为-a即可得,11.故选B.【点睛】本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.11.B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.12.B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】解:如图.∵在Rt△ABC中(∠C=90°),放置边长分别2,3,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合题意,舍去),x=1.故答案为1.点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键.14.1【解析】【详解】∵13份试卷成绩,结果如下:3个140分,4个1分,2个130分,2个120分,1个100分,1个80分,∴第7个数是1分,∴中位数为1分,故答案为1.15+1【解析】【分析】利用积的乘方得到原式=[﹣1)+1)]2017•),然后利用平方差公式计算.【详解】原式=[1)+1)]2017•+1)=(2﹣1)2017•+1.+1.【点睛】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.1.【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O 为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,∴抛物线解析式为y=-0.5x1+1,当水面下降1.5米,通过抛物线在图上的观察可转化为:当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1.5代入抛物线解析式得出:-1.5=-0.5x1+1,解得:x=±3,1×3-4=1,所以水面下降1.5m,水面宽度增加1米.故答案为1.【点睛】本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.17.2(x+2)(x﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.18.1【解析】试题分析:设x秒时,甲乙两点相遇.根据题意得:10x-5x=250,解得:x=50,相遇时甲走了250m,乙走了500米,则根据题意推得第一次在同一边上时可以为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)9﹣3π【解析】试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD 得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD 为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.试题解析:(1)如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切线.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,∵EB=6,∴OB=OD═OA=3,在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,∴AC=OA•tan60°=3,∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.20.(1)6π;(2)GB=DF,理由详见解析.【解析】【分析】(1)根据弧长公式l=计算即可;(2)通过证明给出的条件证明△FDC≌△GBC即可得到线段GB与DF的长度关系.【详解】解:(1)∵AD=2,∠DAE=90°,∴弧DE的长l1==π,同理弧EF的长l2==2π,弧FG的长l3==3π,所以,点D运动到点G所经过的路线长l=l1+l2+l3=6π.(2)GB=DF.理由如下:延长GB交DF于H.∵CD=CB,∠DCF=∠BCG,CF=CG,∴△FDC≌△GBC.∴GB=DF.【点睛】本题考查弧长公式以及全等三角形的判定和性质,题目比较简单,解题关键掌握是弧长公式.21.(1)见解析;(2)4924;(1)DE的长分别为92或1.【解析】【分析】(1)由比例中项知AM AEAE AN=,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得∠DCE=∠EAC,从而知DE DCDC AD=,据此求得AE=8﹣92=72,由(1)得∠AEM=∠DCE,据此知AM DEAE DC=,求得AM=218,由求得AM AEAE AN=MN=49 24;(1)分∠ENM=∠EAC和∠ENM=∠ECA两种情况分别求解可得.【详解】解:(1)∵AE是AM和AN的比例中项∴AM AE AE AN=,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC与NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴DE DC DC AD=,∵DC=AB=6,AD=8,∴DE=92,∴AE=8﹣92=72,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴AM DE AE DC=,∴AM=218,∵AM AE AE AN=,∴AN=143,∴MN=49 24;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,当△AEC与以点E、M、N为顶点所组成的三角形相似时①∠ENM=∠EAC,如图2,∴∠ANE=∠EAC,由(2)得:DE=92;②∠ENM=∠ECA,如图1,过点E作EH⊥AC,垂足为点H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=68 EH DCAH AD==,设DE=1x,则HE=1x,AH=4x,AE=5x,又AE+DE=AD,∴5x+1x=8,解得x=1,∴DE=1x=1,综上所述,DE的长分别为92或1.【点睛】本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.22.32- 【解析】 【分析】 根据分式的运算法则即可求出答案.【详解】原式()2245223x x x x --+=⨯++, ()()()2+33223x x x x x -+=⨯++,33x x -=+. 当3x =时,原式3333-=+ 32=- 【点睛】 本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.23.塔杆CH 的高为42米【解析】【分析】作BE ⊥DH ,知GH=BE 、BG=EH=4,设AH=x ,则BE=GH=23+x ,由CH=AHtan ∠CAH=tan55°•x 知CE=CH-EH=tan55°•x -4,根据BE=DE 可得关于x 的方程,解之可得.【详解】解:如图,作BE ⊥DH 于点E ,则GH=BE 、BG=EH=4,设AH=x ,则BE=GH=GA+AH=23+x ,在Rt △ACH 中,CH=AHtan ∠CAH=tan55°•x ,∴CE=CH ﹣EH=tan55°•x ﹣4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH的高为42米.【点睛】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.24.(1);(2)①证明见解析;②;(3).【解析】试题分析:(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由勾股定理求出AC=,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可.试题解析:(1)∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴,即,解得:AE=,故答案为:;(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,∴点O一定在△APE的外接圆上;②连接OA、AC,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,即点O经过的路径长为;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴,即,解得:AE==,∴x=2时,AE的最大值为1,此时MN的值最大=×1=,即△APE的圆心到AB边的距离的最大值为.【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明△APE∽△BCP是解题的关键.25.(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)2÷0.04=50(2)50×0.32=16 14÷50=0.28(3)(4)(0.32+0.16)×100%=48% 考点:频数分布直方图26.(1)14;(2)112【解析】【分析】(1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答.【详解】(1)14;(2)方法1:根据题意可画树状图如下:方法2:根据题意可列表格如下:弟弟姐姐A B C DA (A,B)(A,C) (A,D)由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A 佩奇,弟弟抽到B 乔治的结果有1种:(A ,B ).∴P (姐姐抽到A 佩奇,弟弟抽到B 乔治)112=【点睛】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比.27.旗杆AB 的高度为6.4米.【解析】分析:(1)根据坡度i 与坡角α之间的关系为:i=tanα进行计算;(2)根据余弦的概念求出CD ,根据正切的概念求出AG 、BG ,计算即可.本题解析:(1)∵斜坡BC 的坡度tan ∠BCD=BD DC = ∴∠BCD=30°;(2)在Rt △BCD 中,CD=BC×cos ∠×2=9, 则DF=DC+CF=10(米),∵四边形GDFE 为矩形,∴GE=DF=10(米),∵∠AEG=45°,∴AG=DE=10(米),在Rt △BEG 中,BG=GE×tan ∠BEG=10×0.36=3.6(米), 则AB=AG−BG=10−3.6=6.4(米).答:旗杆AB 的高度为6.4米。

河南省洛阳市2019-2020学年中考数学模拟试题含解析

河南省洛阳市2019-2020学年中考数学模拟试题含解析

河南省洛阳市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知AB ∥DE ,∠ABC=80°,∠CDE=140°,则∠C=( )A .50°B .40°C .30°D .20°2.郑州地铁Ⅰ号线火车站站口分布如图所示,有A ,B ,C ,D ,E 五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是( )A .13B .14C .15D .163.若一次函数(1)y m x m =++的图像过第一、三、四象限,则函数2y mx mx =-( )A .有最大值4mB .有最大值4m -C .有最小值4mD .有最小值4m - 4.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。

那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A .()222a b a b -=-B .()2222a b a ab b +=++C .()2222a b a ab b -=-+D .()()22a b a b a b -=+- 5.计算()15-3÷的结果等于( )A .-5B .5C .1-5 D .156.如图所示,在长为8cm ,宽为6cm 的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )A.28cm2B.27cm2C.21cm2D.20cm27.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94分,96分B.96分,96分C.94分,96.4分D.96分,96.4分8.下列运算正确的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3 D.a2•a4=a69.如图,在四边形ABCD中,∠A=120°,∠C=80°.将△BMN沿着MN翻折,得到△FMN.若MF∥AD,FN∥DC,则∠F的度数为()A.70°B.80°C.90°D.100°10.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加16002m,设扩大后的正方形绿地边长为xm,下面所列方程正确的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=160011.如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则△BOC的周长为()A.9 B.10 C.12 D.14 12.下列实数中,最小的数是()A.3B.π-C.0 D.2-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知AB∥CD,若14ABCD=,则OAOC=_____.14.若关于x的一元二次方程2210mx x--=无实数根,则一次函数y mx m=+的图象不经过第_________象限.15.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD 沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为_____.16.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为_____.17.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.18.已知,正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm(结果保留π).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知函数1y x =的图象与函数()0y kx k =≠的图象交于点()P m n ,. (1)若2m n =,求k 的值和点P 的坐标;(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围.20.(6分)反比例函数k y x=在第一象限的图象如图所示,过点A (2,0)作x 轴的垂线,交反比例函数k y x=的图象于点M ,△AOM 的面积为2. 求反比例函数的解析式;设点B 的坐标为(t ,0),其中t >2.若以AB 为一边的正方形有一个顶点在反比例函数k y x=的图象上,求t 的值. 21.(6分)如图,已知一次函数的图象与反比例函数的图象交于A,B 两点,点A 的横坐标是2,点B 的纵坐标是-2。

2019-2020学年河南省洛阳市中考数学模拟试卷(有标准答案)

2019-2020学年河南省洛阳市中考数学模拟试卷(有标准答案)

河南省洛阳市中考数学模拟试卷一、选择题1.在:﹣1,0,2,四个数中,最大的数是()A.﹣1 B.0 C.2 D.2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.3.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×1064.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE5.下列计算正确的是()A.a3÷a2=a B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b26.在下列调查中,适宜采用普查方式的是()A.了解全国中学生的视力情况B.了解九(1)班学生鞋子的尺码情况C.监测一批电灯泡的使用寿命D.了解郑州电视台《郑州大民生》栏目的收视率7.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(1,2)8.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP 和△DCE全等.A.1 B.1或3 C.1或7 D.3或7二、填空题9.计算:|﹣2|= .10.已知a、b、c、d是成比例线段,即=,其中a=3cm,b=2cm,c=6cm,则线段d= .11.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.12.如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k= .13.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.14.圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40°,∠F=60°,求∠A=°.15.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F 的长为.三、解答题(本题共8小题,共75分)16.先化简,再求值:(x﹣1﹣)÷,其中x是方程x2+2x=0的解.17.如图,在⊙O中,AC与BD是圆的直径,BE⊥AC,CF⊥B D,垂足分别为E、F(1)四边形ABCD是什么特殊的四边形?请判断并说明理由;(2)求证:BE=CF.18.为了了解学生关注热点新闻的情况,郑州“上合会议”期间,小明对班级同学一周内收看“上合会议”新闻次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列问题:(1)该班级女生人数是人,女生收看“上合会议”新闻次数的中位数是次,平均数是次;(2)对于某个性别群体,我们把一周内收看热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“上合会议”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“上合会议”新闻次数的特点,小明相比较该班级男、女生收看“上合会议”新闻次数的离散程度,那么小明要关注的统计量是.19.已知关于x的方程x2﹣2(m+1)x+m2=0(1)当m取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数,使原方程有两个不相等的实数根,并求出这两个实数根.20.两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)设AB的垂直平分线交ME于点N,且MN=2(+1)km,测得∠CMN=30°,∠CNM=45°,求点C到公路ME的距离.21.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50 60 70 80 …销售量y(千克)…100 90 80 70 …(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?22.(1)【问题发现】小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.小明发现,过点D作DF∥AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:;(2)【类比探究】如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)【拓展应用】当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.23.如图,二次函数y=x2+bx+c的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B向C运动,P、Q 同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上存在一点N,使得PQ的中点恰为MN的中点,请直接写出N点的坐标.河南省洛阳市中考数学模拟试卷参考答案与试题解析一、选择题1.在:﹣1,0,2,四个数中,最大的数是()A.﹣1 B.0 C.2 D.【考点】实数大小比较.【专题】推理填空题;实数.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<<2,∴在:﹣1,0,2,四个数中,最大的数是2.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:14.2万=142000=1.42×105.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE【考点】平行线的判定.【分析】根据平行线的判定定理即可直接判断.【解答】解:A、两个角不是同位角、也不是内错角,故选项错误;B、两个角不是同位角、也不是内错角,故选项错误;C、不是EC和AB形成的同位角、也不是内错角,故选项错误;D、正确.故选D.【点评】本题考查了判定两直线平行的方法,正确理解同位角、内错角和同旁内角的定义是关键.5.下列计算正确的是()A.a3÷a2=a B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据同底数幂的除法底数不变指数相减,积的乘方等于乘方的积,合并同类项系数相加字母及指数不变,差的平方等于平方和减积的二倍,可得答案.【解答】解:A、同底数幂的除法底数不变指数相减,故A正确;B、积的乘方等于乘方的积,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、差的平方等于平方和减积的二倍,故D错误;故选:A.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.6.在下列调查中,适宜采用普查方式的是()A.了解全国中学生的视力情况B.了解九(1)班学生鞋子的尺码情况C.监测一批电灯泡的使用寿命D.了解郑州电视台《郑州大民生》栏目的收视率【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解全国中学生的视力情况,人数众多,适合抽样调查,故此选项错误;B、了解九(1)班学生鞋子的尺码情况,人数不多,适于全面调查,故此选项正确;C、监测一批电灯泡的使用寿命,利用普查具有破坏性,适合抽样调查,故此选项错误;D、了解郑州电视台《郑州大民生》栏目的收视率,人数众多,意义不大,适合抽样调查,故此选项错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(1,2)【考点】二次函数的性质.【专题】压轴题.【分析】直接利用顶点式的特点可写出顶点坐标.【解答】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴抛物线y=(x﹣1)2+2的顶点坐标是(1,2).故选D.【点评】主要考查了求抛物线的顶点坐标、对称轴的方法.熟记二次函数的顶点式的形式是解题的关键.8.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP 和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【考点】全等三角形的判定.【专题】动点型.【分析】分两种情况进行讨论,根据题意得出BP=2t=2和AP=16﹣2t=2即可求得.【解答】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故选C.【点评】本题考查了全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.二、填空题9.计算:|﹣2|= 2 .【考点】绝对值.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.【点评】解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.已知a、b、c、d是成比例线段,即=,其中a=3cm,b=2cm,c=6cm,则线段d= 4cm .【考点】比例线段.【分析】由=,其中a=3cm,b=2cm,c=6cm,可得=,继而可求得答案.【解答】解:∵ =,其中a=3cm,b=2cm,c=6cm,∴=,解得:d=4cm.故答案为:4cm.【点评】此题考查了比例线段以及比例的性质.注意根据题意构造方程是解题的关键.11.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有6种等可能的结果数,再找出这两个球上的数字之和为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中这两个球上的数字之和为偶数的结果数为2,所以这两个球上的数字之和为偶数的概率==.故答案为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.12.如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k= ﹣4 .【考点】反比例函数系数k的几何意义.【分析】由于点A是反比例函数y=上一点,矩形ABOC的面积S=|k|=4,则k的值即可求出.【解答】解:由题意得:S=|k|=4,又双曲线位于第二、四象限,则k=﹣4,矩形ABOC故答案为:﹣4.【点评】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.13.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是x<4 .【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】把P分别代入函数y=2x+b与函数y=kx﹣3求出k,b的值,再求不等式kx﹣3>2x+b的解集.【解答】解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得,﹣x﹣3>2x﹣14解得,x<4.故答案为:x<4.【点评】本题主要考查一次函数和一元一次不等式,解题的关键是求出k,b的值求解集.14.圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40°,∠F=60°,求∠A=40 °.【考点】圆内接四边形的性质;圆周角定理.【分析】根据圆内接四边形的性质得到∠BCD=180°﹣∠A,根据三角形的外角的性质计算即可.【解答】解:∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠A,∵∠CBF=∠A+∠E,∠DCB=∠CBF+∠F,∴180°﹣∠A=∠A+∠E+∠F,即180°﹣∠A=∠A+40°+60°,解得∠A=40°.故答案为:40.【点评】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补、圆内接四边形的任意一个外角等于它的内对角是解题的关键.15.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F 的长为.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF 是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF 中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,=AC•BC=AB•C E,∵S△ABC∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE=,∴DF=EF﹣ED=,∴B′F=.故答案为:.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.三、解答题(本题共8小题,共75分)16.先化简,再求值:(x ﹣1﹣)÷,其中x 是方程x 2+2x=0的解.【考点】分式的化简求值;解一元二次方程-因式分解法.【分析】先算括号内的减法,再把除法转化为乘法来做,通过分解因式,约分化为最简,最后把解方程求得的x 的值代入计算即可.【解答】解:原式=•=•=,解方程x 2+2x=0得:x 1=﹣2,x 2=0,由题意得:x≠﹣2,所以x=0.把x=0代入=,原式==﹣1.【点评】此题考查的是分式的除法和减法的混合运算以及因式分解法解一元二次方程,熟练掌握运算法则是解题的关键.17.如图,在⊙O 中,AC 与BD 是圆的直径,BE⊥AC,CF⊥BD,垂足分别为E 、F(1)四边形ABCD 是什么特殊的四边形?请判断并说明理由;(2)求证:BE=CF .【考点】圆周角定理;全等三角形的判定与性质;矩形的判定.【分析】(1)由圆周角定理得出∠ABC=∠ADC=90°,∠BAD=∠BCD=90°,即可得出四边形ABCD 是矩形;(2)由AAS 证明△BOE≌△COF,得出对应边相等即可.【解答】(1)解:四边形ABCD 是矩形.理由如下:∵AC 与BD 是圆的直径,∴∠ABC=∠ADC=90°,∠BAD=∠BCD=90°,∴四边形ABCD是矩形;(2)证明:∵BO=CO,又∵BE⊥AC于E,CF⊥BD于F,∴∠BEO=∠CFO=90°.在△BOE和△COF中,,∴△BOE≌△COF(AAS).∴BE=CF.【点评】本题考查了圆周角定理、矩形的判定、全等三角形的判定与性质;熟练掌握圆周角定理,证明三角形全等是解决问题(2)的关键.18.为了了解学生关注热点新闻的情况,郑州“上合会议”期间,小明对班级同学一周内收看“上合会议”新闻次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列问题:(1)该班级女生人数是20 人,女生收看“上合会议”新闻次数的中位数是 3 次,平均数是 3 次;(2)对于某个性别群体,我们把一周内收看热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“上合会议”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“上合会议”新闻次数的特点,小明相比较该班级男、女生收看“上合会议”新闻次数的离散程度,那么小明要关注的统计量是方差.【考点】方差;条形统计图;加权平均数;极差;标准差.【分析】(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.(3)比较该班级男、女生收看“两会”新闻次数的离散程度,小明需要关注方差.【解答】解:(1)20,3,3;(2)由题意知:该班女生对新闻的“关注指数”为65%,所以,男生对新闻的“关注指数”为60%.设该班的男生有x人.则=60%,解得:x=25. 经检验x=25是原方程的解.答:该班级男生有25人;(3)小明相比较该班级男、女生收看“上合会议”新闻次数的离散程度,那么小明要关注的统计量是方差. 故答案为20,3,3;方差.【点评】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.19.已知关于x 的方程x 2﹣2(m+1)x+m 2=0(1)当m 取什么值时,原方程没有实数根;(2)对m 选取一个合适的非零整数,使原方程有两个不相等的实数根,并求出这两个实数根.【考点】根的判别式.【分析】(1)要使原方程没有实数根,只需△<0即可,然后可以得到关于m 的不等式,由此即可求出m 的取值范围;(2)根据(1)中求得的范围,在范围之外确定一个m 的值,再利用公式法求解即可.【解答】解:(1)∵方程没有实数根,∴b 2﹣4ac=[﹣2(m+1)]2﹣4m 2=8m+4<0,∴m<﹣,∴当m <﹣时,原方程没有实数根;(2)由(1)可知,当m≥﹣时,方程有实数根,当m=1时,原方程变为x 2﹣4x+1=0,设此时方程的两根分别为x 1,x 2,解得x 1=2+,x 2=2﹣.【点评】本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解法.20.两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)设AB的垂直平分线交ME于点N,且MN=2(+1)km,测得∠CMN=30°,∠CNM=45°,求点C到公路ME的距离.【考点】解直角三角形的应用;作图—应用与设计作图.【分析】(1)运用尺规作图即可得出结果;(2)作CD⊥MN于点D.由三角函数得出MD=CD,DN==CD,由已知条件得出CD+CD=2(+1),解得CD=2km即可.【解答】解:(1)答图如图1所示:点C即为所求;(2)作CD⊥MN于点D.如图2所示:∵在Rt△CMD中,∠CMN=30°,∴=tan∠CMN,∴MD===CD,∵在Rt△CND中,∠CNM=45°,=tan∠CNM,∴DN==CD,∵MN=2(+1)km,∴MN=MD+DN=CD+CD=2(+1)km.解得:CD=2km.答:点C到公路ME的距离为2km.【点评】本题考查了解直角三角形的应用、作图﹣设计;熟练掌握基本作图和解直角三角形是解决问题的关键.21.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y (千克)与售价x (元/千克)满足一次函数关系,对应关系如下表:售价x (元/千克) …50 60 70 80 … 销售量y (千克) … 100 90 80 70 …(1)求y 与x 的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w (元)最大?此时的最大利润为多少元?【考点】二次函数的应用.【分析】(1)根据图表中的各数可得出y 与x 成一次函数关系,从而结合图表的数可得出y 与x 的关系式.(2)根据想获得4000元的利润,列出方程求解即可;(3)根据批发商获得的总利润w (元)=售量×每件利润可表示出w 与x 之间的函数表达式,再利用二次函数的最值可得出利润最大值.【解答】解:(1)设y 与x 的函数关系式为y=kx+b (k≠0),根据题意得,解得.故y 与x 的函数关系式为y=﹣x+150;(2)根据题意得(﹣x+150)(x ﹣20)=4000,解得x 1=70,x 2=100>90(不合题意,舍去).故该批发商若想获得4000元的利润,应将售价定为70元;(3)w 与x 的函数关系式为:w=(﹣x+150)(x ﹣20)=﹣x 2+170x ﹣3000=﹣(x ﹣85)2+4225,∵﹣1<0,∴当x=85时,w值最大,w最大值是4225.∴该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为4225元.【点评】本题考查二次函数的应用,难度较大,解答本题的关键是根据题意列出方程,另外要注意掌握二次函数的最值的求法.22.(1)【问题发现】小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.小明发现,过点D作DF∥AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:AD=DE ;(2)【类比探究】如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)【拓展应用】当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)由等边三角形的性质和平行线的性质得到∠BDF=∠BFD=60°,于是得到△BDF是等边三角形,再证明△AFD≌△DCE即可得到结论;(2)由等边三角形的性质和平行线的性质得到∠BDF=∠BFD=60°,于是得到△BDF是等边三角形,再证明△AFD≌△DCE即可得到结论;(3)由BC=CD,得到AC=CD,得到CE垂直平分AD,证出△ADE是等边三角形,得到△ABC∽△ADE,即可得到结论.【解答】(1)证明:∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°.又∵DF∥AC,∴∠BDF=∠BFD=60°,∴△BDF是等边三角形,∴DF=BD,∠BFD=60°,∵BD=CD,∴DF=CD∴∠AFD=120°.... ∵EC是外角的平分线,∠DCE=120°=∠AFD,∵∠ADB=∠ADC=90°,∴∠ADF=∠ECD=30°,在△AFD与△EDC中,,∴△AFD≌△DCE(ASA),∴AD=DE;(2)AD=DE;证明:如图2,过点D作DF∥AC,交AC于点F,∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°,又∵DF∥AC,∴∠BDF=∠BFD=60°,∴△BDF是等边三角形,BF=BD,∠BFD=60°,∴AF=CD,∠AFD=120°,∵EC是外角的平分线,∠DCE=120°=∠AFD,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠FAD=60°+∠FAD,∵∠ADC=∠ADE+∠EDC=60°+∠EDC,∴∠ADF=∠EDC,在△AFD≌△DCE中,,∴△AFD≌△DCE(ASA),∴AD=DE;(3)解:∵BC=CD,∴AC=CD,∵CE平分∠ACD,∴CE垂直平分AD,∴AE=DE,∵∠ADE=60°,...∴△ADE是等边三角形,∴△ABC∽△ADE,△CDO中,,在Rt∴,∴,∴==.【点评】本题主要考查了全等三角形的性质与判定,等边三角形的性质,相似三角形的判定和性质,正确的作出图形是解题的关键.23.如图,二次函数y=x2+bx+c的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B向C运动,P、Q 同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上存在一点N,使得PQ的中点恰为MN的中点,请直接写出N点的坐标.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式;(2)首先根据待定系数法,求出BC所在的直线的解析式,再分别求出点P、点Q的坐标各是多少;然后分两种情况:①当∠QPB=90°时;②当∠PQB=90°时;根据等腰直角三角形的性质,求出t的值各是多少即可.(3)首先延长MQ交抛物线于点N,H是PQ的中点,再用待定系数法,求出PQ所在的直线的解析式,然后根据PQ的中点恰为MN的中点,判断出是否存在满足题意的点N即可.【解答】解:(1)∵二次函数y=x2+bx+c的图象经过A(﹣1,0)、B(3,0)两点,∴解得,∴二次函数的表达式是:y=x2﹣2x﹣3.(2)∵y=x2﹣2x﹣3,∴点C的坐标是(0,﹣3),①如图1:,当∠QPB=90°时,∵经过t秒,AP=t,BQ=t,BP=3﹣(t﹣1)=4﹣t.∵OB=OC=3,∴∠OBC=∠OCB=45°.∴BQ=BP∴t=×(4﹣t)解得t=2.即当t=2时,△BPQ为直角三角形.②如图2:,当∠PQB=90°时,∵∠PBQ=45°,∴BP=BQ.∵BP═4﹣t,BQ=t,∴4﹣t=×t解得t=即当t=时,△BPQ为直角三角形.综上,当△BPQ为直角三角形,t=2或.(3)N点的坐标是(2,﹣3)(3)如图3:,延长MQ交抛物线于点N,H是PQ的中点,设PQ所在的直线的解析式是y=px+q,∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,﹣t),解得.∴PQ所在的直线的解析式是y=x+,。

河南省洛阳市名校2019-2020学年中考数学模拟试卷

河南省洛阳市名校2019-2020学年中考数学模拟试卷

河南省洛阳市名校2019-2020学年中考数学模拟试卷一、选择题1.已知直线a∥b,将一块含45o角的直角三角板(∠C=90o)按如图所示的位置摆放,若∠1=55o,则∠2 的度数为( )A.85o B.70o C.80o D.75o2.某超市设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额超过30元的概率为()A.12B.13C.23D.143.2019年3月份,雷州市市区一周空气质量报告中某项污染指数的数据是35,32,33,35,36,33,35,则这组数据的众数是()A.36B.35C.33D.324.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),给出以下五个结论:①AE=CF;②∠APE=∠CPF;③连接EF,△EPF是等腰直角三角形;④EF=AP;⑤S四边形AFPE=S△APC,其中正确的有几个()A.2个B.3个C.4个D.5个5.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12 AD的长为半径作弧,两弧交于点M、N;第二步,过M、N两点作直线分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=8,AF=6,CD=4,则BE的长是()A.12 B.11 C.13 D.106.在同一平面内,⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆内B.点A在圆上C.点A在圆外D.无法确定7.2018年,淮南市经济运行总体保持平稳增长,全年GDP约为1130亿元,GDP在全省排名第十三.将1130亿用科学记数法表示为()A.11.3×1010B.1.13×1010C.1.13×1011D.1.13×10128.下面四个图形中,能判断∠1>∠2的是()A.B.C.D.9.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30°B.40°C.50°D.60°10.电影《流浪地球》中有一个名词“洛希极限”,它是指两大星体之间可以保持平稳运行的最小距离,其中地球与木星之间的洛希极限约为10.9万公里,数据“10.9万”用科学记数法表示正确的是()A.10.9×104B.1.09×104C.10.9×105D.1.09×10511.若不等式组无解,则m的取值范围是()A. B. C. D.12.在体育模拟考中,某6人小组的1000米长跑得分(单位:分)分别为:10,9,8,10,10,9,则这组数据的众数和中位数分别是()A.9分,8分B.9分,9.5分C.10分,9分D.10分,9.5分二、填空题13.抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为_____.14.将数67500用科学记数法表示为____________.15.若扇形的面积为3π,半径等于3,则它的圆心角等于______°.16.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为3:4,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为_____.17.用科学记数法表示0.00000093的结果是_______.18.过反比例函数y=kx的图象上一点P,作x轴、y轴的垂线,垂足分别为点M、N,得到的矩形OMPN的面积为2,若点P的横坐标为12,则点P的坐标为___.三、解答题19.已知:△ABC的两边AB、BC的长是关于x的一元二次方程x2﹣(2k+2)x+k2+2k=0的两个实数根,第三边长为10.问当k为何值时,△ABC是等腰三角形?20.目前“校园手机”现象越来越受到社会关注,针对这种现象,某校九年级数学兴趣小组的同学随机调查了若干名家长对“中学生带手机的”的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D .反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名中学生家长;(2)求出图2中扇形C 所对的圆心角的度数,并将图1补充完整;(3)在此次调查活动中,初三(1)班有A 1、A 2两位家长对中学生带手机持反对态度,初三(2)班有B 1、B 2两位学生家长对中学生带手机也持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求出选出的2人来自不同班级的概率.21.某县为践行“绿水青山就是金山银山”的理念,保护生态环境,某村计划在荒山上植树1200棵,实际每天植树的数量是原计划的1.5倍,结果比原计划提前了5天完成任务,求原计划每天植树多少棵?22.某商品的进价为每件40元,售价每件不低于50元且不高于80元.售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.如果每件商品的售价每降价1元,则每个月多卖1件,设每件商品的售价为x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?23.如图,某校准备给长12米,宽8米的矩形ABCD 室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形PQFG ),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点O 为矩形和菱形的对称中心,OP AB ,2OQ OP =,12AE PM =,为了美观,要求区域Ⅱ的面积不超过矩形ABCD 面积的18,若设OP x =米.(1)当3x =时,求区域Ⅱ的面积. (2)计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当x 为多少时,室内光线亮度最好,并求此时白色区域的面积.②三种瓷砖的单价列表如下,,m n 均为正整数,若当2x =米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时m =__________,n =__________.24.如图,四边形ABCD 中,//CD AB ,= 90ABC ∠︒,AB BC =,将BCD ∆绕点B 逆时针旋转90︒得到BAE ∆,连接CE ,过点B 作BG CE ⊥于点F ,交AD 于点G .(1)如图,CD AB =.①求证:四边形ABCD 是正方形;②求证:G 是AD 中点;(2)如图,若CD AB <,请判断G 是否仍然是AD 的中点?若是,请证明;若不是,请说明理由.25.(初步认识)(1)如图,将△ABO 绕点O 顺时针旋转90°得到△MNO ,连接AM 、BM ,求证△AOM ∽△BON .(拓展延伸)(2)如图,在等边△ABC 中,点E 在△ABC 内部,且满足AE 2=BE 2+CE 2,用直尺和圆规作出所有的点E (保留作图的痕迹,不写作法).【参考答案】***一、选择题13.114.46.7510⨯15.12016.242517.79.310-⨯18.(12,4)或(12,﹣4). 三、解答题19.k =8或10【解析】【分析】因为方程有两个实根,所以△>0,从而用k 的式子表示方程的解,根据△ABC 是等腰三角形,分AB =AC ,BC =AC ,两种情况讨论,得出k 的值.【详解】∵△=[﹣(2k+2)]2﹣4(k 2+2k)=4k 2+8k+4﹣4k 2﹣8k=4>0,∴x =()222k --+⎡⎤⎣⎦,∴x 1=k+2,x 2=k ,设AB =k+2,BC =k ,显然AB≠BC,而△ABC 的第三边长AC 为10,(1)若AB =AC ,则k+2=10,得k =8,即k =8时,△ABC 为等腰三角形;(2)若BC =AC ,则k =10,即k =10时.△ABC 为等腰三角形.【点睛】本题考查了一元二次方程的根,公式法,解本题要充分利用条件,选择适当的方法求解k 的值,从而证得△ABC 为等腰三角形.20.(1)200;(2)详见解析;(3)23【解析】【分析】(1)用D 类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以C 类所占的百分比得到扇形C 所对的圆心角的度数,再用200乘以C 类所占的百分比得到C 类人数,然后补全图1;(3)画树状图展示所有12种等可能结果,再找出2人来自不同班级的结果数,然后根据概率公式求解.【详解】解:(1)120÷60%=200(人),所以调查的家长数为200人;(2)扇形C 所对的圆心角的度数=360°×(1﹣20%﹣15%﹣60%)=18°,C 类的家长数=200×(1﹣20%﹣15%﹣60%)=10(人),补充图为:(3)设初三(1)班两名家长为A1、A2,初三(2)班两名家长为B1,B2,画树状图为共有12种等可能结果,其中2人来自不同班级共有8种,所以2人来自不同班级的概率=812=23.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了扇形统计图.21.原计划每天植树80棵【解析】【分析】设原计划每天植树x棵,则实际每天植树1.5x棵,根据工作时间=工作总量÷工作效率结合实际比原计划提前了5天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】设原计划每天植树x棵,则实际每天植树1.5x棵,根据题意得:1200120051.5x x-=,解得:x=80,经检验,x=80是所列分式方程的解,且符合题意.答:原计划每天植树80棵.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(1)y=﹣x2+200x﹣6400(50≤x≤60且x为整数),y=﹣2x2+300x﹣8800(60<x≤80且x为整数);(2)每件商品的售价定为75元时,每个月可获得最大利润,最大的月利润是2450元.【解析】【分析】(1)由于售价为60时,每个月卖100件,售价上涨或下调影响销量,因此分为50≤x≤60和60<x≤80两部分求解;(2)由(1)中求得的函数解析式来根据自变量x的范围求利润的最大值.【详解】解:(1)当50≤x≤60时,y=(x﹣40)(100+60﹣x)=﹣x2+200x﹣6400;当60<x≤80时,y=(x﹣40)(100﹣2x+120)=﹣2x2+300x﹣8800;∴y =﹣x 2+200x ﹣6400(50≤x≤60且x 为整数)y =﹣2x 2+300x ﹣8800(60<x≤80且x 为整数);(2)当50≤x≤60时,y =﹣(x ﹣100)2+3600;∵a =﹣1<0,且x 的取值在对称轴的左侧,∴y 随x 的增大而增大,∴当x =60时,y 有最大值2000;当60<x≤80时,y =﹣2(x ﹣75)2+2450;∵a =﹣2<0,∴当x =75时,y 有最大值2450.综上所述,每件商品的售价定为75元时,每个月可获得最大利润,最大的月利润是2450元.【点睛】本题考查的是函数方程和实际结合的问题,同学们需掌握最值的求法.23.(1)8m 2;(2)68m 2;(3) 40,8【解析】【分析】(1)根据中心对称图形性质和,OP AB ,12OM AB =,12AE PM =可得42x AE -=,即可解当83x =时,4个全等直角三角形的面积;(2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x 的代数式表示出菱形和四个全等直角三角形的面积,列出含有x 的解析式表示白色区域面积,并化成顶点式,根据04OP <<,06OQ <≤,1968II S ≤⨯,求出自变量的取值范围,再根据二次函数的增减性即可解答; (3)计算出x=2时各部分面积以及用含m 、n 的代数式表示出费用,因为m,n 均为正整数,解得m=40,n=8.【详解】(1) ∵O 为长方形和菱形的对称中心,OP AB ,∴142OM AB == ∵12AE PM =,OP PM OM +=,∴42x AE -= ∴当83x =时,41223AE -==,21124468223II S AM AE m =⨯⋅=⨯⨯⨯= (2)∵()2211442422I S OP OQ x x x m =⨯⋅=⨯⋅=,()214(246)2II S AM AE x m =⨯⋅=- ∴I III I I S AB BC S S =⋅--=-()22234672474.254x x x m ⎛⎫++=--+ ⎪⎝⎭, ∵04OP <<,06OQ <≤,1968II S ≤⨯ ∴040261246968x x x ⎧⎪<<⎪<≤⎨⎪⎪-≤⨯⎩解不等式组得23x ≤≤,∵40a =-<,结合图像,当34x ≥时,III S 随x 的增大而减小.∴当2x =时, III S 取得最大值为()2242627268m -⨯+⨯+= (3)∵当2x =时,S Ⅰ=4x 2=16 m 2,246II S x =-=12 m 2,III S =68m 2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n 均为正整数,解得m=40,n=8.【点睛】本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x 的二次函数解析式表示出白色区面积.24.(1)①详见解析;②详见解析;(2)点 G 仍然是 AD 的中点,证明详见解析.【解析】【分析】(1)①根据题意得出四边形 ABCD 是平行四边形,再由90ABC ∠=︒,AB BC =,得出矩形ABCD 是正方形.②由①得出BAE BCD ∆≅∆,从而得到ARE BRC ∆≅∆,再求出CBR BAG ∆≅∆,即可解答(2)延长CD ,BG 交于点M ,延长EA 交 CM 于点 N ,先求出矩形ABCN 是正方形在证明BMC CEN ∆≅∆,从而得出ABG DMG ∆≅∆,即可解答【详解】(1)证明:①//CD AB , CD AB =,∴四边形 ABCD 是平行四边形,90ABC ∠=︒,∴平行四边形ABCD 是矩形.AB BC =,∴矩形ABCD 是正方形.②由①得90BAD ∠=︒,AB AD =.由旋转得BAE BCD ∆≅∆,∴AE CD =,90BAE BCD ∠=∠=︒,∴AE BC =,90EAB CBA ∠=∠=︒.ARE BRC ∠=∠,∴ARE BRC ∆≅∆,∴AR BR =.BF CE ⊥,∴90CFG ∠=︒,∴90FCB FBC ∠+∠=︒.90FBC FBA ∠+∠=︒,∴FCB FBA ∠=∠,∴CBR BAG ∆≅∆,∴AG BR =,∴1122AG AB AD==,∴G是AD的中点.(2)点G仍然是AD的中点.证明如下:延长CD,BG交于点M,延长EA交CM于点N.//AB CD,90ABC∠=︒,∴90BCD∠=︒,BAG MDG∠=∠,ABG DMG∠=∠.由旋转得BAE BCD∆≅∆,∴90BAE BCD∠=∠=︒,CD AE=,∴90BAN∠=︒,∴四边形ABCN是矩形.AB BC=,∴矩形ABCN是正方形,BC CN AN==,90CNE∠=︒,∴90CEN ECN∠+∠=︒.90CFG∠=︒,∴90ECN BMC∠+∠=︒,∴BMC CEN∠=∠,∴BMC CEN∆≅∆,∴CM NE=,∴CM CD NE AE-=-,即DM AN=,∴AB DM=,∴ABG DMG∆≅∆,∴GA GD=,∴G是AD中点.【点睛】此题考查四边形综合题,解题关键在于利用全等三角形的判定与性质进行求证25.(1)详见解析;(2)【解析】【分析】(1)利用旋转的性质可也得到AO=OM,BO=ON,∠AOM=∠BON=90°,即可解答(2)根据题意以AB,AC作为半径做圆,使得B,C两点落在圆上,点E在弧BC上(不包括B,C两点)【详解】(1)证明:∵△ABO绕点O顺时针旋转90°得到△MNO,∴AO=OM,BO=ON,∠AOM=∠BON=90°.∵AO MO BO NO,∴△AOM∽△BON.(2)画图正确∴点E在弧BC上(不包括B,C两点)理由要点:(1)将△ACE旋转60°;则∠FAE=60°,AE=AF=EF,EC=FB.(2)∠BEC=150°.则可得旋转后∠FBE=90°,则有FB2+EB2=EF2.【点睛】此题考查了三角形相似,图形的旋转,和尺规作图,解题关键在于熟练掌握相似三角形的证明。

洛阳市2019-2020学年中考数学监测试题

洛阳市2019-2020学年中考数学监测试题

2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.不等式5+2x <1的解集在数轴上表示正确的是( ).A .B .C .D .2.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ).A .10 cm 3以上,20 cm 3以下B .20 cm 3以上,30 cm 3以下C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下3.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x-=- B .4504504050x x -=- C .4504502503x x -=+ D .4504502503x x -=- 4.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .65.如图,E ,B ,F ,C 四点在一条直线上,EB =CF ,∠A =∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是( )A .AB =DE B .DF ∥AC C .∠E =∠ABCD .AB ∥DE6.如图,∠ACB=90°,D 为AB 的中点,连接DC 并延长到E ,使CE=13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F ,若AB=6,则BF 的长为( )A .6B .7C .8D .107.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =26°,则∠OBC 的度数为( )A .54°B .64°C .74°D .26°8.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .339.已知:如图,AD 是△ABC 的角平分线,且AB :AC=3:2,则△ABD 与△ACD 的面积之比为( )A .3:2B .9:4C .2:3D .4:910.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )A.B.C.D.二、填空题(本题包括8个小题)11.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.12.在△ABC中,AB=AC,把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N.如果△CAN 是等腰三角形,则∠B的度数为___________.13.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.14.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是______.15.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.16.分解因式:2-+=_______288a a17.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.18.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为____cm.三、解答题(本题包括8个小题)19.(6分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70︒方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37︒方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.20.(6分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有万人次;周日学生访问该网站有万人次;周六到周日学生访问该网站的日平均增长率为.21.(6分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:求这天的温度y与时间x(0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?22.(8分)《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.23.(8分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?24.(10分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF ;当四边形ACDE为菱形时,求BD的长.25.(10分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.2014年这种礼盒的进价是多少元/盒?若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?26.(12分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE =CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.【详解】5+1x<1,移项得1x<-4,系数化为1得x<-1.故选C.【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.2.C【解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x,则有3300180 4300180 xx-⎧⎨-⎩<>解得30<x<1.故一颗玻璃球的体积在30cm3以上,1cm3以下.故选C.点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x 的取值范围.3.D【解析】解:设动车速度为每小时x千米,则可列方程为:45050x-﹣450x=23.故选D.4.C【解析】【详解】如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=1.故选C.考点:勾股定理的证明.5.A【解析】【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【详解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.C【解析】∵∠ACB=90°,D为AB的中点,AB=6,∴CD=12AB=1.又CE=13 CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=3.故选C.7.B【解析】【分析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【详解】∵四边形ABCD 为菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA),∴AO =CO ,∵AB =BC ,∴BO ⊥AC ,∴∠BOC =90°,∵∠DAC =26°,∴∠BCA =∠DAC =26°,∴∠OBC =90°﹣26°=64°.故选B .【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.8.D【解析】【分析】根据ED 是BC 的垂直平分线、BD 是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED 是BC 的垂直平分线,∴DB=DC ,∴∠C=∠DBC ,∵BD 是△ABC 的角平分线,∴∠ABD=∠DBC ,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE =33,故选D .【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.9.A【解析】试题解析:过点D 作DE ⊥AB 于E ,DF ⊥AC 于F.∵AD 为∠BAC 的平分线,∴DE=DF ,又AB:AC=3:2,11:():():3:222ABD ACD S S AB DE AC DF AB AC ∴=⋅⋅==, 故选A.点睛:角平分线上的点到角两边的距离相等.10.A【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:. 故选A .【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.二、填空题(本题包括8个小题)11.5750【解析】【分析】根据题意设甲产品的成本价格为b 元,求出b ,可知A 原料与B 原料的成本和40元,然后设A 种原料成本价格x 元,B 种原料成本价格(40﹣x)元,生产甲产品m 袋,乙产品n 袋,列出方程组得到xn =20n ﹣250,最后设生产甲乙产品的实际成本为W 元,即可解答【详解】∵甲产品每袋售价72元,则利润率为20%.设甲产品的成本价格为b 元,∴72-b b=20%, ∴b =60, ∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元,∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40﹣x)元,生产甲产品m 袋,乙产品n 袋,根据题意得:10060(240)50060(802)m n m x x n m n x x +≤⎧⎨++-+=+-+⎩ , ∴xn =20n ﹣250,设生产甲乙产品的实际成本为W 元,则有W =60m+40n+xn ,∴W =60m+40n+20n ﹣250=60(m+n)﹣250,∵m+n≤100,∴W≤6250;∴生产甲乙产品的实际成本最多为5750元,故答案为5750;【点睛】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格12.或.【解析】【详解】MN 是AB 的中垂线,则△ABN 是等腰三角形,且NA=NB ,即可得到∠B=∠BAN=∠C .然后对△ANC 中的边进行讨论,然后在△ABC 中,利用三角形内角和定理即可求得∠B 的度数.解:∵把△ABC 折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N ,∴MN是AB的中垂线.∴NB=NA.∴∠B=∠BAN,∵AB=AC∴∠B=∠C.设∠B=x°,则∠C=∠BAN=x°.1)当AN=NC时,∠CAN=∠C=x°.则在△ABC中,根据三角形内角和定理可得:4x=180,解得:x=45°则∠B=45°;2)当AN=AC时,∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此时不成立;3)当CA=CN时,∠NAC=∠ANC=180x2-.在△ABC中,根据三角形内角和定理得到:x+x+x+180x2-=180,解得:x=36°.故∠B的度数为45°或36°.13.10【解析】【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【详解】如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴2268+=10,故PB+PE的最小值是10.故答案为10.14.7【解析】根据多边形内角和公式得:(n-2)180⨯︒ .得:(3603180)18027︒⨯-︒÷︒+=15.a 1+1ab+b 1=(a+b )1【解析】试题分析:两个正方形的面积分别为a 1,b 1,两个长方形的面积都为ab ,组成的正方形的边长为a +b ,面积为(a +b)1,所以a 1+1ab +b 1=(a +b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系. 16.22(2)a -【解析】22a 8a 8-+=2(2a 4a 4-+)=()22a 2-.故答案为()22a 2-. 17.12【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.18.20310 (140)3cmπ-+【解析】试题解析:如下图,画出圆盘滚动过程中圆心移动路线的分解图象.可以得出圆盘滚动过程中圆心走过的路线由线段OO1,线段O1O2,圆弧23O O,线段O3O4四部分构成.其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.∵BC与AB延长线的夹角为60°,O1是圆盘在AB上滚动到与BC相切时的圆心位置,∴此时⊙O1与AB和BC都相切.则∠O1BE=∠O1BF=60度.此时Rt△O1BE和Rt△O1BF全等,在Rt△O1BE中,BE=1033cm.∴OO1=AB-BE=(103)cm.∵103cm,∴O1O2=BC-BF=(103)cm.∵AB∥CD,BC与水平夹角为60°,∴∠BCD=120度.又∵∠O2CB=∠O3CD=90°,∴∠O2CO3=60度.则圆盘在C点处滚动,其圆心所经过的路线为圆心角为60°且半径为10cm的圆弧23O O.∴23O O 的长=60360×2π×10=103πcm . ∵四边形O 3O 4DC 是矩形,∴O 3O 4=CD=40cm .综上所述,圆盘从A 点滚动到D 点,其圆心经过的路线长度是:()+()+103π+40=(+103π)cm . 三、解答题(本题包括8个小题)19.还需要航行的距离BD 的长为20.4海里.【解析】分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD 中,由三角函数得出CD=27.2海里,在直角三角形BCD 中,得出BD ,即可得出答案.详解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD ∴=,27.2CD ∴=(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD ∴=,20.4BD ∴=(海里). 答:还需要航行的距离BD 的长为20.4海里.点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD 的长度是解决问题的关键.20.(1)10;(2)0.9;(3)44%【解析】【分析】(1)把条形统计图中每天的访问量人数相加即可得出答案;(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;(3)根据增长率的算数列出算式,再进行计算即可.【详解】(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次);故答案为10;(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%, ∴星期日学生日访问总量为:3×30%=0.9(万人次);故答案为0.9;(3)周六到周日学生访问该网站的日平均增长率为:330% 2.525%2.525%⨯-⨯⨯=44%; 故答案为44%.考点:折线统计图;条形统计图21.(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【解析】分析:(1)应用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y=10即可.详解:(1)设线段AB 解析式为y=k 1x+b (k≠0)∵线段AB 过点(0,10),(2,14)代入得110214b k b ⎧⎨+⎩== 解得1210k b ⎧⎨⎩== ∴AB 解析式为:y=2x+10(0≤x <5)∵B 在线段AB 上当x=5时,y=20∴B 坐标为(5,20)∴线段BC 的解析式为:y=20(5≤x <10)设双曲线CD 解析式为:y=2k x (k 2≠0) ∵C (10,20)∴k 2=200∴双曲线CD 解析式为:y=200x(10≤x≤24) ∴y 关于x 的函数解析式为:()210(05)20(510)2001024x x y x x x ⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=200x中,解得,x=20 ∴20-10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.22.甲有钱752,乙有钱25. 【解析】【分析】设甲有钱x ,乙有钱y ,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.【详解】解:设甲有钱x ,乙有钱y . 由题意得:15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ , 解方程组得:75225x y ⎧⎪⎪=⎨⎪⎪=⎩, 答:甲有钱752,乙有钱25. 【点睛】本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键. 23.()1?0.14p x =+;()22580040000y x x =-++;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【解析】【分析】(1)根据按每千克4元的市场价收购了这种苹果10000千克,此后每天每千克苹果价格会上涨0.1元,进而得出x 天后每千克苹果的价格为p 元与x 的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】()1根据题意知,0.14p x =+;()()()220.141000050580040000y x x x x =+-=-++.()3300410000w y x =--⨯25500x x=-+25(50)12500x=--+∴当50x=时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出w与x的函数关系是解题关键.24.(1)证明见解析(2-1【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以,于是利用BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.25.(1)35元/盒;(2)20%.【解析】【详解】试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:3500240011x x=-,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.考点:一元二次方程的应用;分式方程的应用;增长率问题.26.(1)、(2)证明见解析(3)28【解析】试题分析:(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;试题解析:(1)如图1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如图2,延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.AE=AB-BE=12-4=8,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,解得:x=1.则DE=4+1=2.【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A.16B.13C.12D.562.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()A.155°B.145°C.135°D.125°3.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+3B.23C.3+3D.334.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为( )A.3﹣6或1+6B.3﹣6或3+6C.3+6或1﹣6D.1﹣6或1+65.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=bx在同一坐标系中的图象的形状大致是()A.B.C.D.6.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-17.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312B.36C.33D.328.如图钓鱼竿AC长6m,露在水面上的鱼线BC长32m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A.3m B.33m C.23m D.4m9.下列解方程去分母正确的是( )A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+610.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A .①②③④B .②①③④C .③②①④D .④②①③二、填空题(本题包括8个小题)11.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a (不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b ,则点(a,b )在直线11+22y x =图象上的概率为__. 12.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元.13.分解因式:4ax 2-ay 2=________________.14.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____. 15.因式分解:4x 2y ﹣9y 3=_____. 16.因式分解:a 3﹣2a 2b+ab 2=_____. 17.因式分解:x 2y-4y 3=________.18.如图,AB ∥CD ,BE 交CD 于点D ,CE ⊥BE 于点E ,若∠B=34°,则∠C 的大小为________度.三、解答题(本题包括8个小题)19.(6分)如图,在ABC 中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F.12∠∠=,试判断DG 与BC 的位置关系,并说明理由.20.(6分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?21.(6分)从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.22.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.23.(8分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.24.(10分)如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.25.(10分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少? 26.(12分)如图,已知二次函数212y x bx c =-++的图象经过()2,0A ,()0,6B -两点. 求这个二次函数的解析式;设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求ABC ∆的面积.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.B 【解析】 【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率. 【详解】∵这组数中无理数有π,2共2个, ∴卡片上的数为无理数的概率是21=63.故选B. 【点睛】本题考查了无理数的定义及概率的计算. 2.D 【解析】 【详解】解:∵35AOC ∠=,。

河南省洛阳市2019-2020学年中考一诊数学试题含解析

河南省洛阳市2019-2020学年中考一诊数学试题含解析

河南省洛阳市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图图形中,可以看作中心对称图形的是( )A .B .C .D .2.如图,一束平行太阳光线FA 、GB 照射到正五边形ABCDE 上,∠ABG =46°,则∠FAE 的度数是( )A .26°.B .44°.C .46°.D .72°3.若2(3)3b b -=-,则( )A .3b >B .3b <C .3b ≥D .3b ≤4.下列算式中,结果等于x 6的是( )A .x 2•x 2•x 2B .x 2+x 2+x 2C .x 2•x 3D .x 4+x 25.小手盖住的点的坐标可能为( )A .()5,2B .()3,4-C .()6,3-D .()4,6--6.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( )A .B .C .D .7.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD 交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.2DE=EB C.3DE=DO D.DE=OB8.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧»AB的中点,若△POC为直角三角形,则PB的长度()A.1 B.5 C.1或5 D.2或49.一组数据3、2、1、2、2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.210.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为()A.26×105B.2.6×102C.2.6×106D.260×10411.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为()A.(2,1)B.(1,2)C.(1,3)D.(3,1)12.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为()A.100°B.80°C.50°D.20°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个圆锥的高为33,侧面展开图是半圆,则圆锥的侧面积是_________ 14.如图所示,数轴上点A所表示的数为a,则a的值是____.15.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限,若反比例函数kyx的图象经过点B,则k的值是_____.16.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.17.计算(﹣3)+(﹣9)的结果为______.18.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.类别频数(人数)频率武术类0.25书画类20 0.20棋牌类15 b器乐类合计 a 1.00(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=_____,b=_____;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.20.(6分)先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值. 21.(6分)如图,在Rt △ABC 中,∠C=90°,翻折∠C ,使点C 落在斜边AB 上某一点D 处,折痕为EF (点E 、F 分别在边AC 、BC 上)若△CEF 与△ABC 相似.①当AC=BC=2时,AD 的长为 ;②当AC=3,BC=4时,AD 的长为 ;当点D 是AB 的中点时,△CEF 与△ABC 相似吗?请说明理由.22.(8分)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .求证:BC 是⊙O 的切线;设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长;若BE =8,sinB =513,求DG 的长,23.(8分)如图,▱ABCD 的对角线AC ,BD 相交于点O .E ,F 是AC 上的两点,并且AE=CF ,连接DE ,BF .(1)求证:△DOE ≌△BOF ;(2)若BD=EF ,连接DE ,BF .判断四边形EBFD 的形状,并说明理由.24.(10分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A ﹣﹣﹣不超过5天”、“B ﹣﹣﹣6天”、“C ﹣﹣﹣7天”、“D ﹣﹣﹣8天”、“E ﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是 (选填:A 、B 、C 、D 、E );(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?25.(10分)如图,直角坐标系中,⊙M 经过原点O (0,0),点A (3,0)与点B (0,﹣1),点D 在劣弧OA 上,连接BD 交x 轴于点C ,且∠COD =∠CBO .(1)请直接写出⊙M 的直径,并求证BD 平分∠ABO ;(2)在线段BD 的延长线上寻找一点E ,使得直线AE 恰好与⊙M 相切,求此时点E 的坐标.26.(12分)如图,O e 是ABC V 的外接圆,AC 是O e 的直径,过圆心O 的直线PF AB 于D ,交O e 于,E F ,PB 是O e 的切线,B 为切点,连接AP ,AF .(1)求证:直线PA 为O e 的切线;(2)求证:24EF OD OP =⋅;(3)若6BC =,1tan 2F ∠=,求AC 的长. 27.(12分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。

河南省洛阳市2019-2020学年中考数学模拟试题(1)含解析

河南省洛阳市2019-2020学年中考数学模拟试题(1)含解析

河南省洛阳市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0 2.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C.12aa=D.(﹣a﹣2)3=﹣61a3.-4的绝对值是()A.4 B.14C.-4 D.14-4.一元二次方程(x+2017)2=1的解为( )A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣20175.据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人.数据“5657万”用科学记数法表示为()A.4565710⨯B.656.5710⨯C.75.65710⨯D.85.65710⨯6.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A.5元,2元B.2元,5元C.4.5元,1.5元D.5.5元,2.5元7.如图,⊙O 是等边△ABC 的外接圆,其半径为3,图中阴影部分的面积是()A.9人B.10人C.11人D.12人9.有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是()A.+2 B.﹣3 C.+4 D.﹣110.潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖.其中,数字2000亿元用科学记数法表示为()元.(精确到百亿位)A.2×1011B.2×1012C.2.0×1011D.2.0×101011.若等式(-5)□5=–1成立,则□内的运算符号为()A.+ B.–C.×D.÷12.在如图的计算程序中,y与x之间的函数关系所对应的图象大致是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= °.14.把16a3﹣ab2因式分解_____.15.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组__________.16.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对18.如图,将ABC △的边AB 绕着点A 顺时针旋转()090a α︒︒<<得到AB ',边AC 绕着点A 逆时针旋转()090ββ︒︒<<得到AC ',联结B C ''.当90αβ︒+=时,我们称AB C ''△是ABC △的“双旋三角形”.如果等边ABC △的边长为a ,那么它的“双旋三角形”的面积是__________(用含a 的代数式表示).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.20.(6分)先化简,再求值:(1﹣11x x -+)÷22691x x x ++-,其中x =1. 21.(6分)解不等式组:3(2)421152x x x x ≥-+⎧⎪-+⎨<⎪⎩并把解集在数轴上表示出来. 22.(8分)关于x 的一元二次方程ax 2+bx+1=1.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.23.(8分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:(1)收回问卷最多的一天共收到问卷_________份;(2)本次活动共收回问卷共_________份;(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?(4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?别交AB 、AC 于点E 、D ,在BC 的延长线上取点F ,使得BF=EF .(1)判断直线EF 与⊙O 的位置关系,并说明理由;(2)若∠A=30°,求证:DG=12DA ; (3)若∠A=30°,且图中阴影部分的面积等于2233p -,求⊙O 的半径的长.25.(10分)已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E ,∠1=∠1.(1)若CE=1,求BC 的长;(1)求证:AM=DF+ME .26.(12分)解方程组:113311x x y x x y⎧+=⎪+⎪⎨⎪-=⎪+⎩ 27.(12分)如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数m y x=的图象经过点E ,与AB 交于点F . 若点B 坐标为(6,0)-,求m 的值及图象经过A 、E 两点的一次函数的表达式;若2AF AE -=,求反比例函数的表达式.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.综上即可得出结论.详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1<0,x2>0,结论D错误.故选A.点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.2.D【解析】【分析】根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.【详解】解:A:2a+3a=(2+3)a=5a,故A错误;828-26D :(-a -2)3=-a -6=-61a,故D 正确. 故选D.【点睛】 本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.3.A【解析】【分析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.) 【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.4.A【解析】【分析】利用直接开平方法解方程.【详解】(x+2017)2=1x+2017=±1,所以x 1=-2018,x 2=-1.故选A .【点睛】本题考查了解一元二次方程-直接开平方法:形如x 2=p 或(nx+m )2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.5.C【解析】【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.解:5657万用科学记数法表示为75.65710⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.A【解析】【分析】可设1本笔记本的单价为x 元,1支笔的单价为y 元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可.【详解】设1本笔记本的单价为x 元,1支笔的单价为y 元,依题意有:322013x y x y +=-⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 故1本笔记本的单价为5元,1支笔的单价为2元.故选A .【点睛】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组.7.D【解析】【分析】根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.【详解】∵△ABC 为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积= 21203360π⨯=3π. 故选D .8.C【解析】【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:1x(x-1)=55,2化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.9.D【解析】试题解析:因为|+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以从轻重的角度看,质量是-1的工件最接近标准工件.故选D.10.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2000亿元=2.0×1.故选:C.【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.D根据有理数的除法可以解答本题.【详解】解:∵(﹣5)÷5=﹣1,∴等式(﹣5)□5=﹣1成立,则□内的运算符号为÷,故选D.【点睛】考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.12.A【解析】函数→一次函数的图像及性质二、填空题:(本大题共6个小题,每小题4分,共24分.)13.110【解析】试题解析:解:∵∠C=40°,CA=CB,∴∠A=∠ABC=70°,∴∠ABD=∠A+∠C=110°.考点:等腰三角形的性质、三角形外角的性质点评:本题主要考查了等腰三角形的性质、三角形外角的性质.等腰三角形的两个底角相等;三角形的外角等于与它不相邻的两个内角之和.14.a(4a+b)(4a﹣b)【解析】【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【详解】解:16a3-ab2=a(16a2-b2)=a(4a+b)(4a-b).故答案为:a(4a+b)(4a-b).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.15.根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.【详解】设大和尚x 人,小和尚y 人,由题意可得. 故答案为.【点睛】本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组. 16.1【解析】【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点A 的坐标为(a ,3),点B 的坐标是(4,b ),点A 与点B 关于原点O 对称,∴a=﹣4,b=﹣3,则ab=1,故答案为1.【点睛】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.17.1【解析】【分析】将所求式子提取xy 分解因式后,把x+y 与xy 的值代入计算,即可得到所求式子的值.【详解】∵x+y=8,xy=2,∴x 2y+xy 2=xy (x+y )=2×8=1.故答案为:1.【点睛】本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式.18.214a .首先根据等边三角形、“双旋三角形”的定义得出△A B'C'是顶角为150°的等腰三角形,其中AB'=AC'=a.过C'作C'D⊥AB'于D,根据30°角所对的直角边等于斜边的一半得出C'D12=AC'12=a,然后根据S△AB'C'12=AB'•C'D即可求解.【详解】∵等边△ABC的边长为a,∴AB=AC=a,∠BAC=60°.∵将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB',∴AB'=AB=a,∠B'AB=α.∵边AC绕着点A逆时针旋转β(0°<β<90°)得到AC',∴AC'=AC=a,∠CAC'=β,∴∠B'AC'=∠B'AB+∠BAC+∠CAC'=α+60°+β=60°+90°=150°.如图,过C'作C'D⊥AB'于D,则∠D=90°,∠DAC'=30°,∴C'D12=AC'12=a,∴S△AB'C'12=AB'•C'D12=a•12a14=a1.故答案为:14a1.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30°角的直角三角形的性质,等边三角形的性质以及三角形的面积.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1) 现在平均每天生产1台机器.(2) 现在比原计划提前5天完成.【解析】【分析】(1)因为现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间,由此列出方程解答即可;(2)由(1)中解得的数据,原来用的时间-现在用的时间即可求得提前时间.【详解】解:(1)设现在平均每天生产x台机器,则原计划可生产(x-50)台.依题意得:60045050x x=-,解得:x=1.检验x=1是原分式方程的解.(2)由题意得3000300020050200--=20-15=5(天) ∴现在比原计划提前5天完成.【点睛】此题考查分式方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.20.15. 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】原式=2221(1)(1)1(3)x x x x x x +-++-⋅++=2(1)(1)(3)3113x x x x x x x +-=-++⋅++ 当x=1时,原式2123-=+=15. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.21.不等式组的解集为﹣7<x≤1,将解集表示在数轴上表示见解析.【解析】试题分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.试题解析:由①得:﹣2x≥﹣2,即x≤1,由②得:4x ﹣2<5x+5,即x >﹣7,所以﹣7<x≤1.在数轴上表示为:.考点:解一元一次不等式组;在数轴上表示不等式的解集.点睛:分别求出各不等式的解集,再求出其公共解集即可.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.22.(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x 2=x 2=﹣2.【解析】【详解】分析:(2)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(2)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>,∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.23.18 60分【解析】分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比=频数之比即可得出结论;(2)由于组距相同,各矩形的高度比即为频数的比,可由数据总数=某组的频数÷频率计算;(3)根据概率公式计算即可;(4)分别计算第4天,第6天的获奖率后比较即可.详解:(1)由图可知:第4天收到问卷最多,设份数为x ,则:4:6=2:x ,解得:x=18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)4183P 6010==∴第天,抽到第4天回收问卷的概率是310; (4)第4天收回问卷获奖率105189=,第6天收回问卷获奖率23. ∵5293<, ∴第6天收回问卷获奖率高.点睛:本题考查了对频数分布直方图的掌握情况,根据图中信息,求出频率,用来估计概率.用到的知识点为:总体数目=部分数目÷相应频率.部分的具体数目=总体数目×相应频率.概率=所求情况数与总情况数之比.24.(1)EF是⊙O的切线,理由详见解析;(1)详见解析;(3)⊙O的半径的长为1.【解析】【分析】(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到结论;(1)根据含30°的直角三角形的性质证明即可;(3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.【详解】解:(1)连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切线;(1)∵∠AED=90°,∠A=30°,∴ED=12 AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG,∴∠DGE=30°,∴∠DEG=∠DGE ,∴DG=DE ,∴DG=12DA ; (3)∵AD 是⊙O 的直径,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵阴影部分的面积2160π2π.23603r r ⋅⨯=⨯-= 解得:r 1=4,即r=1,即⊙O 的半径的长为1.【点睛】本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.25. (1)1;(1)见解析.【解析】试题分析:(1)根据菱形的对边平行可得AB ∥CD ,再根据两直线平行,内错角相等可得∠1=∠ACD ,所以∠ACD=∠1,根据等角对等边的性质可得CM=DM ,再根据等腰三角形三线合一的性质可得CE=DE ,然后求出CD 的长度,即为菱形的边长BC 的长度;(1)先利用“边角边”证明△CEM 和△CFM 全等,根据全等三角形对应边相等可得ME=MF ,延长AB 交DF 于点G ,然后证明∠1=∠G ,根据等角对等边的性质可得AM=GM ,再利用“角角边”证明△CDF 和△BGF 全等,根据全等三角形对应边相等可得GF=DF ,最后结合图形GM=GF+MF 即可得证. 试题解析:(1)∵四边形ABCD 是菱形,∴AB ∥CD ,∴∠1=∠ACD ,∵∠1=∠1,∴∠ACD=∠1,∴MC=MD ,∵ME ⊥CD ,∴CD=1CE ,∵CE=1,∴CD=1,∴BC=CD=1;(1)AM=DF+ME证明:如图,∵F为边BC的中点,∴BF=CF=12 BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵CE CFACB ACD CM CM⎧⎪∠∠⎨⎪⎩===,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF的延长线于点G,∵AB∥CD,∴∠G=∠1,∵∠1=∠1,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵2GBFG CFD BF CF∠∠⎧⎪∠∠⎨⎪⎩===∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.26.10.5x y =⎧⎨=-⎩ 【解析】【分析】 设1x =a ,1x y + =b ,则原方程组化为331a b a b +=⎧⎨-=⎩①②,求出方程组的解,再求出原方程组的解即可. 【详解】 设1x=a ,1x y + =b , 则原方程组化为:331a b a b +=⎧⎨-=⎩①②, ①+②得:4a=4,解得:a=1,把a=1代入①得:1+b=3,解得:b=2, 即1112x x y⎧=⎪⎪⎨⎪=+⎪⎩, 解得:10.5x y =⎧⎨=-⎩, 经检验10.5x y =⎧⎨=-⎩是原方程组的解, 所以原方程组的解是10.5x y =⎧⎨=-⎩. 【点睛】此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.27.(1)12=-m ,43y x =-;(2)4y x =-. 【解析】分析:(1)由已知求出A 、E 的坐标,即可得出m 的值和一次函数函数的解析式;(2)由34AD DE ==,,得到5AE =,由2AF AE -=,得到71AF BF ,==.设E 点坐标为()4a ,,则点F 坐标为()31a -,,代入反比例函数解析式即可得到结论.详解:(1)∵()6038B AD AB E -==,,,,为CD 的中点, ∴()()3468E A --,,,. ∵反比例函数图象过点()34E ,-, ∴3412m =-⨯=-.设图象经过A 、E 两点的一次函数表达式为:y kx b =+,∴6834k b k b -+=⎧⎨-+=⎩, 解得430kb ⎧=-⎪⎨⎪=⎩:, ∴43y x =-. (2)∵34AD DE ==,,∴5AE =.∵2AF AE -=,∴7AF =,∴1BF =.设E 点坐标为()4a ,,则点F 坐标为()31a -,.∵E F ,两点在m y x=图象上, ∴43a a =-,解得:1a =-, ∴()14E -,, ∴4m =-,∴4y x=-.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F 的坐标.。

【附5套中考模拟试卷】河南省洛阳市2019-2020学年中考数学模拟试题(2)含解析

【附5套中考模拟试卷】河南省洛阳市2019-2020学年中考数学模拟试题(2)含解析

河南省洛阳市2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下面四个几何体:其中,俯视图是四边形的几何体个数是( ) A .1B .2C .3D .42.如图,PA 、PB 是O e 的切线,点D 在»AB 上运动,且不与A ,B 重合,AC 是O e 直径.62P ∠=︒,当//BD AC 时,C ∠的度数是( )A .30°B .31︒C .32︒D .33︒3.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x 辆,则根据题意可列方程为( ) A .1600x+4000(120%)x +=18 B .1600x40001600(120%)x -++=18 C .1600x+4000160020%x -=18D .4000x40001600(120%)x -++=18 4.下列运算正确的是( ) A .a 3•a 2=a 6B .(a 2)3=a 5C .9 =3D .2+5=255.不等式组12342x x +>⎧⎨-≤⎩的解集表示在数轴上正确的是( )A .B .C .D .6.郑州地铁Ⅰ号线火车站站口分布如图所示,有A ,B ,C ,D ,E 五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是( )A .13B .14C .15D .167.如图是二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②1a ﹣b=0;③4a+1b+c <0;④若(﹣5,y 1),(,y 1)是抛物线上两点,则 y 1>y 1.其中说法正确的是( )A .①②B .②③C .①②④D .②③④ 8.下列汽车标志中,不是轴对称图形的是( )A .B .C .D .9.学完分式运算后,老师出了一道题“计算:23224x xx x +-++-”. 小明的做法:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( ) A .小明B .小亮C .小芳D .没有正确的10.下列说法: ①;②数轴上的点与实数成一一对应关系; ③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数; ⑥无理数都是无限小数, 其中正确的个数有( ) A .2个B .3个C .4个D .5个11.下列各数中是有理数的是( ) A .πB .0C .2D .3512.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BCDF CE= B .BC DF CE AD = C .CD BCEF BE= D .CD ADEF AF= 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如图,扇形的半径为6cm ,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得的圆锥的高为 ______ .14.如图,已知CD 是ABC △的高线,且CD 2cm =,30B ∠=︒,则BC =_________.15.二次函数y =(x ﹣2m )2+1,当m <x <m+1时,y 随x 的增大而减小,则m 的取值范围是_____. 16.因式分解:a 2b +2ab +b = .17.如图,一艘海轮位于灯塔P 的北偏东方向60°,距离灯塔为4海里的点A 处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB 长_____海里.18.将数轴按如图所示从某一点开始折出一个等边三角形ABC ,设点A 表示的数为x ﹣3,点B 表示的数为2x+1,点C 表示的数为﹣4,若将△ABC 向右滚动,则x 的值等于_____,数字2012对应的点将与△ABC 的顶点_____重合.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同.把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加.(1)请用列表或画树状图的方法求两数和为5的概率;(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?20.(6分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m (m>4).(1)求该抛物线的表达式和∠ACB的正切值;(2)如图2,若∠ACP=45°,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.21.(6分)如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB 于点E.求证:FC=2BF.22.(8分)填空并解答:某单位开设了一个窗口办理业务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客.已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达.该单位上午8:00上班,中午11:30下班.(1)问哪一位“新顾客”是第一个不需要排队的?分析:可设原有的6为顾客分别为a 1、a 2、a 3、a 4、a 5、a 6,“新顾客”为c 1、c 2、c 3、c 4….窗口开始工作记为0时刻.a 1 a 2 a 3 a 4 a 5 a 6 c 1 c 2 c 3 c 4 … 到达窗口时刻 0 0 0 0 0 0 1 6 11 16 … 服务开始时刻 0 2 4 6 8 10 12 14 16 18 … 每人服务时长 2 2 2 2 2 2 2 2 2 2 … 服务结束时刻2468101214161820…根据上述表格,则第 位,“新顾客”是第一个不需要排队的.(2)若其他条件不变,若窗口每a 分钟办理一个客户(a 为正整数),则当a 最小取什么值时,窗口排队现象不可能消失.分析:第n 个“新顾客”到达窗口时刻为 ,第(n ﹣1)个“新顾客”服务结束的时刻为 . 23.(8分)如图,抛物线212y x bx c =-++经过点A (﹣2,0),点B (0,4). (1)求这条抛物线的表达式;(2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;(3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO=2OF ,求m 的值.24.(10分)如图,矩形ABCD 的对角线AC 、BD 交于点O ,且DE ∥AC ,CE ∥BD . (1)求证:四边形OCED 是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED 的面积.25.(10分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个白球的概率是,求y 与x 之间的函数关系式.26.(12分)如图,在平面直角坐标系中,二次函数y=(x-a )(x-3)(0<a<3)的图象与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点D ,过其顶点C 作直线CP ⊥x 轴,垂足为点P ,连接AD 、BC .(1)求点A 、B 、D 的坐标;(2)若△AOD 与△BPC 相似,求a 的值;(3)点D 、O 、C 、B 能否在同一个圆上,若能,求出a 的值,若不能,请说明理由. 27.(12分)如图,在Rt ⊿ABC 中,90ACB ∠=o ,CD AB ⊥于D ,,AC 20BC 15== . ⑴.求AB 的长; ⑵.求CD 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何体有正方体和三棱柱, 故选B .考点:简单几何体的三视图2.B 【解析】 【分析】连接OB ,由切线的性质可得90∠=∠=︒PAO PBO ,由邻补角相等和四边形的内角和可得62∠=∠=︒BOC P ,再由圆周角定理求得D ∠,然后由平行线的性质即可求得C ∠.【详解】 解,连结OB ,∵PA 、PB 是O e 的切线,∴PA OA ⊥,PB OB ⊥,则90∠=∠=︒PAO PBO ,∵四边形APBO 的内角和为360°,即++360∠∠∠+∠=︒PAO PBO P AOB , ∴180∠+∠=︒P AOB ,又∵62P ∠=︒,180∠+∠=︒BOC AOB , ∴62∠=∠=︒BOC P ,∵»»BCBC =, ∴1312∠=∠=︒D BOC , ∵//BD AC , ∴31∠=∠=︒C D , 故选:B . 【点睛】本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答. 3.B 【解析】 【分析】根据前后的时间和是18天,可以列出方程. 【详解】若设原来每天生产自行车x 辆,根据前后的时间和是18天,可以列出方程()16004000160018120x x-+=+%. 故选B 【点睛】本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程. 4.C 【解析】 【分析】结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、实数的运算等运算,然后选择正确选项. 【详解】解:A. a 3⋅a 2=a 5,原式计算错误,故本选项错误; B. (a 2)3=a 6,原式计算错误,故本选项错误; C.9=3,原式计算正确,故本选项正确;D. 2和5不是同类项,不能合并,故本选项错误. 故选C. 【点睛】本题考查了幂的乘方与积的乘方, 实数的运算, 同底数幂的乘法,解题的关键是幂的运算法则. 5.C 【解析】 【详解】根据题意先解出12342x x +>⎧⎨-≤⎩的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C 的表示符合这些条件. 故应选C. 6.C 【解析】 【分析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得. 【详解】 解:列表得:A B C D EA AA BA CA DA EAB AB BB CB DB EBC AC BC CC DC ECD AD BD CD DD EDE AE BE CE DE EE ∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为525=15,故选C.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.C【解析】∵二次函数的图象的开口向上,∴a>0。

河南省洛阳市2019-2020学年中考数学一模考试卷含解析

河南省洛阳市2019-2020学年中考数学一模考试卷含解析

河南省洛阳市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算(x -2)(x+5)的结果是A .x 2+3x+7B .x 2+3x+10C .x 2+3x -10D .x 2-3x -102.二次函数y=ax 2+bx ﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a ﹣b ﹣2,则t 值的变化范围是( )A .﹣2<t <0B .﹣3<t <0C .﹣4<t <﹣2D .﹣4<t <03.如图,在半径为5的⊙O 中,弦AB=6,点C 是优弧»AB 上一点(不与A ,B 重合),则cosC 的值为( )A .43B .34C .35D .454.下列四个实数中,比5小的是( )A .30-1B .27C .37-1D .17+15.如图,两个反比例函数y 1=1k x(其中k 1>0)和y 2=3x 在第一象限内的图象依次是C 1和C 2,点P 在C 1上.矩形PCOD 交C 2于A 、B 两点,OA 的延长线交C 1于点E ,EF ⊥x 轴于F 点,且图中四边形BOAP 的面积为6,则EF :AC 为( )A .3:1B .2:3C .2:1D .29:146.若正六边形的半径长为4,则它的边长等于( )A .4B .2C .23D .437.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .A.a2+a3=a5B.(a3)2÷a6=1 C.a2•a3=a6D.(+)2=59.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A.120100x x10=-B.120100x x10=+C.120100x10x=-D.120100x10x=+10.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°11.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )A.6个B.7个C.8个D.9个12.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线B D交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.144______.15.在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是_____的(填“上升”或“下降”)16.分解因式x2﹣x=_______________________17.分解因式:4a3b﹣ab=_____.18.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是_____.19.(6分)小明随机调查了若干市民租用共享单车的骑车时间t (单位:分),将获得的数据分成四组,绘制了如下统计图(A :0<t≤10,B :10<t≤20,C :20<t≤30,D :t >30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A 组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D 组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.20.(6分)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为BC 边上的点,AB=BD ,反比例函数()0k y k x =≠在第一象限内的图象经过点D (m ,2)和AB 边上的点E (n ,23). (1)求m 、n 的值和反比例函数的表达式.(2)将矩形OABC 的一角折叠,使点O 与点D 重合,折痕分别与x 轴,y 轴正半轴交于点F ,G ,求线段FG 的长.21.(6分)已知二次函数2y x bx c =-++的图象如图6所示,它与x 轴的一个交点坐标为(10)-,,与y 轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值y 为正数时,自变量x 的取值范围.22.(8分)某区域平面示意图如图,点O 在河的一侧,AC 和BC 表示两条互相垂直的公路.甲勘测员在求出点O到BC的距离.参考数据:sin73.7°≈24 25,cos73.7°≈725,tan73.7°≈24723.(8分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类进价(单位:元)18 12备注(1)用不超过16800元购进两类图书共1000本;(2)科普类图书不少于600本;…(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;(2)经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?24.(10分)如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.25.(10分)如图,66⨯网格的每个小正方形边长均为1,每个小正方形的顶点称为格点.已知Rt ABCV(1)以点O 为旋转中心,分别画出把11BB C V 顺时针旋转90︒,180︒后的221B B C △,23B AC △; (2)利用(1)变换后所形成的图案,解答下列问题:①直接写出四边形123CC C C ,四边形12ABB B 的形状;②直接写出12123ABB B CC C C S S 四边形四边形的值;③设Rt ABC V 的三边BC a =,AC b =,AB c =,请证明勾股定理.26.(12分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.27.(12分)如图,在▱ABCD 中,DE ⊥AB ,BF ⊥CD ,垂足分别为E ,F .求证:△ADE ≌△CBF ;求证:四边形BFDE 为矩形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)【解析】【分析】根据多项式乘以多项式的法则进行计算即可.【详解】故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.2.D【解析】【分析】由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax 2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a 与b 的符号,进而求出t=a-b-2的变化范围.【详解】解:∵二次函数y=ax 2+bx-2的顶点在第三象限,且经过点(1,0)∴该函数是开口向上的,a>0∵y=ax 2+bx ﹣2过点(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵顶点在第三象限,∴-2b a<0. ∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t <0.【点睛】本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.3.D∴BD=22106-=8,∴cosD=BDAD=810=45.∵∠C=∠D,∴cosC=45.故选D.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.4.A【解析】【分析】首先确定无理数的取值范围,然后再确定是实数的大小,进而可得答案.【详解】解:A、∵5306,∴5﹣1301<6﹣1,301<5,故此选项正确;B、∵272825.=>∴275>,故此选项错误;C、∵637<7,∴537﹣1<6,故此选项错误;D、∵4175,∴51716<<,故此选项错误;故选A.【点睛】考查无理数的估算,掌握无理数估算的方法是解题的关键.通常使用夹逼法.5.A【解析】试题分析:首先根据反比例函数y2=3x的解析式可得到ODB OACS S=V V=12×3=32,再由阴影部分面积为66△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC=3.故选A.考点:反比例函数系数k的几何意义6.A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.考点:正多边形和圆.7.A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.8.B【解析】【分析】利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断.【详解】解:A、a2与a3不能合并,所以A选项错误;B、原式=a6÷a6=1,所以A选项正确;C、原式=a5,所以C选项错误;D、原式=2+2+3=5+2,所以D选项错误.故选:B.【点睛】本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.A【解析】【解析】【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°-∠2)+(120°-∠1)=180°,∴∠1+∠2=120°.故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.11.A【解析】【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13【解析】∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴,.点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14【解析】【分析】=2,再求2的算术平方根即可.【详解】=2,【点睛】本题考查了算术平方根,属于简单题,熟悉算数平方根的概念是解题关键.15.下降【解析】根据抛物线y=3x 2+2x 图像性质可得,在对称轴的左侧部分是下降的.【详解】解:∵在232y x x =+中,30a =>,∴抛物线开口向上,∴在对称轴左侧部分y 随x 的增大而减小,即图象是下降的,故答案为下降.【点睛】本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论.16.x(x-1)【解析】x 2﹣x= x(x-1).故答案是:x(x-1).17.ab(2a+1)(2a-1)【解析】【分析】先提取公因式再用公式法进行因式分解即可.【详解】4a 3b- ab= ab(4a 2-1)=ab(2a+1)(2a-1)【点睛】此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.18.19【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是19,故答案为19.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)50;(2)108°;(3)12.【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C 组的人数;(2)画出树状图,由概率公式即可得出答案.本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=61 122.点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.20.(1)y=2x;(255【解析】【分析】(1)根据题意得出2232m nm n⎧=⎪⎨⎪=-⎩,解方程即可求得m、n的值,然后根据待定系数法即可求得反比例函数的解析式;(2)设OG=x,则GD=OG=x,CG=2﹣x,根据勾股定理得出关于x的方程,解方程即可求得DG的长,过F点作FH⊥CB于H,易证得△GCD∽△DHF,根据相似三角形的性质求得FG,最后根据勾股定理即可求得.【详解】(1)∵D(m,2),E(n,23),∴AB=BD=2,∴m=n﹣2,∴2232m nm n⎧=⎪⎨⎪=-⎩,解得13mn=⎧⎨=⎩,∴D(1,2),∴k=2,∴反比例函数的表达式为y=2x;(2)设OG=x,则GD=OG=x,CG=2﹣x,在Rt△CDG中,x2=(2﹣x)2+12,解得x=54,过F点作FH⊥CB于H,∵∠GDF=90°,∴∠CDG+∠FDH=90°,∵∠CDG+∠CGD=90°,∴∠CGD=∠FDH,∵∠GCD=∠FHD=90°,∴△GCD∽△DHF,∴DG CDFD FH=,即5142FD=,∴FD=52,∴4==.【点睛】本题考查了反比例函数与几何综合题,涉及了待定系数法、勾股定理、相似三角形的判定与性质等,熟练掌握待定系数法、相似三角形的判定与性质是解题的关键.21.(1)2x 2x 3y -++=;(2)1x 3-<<.【解析】【分析】(1)将(-1,0)和(0,3)两点代入二次函数y=-x 2+bx+c ,求得b 和c ;从而得出抛物线的解析式; (2)令y=0,解得x 1,x 2,得出此二次函数的图象与x 轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x 的取值范围.【详解】解:(1)由二次函数2y x bx c =-++的图象经过()1,0-和()0,3两点, 得103b c c --+=⎧⎨=⎩, 解这个方程组,得23b c =⎧⎨=⎩, 抛物线的解析式为2x 2x 3y -++=,(2)令y 0=,得2x 2x 30-++=.解这个方程,得1x 3=,2x 1=-.∴此二次函数的图象与x 轴的另一个交点的坐标为()3,0.当1x 3-<<时,y 0>.【点睛】本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点. 22.点O 到BC 的距离为480m .【解析】【分析】作OM⊥BC于M,ON⊥AC于N,设OM=x,根据矩形的性质用x表示出OM、MC,根据正切的定义用x表示出BM,根据题意列式计算即可.【详解】作OM⊥BC于M,ON⊥AC于N,则四边形ONCM为矩形,∴ON=MC,OM=NC,设OM=x,则NC=x,AN=840﹣x,在Rt△ANO中,∠OAN=45°,∴ON=AN=840﹣x,则MC=ON=840﹣x,在Rt△BOM中,BM==x,由题意得,840﹣x+x=500,解得,x=480,答:点O到BC的距离为480m.【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.23.(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B类图书购进400本,利润最大.【解析】【分析】(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.【详解】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得54054010 1.5x x-=, 化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A 类图书的标价为:1.5x=1.5×18=27(元),答:A 类图书的标价为27元,B 类图书的标价为18元;(2)设购进A 类图书t 本,总利润为w 元,A 类图书的标价为(27-a )元(0<a <5),由题意得,()1812100016800600t t t +-≤⎧≥⎨⎩, 解得:600≤t≤800,则总利润w=(27-a-18)t+(18-12)(1000-t )=(9-a )t+6(1000-t )=6000+(3-a )t ,故当0<a <3时,3-a >0,t=800时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t 值如何变化,总利润均为6000元;当3<a <5时,3-a <0,t=600时,总利润最大,且小于6000元;答:当A 类图书每本降价少于3元时,A 类图书购进800本,B 类图书购进200本时,利润最大;当A 类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B 类图书购进400本时,利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.24.(1)①132y x =-+;②四边形ABCD 是菱形,理由见解析;(2)四边形ABCD 能是正方形,理由见解析,m+n=32.【解析】【分析】(1)①先确定出点A ,B 坐标,再利用待定系数法即可得出结论;②先确定出点D 坐标,进而确定出点P 坐标,进而求出PA ,PC ,即可得出结论;(2)先确定出B (1,4m ),D (1,4n ),进而求出点P 的坐标,再求出A ,C 坐标,最后用AC=BD ,即可得出结论.【详解】(1)①如图1,4 m= Q,∴反比例函数为4 yx =,当4x=时,1y=,()4,1B∴,当2y=时,42x∴=,2x∴=,()2,2A∴,设直线AB的解析式为y kx b=+,∴2241k bk b+=⎧⎨+=⎩,∴123kb⎧=-⎪⎨⎪=⎩,∴直线AB的解析式为132y x=-+;②四边形ABCD是菱形,理由如下:如图2,由①知,()4,1B ,//BD y Q 轴,()4,5D ∴,Q 点P 是线段BD 的中点,()4,3P ∴,当3y =时,由4y x =得,43x =, 由20y x =得,203x =, 48433PA ∴=-=,208433PC =-=, PA PC ∴=,PB PD =Q ,∴四边形ABCD 为平行四边形,BD AC ⊥Q ,∴四边形ABCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC ,BD 的交点为P ,BD AC ∴=,当4x =时,4m m y x ==,4n n y x == 4,4m B ⎛⎫∴ ⎪⎝⎭,4,4n D ⎛⎫ ⎪⎝⎭, 4,8m n P +⎛⎫∴ ⎪⎝⎭, 8(m A m n ∴+,)8m n +,8(n C m n +,)8m n + AC BD =Q ,∴ 8844n m n m m n m n -=-++, 32m n ∴+=.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD 是平行四边形是解本题的关键.25.(1)见解析;(2)①正方形;②59;③见解析. 【解析】【分析】(1)根据旋转作图的方法进行作图即可;(2)①根据旋转的性质可证AC=BC 1=B 1C 2=B 2C 3,从而证出四边形CC 1C 2C 3是菱形,再根据有一个角是直角的菱形是正方形即可作出判断,同理可判断四边形ABB 1B 2是正方形;②根据相似图形的面积之比等相似比的平方即可得到结果;③用两种不同的方法计算大正方形的面积化简即可得到勾股定理.【详解】(1)如图,(2)①四边形CC 1C 2C 3和四边形ABB 1B 2是正方形.理由如下:∵△ABC ≌△BB 1C 1,∴AC=BC 1,BC==B 1C 1,AB=BB 1.再根据旋转的性质可得:BC 1=B 1C 2=B 2C 3,B 2C 1=B 2C 2=AC 3,BB 1=B 1B 2=AB 2.∴CC 1=C 1C 2=C 2C 3=CC 3AB=BB 1=B 1B 2=AB 2∴四边形CC 1C 2C 3和四边形ABB 1B 2是菱形.∵∠C=∠ABB 1=90°,∴四边形CC 1C 2C 3和四边形ABB 1B 2是正方形.②∵四边形CC 1C 2C 3和四边形ABB 1B 2是正方形,∴四边形CC 1C 2C 3∽四边形ABB 1B 2. ∴12123ABB B CC C C S S 四边形四边形=2(1)AB C C∵,CC 1=, ∴12123ABB B CC C C S S 四边形四边形=2=59. ③ 四边形CC 1C 2C 3的面积=221()a b C C =+ =222ab a b ++ , 四边形CC 1C 2C 3的面积=4△ABC 的面积+四边形ABB 1B 2的面积=4⨯12ab +2c =22ab c + ∴222ab a b ++ =22ab c +, 化简得:22a b + =2c . 【点睛】本题考查了旋转作图和旋转的性质,正方形的判定和性质,勾股定理,掌握相关知识是解题的关键. 26.吉普车的速度为30千米/时.【解析】【分析】先设抢修车的速度为x 千米/时,则吉普车的速度为1.5x 千米/时,列出方程求出x 的值,再进行检验,即可求出答案.【详解】解:设抢修车的速度为x 千米/时,则吉普车的速度为15x 千米/时. 由题意得:1515151.560x x -=. 解得,x=20经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意.答:吉普车的速度为30千米/时.点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用.为中考常见题型,要求学生牢固掌握.注意检验.27.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由DE 与AB 垂直,BF 与CD 垂直,得到一对直角相等,再由ABCD 为平行四边形得到AD=BC ,对角相等,利用AAS 即可的值;(2)由平行四边形的对边平行得到DC 与AB 平行,得到∠CDE 为直角,利用三个角为直角的四边形为矩形即可的值.【详解】解:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,{AED CFB A CAD BC∠=∠∠=∠=,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形.【点睛】本题考查1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.。

【附5套中考模拟试卷】河南省洛阳市2019-2020学年中考第一次质量检测数学试题含解析

【附5套中考模拟试卷】河南省洛阳市2019-2020学年中考第一次质量检测数学试题含解析

河南省洛阳市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列几何体中,俯视图为三角形的是( )A .B .C .D .2.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB 的三个顶点都在格点上,现将△AOB 绕点O 逆时针旋转90°后得到对应的△COD ,则点A 经过的路径弧AC 的长为( )A .3π2B .πC .2πD .3π3.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°4.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠35.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( )A .平均数B .标准差C .中位数D .众数6.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义:“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S=ah .例如:三点坐标分别为A (1,2),B (﹣3,1),C (2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1.若D (1,2)、E (﹣2,1)、F (0,t )三点的“矩面积”为18,则t 的值为( )A .﹣3或7B .﹣4或6C .﹣4或7D .﹣3或67.下列几何体中,其三视图都是全等图形的是( )A .圆柱B .圆锥C .三棱锥D .球8.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.5 9.对于任意实数k ,关于x 的方程()22x 2k 1x k 2k 10-+-+-=的根的情况为A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-11.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为( )A .8×107B .880×108C .8.8×109D .8.8×101012.若3x =是关于x 的方程2430x x m -+=的一个根,则方程的另一个根是( )A .9B .4C .43D .33二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某种商品每件进价为10元,调查表明:在某段时间内若以每件x 元(10≤x≤20且x 为整数)出售,可卖出(20﹣x )件,若使利润最大,则每件商品的售价应为_____元.14.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75°;③BE+DF=EF ;④S 正方形ABCD =23+.其中正确的序号是 (把你认为正确的都填上).15.方程1223x x =+的解为__________.16.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD 为_______米(结果保留根号).17.如图,直线x=2与反比例函数2y x=和1y x =-的图象分别交于A 、B 两点,若点P 是y 轴上任意一点,则△PAB 的面积是_____.18.关于x 的一元二次方程x 2-2x +m -1=0有两个相等的实数根,则m 的值为_________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一枚运载火箭从距雷达站C 处5km 的地面O 处发射,当火箭到达点A ,B 时,在雷达站C 处测得点A ,B 的仰角分别为34°,45°,其中点O ,A ,B 在同一条直线上.求AC 和AB 的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)20.(6分)如图,在正方形ABCD 中,点P 是对角线AC 上一个动点(不与点,A C 重合),连接PB 过点P 作PF PB ⊥,交直线DC 于点F .作PE AC ⊥交直线DC 于点E ,连接,AE BF .(1)由题意易知,ADC ABC ∆∆≌,观察图,请猜想另外两组全等的三角形∆ ∆≌ ;∆ ∆≌ ;(2)求证:四边形AEFB 是平行四边形;(3)已知22AB =PFB ∆的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.21.(6分)为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行车与买7辆B型号的自行车所花费用相同.(1)A,B两种型号的自行车的单价分别是多少?(2)若购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.22.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.23.(8分)解不等式组223252x xx x≤+⎧⎨-≤+⎩①②,请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式的解集为.24.(10分)如图,在平行四边形ABCD中,BD是对角线,∠ADB=90°,E、F分别为边AB、CD的中点.(1)求证:四边形DEBF是菱形;(2)若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为,并在图上标出此时点P的位置.25.(10分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.26.(12分)直线y1=kx+b与反比例函数28 (0)y xx=>的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)根据图象写出不等式kx+b﹣8x≤0的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.27.(12分)如图,在四边形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.2.A【解析】【分析】根据旋转的性质和弧长公式解答即可.【详解】解:∵将△AOB 绕点O 逆时针旋转90°后得到对应的△COD ,∴∠AOC =90°,∵OC =3,∴点A 经过的路径弧AC 的长=903180π⨯= 3π2, 故选:A .【点睛】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.3.C【解析】分析:由点I 是△ABC 的内心知∠BAC=2∠IAC 、∠ACB=2∠ICA ,从而求得∠B=180°﹣(∠BAC+∠ACB )=180°﹣2(180°﹣∠AIC ),再利用圆内接四边形的外角等于内对角可得答案.详解:∵点I 是△ABC 的内心,∴∠BAC=2∠IAC 、∠ACB=2∠ICA ,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB )=180°﹣2(∠IAC+∠ICA )=180°﹣2(180°﹣∠AIC )=68°,又四边形ABCD 内接于⊙O ,∴∠CDE=∠B=68°,故选C .点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.4.B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x轴交点的特点.5.B【解析】试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为x i,则样本B中的数据为y i=x i+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.故选B.考点:统计量的选择.6.C【解析】【分析】由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分>2或t<1两种情况进行求解即可.【详解】解:由题可知a=3,则h=18÷3=6,则可知t>2或t<1.当t>2时,t-1=6,解得t=7;当t<1时,2-t=6,解得t=-4.综上,t=-4或7.故选择C.【点睛】本题考查了平面直角坐标系的内容,理解题意是解题关键.7.D【解析】分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.详解:圆柱,圆锥,三棱锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选D.点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.8.B【解析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =10°, ∴∠A =∠ABD ,∴BD =AD =6,∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =1. 故选B .9.C【解析】判断一元二次方程的根的情况,只要看根的判别式2b 4ac ∆=-的值的符号即可:∵a=1,b=()2k 1-+,c=2k 2k 1-+-,∴()()2222b 4ac 2k 141k 2k 188k 0⎡⎤∆=-=-+-⨯⨯-+-=+>⎣⎦. ∴此方程有两个不相等的实数根.故选C .10.D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD ⊥BC ,∴BD=CD=1,33∴△ABC 的面积为12BC•AD=1232⨯3 S 扇形BAC =2602360π⨯=23π, ∴莱洛三角形的面积S=3×23π﹣2×3﹣3,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.11.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】880亿=880 0000 0000=8.8×1010,故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.D【解析】【分析】【详解】解:设方程的另一个根为a a=解得a=故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【详解】解:设利润为w元,则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,∵10≤x≤20,∴当x=1时,二次函数有最大值25,故答案是:1.【点睛】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.14.①②④【解析】分析:∵四边形ABCD 是正方形,∴AB=AD 。

洛阳市2019-2020学年中考数学模拟考试试题

洛阳市2019-2020学年中考数学模拟考试试题

洛阳市2019-2020学年中考数学模拟考试试题一、选择题1.若二次函数2()1y x m =--,当1x ≤时,y 随x 的增大而减小,则m 的取值范围是( ) A .1m = B .1m >C .1m ≥D .1m ≤2.分式方程216111x x x +-=--的解是( ) A .x =﹣2B .x =2C .x =3D .无解3.安居物业管理公司对某小区一天的垃圾进行了分类统计,如图是分类情况的扇形统表,若一天产生的垃圾的为300kg ,估计该小区一个月(按30天计)产生的可回收垃圾重量约是( )A.900kgB.105kgC.3150kgD.5850kg4.将抛物线y =x 2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为( ) A.y =x 2+3x+6B.y =x 2+3xC.y =x 2﹣5x+10D.y =x 2﹣5x+45.如图,已知二次函数的图象与轴交于点,顶点坐标为,与轴的交点在和之间(不包括端点).有下列结论:①当时,;②;③;④.其中正确的结论有( )A.1个B.2个C.3个D.4个6.在百度搜索引擎中输入“合肥”二字,能搜索到与之相关的结果个数约为41300000,数41300000用科学记数法表示正确的为:( )A.B.C.D.7.如图,B 是线段AP 的中点,以AB 为边构造菱形ABCD ,连接PD .若tan ∠BDP =12,AB =13,则BD 的长为( )AB .C D .8.把一副三角板按如图所示摆放,使FD BC ∕∕,点E 恰好落在CB 的延长线上,则BDE ∠的大小为( )A .10︒B .15︒C .25︒D .30°9.如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C′处;作∠BPC′的角平分线交AB 于点E .设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .10.如图,点A 、B 、C 、D 在⊙O 上,CB CD =,∠CAD =30°,∠ACD =50°,则∠ADB =( )A .30°B .50°C .70°D .80°11.如图,已知正方形ABCD 的顶点A 、B 在O 上,顶点C 、D 在O 内,将正方形ABCD 绕点A逆时针旋转,使点D 落在O 上.若正方形ABCD 的边长和O 的半径均为6cm ,则点D 运动的路径长为( )A .2cm πB .32cm π C .cm πD .12cm π 12.在平面直角坐标系中,若直线y =x+n 与直线y =mx+6(m 、n 为常数,m <0)相交于点P (3,5),则关于x 的不等式x+n+1<mx+7的解集是( ) A .x <3B .x <4C .x >4D .x >6二、填空题13.一元二次方程20x x -=的解为___________.14.如图,在矩形ABCD 中,AB=4,AD=6,E 是AB 边的中点,F 是线段BC 上的动点,将ΔEBF 沿EF 所在直线折叠得到ΔEB' F ,连接B' D ,则B' D 的最小值是_____.15.在△ABC 中,点A 到直线BC 的距离为d ,AB >AC >d ,以A 为圆心,AC 为半径画圆弧,圆弧交直线BC 于点D ,过点D 作DE ∥AC 交直线AB 于点E ,若BC=4,DE=1,∠EDA=∠ACD ,则AD=__________. 16.关于x 的方程(m ﹣2)x 2+2x+1=0有实数根,则偶数m 的最大值为_____.17.某市从2017年开始大力发展旅游产业.据统计该市2017年旅游收入约为2亿元,预计2019旅游收入达到2.88亿元,据此估计该市2018年、2019年旅游收入的年平均增长率约为____. 18.如图,AD ∥BC ,BC =2AD ,AC 与BD 相交于点O ,如果,,那么用、表示向量是___.三、解答题19.如图,斜坡BE ,坡顶B 到水平地面的距离AB 为3米,坡底AE 为18米,在B 处,E 处分别测得CD 顶部点D 的仰角为30°,60°,求CD 的高度.(结果保留根号)20.(1)解不等式组365(2)543123x x x x +≥-⎧⎪⎨---≤⎪⎩①②,并求出最小整数解与最大整数解的和.(2)先化简,再求值22331(1)1211x x x x x x --÷-+-++-,其中x 满足方程x 2+x ﹣2=0. 21.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示. (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?(3)请你直接写出售价在什么范围时,每天的利润不低于104元?22.等边△ABC与正方形DEFG如图1放置,其中D,E两点分别在AB,BC上,且BD=BE.(1)求∠DEB的度数;(2)当正方形DEFG沿着射线BC方向以每秒1个单位长度的速度平移时,CF的长度y随着运动时间变化的函数图象如图2所示,且当y有最小值1;①求等边△ABC的边长;②连结CD,在平移的过程中,求当△CEF与△CDE同时为等腰三角形时t的值;③从平移运动开始,到GF恰落在AC边上时,请直接写出△CEF外接圆圆心的运动路径的长度.23.荆州市精准扶贫工作进入攻坚阶段.某村在工作组长期的技术资金支持下,成立了果农合作社,大力发展经济作物,其中樱桃和枇杷两种果树的种植已初具规模,请阅读以下信息.信息1:该村小李今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍.信息2:小李今年樱桃销量比去年减少了m%,枇杷销量比去年增加了2m%.若樱桃售价与去年相同,枇杷售价比去年减少了m%,则今年两种水果销售总额与去年两种水果的销售总额相同.樱桃销量(千克)千克)之间的关系为:y=﹣100x+4800(8≤x≤38),因保质期和储存条件方面的原因剩余水果将被无偿处理销毁.请解决以下问题:(1)求小李今年收获樱桃至少多少千克?(2)请补全信息2中的表格,求m的值.(3)若樱桃种植成本为8元/千克,不计其它费用.求今年该果农合作社出售樱桃所获得的最大利润? 24.下列两图均由四个全等的直角三角形拼接而成,且它们的两条直角边分别为a ,b ,斜边为c ,a >b .请选择一个你喜欢的图形,利用等面积法验证勾股定理.你选择的是______图,写出你的验证过程.25.如图,在Rt △ABC 中,∠ACB =90°,∠BAC 的平分线AO 交BC 于点O ,以O 为圆心,OC 长为半径作⊙O ,⊙O 交AO 所在的直线于D 、E 两点(点D 在BC 左侧). (1)求证:AB 是⊙O 的切线; (2)连接CD ,若AC =23AD ,求tan ∠D 的值; (3)在(2)的条件下,若⊙O 的半径为5,求AB 的长.【参考答案】*** 一、选择题13.120,1x x ==14.2.15.2或 16.2 17.20%. 18.-2 三、解答题19.CD 的高度是92⎛⎫ ⎪⎝⎭米 【解析】 【分析】作BF ⊥CD 于点F ,设DF =x 米, 在Rt △DBF 中利用三角函数用x 表示出BF 的长,在直角△DCE 中表示出CE 的长,然后根据BF-CE=AE 即可解答 【详解】作BF ⊥CD 于点F ,设DF =x 米,在Rt △DBF 中,tan ∠DBF =DFBF, 则BF=tan tan30DF xDBF =∠ ,在直角△DCE 中,DC =x+CF =3+x (米), 在直角△DCE 中,tan ∠DEC =DC EC,则EC=033)tan tan 60DC x x DEC +=+∠米. ∵BF ﹣CE =AE﹣3(x+3)=18. 解得:x =+32, 则CD =32 +3=92(米). 答:CD的高度是92⎛⎫ ⎪⎝⎭米.【点睛】此题考查三角函数求解,解题关键在于熟练掌握三角函数 20.(1)﹣3≤x≤8,5;(2)11x -,13- . 【解析】 【分析】(1)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,进而求出所求即可;(2)原式利用除法法则变形,约分后计算得到最简结果,求出x 的值,代入计算即可求出值. 【详解】(1)365(2)543123x x x x ①②+≥-⎧⎪⎨---≤⎪⎩由①得:x≤8, 由②得:x≥﹣3,∴不等式组的解集为﹣3≤x≤8,则不等式组最小整数解为﹣3,最大整数解为8,之和为5;(2)原式=23(1)11(1)(1)3111x x x x x x x x x x x -++-⋅-==+-----,由x 2+x ﹣2=0,得到(x ﹣1)(x+2)=0, 解得:x =1(舍去)或x =﹣2, 当x =﹣2时,原式=13-. 【点睛】此题考查了分式的化简求值,以及解一元二次方程-因式分解法,熟练掌握运算法则是解本题的关键. 21.(1).40(1016)y x x =-+≤≤(2)2(25)225w x =--+,当x=16时.最大利润是144元;(3)1416x ≤≤ 【解析】 【分析】(1)利用待定系数法求解可得y 关于x 的函数解析式;(2)根据“总利润=每件的利润×销售量”可得函数解析式,将其配方成顶点式,利用二 次函数的性质进一步求解可得.(3)根据(2)可列出不等式2(25)225104x --+≥,即可解答 【详解】解:(1)设y 与x 的函数解析式为y=kx+b,将(10,30)、(16,24)代入,得:10301624k b k b +=+=⎧⎨⎩解得:140k b =-⎧⎨=⎩所以y 与x 的函数解析式为y=-x+40(10≤x≤16): (2)根据题意知,W=(x-10)y =(x-10)(-x+40) =-x 2+50x-400 =-(x-25)2+225 ∵a=-1<0,∴当x<25时,W 随x 的增大而增大, ∵10≤x≤16,∴当x=16时,W 取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元(3)根据题(2)可列出不等式2(25)225104x --+≥(x=16时,W 取得最大值) 解得14x ≤,综合题(2)可知当1416x ≤≤时利润不低于104元 【点睛】此题考查了利用待定系数法求二元一次方程的解析式,二次函数的性质和一元一次不等式的解,解题关键在于把已知的数代入方程求解22.(1)∠BED =60°;(2)①t =2或. 【解析】 【分析】(1)证明△BDE 是等边三角形即可解决问题.(2)①如图2中,正方形DEFG 平移过程中,FF′∥BC ,易证四边形EFF′E′是平行四边形,由题意,当CF′⊥BC 时,CF′的值最小,此时CF′=1,解直角三角形求出E′F′,CE′即可. ②分两种情形分别画出图象求解即可.③如图5中,设△CE′F′的外接圆的圆心为I ,连接IE′,CI ,IF′,设直线FF′交AC 于H ,在CB 上取一点J ,使得CH =CJ ,连接JH ,IJ .证明△HCF′≌△JCI (SAS ),推出JI =HF′,即可解决问题. 【详解】解:(1)如图1中,∵△ABC是等边三角形,∴∠B=60°,∵BD=BE,∴△BDE是等边三角形,∴∠BED=60°.(2)①如图2中,如图正方形DEFG平移过程中,FF′∥BC,易证四边形EFF′E′是平行四边形,由题意,当CF′⊥BC时,CF′的值最小,此时CF′=1,在Rt△CE′F′中,∵∠E′CF′=90°,∠F′E′C=30°,CF′=1,∴EF=E′F′=2,∵t,∵BE=DE=EF=2,∴BC=BE+EE′+CE′=.②如图3中,当E′D′=E′F′=CE′=2时,△CEF与△CDE同时为等腰三角形,此时t=EE′=BC﹣BE﹣CE′=2+24=2.如图4中,当E′C=E′D′=E′F′=2时,△CEF与△CDE同时为等腰三角形,此时t=EE′=BC+CE′﹣BE=BC=综上所述,t=2或时,△CEF与△CDE同时为等腰三角形.③如图5中,设△CE′F′的外接圆的圆心为I,连接IE′,CI,IF′,设直线FF′交AC于H,在CB上取一点J,使得CH=CJ,连接JH,IJ.∵IE′=IF′=IC,∴∠F′E′C=12∠F′IC,∵∠F′E′C=30°,∴∠CJF′=60°,∴△CIF′是等边三角形,∵CH=CJ,∠HCJ=60°,∴△HCJ是等边三角形,∴CH=CJ,CF′=CI,∠HCJ=∠F′CI=60°,∴∠HCF′=∠JCI,∴△HCF′≌△JCI(SAS),∴F′H=IJ,∠CHF′=∠CJI=120°,∴点I的运动轨迹是线段,且JI=HF′,由①可知FH,∴△CEF.【点睛】本题属于圆综合题,考查了等边三角形的性质,正方形的性质,平移变换,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于这里压轴题.23.(1)小李今年收获樱桃至少50千克;(2)m的值为12.5;(3)今年该果农合作社出售樱桃可以获得的最大利润为35200元【解析】【分析】(1)设小李今年收获樱桃a千克,根据题意,列出不等式即可;(2)根据信息2可填空上表的数据,注意到等量关系“今年两种水果销售总额与去年两种水果的销售总额相同”即可列出方程;(3)根据市场的需求进行分情况讨论,①当y=2800;②当y≥2800时;③当y<2800时,三种情况根据x的取值范围,进行计算相应的w值.【详解】(1)设小李今年收获樱桃a千克,根据题意得:400﹣a<7a,解得:a≥50,答:小李今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=1,原方程可化为:3000(1﹣t)+4000(1+2t)(1﹣t)=7000,整理可得:8t2﹣t=0,解得t1=0,t2=0.125,∴m1=0(舍去),m2=12.5,∴m的值为12.5;(3)设利润为w元,①当y=2800,﹣100x+4800=2800,则x=20,此时w=33600元;②当y≥2800时,﹣100x+4800≥2800,则x≤20,此时,w=2800(x﹣8)=2800x﹣22400;∵2800>0,∴w随着x的增大而增大,∴x=20时,w的最大值为33600;③当y<2800时,﹣100x+4800<2800,则x>20,∵8≤x≤38,∴20<x≤38,此时,w=(﹣100x+4800)x﹣2800×8=﹣100x2+4800x﹣22400,整理得w=﹣100(x﹣24)2+35200,∵﹣100<0,20<x≤38,∴x=24时,w的最大值为35200.综上所述,今年该果农合作社出售樱桃可以获得的最大利利润为35200元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.24.选择的是图2,证明见解析.【解析】【分析】直接利用图形面积得出等式,进而整理得出答案.【详解】选择的是图2,证明:∵S大正方形=c2,S大正方形=4S△+S小正方形=4×12ab+(b-a)2,∴c2=4×12ab+(b-a)2,整理,得2ab+b2-2ab+a2=c2,∴c2=a2+b2.故答案为:2,【点睛】此题主要考查了勾股定理的证明,正确表示出图形面积是解题关键.25.(1)证明见解析;(2)tan∠D=23;(3)AB=2028119.【解析】【分析】(1)如图,过点O作OF⊥AB,,求出OC=OF,证明OF为⊙O半径,且OF⊥AB,即可求解;(2)连接CE,根据∠ACE=∠D,且∠A=∠A,求出△ACE∽△ADC,可得23AC CEAD CD==,即可求解;(3)根据△ACE∽△ADC,得AC AEAD AC=,根据AO=AO,OC=OF,证明Rt△AOF≌Rt△AOC,求出AF=AC=12,根据∠B=∠B,∠OFB=∠ACB=90°,证明△OBF∽△ABC,可得OF OB BFAC AB BC==,求出BF,即可求解.【详解】证明:(1)如图,过点O作OF⊥AB,∵AO平分∠BAC,OF⊥AB,∠ACB=90°∴OC=OF,∴OF为⊙O半径,且OF⊥AB∴AB是⊙O切线.(2)连接CE∵DE是直径∴∠DCE=90°∵∠ACB=90°∴∠DCE=∠ACB∴∠DCO=∠ACE∵OC=OD∴∠D=∠DCO∴∠ACE=∠D,且∠A=∠A ∴△ACE∽△ADC∴2233AD AC CEAD CD AD===∴tan∠D=CE CD=23(3)∵△ACE∽△ADC∴AC AE AD AC=∴AC2=AD(AD﹣10),且AC=23AD∴AD=18∴AC=12∵AO=AO,OC=OF∴Rt△AOF≌Rt△AOC(HL)∴AF=AC=12∵∠B=∠B,∠OFB=∠ACB=90°∴△OBF∽△ABC∴OF OB BF AC AB BC==即512125OB BFBF BO==++∴5+25=12 60512 BO BFBF OB ⎧⎨+=⎩∴BF=600 119∴AB=FA+BF=12+600119=2028119【点睛】本题考查的是圆的综合运用,熟练掌握相似三角形和全等三角形是解题的关键.。

洛阳市2019-2020学年中考数学模拟试卷

洛阳市2019-2020学年中考数学模拟试卷

洛阳市2019-2020学年中考数学模拟试卷一、选择题1.如果两个数的和是负数,那么这两个数A.同是正数B.同为负数C.至少有一个为正数D.至少有一个为负数2.已知实数a 、b 在数轴上的位置如图所示,化简 )A.2a -B.2aC.2bD.2b -3.如图,已知正方形ABCD ,E 为AB 的中点,F 是AD 边上的一个动点,连接EF 将△AEF 沿EF 折叠得△HEF ,延长FH 交BC 于M ,现在有如下5个结论:①△EFM 定是直角三角形;②△BEM ≌△HEM ;③当M 与C 重合时,有DF =3AF ;④MF 平分正方形ABCD 的面积;⑤FH•MH=214AB ,在以上5个结论中,正确的有( )A .2B .3C .4D .54.下列说法正确的是( )A.了解全国中学生最喜爱哪位歌手,适合全面调查.B.甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C.某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D.一组数据:3,2,5,5,4,6的众数是5.5.如图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误的是( )A .平均数是6B .中位数是6.5C .众数是7D .平均每周锻炼超过6小时的人数占该班人数的一半6.如图,已知▱ABCD 中,E 是边AD 的中点,BE 交对角线AC 于点F ,那么S △AFE :S 四边形FCDE 为( )A .1:3B .1:4C .1:5D .1:67.如图,要修建一条公路,从A 村沿北偏东75°方向到B 村,从B 村沿北偏西25°方向到C 村.若要保持公路CE 与从A 村到B 村的方向一致,则应顺时针转动的度数为( )A .50°B .75°C .100°D .105°8.如图,从一个直径为4的圆形铁皮中剪下一个圆心角为60°的扇形ABC ,将剪下来的扇形围成一个圆锥,则圆锥的底面半径为( )A .23BCD .9.如图,已知菱形ABCD 的对角线AC 、BD 的长分别是6cm 、8cm ,AE ⊥BC ,垂足为点E ,则AE 的长是( )A cmB .C .485cmD .245cm 10.分解因式3a 2b ﹣6ab+3b 的结果是( )A .3b (a 2﹣2a )B .b (3a 2﹣6a+1)C .3(a 2b ﹣2ab )D .3b (a ﹣1)211.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB =x 尺,则葭长OA'=(x+1)尺.可列方程正确的是( )A.x 2+52 =(x+1)2B.x 2+52 =(x ﹣1)2C.x 2+(x+1)2 =102D.x 2+(x ﹣1)2=52 12.如图,锐角△ABC 中,BC >AB >AC ,求作一点P ,使得∠BPC 与∠A 互补,甲、乙两人作法分别如下:甲:以B 为圆心,AB 长为半径画弧交AC 于P 点,则P 即为所求.乙:作BC 的垂直平分线和∠BAC 的平分线,两线交于P 点,则P 即为所求.对于甲、乙两人的作法,下列叙述正确的是( )A .两人皆正确B .甲正确,乙错误C .甲错误,乙正确D .两人皆错误 二、填空题13.点A (1,a )在函数3y x =的图象上,则点A 关于y 轴的对称点B 的坐标是____________。

河南省洛阳市2019-2020学年中考数学模拟试题(3)含解析

河南省洛阳市2019-2020学年中考数学模拟试题(3)含解析

河南省洛阳市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形不是正方体展开图的是()A.B.C.D.2.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )A.1600x+4000(120%)x+=18 B.1600x40001600(120%)x-++=18C.1600x+4000160020%x-=18 D.4000x40001600(120%)x-++=183.已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条4.已知a,b为两个连续的整数,且a<11<b,则a+b的值为()A.7 B.8 C.9 D.105.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°6.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()用水量x(吨) 3 4 5 6 7频数 1 2 5 4﹣x xA.平均数、中位数B.众数、中位数C.平均数、方差D.众数、方差7.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22ky (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-8.对于代数式ax 2+bx+c(a≠0),下列说法正确的是( )①如果存在两个实数p≠q ,使得ap 2+bp+c=aq 2+bq+c ,则a 2x +bx+c=a (x-p )(x-q ) ②存在三个实数m≠n≠s ,使得am 2+bm+c=an 2+bn+c=as 2+bs+c③如果ac <0,则一定存在两个实数m <n ,使am 2+bm+c <0<an 2+bn+c ④如果ac >0,则一定存在两个实数m <n ,使am 2+bm+c <0<an 2+bn+c A .③B .①③C .②④D .①③④9.下列运算,结果正确的是( ) A .m 2+m 2=m 4 B .2m 2n÷12mn=4m C .(3mn 2)2=6m 2n 4D .(m+2)2=m 2+410.把8a 3﹣8a 2+2a 进行因式分解,结果正确的是( ) A .2a (4a 2﹣4a+1) B .8a 2(a ﹣1)C .2a (2a ﹣1)2D .2a (2a+1)211.抛物线y =mx 2﹣8x ﹣8和x 轴有交点,则m 的取值范围是( ) A .m >﹣2B .m≥﹣2C .m≥﹣2且m≠0D .m >﹣2且m≠012.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,下列结论①a <b ;②|b|=|d|;③a+c=a ;④ad >0中,正确的有( )A .4个B .3个C .2个D .1个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 . 14.计算:5-=____.15.如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上的两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90°后,得到△AFB ,连接EF ,下列结论:①∠EAF =45°;②△AED ≌△AEF ;③△ABE ∽△ACD ;④BE 1+DC 1=DE 1.其中正确的是______.(填序号)16.计算:1275-=______.17.分解因式:x2-9=_ ▲ .18.如图,□ABCD中,E是BA的中点,连接DE,将△DAE沿DE折叠,使点A落在□ABCD内部的点F处.若∠CBF=25°,则∠FDA的度数为_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.20.(6分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP 的值.21.(6分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:(1)本次抽测的男生人数为,图①中m的值为;(2)求本次抽测的这组数据的平均数、众数和中位数;(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.22.(8分)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象.图②分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象.(1)求甲5时完成的工作量;(2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);(3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?23.(8分)如图,反比例函数y=kx(x>0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1.(1)求k的值;(1)点B为此反比例函数图象上一点,其纵坐标为2.过点B作CB∥OA,交x轴于点C,求点C的坐标.24.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.25.(10分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.(1)问题探究:如图1,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求ACBC的值.(3)应用拓展:如图3,已知l1∥l1,l1与l1之间的距离为1.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的2倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l1于点D.求CD的值.26.(12分)如图,半圆O的直径AB=5cm,点M在AB上且AM=1cm,点P是半圆O上的动点,过点B作BQ⊥PM交PM(或PM的延长线)于点Q.设PM=xcm,BQ=ycm.(当点P与点A或点B 重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 1 1.5 2 2.5 3 3.5 4y/cm 0 3.7 ______ 3.8 3.3 2.5 ______ (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60°时,PM的长度约为______cm.27.(12分)学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整.(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生,请用画树状图或列表法求出刚好抽到不同性别学生的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由平面图形的折叠及正方体的展开图解题.【详解】A、C、D经过折叠均能围成正方体,B•折叠后上边没有面,不能折成正方体.故选B.【点睛】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题. 2.B 【解析】 【分析】根据前后的时间和是18天,可以列出方程. 【详解】若设原来每天生产自行车x 辆,根据前后的时间和是18天,可以列出方程()16004000160018120x x -+=+%. 故选B 【点睛】本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程. 3.D 【解析】 【分析】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n ﹣3,即可求得对角线的条数. 【详解】解:∵多边形的每一个内角都等于120°, ∴每个外角是60度,则多边形的边数为360°÷60°=6, 则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条. ∴这个多边形的对角线有12(6×3)=9条, 故选:D . 【点睛】本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边形边数的方法是解本题的关键. 4.A 【解析】 ∵9<11<16,<<,即34<<,∵a,b为两个连续的整数,且11<<,a b∴a=3,b=4,∴a+b=7,故选A.5.C【解析】【分析】易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【详解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.6.B【解析】【分析】由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.【详解】∵6吨和7吨的频数之和为4-x+x=4,∴频数之和为1+2+5+4=12,则这组数据的中位数为第6、7个数据的平均数,即=5,∴对于不同的正整数x,中位数不会发生改变,∵后两组频数和等于4,小于5,∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.故选B.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.7.A 【解析】【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.8.A 【解析】设2(0)y ax bx c a =++≠(1)如果存在两个实数p≠q ,使得ap 2+bp+c=aq 2+bq+c ,则说明在2(0)y ax bx c a =++≠中,当x=p 和x=q 时的y 值相等,但并不能说明此时p 、q 是2(0)y ax bx c a =++≠与x 轴交点的横坐标,故①中结论不一定成立;(2)若am 2+bm+c=an 2+bn+c=as 2+bs+c ,则说明在2(0)y ax bx c a =++≠中当x=m 、n 、s 时,对应的y 值相等,因此m 、n 、s 中至少有两个数是相等的,故②错误;(3)如果ac <0,则b 2-4ac>0,则2(0)y ax bx c a =++≠的图象和x 轴必有两个不同的交点,所以此时一定存在两个实数m <n ,使am 2+bm+c <0<an 2+bn+c ,故③在结论正确;(4)如果ac >0,则b 2-4ac 的值的正负无法确定,此时2(0)y ax bx c a =++≠的图象与x 轴的交点情况无法确定,所以④中结论不一定成立. 综上所述,四种说法中正确的是③. 故选A. 9.B 【解析】 【分析】直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案.【详解】A. m 2+m 2=2m 2,故此选项错误;B. 2m 2n÷12mn=4m ,正确; C. (3mn 2)2=9m 2n 4,故此选项错误; D. (m+2)2=m 2+4m+4,故此选项错误. 故答案选:B. 【点睛】本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则. 10.C 【解析】 【分析】首先提取公因式2a ,进而利用完全平方公式分解因式即可. 【详解】 解:8a 3﹣8a 2+2a =2a(4a 2﹣4a+1) =2a(2a ﹣1)2,故选C. 【点睛】本题因式分解中提公因式法与公式法的综合运用. 11.C 【解析】 【分析】根据二次函数的定义及抛物线与x 轴有交点,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围. 【详解】解:∵抛物线288y mx x =--和x 轴有交点,20(8)4(8)0m m ≠⎧∴⎨--⋅-⎩…, 解得:m 2≥﹣且m 0≠. 故选C . 【点睛】本题考查了抛物线与x 轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当240b ac ∆=-≥时,抛物线与x轴有交点是解题的关键.12.B【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,①a<b,故①正确;②|b|=|d|,故②正确;③a+c=a,故③正确;④ad<0,故④错误;故选B.【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】试题分析:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1.考点:等腰三角形的性质;三角形三边关系.14.5.【解析】试题分析:根据绝对值意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0,所以-5的绝对值是5.故答案为5.考点:绝对值计算.15.①②④【解析】【分析】①根据旋转得到,对应角∠CAD=∠BAF,由∠EAF=∠BAF+∠BAE=∠CAD+∠BAE即可判断②由旋转得出AD=AF, ∠DAE=∠EAF,及公共边即可证明③在△ABE∽△ACD中,只有AB=AC、∠ABE=∠ACD=45°两个条件,无法证明④先由△ACD≌△ABF,得出∠ACD=∠ABF=45°,进而得出∠EBF=90°,然后在Rt△BEF中,运用勾股定理得出BE1+BF1=EF1,等量代换后判定④正确【详解】由旋转,可知:∠CAD=∠BAF.∵∠BAC=90°,∠DAE=45°,∴∠CAD+∠BAE =45°,∴∠BAF+∠BAE =∠EAF =45°,结论①正确;②由旋转,可知:AD =AF在△AED 和△AEF 中,=45AD AF DAE EAF AE AE ===⎧⎪∠∠︒⎨⎪⎩∴△AED ≌△AEF (SAS ),结论②正确;③在△ABE ∽△ACD 中,只有AB =AC ,、∠ABE =∠ACD =45°两个条件,无法证出△ABE ∽△ACD ,结论③错误;④由旋转,可知:CD =BF ,∠ACD =∠ABF =45°,∴∠EBF =∠ABE+∠ABF =90°,∴BF 1+BE 1=EF 1.∵△AED ≌△AEF ,EF =DE ,又∵CD =BF ,∴BE 1+DC 1=DE 1,结论④正确.故答案为:①②④【点睛】本题考查了相似三角形的判定,全等三角形的判定与性质, 勾股定理,熟练掌握定理是解题的关键 16.-【解析】原式==-故答案为:-17. (x +3)(x -3)【解析】【详解】x 2-9=(x+3)(x-3),故答案为(x+3)(x-3).18.50°【解析】【分析】延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明△BCG≌△DAE,从而∠7=∠6=25°,进而可求∠FDA得度数.【详解】延长BF交CD于G由折叠知,BE=CF, ∠1=∠2, ∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案为50°.【点睛】本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质. 证明△BCG≌△DAE是解答本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.【解析】【分析】(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.【详解】解析:(1)设购买A种花木x棵,B种花木y棵,根据题意,得:100501008000x yx y+=⎧⎨+=⎩,解得:4060xy=⎧⎨=⎩,答:购买A种花木40棵,B种花木60棵;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据题意,得:100﹣a≥a,解得:a≤50,设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.考点:一元一次不等式的应用;二元一次方程组的应用.20.(1)PD是⊙O的切线.证明见解析.(2)1.【解析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•C E=CA2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.21.(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标.【解析】分析:(Ⅰ)根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可;(Ⅱ)根据平均数、众数、中位数的定义求解可得;(Ⅲ)总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得.详解:(Ⅰ)本次抽测的男生人数为10÷20%=50,m%=1450×100%=1%,所以m=1.故答案为50、1;(Ⅱ)平均数为344105166147650⨯+⨯+⨯+⨯+⨯=5.16次,众数为5次,中位数为552+=5次;(Ⅲ)1614650++×350=2.答:估计该校350名九年级男生中有2人体能达标.点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(1)1件;(2)y甲=30t(0≤t≤5);y乙=()20026080(25)t tt t⎧≤≤⎨-<≤⎩;(3)23小时;【解析】【分析】(1)根据图①可得出总工作量为370件,根据图②可得出乙完成了220件,从而可得出甲5小时完成的工作量;(2)设y甲的函数解析式为y=kx+b,将点(0,0),(5,1)代入即可得出y甲与t的函数关系式;设y乙的函数解析式为y=mx(0≤t≤2),y=cx+d(2<t≤5),将点的坐标代入即可得出函数解析式;(3)联立y甲与改进后y乙的函数解析式即可得出答案.【详解】(1)由图①得,总工作量为370件,由图②可得出乙完成了220件,故甲5时完成的工作量是1.(2)设y甲的函数解析式为y=kt(k≠0),把点(5,1)代入可得:k=30故y甲=30t(0≤t≤5);乙改进前,甲乙每小时完成50件,所以乙每小时完成20件,当0≤t≤2时,可得y乙=20t;当2<t≤5时,设y=ct+d,将点(2,40),(5,220)代入可得:240 5220c dc d+=⎧⎨+=⎩,解得:6080 cd=⎧⎨=-⎩,故y乙=60t﹣80(2<t≤5).综上可得:y甲=30t(0≤t≤5);y乙=()2002 6080(25)t tt t⎧≤≤⎨-<≤⎩.(3)由题意得:306080y ty t=⎧⎨=-⎩,解得:t=83,故改进后83﹣2=23小时后乙与甲完成的工作量相等.【点睛】本题考查了一次函数的应用,解题的关键是能读懂函数图象所表示的信息,另外要熟练掌握待定系数法求函数解析式的知识.23.(1)k=11;(1)C(2,0).【解析】试题分析:(1)首先求出点A的坐标为(1,6),把点A(1,6)代入y=kx即可求出k的值;(1)求出点B的坐标为B(4,2),设直线BC的解析式为y=2x+b,把点B(4,2)代入求出b=-9,得出直线BC的解析式为y=2x-9,求出当y=0时,x=2即可.试题解析:(1)∵点A在直线y=2x上,其横坐标为1.∴y=2×1=6,∴A(1,6),把点A(1,6)代入kyx=,得62k=,解得:k=11;(1)由(1)得:12yx =,∵点B为此反比例函数图象上一点,其纵坐标为2,∴123yx==,解得x= 4,∴B(4,2),∵CB∥OA,∴设直线BC的解析式为y=2x+b,把点B(4,2)代入y=2x+b,得2×4+b=2,解得:b=﹣9,∴直线BC的解析式为y=2x﹣9,当y=0时,2x﹣9=0,解得:x=2,∴C(2,0).24.(1)证明见解析;(2)15.【解析】【分析】(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC 中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.【详解】(1)证明:连结OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切线;(2)连结CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直径,∠ACB=90°.∴EC是⊙O的切线.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,22-=201612设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x 2+122=(x+16)2﹣202,解得x=9,∴BC=2212915+=. 【点睛】考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.25.(1)△ABC 是“等高底”三角形;(1)132;(3)CD 的值为2103,12,1. 【解析】【分析】(1)过A 作AD ⊥BC 于D ,则△ADC 是直角三角形,∠ADC=90°,根据30°所对的直角边等于斜边的一半可得:132AD AC ==,根据“等高底”三角形的概念即可判断. (1)点B 是'AA C V 的重心,得到2BC BD =,设BD x =,则23AD BC x CD x ===,, 根据勾股定理可得13AC x =,即可求出它们的比值.(3)分两种情况进行讨论:①当2AB BC =时和②当2AC BC =时.【详解】(1)△ABC 是“等高底”三角形;理由:如图1,过A 作AD ⊥BC 于D ,则△ADC 是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴132AD AC ==, ∴AD=BC=3,即△ABC 是“等高底”三角形;(1)如图1,∵△ABC 是“等高底”三角形,BC 是“等底”,∴AD BC =,∵△ABC 关于BC 所在直线的对称图形是'A BC V ,∴∠ADC=90°,∵点B 是'AA C V 的重心,∴2BC BD =,设BD x =,则23AD BC x CD x ===,, 由勾股定理得13AC x =, ∴1313.22AC x BC x == (3)①当2AB BC =时,Ⅰ.如图3,作AE ⊥BC 于E ,DF ⊥AC 于F ,∵“等高底”△ABC 的“等底”为BC ,l 1∥l 1,l 1与l 1之间的距离为1,2AB BC =. ∴222BC AE AB ,,===∴BE=1,即EC=4,∴25AC ,=∵△ABC 绕点C 按顺时针方向旋转45°得到△A'B'C ,∴∠DCF=45°,设DF CF x ==,∵l 1∥l 1,∴ACE DAF ∠=∠,∴1,2DF AE AF CE == 即2AF x =, ∴325AC x ==,∴225,210,33x CD x === Ⅱ.如图4,此时△ABC 等腰直角三角形,∵△ABC 绕点C 按顺时针方向旋转45°得到''A B C V ,∴ACD V 是等腰直角三角形, ∴222CD AC ==. ②当2AC BC =时,Ⅰ.如图5,此时△ABC 是等腰直角三角形,∵△ABC 绕点C 按顺时针方向旋转45°得到△A'B'C ,∴1'A C l ⊥,∴2CD AB BC ===;Ⅱ.如图6,作AE BC ⊥于E ,则AE BC =,∴22AC BC ==,∴45ACE ∠=︒,∴△ABC 绕点C 按顺时针方向旋转45°,得到''A B C V 时,点A'在直线l 1上, ∴'A C ∥l 1,即直线'A C 与l 1无交点,综上所述,CD 210,22,2.3 【点睛】属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.26.(1)4,1;(2)见解析;(3)1.1或3.2【解析】【分析】(1)当x=2时,PM ⊥AB ,此时Q 与M 重合,BQ=BM=4,当x=4时,点P 与B 重合,此时BQ=1. (2)利用描点法画出函数图象即可;(3)根据直角三角形31度角的性质,求出y=2,观察图象写出对应的x 的值即可;(1)当x=2时,PM⊥AB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=1.故答案为4,1.(2)函数图象如图所示:(3)如图,在Rt△BQM中,∵∠Q=91°,∠MBQ=61°,∴∠BMQ=31°,∴BQ=12BM=2,观察图象可知y=2时,对应的x的值为1.1或3.2.故答案为1.1或3.2.【点睛】本题考查圆的综合题,垂径定理,直角三角形的性质,解题的关键是灵活运用所解题的关键是理解题意,学会用测量法、图象法解决实际问题.27.(1)150;(2)详见解析;(3)3 5 .【解析】【分析】(1)用A类人数除以它所占的百分比得到调查的总人数;(2)用总人数分别减去A、C、D得到B类人数,再计算出它所占的百分比,然后补全两个统计图;(3)画树状图展示所有20种等可能的结果数,再找出刚好抽到不同性别学生的结果数,然后利用概率公式求解.解:(1)15÷10%=150,所以共调查了150名学生;(2)喜欢“立定跳远”学生的人数为150﹣15﹣60﹣30=45,喜欢“立定跳远”的学生所占百分比为1﹣20%﹣40%﹣10%=30%,两个统计图补充为:(3)画树状图为:共有20种等可能的结果数,其中刚好抽到不同性别学生的结果数为12,所以刚好抽到不同性别学生的概率123. 205 ==【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。

河南省洛阳市2019-2020学年中考数学考前模拟卷(2)含解析

河南省洛阳市2019-2020学年中考数学考前模拟卷(2)含解析

河南省洛阳市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是()A.29.8×109B.2.98×109C.2.98×1010D.0.298×10102.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()中位数众数平均数方差9.2 9.3 9.1 0.3A.中位数B.众数C.平均数D.方差3.下列图形不是正方体展开图的是()A.B.C.D.4.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×1025.工人师傅用一张半径为24cm,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为()cm.A.119B.2119C.46D.1119 26.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等边三角形D.△BEF是等腰三角形7.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有()A.1个B.2个C.3个D.4个8.多项式4a﹣a3分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)29.点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数3y=x-的图象上,且x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y310.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 1x的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3 11.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm12.有一个数用科学记数法表示为5.2×105,则这个数是()A.520000 B.0.000052C.52000 D.5200000 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组512324x xx x+>+⎧⎨+⎩…的解集是__.14.图,A,B是反比例函数y=kx图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为________.15.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.16.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲ 度.17.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:第4个图案有白色地面砖______块;第n 个图案有白色地面砖______块.18.如图,点A ,B 在反比例函数y =1x (x >0)的图象上,点C ,D 在反比例函数y =k x(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)若两个不重合的二次函数图象关于y 轴对称,则称这两个二次函数为“关于y 轴对称的二次函数”.(1)请写出两个“关于y 轴对称的二次函数”;(2)已知两个二次函数21y ax bx c =++和22y mx nx p =++是“关于y 轴对称的二次函数”,求函数12y y +的顶点坐标(用含,,a b c 的式子表示).20.(6分)某校为表彰在“书香校园”活动中表现积极的同学,决定购买笔记本和钢笔作为奖品.已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元(1)笔记本和钢笔的单价各多少元?(2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x 个笔记本需要y 1元,买x 支钢笔需要y 2元;求y 1、y 2关于x 的函数解析式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.21.(6分)如图,抛物线y =ax 2+bx ﹣2经过点A (4,0),B (1,0).(1)求出抛物线的解析式;(2)点D 是直线AC 上方的抛物线上的一点,求△DCA 面积的最大值;(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.22.(8分)反比例函数kyx的图象经过点A(2,3).(1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.23.(8分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?24.(10分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.25.(10分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(m,n)(m<0,n>0),E点在边BC上,F点在边OA上.将矩形OABC沿EF折叠,点B正好与点O重合,双曲线过点E.(1) 若m=-8,n =4,直接写出E、F的坐标;(2) 若直线EF的解析式为,求k的值;(3) 若双曲线过EF的中点,直接写出tan∠EFO的值.26.(12分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.27.(12分)如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线249y x bx c =-++经过A 、C 两点,与AB 边交于点D . (1)求抛物线的函数表达式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ=CP ,连接PQ ,设CP=m ,△CPQ 的面积为S .①求S 关于m 的函数表达式,并求出m 为何值时,S 取得最大值;②当S 最大时,在抛物线249y x bx c =-++的对称轴l 上若存在点F ,使△FDQ 为直角三角形,请直接写出所有符合条件的F 的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,且为这个数的整数位数减1,由此即可解答.29.8亿用科学记数法表示为:29.8亿=2980000000=2.98×1.故选B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.A【解析】【分析】根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【详解】如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选A.点睛:本题主要考查了中位数,关键是掌握中位数定义.3.B【解析】【分析】由平面图形的折叠及正方体的展开图解题.【详解】A、C、D经过折叠均能围成正方体,B•折叠后上边没有面,不能折成正方体.故选B.【点睛】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:7600=7.6×103,【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.详解:由题意可得圆锥的母线长为:24cm,设圆锥底面圆的半径为:r,则2πr=15024180π⨯,解得:r=10,(cm).故选B.点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键.6.D【解析】【分析】连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.【详解】连接BD,∵四边形ABCD是菱形,∴AD=AB,∠ADB=12∠ADC,AB∥CD,∵∠A=60°,∴∠ADC=120°,∠ADB=60°,同理:∠DBF=60°,即∠A=∠DBF,∴△ABD是等边三角形,∴AD=BD,∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,∴∠ADE=∠BDF,∵在△ADE和△BDF中,{ADE BDF AD BDA DBF∠=∠=∠=∠,∴△ADE≌△BDF(ASA),∴DE=DF,AE=BF,故A正确;∵∠EDF=60°,∴△EDF是等边三角形,∴C正确;∴∠DEF=60°,∴∠AED+∠BEF=120°,∵∠AED+∠ADE=180°-∠A=120°,∴∠ADE=∠BEF;故B正确.∵△ADE≌△BDF,∴AE=BF,同理:BE=CF,但BE不一定等于BF.故D错误.故选D.【点睛】本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.7.D【解析】【分析】根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.【详解】解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.故选:D.【点睛】本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.8.B【解析】【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【详解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故选:B.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.9.A【解析】【分析】【详解】作出反比例函数3y=x-的图象(如图),即可作出判断:∵-3<1,∴反比例函数3y=x-的图象在二、四象限,y随x的增大而增大,且当x<1时,y>1;当x>1时,y<1.∴当x1<x2<1<x3时,y3<y1<y2.故选A.10.D【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.【详解】∵反比例函数y=1x中,k=1>0,∴此函数图象的两个分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,点C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y随x的增大而减小,∴y1>y2,∴y2<y1<y1.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.11.C【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.【点睛】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.12.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】5.2×105=520000,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2≤x<1【解析】【分析】分别解两个不等式得到x<1和x≥2,然后根据大小小大中间找确定不等数组的解集.【详解】解:512(1) 324(2)x xx x+>+⎧⎨+⎩…,解①得x<1,解②得x≥2,所以不等式组的解集为2≤x<1.故答案为2≤x<1.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.1.【解析】先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据△AOD的面积为3,列出关系式求得k的值.解:设点D坐标为(a,b),∵点D为OB的中点,∴点B的坐标为(2a,2b),∴k=4ab,又∵AC⊥y轴,A在反比例函数图象上,∴A的坐标为(4a,b),∴AD=4a﹣a=3a,∵△AOD的面积为3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案为1“点睛”本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据△AOD的面积为1列出关系式是解题的关键.15.1.【解析】【分析】根据(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.【详解】∵a1-b1=8,∴(a+b)(a-b)=8,∵a+b=4,∴a-b=1,故答案是:1.【点睛】考查了平方差,关键是掌握(a+b)(a-b)=a1-b1.16.1.【解析】【分析】由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC的度数【详解】∵PA,PB是⊙O是切线,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=000 18046=672.又∵PA是⊙O是切线,AO为半径,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP ﹣∠PAB=90°﹣67°=1°. 故答案为:1【点睛】此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.17.18块 (4n+2)块.【解析】【分析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n 个图案有白色地面砖(4n+2)块.【详解】解:第1个图有白色块4+2,第2图有4×2+2,第3个图有4×3+2, 所以第4个图应该有4×4+2=18块, 第n 个图应该有(4n+2)块.【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.18.1【解析】【分析】过A 作x 轴垂线,过B 作x 轴垂线,求出A (1,1),B (2,12),C (1,k ),D (2,2k ),将面积进行转换S △OAC =S △COM ﹣S △AOM ,S △ABD =S 梯形AMND ﹣S 梯形AAMNB 进而求解.【详解】解:过A 作x 轴垂线,过B 作x 轴垂线,点A ,B 在反比例函数y =1x (x >0)的图象上,点A ,B 的横坐标分别为1,2, ∴A (1,1),B (2,12), ∵AC ∥BD ∥y 轴,∴C (1,k ),D (2,2k ),∵△OAC 与△ABD 的面积之和为32, 111112222OAC COM AOM k S S S k ∴=-=⨯-⨯⨯=-V V V , S △ABD =S 梯形AMND ﹣S 梯形AAMNB 1k 11k 1111122224-⎛⎫⎛⎫=+⨯-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭, 1132242k k -∴-+=, ∴k =1,故答案为1.【点睛】本题考查反比例函数的性质,k 的几何意义.能够将三角形面积进行合理的转换是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)任意写出两个符合题意的答案,如:2243,43y x x y x x =-+=++;(2)21222y y ax c +=+,顶点坐标为()0,2c【解析】【分析】(1)根据关于y 轴对称的二次函数的特点,只要两个函数的顶点坐标根据y 轴对称即可;(2)根据函数的特点得出a=m ,-2b a -2n m =0,224444ac b mp n a m--= ,进一步得出m=a ,n=-b ,p=c ,从而得到y 1+y 2=2ax 2+2c ,根据关系式即可得到顶点坐标.【详解】解:(1)答案不唯一,如2243,43y x x y x x =-+=++;(2)∵y 1=ax 2+bx+c 和y 2=mx 2+nx+p 是“关于y 轴对称的二次函数”, 即a=m ,-2b a -2n m =0,224444ac b mp n a m--=, 整理得m=a ,n=-b ,p=c ,则y 1+y 2=ax 2+bx+c+ax 2-bx+c=2ax 2+2c ,∴函数y 1+y 2的顶点坐标为(0,2c ).【点睛】本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键.20.(1)笔记本单价为14元,钢笔单价为15元;(2)y 1=14×0.9x=12.6x ,y 2=;(3)当购买奖品数量超过2时,买钢笔省钱;当购买奖品数量少于2时,买笔记本省钱;当购买奖品数量等于2时,买两种奖品花费一样.【解析】(1)设每个文具盒z元,每支钢笔y元,可列方程组得解之得答:每个文具盒14元,每支钢笔15元.(2)由题意知,y1关于x的函数关系式是y1=14×90%x,即y1=12.6x.买钢笔10支以下(含10支)没有优惠.故此时的函数关系式为y2=15x:当买10支以上时,超出的部分有优惠,故此时的函数关系式为y2=15×10+15×80%(x-10),即y2=12x+1.(3)因为x>10,所以y2=12x+1.当y1<y2,即12.6x<12x+1时,解得x<2;当y1=y2,即12.6x=12x+1时,解得x=2;当y1>y2,即12.6x>12x+1时,解得x>2.综上所述,当购买奖品超过10件但少于2件时,买文具盒省钱;当购买奖品2件时,买文具盒和买钢笔钱数相等;当购买奖品超过2件时,买钢笔省钱.21.(1)y=﹣12x2+52x﹣2;(2)当t=2时,△DAC面积最大为4;(3)符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】【分析】(1)把A与B坐标代入解析式求出a与b的值,即可确定出解析式;(2)如图所示,过D作DE与y轴平行,三角形ACD面积等于DE与OA乘积的一半,表示出S与t的二次函数解析式,利用二次函数性质求出S的最大值即可;(3)存在P点,使得以A,P,M为顶点的三角形与△OAC相似,分当1<m<4时;当m<1时;当m>4时三种情况求出点P坐标即可.【详解】(1)∵该抛物线过点A(4,0),B(1,0),∴将A与B代入解析式得:,解得:,则此抛物线的解析式为y=﹣x2+x﹣2;(2)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2,过D作y轴的平行线交AC于E,由题意可求得直线AC的解析式为y=x﹣2,∴E点的坐标为(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,则当t=2时,△DAC面积最大为4;(3)存在,如图,设P点的横坐标为m,则P点的纵坐标为﹣m2+m﹣2,当1<m<4时,AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①当==2时,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此时P(2,1);②当==时,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合题意,舍去)∴当1<m<4时,P(2,1);类似地可求出当m>4时,P(5,﹣2);当m<1时,P(﹣3,﹣14),综上所述,符合条件的点P 为(2,1)或(5,﹣2)或(﹣3,﹣14).【点睛】本题综合考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里求三角形的面积及其最大值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,解决相似三角形问题时要注意分类讨论.22.(1)y=6x (2)点B(1,6)在这个反比例函数的图象上 【解析】【分析】(1)设反比例函数的解析式是y=k x,只需把已知点的坐标代入,即可求得函数解析式; (2)根据反比例函数图象上点的坐标特征进行判断.【详解】()1设反比例函数的解析式是k y x=, 则32k -=, 得6k =-. 则这个函数的表达式是6y x =-; ()2因为1666⨯=≠-,所以B 点不在函数图象上.【点睛】本题考查了待定系数法求反比例函数解析式:设出含有待定系数的反比例函数解析式y=k x(k 为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数图象上点的坐标特征.23.(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进1筒甲种羽毛球.【解析】【分析】(1)设该网店甲种羽毛球每筒的售价为x 元,乙种羽毛球每筒的售价为y 元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进甲种羽毛球m 筒,则购进乙种羽毛球(50﹣m )筒,根据总价=单价×数量结合总费用不超过2550元,即可得出关于m 的一元一次不等式,解之取其最大值即可得出结论.【详解】(1)设该网店甲种羽毛球每筒的售价为x 元,乙种羽毛球每筒的售价为y 元,依题意,得:x-y=152x+3y=255⎧⎨⎩,解得:x=60 y=45⎧⎨⎩.答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,依题意,得:60m+45(50﹣m)≤2550,解得:m≤1.答:最多可以购进1筒甲种羽毛球.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.(1)见解析;(2)见解析.【解析】试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.试题解析:证明:(1)选取①②,∵在△BEO和△DFO中12BO DOEOB FOD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.25.(1)E(-3,4)、F(-5,0);(2);(3).【解析】(1) 连接OE,BF,根据题意可知:设则根据勾股定理可得:即解得:即可求出点E的坐标,同理求出点F的坐标.(2) 连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE,证明△BGE≌△OGF,证明四边形OEBF为菱形,令y=0,则,解得,根据菱形的性质得OF=OE=BE=BF=令y=n,则,解得则CE=,在Rt△COE中,根据勾股定理列出方程,即可求出点E的坐标,即可求出k的值;(3) 设EB=EO=x,则CE=-m-x,在Rt△COE中,根据勾股定理得到(-m-x)2+n2=x2,解得,求出点E()、F(),根据中点公式得到EF的中点为(),将E()、()代入中,得,得m2=2n2即可求出tan∠EFO=.【详解】解:(1)如图:连接OE,BF,E(-3,4)、F(-5,0)(2) 连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE可证:△BGE≌△OGF(ASA)∴四边形OEBF为菱形令y=0,则,解得,∴OF=OE=BE=BF=令y=n,则,解得∴CE=在Rt△COE中,,解得∴E()∴(3) 设EB=EO=x,则CE=-m-x,在Rt△COE中,(-m-x)2+n2=x2,解得∴E()、F()∴EF的中点为()将E()、()代入中,得,得m2=2n2∴tan∠EFO=【点睛】考查矩形的折叠与性质,勾股定理,一次函数的图象与性质,待定系数法求反比例函数解析式,锐角三角函数等,综合性比较强,难度较大.26.(1)CD与圆O的位置关系是相切,理由详见解析;(2) AD=92.【解析】【分析】(1)连接OC,求出OC和AD平行,求出OC⊥CD,根据切线的判定得出即可;(2)连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.【详解】(1)CD与圆O的位置关系是相切,理由是:连接OC,∵OA=OC,∴∠OCA=∠CAB,∵∠CAB=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∵OC为半径,∴CD与圆O的位置关系是相切;(2)连接BC,∵AB是⊙O的直径,∴∠BCA=90°,∵圆O的半径为3,∴AB=6,∵∠CAB=30°,∴13333 2BC AB AC BC====,,∵∠BCA=∠CDA=90°,∠CAB=∠CAD ,∴△CAB ∽△DAC , ∴,AC AB AD AC=∴AD = ∴92AD =. 【点睛】本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.27.(1)244893y x x =-++;(2)①2315(5)102S m =-+,当m=5时,S 取最大值;②满足条件的点F 共有四个,坐标分别为13(,8)2F ,23()2F ,4,33(,62F +,43(,62F -, 【解析】【分析】(1)将A 、C 两点坐标代入抛物线y=-49x 2+bx+c ,即可求得抛物线的解析式; (2)①先用m 表示出QE 的长度,进而求出三角形的面积S 关于m 的函数;②直接写出满足条件的F 点的坐标即可,注意不要漏写.【详解】解:(1)将A 、C 两点坐标代入抛物线,得84366b+c=09c =⎧⎪⎨-⨯+⎪⎩ , 解得:438b c ⎧=⎪⎨⎪=⎩ ,∴抛物线的解析式为y=﹣49x 2+43x+8; (2)①∵OA=8,OC=6,∴=10,过点Q 作QE ⊥BC 与E 点,则sin ∠ACB = QE QC = AB AC =35, ∴10QE m - =35, ∴QE=35(10﹣m ),∴S=12•CP•QE=12m35×(10﹣m)=﹣310m2+3m;②∵S=12•CP•QE=12m×35(10﹣m)=﹣310m2+3m=﹣310(m﹣5)2+152,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣49x2+43x+8的对称轴为x=32,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(32,8),当∠FQD=90°时,则F2(32,4),当∠DFQ=90°时,设F(32,n),则FD2+FQ2=DQ2,即49+(8﹣n)2+49+(n﹣4)2=16,解得:n=6±72,∴F3(32,6+7),F4(32,6﹣7),满足条件的点F共有四个,坐标分别为F1(32,8),F2(32,4),F3(32,6+7),F4(32,6﹣7).【点睛】本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.。

河南省洛阳市2019-2020学年中考数学考前模拟卷(4)含解析

河南省洛阳市2019-2020学年中考数学考前模拟卷(4)含解析

河南省洛阳市2019-2020学年中考数学考前模拟卷(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC2.如图所示的几何体的左视图是()A.B.C.D.3.tan60°的值是( )A.3B.3C.3D.124.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4<x<0;其中推断正确的是()A.①②B.①③C.①③④D.②③④5.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A .B .C .D .6.如图,在△ABC 中,∠ABC=90°,AB=8,BC=1.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .107.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④8.计算a•a 2的结果是( )A .aB .a 2C .2a 2D .a 39.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( )A .3(2)29x x -=+B .3(2)29x x +=-C .9232x x -+=D .9232x x +-= 10.点(,2)A a a -是一次函数2y x m =+图象上一点,若点A 在第一象限,则m 的取值范围是( ). A .24m -<< B .42m -<< C .24m -≤≤ D .42m -≤≤11.已知地球上海洋面积约为361 000 000km 2,361 000 000这个数用科学记数法可表示为( ) A .3.61×106 B .3.61×107 C .3.61×108 D .3.61×10912.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是( ) A .﹣2.5 B .﹣0.6 C .+0.7 D .+5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:4a 2-4a+1=______.14.计算:()()a a b b a b +-+=_____________.15.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=23,∠AEO=120°,则FC 的长度为_____.16.如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD= ▲ °.17.因式分解:32a ab -=_______________.18.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示).()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.20.(6分)从一幢建筑大楼的两个观察点A ,B 观察地面的花坛(点C ),测得俯角分别为15°和60°,如图,直线AB 与地面垂直,AB =50米,试求出点B 到点C 的距离.(结果保留根号)21.(6分)如图,一次函数y =-x +5的图象与反比例函数y =k x (k≠0)在第一象限的图象交于A(1,n)和B 两点.求反比例函数的解析式;在第一象限内,当一次函数y =-x +5的值大于反比例函数y =k x (k≠0)的值时,写出自变量x 的取值范围.22.(8分)如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线249y x bx c =-++经过A 、C 两点,与AB 边交于点D . (1)求抛物线的函数表达式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ=CP ,连接PQ ,设CP=m ,△CPQ 的面积为S .①求S 关于m 的函数表达式,并求出m 为何值时,S 取得最大值;②当S 最大时,在抛物线249y x bx c =-++的对称轴l 上若存在点F ,使△FDQ 为直角三角形,请直接写出所有符合条件的F 的坐标;若不存在,请说明理由.23.(8分)如图,⊙O 是Rt △ABC 的外接圆,∠C=90°,tanB=12,过点B 的直线l 是⊙O 的切线,点D 是直线l 上一点,过点D 作DE ⊥CB 交CB 延长线于点E ,连接AD ,交⊙O 于点F ,连接BF 、CD 交于点G .(1)求证:△ACB ∽△BED ;(2)当AD ⊥AC 时,求DG CG 的值; (3)若CD 平分∠ACB ,AC=2,连接CF ,求线段CF 的长.24.(10分)如图,在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于点D ,BE ⊥AB 于点B ,BE=CD ,连接CE ,DE .(1)求证:四边形CDBE 为矩形;(2)若AC=2,1tan 2ACD ∠=,求DE 的长.25.(10分)如图,已知反比例函数y=k x (x >0)的图象与一次函数y=﹣12x+4的图象交于A 和B (6,n )两点.求k 和n 的值;若点C (x ,y )也在反比例函数y=k x (x >0)的图象上,求当2≤x≤6时,函数值y 的取值范围.26.(12分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y (元/双)与一次性购买的数量x (双)之间满足的函数关系如图所示.当10≤x <60时,求y 关于x 的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?27.(12分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】【详解】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,∴Rt△BCE≌Rt△DCE(HL).∴选项ABD都一定成立.故选C.2.A【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.3.A【解析】【分析】根据特殊角三角函数值,可得答案.【详解】tan60°故选:A.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4.B【解析】【分析】结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.【详解】解:①由图象可知,抛物线开口向下,所以①正确;②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;剩下的选项中都有③,所以③是正确的;易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.故选:B.【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.5.C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N和点D重合之前以及点M和点B重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,AD=22,AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.6.B【解析】【分析】根据三角形中位线定理求出DE ,得到DF ∥BM ,再证明EC=EF=12AC ,由此即可解决问题. 【详解】在RT △ABC 中,∵∠ABC=90°,AB=2,BC=1,∴AC=22AB BC +=2286+=10,∵DE 是△ABC 的中位线,∴DF ∥BM ,DE=12BC=3, ∴∠EFC=∠FCM ,∵∠FCE=∠FCM ,∴∠EFC=∠ECF ,∴EC=EF=12AC=5, ∴DF=DE+EF=3+5=2.故选B .7.C【解析】试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.481.9,8考点:实数与数轴的关系8.D【解析】a·a 2= a 3.故选D.9.A【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x 辆车,则可列方程:3(x-2)=2x+1.故选:A .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.10.B【解析】试题解析:把点(,2)A a a -代入一次函数2y x m =+得,22a a m -=+23m a =-.∵点A 在第一象限上,∴0{20a a >->,可得02a <<,因此4232a -<-<,即42m -<<,故选B .11.C【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n 是正数;当原数的绝对值小于1时,n 是负数.解答:解:将361 000 000用科学记数法表示为3.61×1.12.B【解析】【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是-0.6,故选B .【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2(21)a -【解析】【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【详解】解:22441(21)a a a -+=-.故答案为2(21)a -.【点睛】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.14.22a b -【解析】分析:按单项式乘以多项式的法则将括号去掉,在合并同类项即可.详解:原式=2222a ab ab b a b +--=-.故答案为:22a b -.点睛:熟记整式乘法和加减法的相关运算法则是正确解答这类题的关键.15.1【解析】先根据矩形的性质,推理得到OF=CF ,再根据Rt △BOF 求得OF 的长,即可得到CF 的长.【详解】解:∵EF ⊥BD ,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD 是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°-30°=30°,∴OF=CF ,又∵Rt △BOF 中,BO=12BD=12, ∴OF=tan30°×BO=1,∴CF=1,故答案为:1.【点睛】本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分. 16.1.【解析】试题分析:∵四边形OABC 为平行四边形,∴∠AOC=∠B ,∠OAB=∠OCB ,∠OAB+∠B=180°.∵四边形ABCD 是圆的内接四边形,∴∠D+∠B=180°.又∠D =12∠AOC ,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB )=31°-(1°+120°+1°+1°)=1°.故答案为1°.考点:①平行四边形的性质;②圆内接四边形的性质.17.a(a+b)(a-b).【解析】分析:本题考查的是提公因式法和利用平方差公式分解因式.解析:原式= a(a+b)(a-b).故答案为a(a+b)(a-b).18.6017. 【解析】【分析】如图,根据正方形的性质得:DE ∥BC ,则△ADE ∽△ACB ,列比例式可得结论.【详解】∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DEBC=ADAC,∴x5=12-x12,∴x=60 17,故答案为60 17.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)25;(2)35.【解析】【分析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25.故答案为25;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123 205=.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(5005003)+【解析】【详解】试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解.试题解析:作AD⊥BC于点D,∵∠MBC=60°,∴∠ABC=30°,∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,在Rt△ADB中,AB=1000,则AD=500,BD=5003,在Rt△ADC中,AD=500,CD=500,则BC=5005003+.答:观察点B到花坛C的距离为(5005003)+米.考点:解直角三角形21.(1)4yx=;(2)1<x<1.【解析】【分析】(1)将点A 的坐标(1,1)代入,即可求出反比例函数的解析式;(2)一次函数y =-x +5的值大于反比例函数y =k x ,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.【详解】解:(1)∵一次函数y=﹣x+5的图象过点A (1,n ),∴n=﹣1+5,解得:n=1,∴点A 的坐标为(1,1).∵反比例函数y=k x (k≠0)过点A (1,1), ∴k=1×1=1,∴反比例函数的解析式为y=4x. 联立54y x y x =-+⎧⎪⎨=⎪⎩,解得:14x y =⎧⎨=⎩或41x y =⎧⎨=⎩, ∴点B 的坐标为(1,1).(2)观察函数图象,发现:当1<x <1.时,反比例函数图象在一次函数图象下方,∴当一次函数y=﹣x+5的值大于反比例函数y=k x(k≠0)的值时,x 的取值范围为1<x <1. 【点睛】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C 的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键. 22.(1)244893y x x =-++;(2)①2315(5)102S m =-+,当m=5时,S 取最大值;②满足条件的点F 共有四个,坐标分别为13(,8)2F ,23()2F ,4,33(,62F +,43(,62F -, 【解析】【分析】(1)将A 、C 两点坐标代入抛物线y=-49x 2+bx+c ,即可求得抛物线的解析式; (2)①先用m 表示出QE 的长度,进而求出三角形的面积S 关于m 的函数;②直接写出满足条件的F 点的坐标即可,注意不要漏写.【详解】解:(1)将A 、C 两点坐标代入抛物线,得84366b+c=09c =⎧⎪⎨-⨯+⎪⎩ , 解得:438b c ⎧=⎪⎨⎪=⎩ ,∴抛物线的解析式为y=﹣49x 2+43x+8; (2)①∵OA=8,OC=6,∴=10,过点Q 作QE ⊥BC 与E 点,则sin ∠ACB = QE QC = AB AC =35, ∴10QE m - =35, ∴QE=35(10﹣m ), ∴S=12•CP•QE=12m 35×(10﹣m )=﹣310m 2+3m ; ②∵S=12•CP•QE=12m×35(10﹣m )=﹣310m 2+3m=﹣310(m ﹣5)2+152, ∴当m=5时,S 取最大值;在抛物线对称轴l 上存在点F ,使△FDQ 为直角三角形,∵抛物线的解析式为y=﹣49x 2+43x+8的对称轴为x=32, D 的坐标为(3,8),Q (3,4),当∠FDQ=90°时,F 1(32,8), 当∠FQD=90°时,则F 2(32,4), 当∠DFQ=90°时,设F (32,n ), 则FD 2+FQ 2=DQ 2, 即49+(8﹣n )2+49+(n ﹣4)2=16, 解得:n=6±2 , ∴F 3(32,6+2),F 4(32,6﹣2), 满足条件的点F 共有四个,坐标分别为F1(32,8),F2(32,4),F3(32,6+72),F4(32,6﹣72).【点睛】本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.23.(1)详见解析;(2)14;(3)855.【解析】【分析】(1)只要证明∠ACB=∠E,∠ABC=∠BDE即可;(2)首先证明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得DGCG=14;(3)想办法证明AB垂直平分CF即可解决问题.【详解】(1)证明:如图1中,∵DE⊥CB,∴∠ACB=∠E=90°,∵BD是切线,∴AB⊥BD,∴∠ABD=90°,∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,∴∠ABC=∠BDE,∴△ACB∽△BED;(2)解:如图2中,∵△ACB∽△BED;四边形ACED是矩形,∴BE:DE:BC=1:2:4,∵DF∥BC,∴△GCB∽△GDF,∴DGCG=14;(3)解:如图3中,∵tan∠ABC=ACBC=12,AC=2,∴BC=4,BE=4,DE=8,55易证△DBE≌△DBF,可得BF=4=BC,∴AC=AF=2,∴CF⊥AB,设CF交AB于H,则CF=2CH=2×85 AC BCAB⨯=.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.24.(1)见解析;(2)1【解析】【分析】【详解】分析:(1)根据平行四边形的判定与矩形的判定证明即可;(2)根据矩形的性质和三角函数解答即可.详解:(1)证明:∵ CD⊥AB于点D,BE⊥AB于点B,∴ 90CDA DBE ∠=∠=︒.∴ CD ∥BE .又∵ BE=CD ,∴ 四边形CDBE 为平行四边形.又∵90DBE ∠=︒,∴ 四边形CDBE 为矩形.(2)解:∵ 四边形CDBE 为矩形,∴ DE=BC .∵ 在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB ,可得 ACD ABC ∠=∠.∵ 1tan 2ACD ∠=, ∴ 1tan tan 2ABC ACD ∠=∠=. ∵ 在Rt △ABC 中,90ACB ∠=︒,AC=2,1tan 2ABC ∠=, ∴ 4tan AC BC ABC==∠. ∴ DE=BC=1.点睛:本题考查了矩形的判定与性质,关键是根据平行四边形的判定与矩形的判定解答.25.(1)n=1,k=1.(2)当2≤x≤1时,1≤y≤2.【解析】【分析】(1)利用一次函数图象上点的坐标特征可求出n 值,进而可得出点B 的坐标,再利用反比例函数图象上点的坐标特征即可求出k 值;(2)由k=1>0结合反比例函数的性质,即可求出:当2≤x≤1时,1≤y≤2.【详解】(1)当x=1时,n=﹣12×1+4=1, ∴点B 的坐标为(1,1).∵反比例函数y=k x过点B (1,1), ∴k=1×1=1;(2)∵k=1>0,∴当x >0时,y 随x 值增大而减小,∴当2≤x≤1时,1≤y≤2.【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.26.(1)y=150﹣x;(2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x双(10<x<1),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x<75;当40<x<1时,则40<100﹣x<1.②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x双(10<x<1)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则1≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<1时,则40<100﹣x<1,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<1,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<1时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.27.(1)证明见解析;(2)BC=;.【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴=.∴BF==.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13
13
5
2 ≈1.414).
25.
小明家所在居民楼的对面有一座大厦 AB,AB= 80 米.为测量这座居民楼与大厦之间的距
离,小明从自己家的窗户 C 处测得大厦顶部 A 的仰角为 37°,大厦底部 B 的俯角为 48°.求 小明家所在居民楼与大厦的距离 CD 的长度.(结果保留整数)
(参考数据: sin 37o 3,tan37o 3,sin48o 7 ,tan48o 11 )
5
4
10
10
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C 解析:C 【解析】 【分析】 先根据抛物线 y=ax2-2x 过原点排除 A,再由反比例函数图象确定 ab 的符号,再由 a、b 的 符号和抛物线对称轴确定抛物线与直线 y=bx+a 的位置关系,进而得解. 【详解】 ∵当 x=0 时,y=ax2-2x=0,即抛物线 y=ax2-2x 经过原点,故 A 错误;
要求提前 5 天交货,为按时完成订单,设每天就多做 x 套,则 x 应满足的方程为( )
A. 960 960 5 B. 960 5 960 C. 960 960 5 D. 960 960 5
48 x 48
48
48 x 48 x
48 48 x
10.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,
5.A
解析:A 【解析】 试题解析:∵x+1≥2, ∴x≥1. 故选 A. 考点:解一元一次不等式;在数轴上表示不等式的解集.
6.B
解析:B 【解析】 试题分析:从左面看易得第一层有 2 个正方形,第二层最左边有一个正方形.故选 B. 考点:简单组合体的三视图.
7.A
解析:A 【解析】 【分析】 先求出不等式组的解集,再在数轴上表示出来即可. 【详解】
15.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出 一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述 过程.以下是利用计算机模拟的摸球试验统计表:
摸球实验次数
100 1000 5000 10000
50000
100000
“摸出黑球”的次数
36
3.A
解析:A 【解析】 【分析】 作 BM⊥ED 交 ED 的延长线于 M,CN⊥DM 于 N.首先解直角三角形 Rt△CDN,求出
CN,DN,再根据 tan24°= AM ,构建方程即可解决问题. EM
【详解】 作 BM⊥ED 交 ED 的延长线于 M,CN⊥DM 于 N.
在 Rt△CDN 中,∵ CN 1 4 ,设 CN=4k,DN=3k, DN 0.75 3
C.
D.
3.如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端 B 出发,先沿水平方向向 右行走 20 米到达点 C,再经过一段坡度(或坡比)为 i=1:0.75、坡长为 10 米的斜坡 CD 到达点 D,然后再沿水平方向向右行走 40 米到达点 E(A,B,C,D,E 均在同一平面 内).在 E 处测得建筑物顶端 A 的仰角为 24°,则建筑物 AB 的高度约为(参考数据: sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )
A 在反比例函数 y= 2 的图像上,则菱形的面积为_______. x
17.如图,⊙O 的半径为 6cm,直线 AB 是⊙O 的切线,切点为点 B,弦 BC∥AO,若∠
A=30°,则劣弧 BC 的长为 cm.
18.如图,边长为 2 的正方形 ABCD 的顶点 A,B 在 x 轴正半轴上,反比例函数 y k 在 x
2019-2020 洛阳市第一高级中学中考数学模拟试题及答案 一、选择题
1.已知反比例函数 y= 的图象如图所示,则二次函数 y =ax 2-2x 和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是( )
A.
B.
C.
D.
2.在下面的四个几何体中,左视图与主视图不相同的几何体是( )
A.
B.
11.A
解析:A 【解析】 【分析】
【详解】 由题意得,根的判别式为△=(-4)2-4×3k,
由方程有实数根,得(-4)2-4×3k≥0,
解得 k≤ 4 , 3
由于一元二次方程的二次项系数不为零,所以 k≠0,
A.21.7 米
B.22.4 米
C.27.4 米
D.28.8 米
4.肥皂泡的泡壁厚度大约是 0.0007mm,0.0007 用科学记数法表示为( )
A.0.7×10﹣3
B.7×10﹣3
C.7×10﹣4
D.7×10﹣5
5.不等式 x+1≥2 的解集在数轴上表示正确的是( )
A.
B.
C.
D. 6.如图,由 5 个完全相同的小正方体组合成一个立体图形,它的左视图是( )
A.140
B.120
C.160
D.100
二、填空题
13.如图,在 Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点 C 顺时针旋转至
△A′B′C,使得点 A′恰好落在 AB 上,则旋转角度为_____.
14.如图:已知 AB=10,点 C、D 在线段 AB 上且 AC=DB=2; P 是线段 CD 上的动点,分别 以 AP、PB 为边在线段 AB 的同侧作等边△AEP 和等边△PFB,连结 EF,设 EF 的中点为 G; 当点 P 从点 C 运动到点 D 时,则点 G 移动路径的长是________.
A.
B.
C.
D.
7.集在数轴上表示正确的是(

A.
B.
C.
D.
8.估计 10 +1 的值应在( )
A.3 和 4 之间
B.4 和 5 之间
C.5 和 6 之间
D.6 和 7 之间
9.某服装加工厂加工校服 960 套的订单,原计划每天做 48 套.正好按时完成.后因学校
江抓着风筝线的一端站在 D 处,他从牵引端 E 测得风筝 A 的仰角为 67°,同一时刻小芸在
附近一座距地面 30 米高(BC=30 米)的居民楼顶 B 处测得风筝 A 的仰角是 45°,已知小江
与居民楼的距离 CD=40 米,牵引端距地面高度 DE=1.5 米,根据以上条件计算风筝距地
面的高度(结果精确到 0.1 米,参考数据:sin67°≈ 12 ,cos67°≈ 5 ,tan67°≈ 12 ,
∵反比例函数 y= 的图象在第一、三象限,
∴ab>0,即 a、b 同号,
当 a<0 时,抛物线 y=ax2-2x 的对称轴 x= <0,对称轴在 y 轴左边,故 D 错误;
当 a>0 时,b>0,直线 y=bx+a 经过第一、二、三象限,故 B 错误; C 正确. 故选 C. 【点睛】 本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的 关系进行判断是解题的关键,同时考查了数形结合的思想.
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有 8000 人,请估计爱吃 D 粽的人数;
(4)若有外型完全相同的 A、B、C、D 粽各一个,煮熟后,小王吃了两个.用列表或画树
状图的方法,求他第二个吃到的恰好是 C 粽的概率.
24.4 月 18 日,一年一度的“风筝节”活动在市政广场举行 ,如图,广场上有一风筝 A,小
第一象限的图象经过点 D,交 BC 于 E,若点 E 是 BC 的中点,则 OD 的长为_____.
19.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9, 9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学
的植树总棵数为 19 的概率______.
(1)求 y1 与 y2 的函数解析式. (2)求每天的销售利润 W 与 x 的函数解析式.
(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?
22.已知关于 x 的方程 x2 ax a 2 0 .
(1)当该方程的一个根为 1 时,求 a 的值及该方程的另一根; (2)求证:不论 a 取何实数,该方程都有两个不相等的实数根. 23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民 对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用 A、B、C、D 表 示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查 情况绘制成如下两幅统计图(尚不完整).
2.B
解析:B 【解析】 【分析】 由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形, 细心观察即可求解. 【详解】 A、正方体的左视图与主视图都是正方形,故 A 选项不合题意; B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故 B 选项与题意相符; C、球的左视图与主视图都是圆,故 C 选项不合题意; D、圆锥左视图与主视图都是等腰三角形,故 D 选项不合题意; 故选 B. 【点睛】 本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.
∴CD=10, ∴(3k)2+(4k)2=100, ∴k=2, ∴CN=8,DN=6, ∵四边形 BMNC 是矩形, ∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,
在 Rt△AEM 中,tan24°= AM , EM
∴0.45= 8 AB , 66
∴AB=21.7(米),
故选 A. 【点睛】 本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角 形是解答此题的关键.
387 2019 4009
相关文档
最新文档