江苏数学中考题汇编 苏科版
苏科版数学中考专题复习:图形的相似综合压轴题 专项练习题汇编(Word版,含答案)

苏科版数学中考专题复习:图形的相似综合压轴题专项练习题汇编1.已知四边形ABCD中,M,N两点分别在AB,BD上,且满足∠MCN=∠BDC.(1)如图1,当四边形ABCD为正方形时,①求证:△ACM∽△DCN;②求证:DN+BM=CD;(2)如图2,当四边形ABCD为菱形时,若∠BAD=120°,试探究DN,BM,CD的数量关系.2.在△ABC中,CA=CB=m,在△AED中,DA=DE=m,请探索解答下列问题.【问题发现】(1)如图1,若∠ACB=∠ADE=90°,点D,E分别在CA,AB上,则CD与BE的数量关系是,直线CD与BE的夹角为;【类比探究】(2)如图2,若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图2所示的位置,则CD与BE之间是否满足(1)中的数量关系?说明理由.【拓展延伸】(3)在(1)的条件下,若m=2,将△AED绕点A旋转过程中,当B,E,D三点共线.请直接写出CD的长.3.已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.问题发现:(1)①如图1,若四边形ABCD是正方形,且DE⊥CF于G,则=;②如图2,当四边形ABCD是矩形时,且DE⊥CF于G,AB=m,AD=n,则=;拓展研究:(2)如图3,若四边形ABCD是平行四边形,且∠B+∠EGC=180°时,求证:;解决问题:(3)如图4,若BA=BC=5,DA=DC=10,∠BAD=90°,DE⊥CF于G,请直接写出的值.4.在等边△ABC中,D,E分别是AC,BC上的点,且AD=CE,连接BD、AE相交于点F.(1)如图1,当时,=;(2)如图2,求证:△AFD∽△BAD;(3)如图3,当时,猜想AF与BF的数量关系,并说明理由.5.如图1,点D是△ABC中AB边上一点,∠ACD=∠B,BC2=AB•BD.(1)求证:∠ADC=∠ACB;(2)求∠ACB的度数;(3)将图1中的△BCD绕点C顺时针旋转得到△ECF,BD的对应边EF经过点A(如图2所示),若AC=2,求线段CD的长.6.在矩形ABCD中,AB=6,AD=4,点M为AB边上一个动点,连接DM,过点M作MN ⊥DM,且MN=DM,连接DN.(1)如图①,连接BD与BN,BD交MN于点E.①求证:△ABD∽△MND;②求证:∠CBN=∠DNM;(2)如图②,当AM=4BM时,求证:A,C,N三点在同一条直线上.7.在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上,AB=8,AD=6.(1)如图1,当点G在CD上时,求AE+DG的值;(2)如图2,FG与CD相交于点N,连接EN,当EF平分∠AEN时,求证:EN=AE+DN;(3)如图3,EG,FG分别交CD于点M,N,当MG2=MN•MD时,求AE的值.8.【问题背景】如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,由已知可以得到:①△≌△;②△∽△.【尝试应用】如图2,在△ABC和△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE =30°,求证:△ACE∽△ABD.【问题解决】如图3,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE =30°,AC与DE相交于点F,点D在BC上,,求的值.9.已知正方形ABCD中,点E是边CD上一点(不与C、D重合),将△ADE绕点A顺时针旋转90°得到△ABF,如图1,连接EF分别交AC、AB于点P、G.(1)请判断△AEF的形状;(2)求证:P A2=PG•PF;(3)如图2,当点E是边CD的中点时,PE=1,求AG的长.10.如图,等边△ABC的边长为12,点D,E分别在边AB,AC上,且AD=AE=4,点F 为BA延长线上一点,过点F作直线l∥BC,G为射线BC上动点,连接GD并延长交直线l于点H,连接FE并延长交BC于点M,连接HE并延长交射线BC于点N.(1)若AF=4,当BG=4时,求线段HF和EH的长;(2)若AF=a(a>0),点G在运动过程中,请判断△HGN的面积是否改变.若不变,求出其值(用含a的代数式表示);若改变,请说明理由.11.在△ABC中,∠ACB=90°,AC=8,BC=6.(1)如图1,点D为AC上一点,DE∥BC交AB边于点E,若=,求AD及DE的长;(2)如图2,折叠△ABC,使点A落在BC边上的点H处,折痕分别交AC、AB于点G、F,且FH∥AC.①求证:四边形AGHF是菱形;②求菱形的边长;(3)在(1)(2)的条件下,线段CD上是否存在点P,使得△CPH∽△DPE?若存在,求出PD的长;若不存在,请说明理由.12.如图①,AB∥MH∥CD,AD与BC相交于点M,点H在BD上.求证:.小明的部分证明如下:证明:∵AB∥MH,∴△DMH∽△DAB,∴.同理可得:=,….(1)请完成以上的证明(可用其他方法替换小明的方法);(2)求证:;(3)如图②,正方形DEFG的顶点D、E分别在△ABC的边AB、AC上,E、F在边BC 上,AN⊥BC,交DG于M,垂足为N,求证:.13.【问题情境】如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,我们可以得到如下正确结论:①CD2=AD•BD;②AC2=AB•AD;③BC2=AB•BD,这些结论是由古希腊著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③BC2=AB•BD.【结论运用】(2)如图2,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF.①求证:△BOF∽△BED.②若CE=2,求OF的长.14.如图①,在正方形ABCD中,点P为线段BC上的一个动点,连接AP,将△ABP沿直线AP翻折得到△AEP,点Q是CD的中点,连接BQ交AE于点F,若BQ∥PE.(1)求证:△ABF∽△BQC;(2)求证:BF=FQ;(3)如图②,连接DE交BQ于点G,连接EC,GC,若FQ=6,求△GBC的面积.15.如图1,已知等边△ABC的边长为8,点D在AC边上,AD=2,点P是AB边上的一个动点.(1)连接PC、PD.①当AP=时,△APD∽△ACP;②若△APD与△BPC相似,求AP的长度;(2)已知点Q在线段PB上,且PQ=2.①如图2,若△APD与△BQC相似,则∠ACQ与∠PDC之间的数量关系是;②如图3,若E、F分别是PD、CQ的中点,连接EF,线段EF的长是否是一个定值,若是,求出EF的长,若不是,说明理由.16.(1)如图①,点E,F分别在正方形边AB,BC上,且AF⊥DE,请直接写出AF与DE的关系.(2)如图②,点E,F,G分别在矩形ABCD的边AB,BC,CD上,且AF⊥EG,求证:.(3)如图③,在(2)的条件下,连接AG,过点G作AG的垂线与CF交于点H,已知BH=3,HG=5,GA=7.5,求的值.17.【问题背景】正方形ABCD和等腰直角三角形CEF按如图①所示的位置摆放,点B,C,E在同一条直线上,其中∠ECF=90°.【初步探究】(1)如图②,将等腰直角三角形CEF绕点C按顺时针方向旋转,连接BF,DE,请直接写出BF与DE的数量关系与位置关系:;【类比探究】(2)如图③,将(1)中的正方形ABCD和等腰直角三角形CEF分别改成矩形ABCD和Rt△CEF,其中∠ECF=90°,且,其他条件不变.①判断线段BF与DE的数量关系,并说明理由;②连接DF,BE,若CE=6,AB=12,求DF2+BE2的值.18.在相似的复习课中,同学们遇到了一道题:已知∠C=90°,请设计三种不同方法,将Rt△ABC分割成四个小三角形,使每个小三角形与原三角形相似.(1)甲同学设计了如图1分割方法:D是斜边AB的中点,过D分别作DE⊥AC,DF ⊥BC,请判断甲同学的做法是否正确,并说明理由.(2)乙同学设计了如图2分割方法,过点D作FD⊥AB,DE⊥BC,连结EF,易证△ADF∽△ACB,△DEB∽△ACB,但是只有D在AB特殊位置时,才能证明另两个三角形与原三角形相似,李老师通过几何画板,发现∠A=30°时,,∠A=45°时,,∠A=60°时,.猜测对于任意∠A,当=(用AC,BC或AB相关代数式表示),结论成立.请补充条件并证明.(3)在普通三角形中,显然连结三角形中位线分割成四个小三角形与原三角形相似.你能参考乙同学的分割方法找到其他分割方法吗?请做出示意图并作适当分割说明(不要求证明过程).19.△ABC中,∠BAC=90°,AB=AC,点D在AB边上,点E在AC边上,连接DE,取BC边的中点O,连接DO并延长到点F,使OF=OD,连接CF,EF,令==k.(1)①如图1,若k=1,填空:=;△ECF是三角形.②如图2,将①中△ADE绕点A旋转,①中的结论是否仍然成立?若成立,请仅就图2所示情况给出证明;若不成立,请说明理由.(2)如图3,若k=,AB=AD,将△ADE由图1位置绕点A旋转,当点C,E,D三点共线时,请直接写出sin∠1的值.20.【基础探究】如图1,四边形ABCD中,∠ADC=∠ACB,AC为对角线,AD•CB=DC•AC.(1)求证:AC平分∠DAB.(2)若AC=8,AB=12,则AD=.【应用拓展】如图2,四边形ABCD中,∠ADC=∠ACB=90°,AC为对角线,AD•CB =DC•AC,E为AB的中点,连结CE、DE,DE与AC交于点F.若CB=6,CE=5,请直接写出的值.参考答案1.(1)①证明:∵四边形ABCD为正方形∴∠ACD=∠BDC=∠BAC=45°,又∵∠MCN=∠BDC,∴∠MCN=∠ACD=45°,∴∠MCA+∠ACN=∠ACN+∠DCN,∴∠MCA=∠DCN,∴△ACM∽△DCN.②证明:由①可知:△ACM∽△DCN,∴,∴DN=AM,∴AM+BM=AB=CD,∴DN+BM=CD.(2)解:如图所示:连接AC,在DN上取一点P使∠PCD=∠PDC=30°,过P作PQ ⊥CD于Q,∴∠PCD=∠PDC=30°,∴∠NPC=60°,又∵四边形ABCD为菱形且∠BAD=120°,∴∠BAC=60°,∴∠NPC=∠BAC,又∵∠ACP=∠ACD﹣∠PCD=30°,∠MCN=∠BDC=30°,∵∠MCN=∠ACP,∴∠MCA+∠ACN=∠ACN+∠NCP,∴∠MCA=∠NCP,∴△AMC∽△PNC,∴,∵,∴CD=CP,∴,∴AM,∴AM=PN,∴AM+MB=AB=CD,∴PN+MB=CD,∴(DN﹣DP)+MB=CD,∴(DN﹣CD)+MB=CD,即DN﹣CD+MB=CD,∴DN+MB=2CD.2.解:(1)∵∠ACB=∠ADE=90°,CA=CB,DA=DE,∴∠A=∠B=∠DEA=45°,∴AB=AC=m,AE=AD=m,∴CD=AC﹣AD=m,BE=AB﹣AE=m,∴BE=CD,∵∠A=45°,∴直线CD与BE的夹角为45°,故答案为:BE=CD,45°;(2)不满足,BE=CD,直线CD与BE的夹角为30°,理由如下:如图2,过点C作CH⊥AB于H,延长CD、BE交于点F,∵CA=CB,∴AH=HB,∵∠ACB=∠ADE=120°,CA=CB,DA=DE,∴∠CAB=∠CBA=30°,∠DAE=∠DEA=30°,∴AC=2CH,∠CAD=∠BAE,由勾股定理得:AH=AC,∴AB=AC,同理可得:AE=AD,∵∠CAD=∠BAE,∴△CAD∽△BAE,∴==,∠ACD=ABE,∴BE=CD,∠F=∠CAB=30°,∴BE=CD,直线CD与BE的夹角为30°;(3)如图3,点E在线段BD上,∵m=2,∴AD=DE=1,AB=2,由勾股定理得:BD==,∴BE=BD﹣DE=﹣1,∴CD=BE=,如图4,点D在线段BE上,BE=BD+DE=+1,∴CD=BE=,综上所述:当B,E,D三点共线.CD的长为或.3.(1)解:①∵四边形ABCD是正方形,∴AD=CD,∠BAD=∠ADC=90°,∵DE⊥CF,∴∠DGF=90°=∠ADC,∴∠ADE+∠EDC=90°=∠EDC+∠DCF,∴∠ADE=∠DCF,∴△ADE≌△DCF(ASA),∴DE=CF,故答案为:1;②解:∵四边形ABCD是矩形,∴∠A=∠FDC=90°,AB=CD=m,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴=,故答案为:;(2)证明:如图所示,∠B+∠EGC=180°,∠EGC+∠EGF=180°,∴∠B=∠EGF,在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM,∵AB∥CD,∴∠A=∠CDM,∵AD∥BC,∴∠B+∠A=180°,∵∠B=∠EGF,∴∠EGF+∠A=180°,∴∠AED=∠CFM=∠CMF,∴△ADE∽△DCM,∴,即;(3)解:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,∵∠BAD=90°,即AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四边形AMCN是矩形,∴AM=CN,AN=CM,在△BAD和△BCD中,,∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠MBC=∠ADC,∵∠CND=∠M=90°,∴△BCM∽△DCN,∴,∴,∴CM=x,在Rt△CMB中,CM=x,BM=AM﹣AB=x﹣5,由勾股定理得:BM2+CM2=BC2,∴(x﹣5)2+(x)2=52,解得:x1=0(舍去),x2=8,∴CN=8,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF=90°,∴△AED∽△NFC,∴==.4.解:(1)如图,∵∠ABC=∠C=60°,∴△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,∵AD=CE,∴△ABD≌△CAE(SAS),∴∠EAC=∠DBA,∵,∴点D是AC中点,且△ABC是等边三角形,∴∠DBA=30°,∴∠EAC=30°,∴∠BAE=∠DBA=30°,∴AF=BF,∴,故答案为:1;(2)由(1)可得△ABD≌△CAE,∴∠EAC=∠DBA,∵∠ADF=∠BDA,∴△AFD∽△BAD;(3)由(1)可得△ABD≌△CAE,∴BD=AE,∠EAC=∠DBA,∴∠BFE=∠DBA+∠BAF=∠EAC+∠BAF=∠BAD=60°,设AF=x,BF=y,AB=AC=BC=n,AD=CE=1,BD=AE=m,∵∠EAC=∠DBA,∠ADB=∠ADB,∴△ADF∽△BDA,∴,∴①,∵∠BFE=∠C=60°,∠DBC=∠DBC,∴△BFE∽△BCD,∴,∴②,①÷②得:,∴,∵,即n=4,∴.5.(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB.∴∠ADC=∠ACB.(2)解:∵BC2=AB•BD,∴.又∵∠B=∠B,∴△ABC∽△CBD.∴∠ACB=∠CDB.∵∠ADC+∠CDB=180°,∠ADC=∠ACB,∴∠ACB=∠CDB=∠ADC=90°.(3)解:∵△BCD绕点C顺时针旋转得到△ECF,∴CE=BC,∠E=∠B.∵∠ACD=∠B,∴∠ACD=∠E.∴AC=AE.∵∠ADC=90°,∴CE⊥AB.∴CD=DE=CE.∴∵△ADC∽△ACB,∴.∴AD=•AC=1,在Rt△ADC中,.6.证明:(1)①∵四边形ABCD为矩形,DM⊥MN,∴∠A=∠DMN=90°,∵AB=6,AD=4,MN=DM,∴,∴△ABD∽△MND;②∵四边形ABCD为矩形,DM⊥MN,∴∠ABC=∠DMN=90°,∴∠ABD+∠CBD=90°,由①得△ABD∽△MND,∴∠ABD=∠DNM,又∵∠MEB=∠DEN,∴△MBE∽△DNE,∴,又∵∠MED=∠BEN,∴△DME∽△NBE,∴∠NBE=∠DME=90°,∴∠CBN+∠CBD=90°,∴∠CBN=∠DNM;(2)如图②,过点N作NF⊥AB,交AB延长线于点F,连接AC,AN,则∠NF A=90°,∵四边形ABCD为矩形,AD=4,AB=6,∴∠A=∠ABC=90°,BC=AD=4,,则∠ADM+∠AMD=90°,∵AM=4BM,AB=6,∴AM=AB=,又∵DM⊥MN,∴∠DMN=90°,∴∠AMD+∠FMN=90°,∴∠ADM=∠FMN,∴△ADM∽△FMN,∴,,∴MF=6,FN=,∴,∴,∵∠ABC=∠AFN=90°,∴△ABC∽△AFN,∴∠BAC=∠F AN,∴A,C,N三点在同一条直线上.7.(1)解:∵四边形ABCD是矩形,∴∠A=∠D=90°,EF=FG,∵∠EFG=90°,∴∠AFE+∠DFN=90°,∠AFE+∠AEF=90°,∴∠DFN=∠AEF.∴△DFG≌△AEF(AAS),∴AF=DG,AE=DF,∴AE+DG=AF+DF=AD=6;(2)证明:如图,延长NF,EA相交于H,∴∠HFE=90°,∠HAF=90°,∵∠HFE=∠NFE,EF=EF,∠HEF=∠NEF,∴△HFE≌△NFE(ASA),∴FH=FN,HE=NE,∵∠AFH=∠DFN,∠HAF=∠D,∴△HF A≌△NFD(AAS),∴AH=DN,∵EH=AE+AH=AE+DN,∴EN=AE+DN;(3)解:如图,过点G作GP⊥AD交AD的延长线于P,∴∠P=90°,∵MG2=MN•MD,∴=,∵∠GMN=∠DMG,∴△MGN∽△MDG,∴∠GDM=45°,∠PDG=45°,∴△PDG是等腰直角三角形,PG=PD,∵∠AFE+∠PFG=90°,∠AFE+∠AEF=90°,∴∠PFG=∠AEF,∵∠A=∠P=90°,EF=FG,∴△PFG≌△AEF(AAS),∴AF=PG,AE=PF,∴AE=PD+DF=AF+DF=AD=6.8.【问题背景】∵△ABC和△ADE是等腰直角三角形,∴△ABC∽△ADE.∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,故答案为:①△ABD≌△ACE;②△ABC∽△ADE.【尝试应用】∵△ABC∽△ADE,∴,∠CAB=∠EAD,∴∠CAE=∠BAD,∴△ACE∽△ABD;【问题解决】连接CE,由【尝试应用】知,△ABD∽△ACE,∴∠ACE=∠ABD=∠ADE=30°,∵∠AFD=∠EFC,∴△ADF∽△ECF,∴,∵,∴,∵,∴.9.(1)解:△AEF是等腰直角三角形,理由如下:由旋转的性质可知:AF=AE,∠F AE=90°,∴△AEF是等腰直角三角形;(2)证明:∵四边形ABCD是正方形,∠CAB=45°,由(1)知∠AFE=45°,∴∠P AG=∠AFP=45°,又∵∠APG=∠FP A,∴△APG∽△FP A,∴,∴P A2=PG•PF;(3)解:设正方形的边长为2a,∵将△ADE绕点A顺时针旋转90°得到△ABF,∴∠ABF=∠D=90°,DE=BF,∵∠ABC=90°,∴∠FBC=180°,∴F,B,C三点共线,∵DE=EC=BF=a,BC=2a,∴CF=3a,EF===a,∵BG∥EC,∴BG:EC=FB:CF=FG:FE=1:3,∴BG=,AG=,GE=a,∵∠GAP=∠EG=45°,∠AGP=∠EGA,∴△AGP∽△EGA,∴,∴AG2=GP•GE,∴()2=()×,∴a=或a=0(舍去),∴AG=.10.解:(1)如图1,由题意可得:BD=DF=8,∵HF∥BC,∴∠HFD=∠B,在△HFD和△GBD中,,∴△HFD≌△GBD(ASA),∴HF=BG=4,连接DE,∵△ABC是等边三角形,∴∠B=∠BAC=60°,∵AD=AE=4,∴△ADE是等边三角形,∴DE=AD=4,∠ADE=60°,∴∠ADE=∠B,∴DE∥BC,∴DE∥FH,∵FH=DE=4,∴四边形DEFH是平行四边形,∴HE和DF互相平分,∵DA=AF,∴HE经过点A,∴HE=2AE=8;(2)如图2,面积不变,理由如下:连接DE,作FK⊥BC于K,在Rt△BFK中,∠B=60°,BF=12+a,∴FK=BF•sin60°=,由(1)得,DE∥FH=BC,∴△HDE∽△HGN,△HFD∽△GBD,∴,,∴,∴,∴,∴GN=,∴S△HGN===,11.解:(1)∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴AD=2,;(2)①由翻折不变性可知:AF=FH,AG=GH,∠AFG=∠GFH,∵FH∥AC,∴∠AGF=∠GFH,∴∠AGF=∠AFG,∴AG=AF,∴AG=AF=FH=HG,∴四边形AGHF是菱形;②∵FH∥AC,∴△FBH∽△ABC,∴,又∵BC=6,AC=8,AB=10,∴BH:FH:BF=3:4:5,∴设BH=3a,则FH=AF=4a,BF=5a,∴4 a+5a=10,∴,∴FH=,即菱形的边长为;(3)在点P使得△CPH∽△DPE,理由如下:∵△CPH∽△DPE,∴,∵BH=,∴CH=,∴,∴.12.证明:(1)∴=,两边都除以MH,得,;(2)如图1,作AE⊥BD于E,MF⊥BD于F,CG⊥BD于G,∴AE∥MF∥CG,∴,∵HH∥AB,∴,∴,同理可得:,由(1)得,,两边乘以,得,(3)如图2,∵DG∥BC,∴△ADG∽△ABC,∴,∵,∴,∵四边形DEFG是正方形,∴MN=DE=DG,∴,两边都除以DG,得,.13.(1)证明:∵CD⊥AB,∴∠BDC=90°=∠ACB,∵∠CBD=∠ABC,∴△CBD∽△ABC,∴,∴BC2=AB•BD;(2)①证明:∵四边形ABCD是正方形,∴OC⊥BO,∠BCD=90°,∴BC2=BO•BD,∵CF⊥BE,∴BC2=BF•BE,∴BO•BD=BF•BE,即,∵∠OBF=∠EBD,∴△BOF∽△BED;②解:在Rt△BCE中,∵BC=6,CE=2,∴BE==2,∴DE=4,BO=3,由①知△BOF∽△BED,∴,∴,∴OF=.14.(1)证明:如图①中,∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB∥CD,∴∠ABF=∠CQB,由翻折的性质可知,∠E=∠ABC=90°∵PE∥BQ,∴∠AFB=∠E=90°,∴△AFB∽△BCQ;(2)证明:如图①中,设AB=BC=CD=AD=2a,∵Q是CD的中点,∴CQ=QD=a,∵∠C=90°,∴BQ===a,∵△AFB∽△BCQ,∴=,∴=,∴BF=a,∴QF=a,∴==,∴BF=QF;(3)解:如图②,建立如图平面直角坐标系,过点E作EH⊥AB于点T.∵BF=FQ,FQ=6,∴BF=4,∴BQ=BF+FQ=4+6=10,∴CQ=2,AB=BC=CD=AD=4,∴Q(4,2),∴直线BQ的解析式为y=x,∵∠EAT=∠CBQ,∠ATE=∠BCQ=90°,∴△ATE∽△BCQ,∴==,∴==,∴AT=8,ET=4,∴BT﹣AB﹣AT=4﹣8,∴E(4,4﹣8),∵D(4,4),∴直线DE的解析式为:y=x+2﹣10,由,解得,∴G(4﹣4,2﹣2),∴S△BCG=××(2﹣2)=20﹣4.15.解:(1)①∵等边△ABC的边长为8,∴AC=8,∵△APD∽△ACP,∴,∵AD=2,∴,∴AP=4,故答案为4;②∵△ABC为等边三角形,∴AB=BC=8,∠A=∠B=60°,∵△APD与△BPC相似,∴△APD∽△BPC或△APD∽△BCP,Ⅰ、当△APD∽△BPC时,,∴,∴AP=,Ⅱ、当△APD∽△BCP时,,∴,∴AP=4,即△APD与△BPC相似时,AP的长度为或4;(2)①∵△ABC为等边三角形,∴AB=BC=8,∠A=∠B=∠ACB=60°,∵△APD与△BQC相似,∴△APD∽△BQC或△APD∽△BCQ,Ⅰ、当△APD∽△BQC时,∠APD=∠BQC,∴∠PDC=∠A+∠APD=60°+∠APD=60°+∠BQC,∴∠BQC=∠PDC﹣60°,∴∠ACQ=∠ACB﹣∠BCQ=60°﹣(180°﹣∠B﹣∠BAC)=∠B+∠BQC﹣120°=60°+∠PDC﹣60°﹣120°=∠PDC﹣120°,∴∠PDC+∠ACQ=120°;Ⅱ、当△APD∽△BCQ时,∠APD=∠BCQ,∴∠PDC=∠A+∠APD=60°+∠APD=60°+∠BCQ,∴∠BCQ=∠PDC﹣60°,∴∠ACQ=∠ACB﹣∠BCQ=60°﹣(∠PDC﹣60°)=120°﹣∠PDC,∴∠ACQ+∠PDC=120°,即满足条件的∠ACQ与∠PDC之间的数量关系是∠ACQ+∠PDC=120°或∠PDC﹣∠ACQ=120°;②线段EF的长是一个定值,为.如图,连接AE并延长至G,使AE=GE,连接PG,QG,∵点E是DP的中点,∴DE=PE,∵∠AED=∠GEP,∴△AED≌△GEP(SAS),∴AE=GE,PG=AD=2,∠ADE=∠GPE,∴PG∥AD,∴∠QPG=∠BAC=60°,∵PQ=2=PG,∴△PQG为等边三角形,∴QG=2,∠PQG=60°=∠B,∴QG∥BC,连接GF并延长交BC于H,∴∠FQG=∠FCH,∵点F是CQ的中点,∴FQ=FC,∵∠QFG=∠CFH,∴△QFG≌△CFH(ASA),∴FG=FH,CH=QG=2,连接AH,过点A作AM⊥BC于M,∴∠AMC=90°,CM=BC=4,在Rt△AMC中,AC=8,根据勾股定理得,AM2=AC2﹣CM2=82﹣42=48,在Rt△AMH中,MH=CM﹣CH=2,根据勾股定理得,AH===2,∵AE=GE,FG=FH,∴EF是△AHG的中位线,∴EF=AH=,即线段EF的长是一个定值.16.解:(1)∵AF⊥DE,∴∠ADE+∠DAF=90°,∵∠ADE+∠AED=90°,∴∠DAF=∠AED,∵∠ADE=∠ABF=90°,AD=AB,∴△ADE≌△DAF(AAS),∴AF=DE;(2)过点G作GM⊥BA交于点M,∵AF⊥EG,∴∠F AB+∠AEG=90°,∵∠F AB+∠AFB=90°,∴∠AEG=∠AFB,∵∠GME=∠ABF=90°,∴△GME∽△ABF,∴=,∵AD=GM,∴;(3)连接AH,∵AG⊥GH,∴△AGH是直角三角形,∵HG=5,GA=7.5,∴AH=,在Rt△ABH中,BH=3,AH=,∴AB=,∵∠AGH=90°,∴∠DGA+∠CGH=90°,∵∠DGA+∠GAD=90°,∴∠GAD=∠CGH,∴△DAG∽△CGH,∴==,∴==,∴AD=6,由(2)知,∴==.17.解:(1)如图②,BF与CD交于点M,与DE交于点N,∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,∵△ECF是等腰直角三角形,∴CF=CE,∠ECF=90°,∴∠BCD=∠ECF,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∴△BCF≌△DCE(SAS),∴BF=DE,∠CBF=∠CDE,∵∠BMC=∠DMF,∠CBF+∠BMC=90°,∴∠CDE+∠DMF=90°,∴∠BND=90°,∴BF⊥DE,故答案为:BF=DE,BF⊥DE;(2)①如图③,,理由:∵四边形ABCD是矩形,∴∠BCD=90°,∵∠ECF=90°,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∵,∴△BCF∽△DCE,∴=;②如图③,连接BD,∵△BCF∽△DCE,∴∠CBF=∠CDE,∵四边形ABCD是矩形,∴CD=AB=12,∵CE=6,,∴=,∴CF=8,BC=16,∵∠DBO+∠CBF+∠BDC=∠BDO+∠CDE+∠BDC=∠DBO+∠BDO=90°,∴∠BOD=90°,∴∠DOF=∠BOE=∠EOF=90°,在Rt△DOF中,DF2=OD2+OF2,在Rt△BOE中,BE2=OB2+OE2,在Rt△DOB中,DB2=OD2+OB2,在Rt△EOF中,EF2=OE2+OF2,∴DF2+BE2=OD2+OF2+OB2+OE2=DB2+EF2,在Rt△BCD中,BD2=BC2+CD2=162+122=400,在Rt△CEF中,EF2=EC2+CF2=62+82=100,∴BD2+EF2=400+100=500,∴DF2+BE2=500.18.解:(1)甲的做法正确,理由如下:∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,∵∠C=90°,∴四边形DECF是矩形,∴∠EDF=90°,DE∥BC,DF∥AC,∴,△AED∽△ACB,△BFD∽△BCA,即:AE=CE,同理可得:BF=CF,∴DF∥AC,EF∥AB,∴四边形AEFD是平行四边形,△CEF∽△CAB,同理可得:四边形DEFB是平行四边形,∴∠EFD=∠A,∵∠AED=∠EDF,∴△AED∽△FDE,∴四个小三角形与△ABC相似;(2)当时,△EDF∽△AFD∽△FEC,理由如下:∵△ADF∽△ACB,△DEB∽△ACB,∴①,②,得,,∴DE=EF,∵DE∥AF,∴四边形ADFE是平行四边形,由(1)可得,△DEF和△CEF与△ABC相似,故答案是:;(3)如图,根据和AC和AB及AB的长度找出点D的位置,然后作DE∥AC交BC于E,作EF∥AB交AC于F,连接DF即可.19.解:(1)①∵O是BC的中点,∴OB=OC,在△BOD和△COF中,,∴△BOD≌△COF(SAS),∴CF=BD,∠OCF=∠B,∵AD=AE,AB=AC,∴BD=CE,∴CE=CF,即:,∵∠B+∠ACB=90°,∴∠OCF+∠ACB=90°,∴∠ECF=90°,∴△ECF是等腰直角三角形,故答案是:1,等腰直角三角形,解:(2)如图1,仍然成立,理由如下:连接BD,由(1)得:CF=BD,CF∥BD,∴∠CFO=∠DBO,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠CAE=∠BAD,在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD,∠ACE=∠ABD,∴CE=CF,∵∠ACB+∠ABC=90°,∴∠ACE+∠EAO+∠ABC=90°,∴∠ABD+∠EAO+∠ABC=90°,∴∠EAO+∠DBO=90°,∴∠EAO+∠CFO=90°,∴∠FCE=90°,∴=1,△ECF是等腰直角三角形;(3)如图2,连接BD,作AG⊥CD于G,设AD=a,则AB=,AC=a,AE=,由(2)得:∠CAE=∠BAD,CF=BD,∵,∴△CAE∽△BAD,∴,∠ACD=∠ABD,∴,同理(2)得:∠CEF=90°,∴∠ECF=∠EAD=90°,∴点C、A、B、D共圆,∴∠1=∠ACG,∵AD=a,AE=,∠DAE=90°,∴DE=,由S△ADE=得,AG=a,∴sin∠ACD===,∴sin∠1=.20.(1)证明:∵∠ADC=∠ACB,,∴△ADC∽△ACB,∴∠DAC=∠CAB,∴AC平分∠DAB;(2)解:∵△ADC∽△ACB,∴,∴AC2=AB×AD,∵AC=8,AB=12,∴64=12AD,∴AD=,故答案为:;(3)解:∵∠ACB=90°,点E为AB的中点,∴AB=2CE=10,∴AC=8,∵△ADC∽△ACB,∴AD==6.4,由(1)知∠DAC=∠EAC,∵CE=AE,∴∠ECA=∠EAC,∴∠DAC=∠ECA,∴△AFD∽△CFE,∴.。
中考苏科版数学试卷及答案

一、选择题(每小题3分,共30分)1. 下列数中,是质数的是()A. 16B. 15C. 13D. 122. 已知x^2 - 5x + 6 = 0,则x的值为()A. 2 或 3B. 1 或 6C. 1 或 5D. 2 或 43. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是()A. 16cmB. 18cmC. 26cmD. 32cm4. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)5. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 56. 已知正方形的对角线长为10cm,那么这个正方形的面积是()A. 25cm^2B. 50cm^2C. 100cm^2D. 200cm^27. 在一次函数y = kx + b中,k和b的值分别为()A. k = 1, b = 0B. k = 0, b = 1C. k = 1, b = 1D. k = 0, b = 08. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 19. 在平面直角坐标系中,点P(-2,5)到原点的距离是()A. 2B. 5C. 7D. 1010. 下列各数中,能被3整除的是()A. 16B. 17C. 18D. 19二、填空题(每小题3分,共30分)1. 若a = -2,b = 3,则a^2 + b^2 = _______。
2. 一个圆的半径是5cm,那么这个圆的周长是 _______。
3. 已知平行四边形的对边长分别为6cm和8cm,那么这个平行四边形的面积是_______。
4. 在直角坐标系中,点B(4,-3)关于y轴的对称点是 _______。
5. 若一个数的倒数是2,那么这个数是 _______。
6. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的面积是_______。
江苏省全省十三市中考数学真题 及解析汇编

江苏省全省中考数学真题及解析汇编目录1-江苏省南京市中考数学试卷及解析(28页) (1)2-江苏省镇江市中考数学试卷及解析(34页) (25)3-江苏省常州市中考数学试卷及解析(20页) (54)4-江苏省无锡市中考数学试卷及解析(21页) (74)5-江苏省苏州市中考数学试卷及解析(30页) (93)6-江苏省南通市中考数学试卷及解析(33页) (120)7-江苏省泰州市中考数学试卷及解析(28页) (149)8-江苏省扬州市中考数学试卷及解析(30页) (173)9-江苏省徐州市中考数学试卷及解析(29页) (200)10-江苏省淮安市中考数学试卷及解析(21页) (227)11-江苏省宿迁市中考数学试卷及解析(29页) (245)12-江苏省盐城市中考数学试卷及解析(35页) (270)13-江苏省连云港市中考数学试卷及解析(31页) (301)江苏省南京市中考数学试卷及解析(28页)一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)计算12+(﹣18)÷(﹣6)﹣(﹣3)×2的结果是()A.7 B.8 C.21 D.362.(2分)计算106×(102)3÷104的结果是()A.103B.107C.108D.1093.(2分)不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有8条棱,该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥4.(2分)若错误!未找到引用源。
<a<错误!未找到引用源。
,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<45.(2分)若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根6.(2分)过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为()A.(4,错误!未找到引用源。
苏科版九年级数学上册2020年《圆》填空题中考题汇编2

2020年《圆》填空题中考题汇编21.(2020•牡丹江)AB是⊙O的弦,OM⊥AB,垂足为M,连接OA.若△AOM中有一个角是30°,OM=2,则弦AB的长为.2.(2020•黑龙江)如图,AD是△ABC的外接圆⊙O的直径,若∠BAD=40°,则∠ACB =°.3.(2020•鄂州)用一个圆心角为120°,半径为4的扇形制作一个圆锥的侧面,则此圆锥的底面圆的半径为.4.(2020•广元)如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=10,AH=8,⊙O的半径为7,则AB=.5.(2020•菏泽)如图,在菱形OABC中,OB是对角线,OA=OB=2,⊙O与边AB相切于点D,则图中阴影部分的面积为.6.(2020•青岛)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为.7.(2020•长沙)已知圆锥的母线长为3,底面半径为1,该圆锥的侧面展开图的面积为.8.(2020•扬州)圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为.9.(2020•襄阳)在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于°.10.(2020•金昌)若一个扇形的圆心角为60°,面积为cm2,则这个扇形的弧长为cm(结果保留π).11.(2020•凉山州)如图,点C、D分别是半圆AOB上的三等分点,若阴影部分的面积是π,则半圆的半径OA的长为.12.(2020•连云港)如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2、B3,则直线l与A1A2的夹角α=°.13.(2020•泰州)如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b 上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为.14.(2020•绥化)如图,正五边形ABCDE内接于⊙O,点P为上一点(点P与点D,点E不重合),连接PC、PD,DG⊥PC,垂足为G,∠PDG等于度.15.(2020•成都)如图,六边形ABCDEF是正六边形,曲线F A1B1C1D1E1F1…叫做“正六边形的渐开线”,,,,,,,…的圆心依次按A,B,C,D,E,F循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线F A1B1C1D1E1F1的长度是.16.(2020•枣庄)如图,AB是⊙O的直径,P A切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=.17.(2020•连云港)用一个圆心角为90°,半径为20cm的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径为cm.18.(2020•绥化)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是度.19.(2020•泰安)如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD ∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是.20.(2020•黑龙江)如图,AD是△ABC的外接圆⊙O的直径,若∠BCA=50°,则∠ADB =°.21.(2020•苏州)如图,已知AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD.若∠C=40°,则∠B的度数是°.22.(2020•德州)若一个圆锥的底面半径是2cm,母线长是6cm,则该圆锥侧面展开图的圆心角是度.23.(2020•安顺)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是度.24.(2020•黑龙江)小明在手工制作课上,用面积为150πcm2,半径为15cm的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为cm.25.(2020•聊城)如图,在⊙O中,四边形OABC为菱形,点D在上,则∠ADC的度数是.26.(2020•甘孜州)如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为.27.(2020•自贡)如图,矩形ABCD中,E是AB上一点,连接DE,将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,在DF上取点O,以O为圆心,OF长为半径作半圆与CD相切于点G.若AD=4,则图中阴影部分的面积为.28.(2020•无锡)已知圆锥的底面半径为1cm,高为cm,则它的侧面展开图的面积为=cm2.29.(2020•重庆)如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为.(结果保留π)30.(2020•重庆)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB =2,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)31.(2020•上海)在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是.32.(2020•台州)如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为.33.(2020•黔东南州)如图,AB是半圆O的直径,AC=AD,OC=2,∠CAB=30°,则点O到CD的距离OE为.34.(2020•嘉兴)如图,在半径为的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为.35.(2020•湖州)如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD 与AB之间的距离是.36.(2020•宁波)如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B 作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为.37.(2020•遵义)如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是.38.(2020•新疆)如图,⊙O的半径是2,扇形BAC的圆心角为60°.若将扇形BAC剪下围成一个圆锥,则此圆锥的底面圆的半径为.39.(2020•黔西南州)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB 的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.40.(2020•浙江自主招生)如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连结EF,则线段EF长度的最小值为.参考答案与试题解析1.【分析】分∠OAM=30°,∠AOM=30°,两种情况分别利用正切的定义求解即可.【解答】解:∵OM⊥AB,∴AM=BM,若∠OAM=30°,则tan∠OAM=,∴AM=6,∴AB=2AM=12;若∠AOM=30°,则tan∠AOM=,∴AM=2,∴AB=2AM=4.故答案为:12或4.2.【分析】连接BD,如图,根据圆周角定理即可得到结论.【解答】解:连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣40°=50°,∴∠ACB=∠D=50°.故答案为50.3.【分析】根据扇形的弧长公式求出弧长,根据圆锥的底面周长等于它的侧面展开图的弧长求出半径.【解答】解:设圆锥底面的半径为r,扇形的弧长为:=π,∵圆锥的底面周长等于它的侧面展开图的弧长,∴根据题意得2πr=π,解得:r=.故答案为:.4.【分析】作直径AD,连接BD,根据圆周角定理得到∠ABD=90°,∠D=∠C,证明△ABD∽△AHC,根据相似三角形的性质解答即可.【解答】解:作直径AD,连接BD,∵AD为直径,∴∠ABD=90°,又AH⊥BC,∴∠ABD=∠AHC,由圆周角定理得,∠D=∠C,∴△ABD∽△AHC,∴,即,解得,AB=,故答案为:.5.【分析】连接OD,根据菱形的性质得到OA=AB,得到△OAB为等边三角形,根据切线的性质得到OD⊥AB,根据余弦的定义求出OD,根据菱形面积公式、扇形面积公式计算,得到答案.【解答】解:连接OD,∵四边形OABC为菱形,∴OA=AB,∵OA=OB,∴OA=OB=AB,∴△OAB为等边三角形,∴∠A=∠AOB=60°,∵AB是⊙O的切线,∴OD⊥AB,∴OD=OA•sin A=,同理可知,△OBC为等边三角形,∴∠BOC=60°,∴图中阴影部分的面积=2×﹣=2﹣π,故答案为:2﹣π.6.【分析】连接OM、ON,根据半圆分别与AB,AC相切于点M,N.可得OM⊥AB,ON ⊥AC,由∠BAC=120°,可得∠MON=60°,得∠MOB+∠NOC=120°,再根据的长为π,可得OM=ON=r=3,连接OA,根据Rt△AON中,∠AON=30°,ON=3,可得AM=AN=,进而可求图中阴影部分的面积.【解答】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵的长为π,∴=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=,∴AM=AN=,∴BM+CN=AB+AC﹣(AM+AN)=16﹣2,∴S阴影=S△OBM+S△OCN﹣(S扇形MOE+S扇形NOF)=3×(BM+CN)﹣()=(16﹣2)﹣3π=24﹣3﹣3π.故答案为:24﹣3﹣3π.7.【分析】根据圆锥的侧面积公式:S侧=2πr•l=πrl.即可得圆锥的侧面展开图的面积.【解答】解:∵圆锥的侧面展开图是扇形,∴S侧=πrl=3×1π=3π,∴该圆锥的侧面展开图的面积为3π.故答案为:3π.8.【分析】根据圆锥的侧面积公式:S侧=2πr•l=πrl即可进行计算.【解答】解:∵S侧=πrl,∴3πl=12π,∴l=4.答:这个圆锥的母线长为4.故答案为:4.9.【分析】根据弦BC垂直平分半径OA,可得OD:OB=1:2,得∠BOC=120°,根据同弧所对圆周角等于圆心角的一半即可得弦BC所对的圆周角度数.【解答】解:如图,∵弦BC垂直平分半径OA,∴OD:OB=1:2,∴∠BOD=60°,∴∠BOC=120°,∴弦BC所对的圆周角等于60°或120°.故答案为:60°或120°.10.【分析】首先根据扇形的面积公式求出扇形的半径,再根据扇形的面积=lR,即可得出弧长.【解答】解:设扇形的半径为R,弧长为l,根据扇形面积公式得;=,解得:R=1,∵扇形的面积=lR=,解得:l=π.故答案为:.11.【分析】连接OC、OD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD的面积,列式计算就可.【解答】解:连接OC、OD、CD.∵点C,D为半圆的三等分点,∴∠AOC=∠COD=∠BOD=60°,∵OC=OD,∴△COD是等边三角形,∴∠OCD=60°,∴∠OCD=∠AOC,∴CD∥AB,∵△COD和△CBD等底等高,∴S△COD=S△BCD.∴阴影部分的面积=S扇形COD,∵阴影部分的面积是π,∴=π,∴r=3,故答案为3.12.【分析】设l交A1A2于E、交A4A3于D,由正六边形的性质得出∠A1A2A3=∠A2A3A4=120°,由正五边形的性质得出∠B2B3B4=108°,则∠B4B3D=72°,由平行线的性质得出∠EDA3=∠B4B3D=72°,再由四边形内角和即可得出答案.【解答】解:设l交A1A2于E、交A4A3于D,如图所示:∵六边形A1A2A3A4A5A6是正六边形,六边形的内角和=(6﹣2)×180°=720°,∴∠A1A2A3=∠A2A3A4==120°,∵五边形B1B2B3B4B5是正五边形,五边形的内角和=(5﹣2)×180°=540°,∴∠B2B3B4==108°,∴∠B4B3D=180°﹣108°=72°,∵A3A4∥B3B4,∴∠EDA3=∠B4B3D=72°,∴α=∠A2ED=360°﹣∠A1A2A3﹣∠A2A3A4﹣∠EDA3=360°﹣120°﹣120°﹣72°=48°,故答案为:48.13.【分析】当点O在点H的左侧⊙O与直线a相切时,OP=PH﹣OH;当点O在点H的右侧⊙O与直线a相切时,OP=PH+OH,即可得出结果.【解答】解:∵直线a⊥b,O为直线b上一动点,∴⊙O与直线a相切时,切点为H,∴OH=1cm,当点O在点H的左侧,⊙O与直线a相切时,如图1所示:OP=PH﹣OH=4﹣1=3(cm);当点O在点H的右侧,⊙O与直线a相切时,如图2所示:OP=PH+OH=4+1=5(cm);∴⊙O与直线a相切,OP的长为3cm或5cm,故答案为:3cm或5cm.14.【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理得出∠CPD的度数,由三角形内角和定理即可得出结果.【解答】解:连接OC、OD,如图所示:∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,∵DG⊥PC,∴∠PGD=90°,∴∠PDG=90°﹣∠CPD=90°﹣36°=54°,故答案为:54.15.【分析】利用弧长公式计算即可解决问题.【解答】解:的长==,的长==,的长==,的长==,的长==,的长==,∴曲线F A1B1C1D1E1F1的长度=++…+==7π,故答案为7π.16.【分析】直接利用切线的性质得出∠OAP=90°,再利用三角形内角和定理得出∠AOP =54°,结合圆周角定理得出答案.【解答】解:∵P A切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∵=,∴∠B=∠AOP=27°.故答案为:27°.17.【分析】设这个圆锥的底面圆半径为rcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后解关于r的方程即可.【解答】解:设这个圆锥的底面圆半径为rcm,根据题意得2πr=,解得r=5(cm).故答案为:5.18.【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式得到2π×2.5=,再解关于n的方程即可.【解答】解:设这个圆锥的侧面展开图的圆心角为n°,根据题意得2π×2.5=,解得n=100,即这个圆锥的侧面展开图的圆心角为100°.故答案为:100.19.【分析】连接OA,易求得圆O的半径为8,扇形的圆心角的度数,然后根据S阴影=S△AOB+S扇形OAD+S扇形ODE﹣S△BCD即可得到结论.【解答】解:连接OA,∵∠ABO=60°,OA=OB,∴△AOB是等边三角形,∵AB=8,∴⊙O的半径为8,∵AD∥OB,∴∠DAO=∠AOB=60°,∵OA=OD,∴∠AOD=60°,∵∠AOB=∠AOD=60°,∴∠DOE=60°,∵DC⊥BE于点C,∴CD=OD=4,OC==4,∴BC=8+4=12,S阴影=S△AOB+S扇形OAD+S扇形ODE﹣S△BCD=×+2×﹣=﹣8故答案为﹣8.20.【分析】根据圆周角定理即可得到结论.【解答】解:∵AD是△ABC的外接圆⊙O的直径,∴点A,B,C,D在⊙O上,∵∠BCA=50°,∴∠ADB=∠BCA=50°,故答案为:50.21.【分析】先根据切线的性质得∠OAC=90°,再利用互余计算出∠AOC=90°﹣∠C=50°,由于∠OBD=∠ODB,利用三角形的外角性质得∠OBD=∠AOC=25°.【解答】解:∵AC是⊙O的切线,∴OA⊥AC,∴∠OAC=90°,∴∠AOC=90°﹣∠C=90°﹣40°=50°,∵OB=OD,∴∠OBD=∠ODB,而∠AOC=∠OBD+∠ODB,∴∠OBD=∠AOC=25°,即∠ABD的度数为25°,故答案为:25.22.【分析】根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:圆锥侧面展开图的弧长是:2π×2=4π(cm),设圆心角的度数是n度.则=4π,解得:n=120.故答案为:120.23.【分析】连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.【解答】解:连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOE=120°,故答案为:120.24.【分析】先根据扇形的面积公式:S=l•R(l为弧长,R为扇形的半径)计算出扇形的弧长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,利用圆的周长公式计算出圆锥的底面半径.【解答】解:∵S=l•R,∴•l•15=150π,解得l=20π,设圆锥的底面半径为rcm,∴2π•r=20π,∴r=10(cm).故答案为:10.25.【分析】根据菱形的性质得出∠B=∠AOC,根据圆内接四边形的性质得出∠B+∠D=180°,即可得出∠D+∠AOC=180°,根据圆周角定理得出3∠D=180°,即可求得∠ADC=60°.【解答】解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵四边形OABC为菱形,∴∠B=∠AOC,∴∠D+∠AOC=180°,∵∠AOC=2∠D,∴3∠D=180°,∴∠ADC=60°,故答案为60°.26.【分析】根据垂径定理由CD⊥AB得到CH=CD=4,再根据勾股定理计算出OH=3.【解答】解:连接OC,∵CD⊥AB,∴CH=DH=CD=×8=4,∵直径AB=10,∴OC=5,在Rt△OCH中,OH==3,故答案为:3.27.【分析】连接OG,QG,证明△DOG∽△DFC,得出,设OG=OF=x,则,求出圆的半径为,证明△OFQ为等边三角形,求出CQ,CG,则可由三角形的面积公式求出答案.【解答】解:连接OG,QG,∵将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,∴AD=DF=4,BF=CF=2,∵矩形ABCD中,∠DCF=90°,∴∠FDC=30°,∴∠DFC=60°,∵⊙O与CD相切于点G,∴OG⊥CD,∵BC⊥CD,∴OG∥BC,∴△DOG∽△DFC,∴,设OG=OF=x,则,解得:x=,即⊙O的半径是.连接OQ,作OH⊥FQ,∵∠DFC=60°,OF=OQ,∴△OFQ为等边△;同理△OGQ为等边三角形;∴∠GOQ=∠FOQ=60°,OH=OQ=,∴QH==,∴CQ=∵四边形OHCG为矩形,∴OH=CG=,∴S阴影=S△CGQ===.故答案为:.28.【分析】先利用勾股定理求出圆锥的母线l的长,再利用圆锥的侧面积公式:S侧=πrl 计算即可.【解答】解:根据题意可知,圆锥的底面半径r=1cm,高h=cm,∴圆锥的母线l==2,∴S侧=πrl=π×1×2=2π(cm2).故答案为:2π.29.【分析】根据勾股定理求出AC,得到OA、OC的长,根据正方形的面积公式、扇形面积公式计算,得到答案.【解答】解:∵四边形ABCD为正方形,∴AB=BC=2,∠DAB=∠DCB=90°,由勾股定理得,AC==2,∴OA=OC=,∴图中的阴影部分的面积=22﹣×2=4﹣π,故答案为:4﹣π.30.【分析】由菱形的性质可得AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,可证△BEO,△DFO是等边三角形,由等边三角形的性质可求∠EOF=60°,由扇形的面积公式和面积和差关系可求解.【解答】解:如图,设连接以点O为圆心,OB长为半径画弧,分别与AB,AD相交于E,F,连接EO,FO,∵四边形ABCD是菱形,∠ABC=120°,∴AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,∴△ABD是等边三角形,∴AB=BD=2,∠ABD=∠ADB=60°,∴BO=DO=,∵以点O为圆心,OB长为半径画弧,∴BO=OE=OD=OF,∴△BEO,△DFO是等边三角形,∴∠DOF=∠BOE=60°,∴∠EOF=60°,∴阴影部分的面积=2×(S△ABD﹣S△DFO﹣S△BEO﹣S扇形OEF)=2×(×12﹣×3﹣×3﹣)=3﹣π,故答案为:3﹣π.31.【分析】根据勾股定理得到AC=10,如图1,设⊙O与AD边相切于E,连接OE,如图2,设⊙O与BC边相切于F,连接OF,根据相似三角形的性质即可得到结论.【解答】解:在矩形ABCD中,∵∠D=90°,AB=6,BC=8,∴AC=10,如图1,设⊙O与AD边相切于E,连接OE,则OE⊥AD,∴OE∥CD,∴△AOE∽△ACD,∴,∴=,∴AO=,如图2,设⊙O与BC边相切于F,连接OF,则OF⊥BC,∴OF∥AB,∴△COF∽△CAB,∴=,∴=,∴OC=,∴AO=,∴如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是<AO <,故答案为:<AO<.32.【分析】由直径所对的圆周角为直角得∠AED=90°,由切线的性质可得∠ADC=90°,然后由同角的余角相等可得∠C=∠ADE=55°.【解答】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,∴∠C=55°.故答案为:55°.33.【分析】在等腰△ACD中,顶角∠A=30°,易求得∠ACD=75°;根据等边对等角,可得:∠OCA=∠A=30°,由此可得,∠OCD=45°;即△COE是等腰直角三角形,则OE=.【解答】解:∵AC=AD,∠A=30°,∴∠ACD=∠ADC=75°,∵AO=OC,∴∠OCA=∠A=30°,∴∠OCD=45°,即△OCE是等腰直角三角形,在等腰Rt△OCE中,OC=2;因此OE=.故答案为:.34.【分析】由勾股定理求扇形的半径,再根据扇形面积公式求值;根据扇形的弧长等于底面周长求得底面半径即可.【解答】解:连接BC,由∠BAC=90°得BC为⊙O的直径,∴BC=2,在Rt△ABC中,由勾股定理可得:AB=AC=2,∴S扇形ABC==π;∴扇形的弧长为:=π,设底面半径为r,则2πr=π,解得:r=,故答案为:π,.35.【分析】过点O作OH⊥CD于H,连接OC,如图,根据垂径定理得到CH=DH=4,再利用勾股定理计算出OH=3,从而得到CD与AB之间的距离.【解答】解:过点O作OH⊥CD于H,连接OC,如图,则CH=DH=CD=4,在Rt△OCH中,OH==3,所以CD与AB之间的距离是3.故答案为3.36.【分析】当∠AOC=90°时,连接OB,根据切线的性质得到∠OBC=90°,根据勾股定理得到AC===2.【解答】解:∵BC是⊙O的切线,∴∠OBC=90°,∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°,∵当△OAC是直角三角形时,①∠AOC=90°,连接OB,∴OC=OB=2,∴AC===2;②当△OAC是直角三角形时,∠OAC=90°,连接OB,∵BC是⊙O的切线,∴∠CBO=∠OAC=90°,∵BC=OA=OB,∴△OBC是等腰直角三角形,∴,故答案为:2或2.37.【分析】连结OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,根据圆周角定理可得∠BOC=90°,根据等腰直角三角形的性质和勾股定理可得DG,AG,可求AD,再根据相交弦定理可求DE.【解答】解:连结OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,∵⊙O是△ABC的外接圆,∠BAC=45°,∴∠BOC=90°,∵BD=4,CD=1,∴BC=4+1=5,∴OB=OC=,∴OA=,OF=BF=,∴DF=BD﹣BF=,∴OG=,GD=,解法一:在Rt△AGO中,AG==,∴GE=,∴DE=GE﹣GD=.解法二:在Rt△AGO中,AG==,∴AD=AG+GD=,∴AD×DE=BD×CD,DE==.故答案为:.38.【分析】连接OA,作OD⊥AB于点D,利用三角函数以及垂径定理即可求得AB的长,然后利用扇形的弧长公式即可求得弧长,然后利用圆的周长公式即可求得半径.【解答】解:连接OA,作OD⊥AB于点D.在直角△OAD中,OA=2,∠OAD=∠BAC=30°,则AD=OA•cos30°=.则AB=2AD=2,则扇形的弧长是:=π,设底面圆的半径是r,则2π×r=π,解得:r=.故答案为:.39.【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四,求得扇形FDE的面积,则阴影部分的面积即可求得.边形DMCN【解答】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,,∴△DMG≌△DNH(ASA),∴S四边形DGCH=S四边形DMCN=.则阴影部分的面积是:﹣.故答案为﹣.40.【分析】连接OE、OF,作OM⊥EF于M,作AN⊥BC于N,如图,根据圆周角定理得到∠EOF=120°,再计算出EF=OE,则OE最小时,EF的长度最小,此时圆的直径的长最小,利用垂线段最短得到AD的长度最小值为AN的长,接着计算出AN=,从而得到OE的最小值为,然后确定EF长度的最小值.【解答】解:连接OE、OF,作OM⊥EF于M,作AN⊥BC于N,如图,∵∠EOF=2∠BAC=2×60°=120°,而OE=OF,OM⊥EF,∴∠OEM=30°,EM=FM,在Rt△OEM中,OM=OE,EM=OE,∴EF=2EM=OE,当OE最小时,EF的长度最小,此时圆的直径的长最小,即AD的长最小,∵AD的长度最小值为AN的长,而AN=AB=,∴OE的最小值为,∴EF长度的最小值为×=.故答案为.。
专题一有理数与实数-中考数学真题分项汇编 (江苏专用)(原卷版)

2022年中考数学真题分项汇编(江苏专用)专题01有理数与实数一.选择题(共12小题)1.(2022•镇江)“珍爱地球,人与自然和谐共生”是今年世界地球日的主题,旨在倡导公众保护自然资源.全市现有自然湿地28700公顷,人工湿地13100公顷,这两类湿地共有()A.4.18×105公顷B.4.18×104公顷C.4.18×103公顷D.41.8×102公顷2.(2022•南通)若气温零上2℃记作+2℃,则气温零下3℃记作()A.﹣3℃B.﹣1℃C.+1℃D.+5℃3.(2022•南通)沪渝蓉高铁是国家中长期铁路网规划“八纵八横”之沿江高铁通道的主通道,其中南通段总投资约39000000000元,将39000000000用科学记数法表示为()A.3.9×1011B.0.39×1011C.3.9×1010D.39×1094.(2022•盐城)2022的倒数是()A.﹣2022B.12022C.2022D.−120225.(2022•盐城)盐城市图书馆现有馆藏纸质图书1600000余册.数据1600000用科学记数法表示为()A.0.16×107B.1.6×107C.1.6×106D.16×1056.(2022•常州)2022的相反数是()A.2022B.﹣2022C.12022D.−120227.(2022•苏州)2022年1月17日,国务院新闻办公室公布:截至2021年末全国人口总数为141260万,比上年末增加48万人,中国人口的增长逐渐缓慢.141260用科学记数法可表示为()A.0.14126×106B.1.4126×106C.1.4126×105D.14.126×1048.(2022•苏州)下列实数中,比3大的数是()A.5B.1C.0D.﹣29.(2022•连云港)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×10510.(2022•镇江)如图,数轴上的点A和点B分别在原点的左侧和右侧,点A、B对应的实数分别是a、b,下列结论一定成立的是()A.a+b<0B.b﹣a<0C.2a>2b D.a+2<b+2 11.(2022•泰州)下列判断正确的是()A.0<√3<1B.1<√3<2C.2<√3<3D.3<√3<4 12.(2022•扬州)实数﹣2的相反数是()A.2B.−12C.﹣2D.12二.填空题(共15小题)13.(2022•徐州)我国2021年粮食产量约为13700亿斤,创历史新高,其中13700亿斤用科学记数法表示为亿斤.14.(2022•镇江)“五月天山雪,无花只有寒”,反映出地形对气温的影响.大致海拔每升高100米,气温约下降0.6℃.有一座海拔为2350米的山,在这座山上海拔为350米的地方测得气温是6℃,则此时山顶的气温约为℃.15.(2022•常州)2022年5月22日,中国科学院生物多样性委员会发布《中国生物物种名录》2022版,共收录物种及种下单元约138000个.数据138000用科学记数法表示为.16.(2022•泰州)若x=﹣3,则|x|的值为.17.(2022•泰州)2022年5月15日4时40分,我国自主研发的极目一号Ⅲ型科学考察浮空艇升高至海拔9032m,将9032用科学记数法表示为.18.(2022•无锡)高速公路便捷了物流和出行,构建了我们更好的生活.交通运输部的数据显示,截止去年底,我国高速公路通车里程161000公里,稳居世界第一.161000这个数据用科学记数法可表示为.19.(2022•宿迁)2022年5月,国家林业和草原局湿地管理司在第二季度侧行发布会上表示,到“十四五”末,我国力争将湿地保护率提高到55%,其中修复红树林146200亩,请将146200用科学记数法表示是.20.(2022•扬州)扬州某日的最高气温为6℃,最低气温为﹣2℃,则该日的日温差是℃.21.(2022•扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量E与震级n 的关系为E=k×101.5n(其中k为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的倍.22.(2022•镇江)计算:3+(﹣2)= .23.(2022•常州)如图,数轴上的点A 、B 分别表示实数a 、b ,则1a 1b(填“>”、“=”或“<”).24.(2022•宿迁)满足√11≥k 的最大整数k 是 .25.(2014•泰州)计算:√4= .26.(2022•连云港)写出一个在1到3之间的无理数: .27.(2022•常州)化简:√83= .三.解答题(共3小题)28.(2022•盐城)|﹣3|+tan45°﹣(√2−1)0.29.(2022•宿迁)计算:(12)﹣1+√12−4sin60°.30.(2022•连云港)计算(﹣10)×(−12)−√16+20220.。
苏教版初三数学中考试卷

一、选择题(每题4分,共40分)1. 下列各数中,无理数是()A. 3.14B. √9C. √2D. 0.1010010001…2. 下列图形中,中心对称图形是()A. 等边三角形B. 等腰三角形C. 正方形D. 长方形3. 已知函数y=2x-3,当x=2时,y的值为()A. 1B. 3C. 5D. 74. 下列命题中,正确的是()A. 如果a>b,那么a²>b²B. 如果a²>b²,那么a>bC. 如果a²=b²,那么a=b或a=-bD. 如果a²=b²,那么a=b5. 下列各式中,分式有()A. x+yB. 3x/2C. (x+1)/(x-1)D. x²6. 已知一元二次方程x²-5x+6=0,则该方程的解为()A. x=2或x=3B. x=2或x=4C. x=3或x=6D. x=4或x=67. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标为()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,6)8. 下列函数中,是反比例函数的是()A. y=2x+3B. y=x²C. y=1/xD. y=2x9. 在三角形ABC中,若∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 90°C. 105°D. 120°10. 下列各数中,绝对值最小的是()A. -2B. -1C. 0D. 1二、填空题(每题5分,共50分)11. 若a=3,b=-4,则a²+b²的值为______。
12. 在等腰三角形ABC中,若底边BC=6,腰AB=8,则顶角A的度数为______。
13. 已知函数y=3x²-4x+1,当x=1时,y的值为______。
14. 若x+y=5,x-y=1,则x²+y²的值为______。
2022年春苏科版九年级数学中考复习《等腰三角形的分类讨论》专题突破训练(附答案)

2022年春苏科版九年级数学中考复习《等腰三角形的分类讨论》专题突破训练(附答案)一.选择题1.如图,△ABC中,直线l是边AB的垂直平分线,若直线l上存在点P,使得△P AC,△P AB均为等腰三角形,则满足条件的点P的个数共有()A.1B.3C.5D.72.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC上取一点P,使得△P AB 是等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个3.如图,网格中的每个小正方形的顶点称作格点,图中A、B在格点上,则图中满足△ABC 为等腰三角形的格点C的个数为()A.7B.8C.9D.104.若△ABC中刚好有∠B=2∠C,则称此三角形为“可爱三角形”,并且∠A称作“可爱角”.现有一个“可爱且等腰的三角形”,那么聪明同学们知道这个三角形“可爱角”应该是()A.45°或36°B.72°或36°C.45°或72°D.45°或36°或72°5.若等腰三角形中有一个角为50度,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50°D.50°或80°6.已知点O在直线AB上,点P在直线AB外,以OP为一边作等腰三角形POM,使第三个顶点M在直线AB上,则点M的个数为()A.2B.2或4C.3或4D.2或3或47.等腰△ABC的一边长为4,另外两边的长是关于x的方程x2﹣10x+m=0的两个实数根,则m的值是()A.24B.25C.26D.24或25二.填空题8.如图,在菱形ABCD中,AB=6,BD=9,M为对角线BD上一动点(M不与B和D重合),过点M作ME∥CD交BC于点E,连接AM,当△ADM为等腰三角形时,ME的长为.9.如图,在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交射线BC于点F.若∠C=2∠B,且0°<∠BAD<60°,若翻折后得到的△DEF中有两个角相等,则∠BAD=.10.如图所示,在等腰△ABC中,AB=AC,∠B=50°,D为BC的中点,点E在AB上,∠AED=73°,若点P是等腰△ABC的腰AC上的一点,则当△EDP为等腰三角形时,∠EDP的度数是.11.两块全等的等腰直角三角形如图放置,∠A=90°,DE交AB于点P,E在斜边BC上移动,斜边EF交AC于点Q,BP=3,BC=10,当△BPE是等腰三角形时,则AQ 的长为.12.等腰三角形的一个角为40°,则它的顶角为.三.解答题13.如图所示,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连结AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”).(2)当DC的长为多少时,△ABD与△DCE全等?请说明理由.(3)在点D的运动过程中,△ADE的形状也在改变,请判断当∠BDA等于多少度时,△ADE是等腰三角形.(直接写出结论,不说明理由.)14.在平面直角坐标系中,以坐标原点为圆心的⊙O半径为3.(1)试判断点A(3,3)与⊙O的位置关系,并加以说明.(2)若直线y=x+b与⊙O相交,求b的取值范围.(3)若直线y=x+3与⊙O相交于点A,B.点P是x轴正半轴上的一个动点,以A,B,P三点为顶点的三角形是等腰三角形,求点P的坐标.15.如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,OC、OB的长分别是一元二次方程x2﹣6x+8=0的两个根,且OC<OB.(1)求点A的坐标;(2)点D是线段AB上的一个动点(点D不与点A,B重合),过点D的直线l与y轴平行,直线l交边AC或边BC于点P,设点D的横坐标为t,线段DP的长为d,求d关于t的函数解析式;(3)在(2)的条件下,是否存在点D,使△ACD为等腰三角形?若存在,请你直接写出点D的坐标,若不存在,请说明理由.16.如图,已知平面直角坐标系内,点A(2,0),点B(0,2),连接AB.动点P从点B出发,沿线段BO向O运动,到达O点后立即停止,速度为每秒个单位,设运动时间为t秒.(1)当点P运动到OB中点时,求此时AP的解析式;(2)在(1)的条件下,若第二象限内有一点Q(a,3),当S△ABQ=S△ABP时,求a的值;(3)如图2,当点P从B点出发运动时,同时有点M从A出发,以每秒1个单位的速度沿直线x=2向上运动,点P停止运动,点M也立即停止运动.过点P作PN⊥y轴交AB于点N.在运动过程中,是否存在t,使得△AMN为等腰三角形?若存在,求出此时的t值,若不存在,说明理由.17.如图,已知直线y=2x+9与y轴交于点A,与x轴交于点B,直线CD与x轴交于点D (6,0),与直线AB相交于点C(﹣3,n).(1)求直线CD的解析式;(2)点E为直线CD上任意一点,过点E作EF⊥x轴交直线AB于点F,作EG⊥y轴于点G,当EF=2EG时,设点E的横坐标为m,直接写出m的值;(3)连接CO,点M为x轴上一点,点N在线段CO上(不与点O重合).当∠CMN=45°,且△CMN为等腰三角形时,直接写出点M的横坐标.18.如图1,在平面直角坐标系xOy中,A(﹣3,0),B(2,0),C为y轴正半轴上一点,且BC=4.(1)∠OBC=°;(2)如图2,点P从点A出发,沿射线AB方向运动,同时点Q在边BC上从点B向点C运动,在运动过程中:①若点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,运动时间为t秒,当△PQB是直角三角形时,求t的值;②若点P、Q的运动路程分别是a,b,当△PQB是等腰三角形时,求出a与b满足的数量关系.19.如图,CD是△ABC的高,CD=8,AD=4,BD=3,点P是BC边上的一个动点(与B、C不重合),PE⊥AB于点E,DF=DE,FQ⊥AB于点F,交AC于点Q,连接QE.(1)若点P是BC的中点,则QE=;(2)在点P的运动过程中,①EF+FQ的值为;②当点P运动到何处时,线段QE最小?最小值是多少?③当△AQE是等腰三角形时,求BE的长.20.如图,在Rt△ABC中,∠ACB=Rt∠,AC=8,AB=10,动点D从点A出发,沿线段AB以每秒2个单位的速度向B运动,过点D作DF⊥AB交BC所在的直线于点F,连结AF,CD.设点D运动时间为t秒.(1)BC的长为;(2)当t=2时,求△ADC的面积.(3)当△ABF是等腰三角形时,求t的值.参考答案一.选择题1.解:分三种情况:如图:当AP=AC时,以A为圆心,AC长为半径画圆,交直线l于点P1,P2,当CA=CP时,以C为圆心,CA长为半径画圆,交直线l于点P3,P4,当P A=PC时,作AC的垂直平分线,交直线l于点P5,∵直线l是边AB的垂直平分线,∴直线l上任意一点(与AB的交点除外)与AB构成的三角形均为等腰三角形,∴满足条件的点P的个数共有5个,故选:C.2.解:分三种情况,如图:∵∠ACB=90°,∠BAC=30°,∴∠ABC=90°﹣∠BAC=60°,当BA=BP时,以B为圆形,BA长为半径画圆,交直线BC于P1,P2两个点,∵BA=BP2,∠ABC=60°,∴△ABP2是等边三角形,∴AB=BP2=AP2,当AB=AP时,以A为圆形,AB长为半径画圆,交直线BC于P2,当P A=PB时,作AB的垂直平分线,交直线BC于P2,综上所述,在直线BC上取一点P,使得△P AB是等腰三角形,则符合条件的点P有2个,故选:B.3.解:如图所示:分三种情况:①以A为圆心,AB长为半径画弧,则圆弧经过的格点C1,C2,C3即为点C的位置;②以B为圆心,AB长为半径画弧,则圆弧经过的格点C3,C4,C5,C6,C7,C8即为点C的位置;③作AB的垂直平分线,垂直平分线没有经过格点;∴△ABC为等腰三角形的格点C的个数为:8,故选:B.4.解:①设三角形底角为α,顶角为2α,则α+α+2α=180°,解得:α=45°,②设三角形的底角为2α,顶角为α,则2α+2α+α=180°,解得:α=36°,∴2α=72°,∴三角形的“可爱角”应该是45°或72°,故选:C.5.解:①50°是底角,则顶角为:180°﹣50°×2=80°;②50°为顶角;所以顶角的度数为50°或80°.故选:D.6.解:如图1中,当∠POB≠90°或∠POB≠60°时,满足条件的点M有2个,如图2中,当∠POB=60°时,满足条件的点M有2个.如图3中,当∠POB=90°时,满足条件的点M有2个.故选:B.7.解:方程x2﹣10x+m=0的有两个实数根,则Δ=100﹣4m≥0,得m≤25,当底边长为4时,另两边相等时,x1+x2=10,∴另两边的长都是为5,则m=x1x2=25;当腰长为4时,另两边中至少有一个是4,则4一定是方程x2﹣10x+m=0的根,代入得:16﹣40+m=0解得m=24.∴m的值为24或25.故选:D.二.填空题8.解:以菱形ABCD的对角线BD所在直线为x轴,以AC所在直线为y轴建立直角坐标系,∵四边形ABCD是菱形,∴AB=BC=CD=AD=6,AC⊥BD,OB=OD=BD=,OA=OC=AC,∴OA===,∴A(0,),D(,0),∴B(﹣,0),∵点M在y轴上,∴设M(m,0),∴AM2=m2+()2=m2+,AD2=62=36,DM2=(﹣m)2,∵ME∥CD,∴∠BME=∠BDC,∠BEM=∠BCD,∴△BME∽△BDC,分三种情况:当AM=AD时,点M与点B重合,不符合题意;当MA=MD时,如图:∵MA2=MD2,∴m2+=(﹣m)2,∴m=,∴M(,0),∵B(﹣,0),∴BM=﹣(﹣)=5,∵△BME∽△BDC,∴=,∴=,∴ME=,当DA=DM时,如图:∵DA2=DM2,∴(﹣m)2=36,∴m=(舍去)或m=﹣,∴M(﹣,0),∵B(﹣,0),∴BM=﹣﹣(﹣)=3,∵△BME∽△BDC,∴=,∴=,∴ME=2,综上所述:ME的长为:或2,故答案为:或2.9.解:∵∠BAC=90°,∵∠C=2∠B,∴∠C=60°,∠B=30°,设∠BAD=x,∴∠ADB=180°﹣∠B﹣∠BAD=150°﹣x,∠ADC=∠B+∠BAD=30°+x,由折叠得:∠B=∠E=30°,∠BAD=∠DAE=x,∠ADB=∠ADE=150°﹣x,∴∠EDF=∠ADE﹣∠ADC=(150°﹣x)﹣(30°+x)=120°﹣2x,∵∠BAC=90°,∠BAD=∠DAE=x,∴∠EAC=∠BAC﹣∠BAE=90°﹣2x,∴∠AFC=180°﹣∠EAC﹣∠C=180°﹣(90°﹣2x)﹣60°=30°+2x,∴∠AFC=∠DFE=30°+2x,分三种情况:当∠EDF=∠DFE,120°﹣2x=30°+2x,∴x=22.5°,∴∠BAD=22.5°,当∠EDF=∠E,120°﹣2x=30°,∴x=45°,∴∠BAD=45°,当∠DFE=∠E,30°+2x=30°,∴x=0°,∵0°<∠BAD<60°,∴x=0°(舍去),综上所述:∠BAD为22.5°或45°,故答案为:22.5°或45°.10.解:∵AB=AC,∠B=50°,∠AED=73°,∵当△DEP是以DE为腰的等腰三角形,①当点P在P1位置时,∵AB=AC,D为BC的中点,∴∠BAD=∠CAD,过D作DG⊥AB于G,DH⊥AC于H,∴DG=DH,在Rt△DEG与Rt△DP1H中,DE=DP1,DG=DH,∴Rt△DEG≌Rt△DP1H(HL),∴∠AP1D=∠AED=73°,∵∠BAC=180°−50°−50°=80°,∴∠EDP1=134°,②当点P在P2位置时,同理证得Rt△DEG≌Rt△DPH(HL),∴∠EDG=∠P2DH,∴∠EDP2=∠GDH=180°−80°=100°,综上∠EDP的度数为134°或或100°.故答案为:134°或100°.11.解:如图,当BP=BE=3时,∵△ABC和△DEF都是等腰直角三角形,BC=10,∴AB=AC=5,∠B=∠C=∠DEF=45°,CE=10﹣3,∵∠DEC是△BEP的外角,∴∠DEF+∠QEC=∠B+∠BPE,∴∠BPE=∠QEC,∴△BPE∽△CQE,∴,∴,∴CQ=10﹣3,∴AQ=AC﹣CQ=5﹣(10﹣3)=8﹣10,当BE=PE时,如图,∵△ABC和△DEF都是等腰直角三角形,BC=10,∴AB=AC=5,∠B=∠C=∠DEF=45°,∵BE=PE,∴∠B=∠BPE=45°,∴∠BEP=180°﹣45°﹣45°=90°,∴∠PEC=90°,∠QEC=45°,∴△BEP和△EQC都是等腰直角三角形,∵BP=3,∴BE=PE=3,∴EC=BC﹣BE=10﹣3=7,∴EQ=QC=,∴AQ=AC﹣CQ=5﹣=,当PB=PE时,如图,∵△ABC和△DEF都是等腰直角三角形,BC=10,∴AB=AC=5,∠B=∠C=∠DEF=45°,∵PB=PE,∴∠B=∠PEB=45°,∴∠QEC=180°﹣45°﹣45°=90°,∴△BEP和△EQC都是等腰直角三角形,∵BP=3,∴BE=BP=×3=6,∴CE=BC﹣BE=10﹣6=4,∴QC=CE=4,∴AQ=AC﹣CQ=5﹣4=,综上所述,AQ的长为8﹣10或或,故答案为:8﹣10或或.12.解:当40°角为顶角时,则顶角为40°,当40°角为底角时,则顶角为180°﹣40°﹣40°=100°,故答案为:40°或100°.三.解答题13.解:(1)∵∠B=40°,∠BDA=115°,∴∠BAD=180°﹣∠B﹣∠BDA=180°﹣115°﹣40°=25°,由图形可知,∠BDA逐渐变小,故答案为:25°;小;(2)当DC=2时,△ABD≌△DCE,理由如下:∵AB=2,∴AB=DC,∵AB=AC,∴∠C=∠B=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE是等腰三角形,当DA=DE时,∠DAE=∠DEA=70°,∴∠BDA=∠DAE+∠C=70°+40°=110°;当AD=AE时,∠AED=∠ADE=40°,∴∠DAE=100°,此时,点D与点B重合,不合题意;当EA=ED时,∠EAD=∠ADE=40°,∴∠BDA=∠DAE+∠C=40°+40°=80°,综上所述,当∠BDA的度数为110°或80°时,△ADE是等腰三角形.14.解:(1)∵A(3,3),∴OA=3,∵3>3,∴点A在⊙O外;(2)如图,当直线y=x+b与⊙O相切于点C时,连接OC,则OC=3,∵∠CBO=45°,∴OB=3,∴直线y=x+b与⊙O相交时,﹣3<b<3;(3)∵直线y=x+3与⊙O相交于点A,B.∴A(0,3),B(﹣3,0),∴AB=3,当BA=BP=3时,∴P1(﹣3+3,0),P2(﹣3﹣3,0),当AB=AP时,∵AO⊥x轴,∴BO=OP,∴P3(3,0),当PB=P A时,点P与O重合,∴P4(0,0),∴点P的坐标为(﹣3+3,0)或(﹣3﹣3,0)或(3,0)或(0,0).15.解:(1)解方程x2﹣6x+8=0,可得x1=2,x2=4,∵OC、OB的长分别是一元二次方程x2﹣6x+8=0的两个根,且OC<OB,∴OC=2,OB=4,∵∠ACB=90°,∴∠ACO+∠BCO=∠ACO+∠CAO=90°,∴∠CAO=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,即,解得AO=1,∴A(﹣1,0);(2)由(1)可知C(0,2),B(4,0),A(﹣1,0),设直线AC解析式为y=kx+b,∴,解得,∴直线AC的解析式为y=2x+2,同理可求得直线BC解析式为y=﹣x+2,当点D在线段OA上时,即﹣1<t≤0时,则点P在直线AC上,∴P点坐标为(t,2t+2),∴d=2t+2;当点D在线段OB上时,即0<t<4时,则点P在直线BC上,∴P点坐标为,∴d=﹣t+2;综上可知d关于t的函数关系式为d=;(3)存在.由勾股定理得,AC==,当AC=AD=,点D在点A的右侧时,D点的坐标为(﹣1,0),当CA=CD时,∵CO⊥AD,∴OD=OA=1,∴D点的坐标为(1,0),当DA=DC时,如图,OD=DA﹣OA=DC﹣1,在Rt△COD中,DC2=OD2+OC2,即DC2=(DC﹣1)2+22,解得,DC=,∴OD=﹣1=,∴D点的坐标为(,0),综上所述,△ACD为等腰三角形时,D点的坐标为(﹣1,0)或(1,0)或(,0).16.解:(1)∵B(0,2),∴OB的中点为(0,),当点P运动到OB中点时,P(0,),设直线AP的函数解析式为y=kx+,将A(2,0)代入y=kx+得,2k+=0,∴k=﹣,∴直线AP的函数解析式为y=﹣x+;(2)由点A(2,0),B(0,2)可知,直线AB的解析式为y=﹣x+2,∵S△ABQ=S△ABP,∴直线PQ∥AB,∴直线PQ的解析式为y=﹣x+,当y=3时,∴﹣,解得x=1﹣,∴a=1﹣;(3)当AN=MN时,设PN交直线x=2于H,则AM=2AH,∴t=2(2﹣t),解得t=,当AN=AM时,∵OA=2,OB=2,∴AB=4,∴∠ABO=30°,∵BP=t,∴BN=2t,∴2t+t+4,解得t=,当MN=AM时,∵∠MAN=30°,∴AN=t,∴2t+=4,解得t=8﹣4,综上:t=或或8﹣4.17.解:(1)∵点C(﹣3,n)在直线y=2x+9上,∴n=2×(﹣3)+9=3,∴C(﹣3,3),设直线CD的解析式为y=kx+b,∵C(﹣3,3),D(6,0),∴,解得:,∴直线CD的解析式为y=x+2;(2)如图1,设点E的横坐标为m,∵点E在直线CD上,EF⊥x轴交直线AB于点F,EG⊥y轴于点G,∴E(m,m+2),F(m,2m+9),G(0,m+2),∴EF=|(2m+9)﹣(m+2)|=|m+7|,EG=|m|,∵EF=2EG,∴|m+7|=|m|,∴m=﹣或﹣21;(3)如图2,∵∠CMN=45°,且△CMN为等腰三角形,∴CN=MN或CM=MN或CN=CM,①当CN=MN时,则∠MCN=∠CMN=45°,∵C(﹣3,3),∴∠COM=45°,∴∠CMO=90°,即CM⊥x轴,∴M1(﹣3,0),即点M的横坐标为﹣3;②当CM2=M2N2时,则∠M2CN2=∠M2N2C=67.5°,∵∠OM2N2=∠M2N2C﹣∠COM2=67.5°﹣45°=22.5°,∴∠CM2O=∠CM2N2+∠OM2N2=45°+22.5°=67.5°,∴∠M2CN2=∠CM2O,∴OM2=OC=3,∴M2(﹣3,0),即点M的横坐标为﹣3;③当CN=CM时,∠CMN=∠CNM=45°,∴∠MCN=90°,此时,点N必与点O重合,不符合题意;综上所述,点M的横坐标为﹣3或﹣3.18.解:(1)在Rt△COB中,∠COB=90°,OB=2,BC=4,∴∠BOC=30°,∴∠OBC=90°﹣∠BOC=60°,故答案为:60;(2)①由题意,得AP=2t,BQ=t,∵A(﹣3,0),B(2,0),∴AB=5,∴PB=5﹣2t,∵∠OBC=60°≠90°∴只有∠PQB=90°和∠QPB=90°两种情况,当∠PQB=90°时,∵∠OBC=60°,∴∠BPQ=30°,∴BQ=BP,即t=(5﹣2t),解得:t=;当∠QPB=90°时,∵∠OBC=60°,∴∠BQP=30°,∴PB=BQ,即5﹣2t=t,解得:t=2;综上所述,当t=或t=2时,△PQB是直角三角形;②如图:当a<5时,∵AP=a,BQ=b,∴BP=5﹣a,∵△PQB是等腰三角形,∠OBC=60°,∴△PQB是等边三角形,∴b=5﹣a,即a+b=5;如图3:当a>5时,∵AP=a,BQ=b,∴BP=a﹣5,∵△PQB是等腰三角形,∠QBP=120°,∴BP=BQ,即a﹣5=b,∴a﹣b=5,综上所述:当△PQB是等腰三角形时,a与b满足的数量关系为:a+b=5或a﹣b=5.19.解:(1)如图1,设DG=a,∵CD⊥AB,PE⊥AB,QF⊥AB,∴QF∥CD∥EF,∵DE=DF,∴EG=QG,∴DG是△EFQ的中位线,∴QF=2a,∵tan∠BAC==,即=,∴AF=a,DF=DE=4﹣a,∵BD=3,∴BE=3﹣(4﹣a)=a﹣1,∵PE∥CD,BP=PC,∴BE=ED,∴a﹣1=4﹣a,∴a=,∴FQ=2a=5,EF=2(4﹣a)=8﹣2a=8﹣5=3,∴EQ==;故答案:;(2)①如图2,过点Q作QH⊥CD于H,∵FQ⊥AB,CD⊥AB,∴∠QFD=∠FDH=∠QHD=90°,∴四边形FDHQ为矩形,∴DF=QH=DE,FQ=DH,∵tan∠ACD====,∴CH=2QH=EF,∴EF+FQ=DH+CH=8:故答案为:8;②由①得:EF+FQ=8,设EF=x,则FQ=8﹣x,∴EQ===,当x=4时,EQ取最小值为=4,此时,DE=DF=2,∴BE=3﹣2=1,∵PE∥CD,∴==,Rt△BDC中,由勾股定理得:BC==,∴PB=,当PB=时,线段QE最小,最小值是4;③设DE=m,BE=3﹣m,DF=m(0≤m≤3),∴AE=4+m,AF=4﹣m,FQ=8﹣2m,AC===4,AQ=(4﹣m),当△AEQ为等腰三角形时,存在以下三种情况:i)AQ=AE,则4+m=(4﹣m),解得:m=6﹣2,∴BE=3﹣(6﹣2)=2﹣3;ii)AQ=QE,∵QF⊥AE,∴AF=EF,∴4﹣m=2m,∴m=,∴BE=3﹣=;iii)AE=EQ,则4+m=,7m2﹣40m+48=0,解得:m1=4(舍),m2=,∴BE=3﹣=;综上所述,BE的长为2﹣3或或.20.解:(1)在Rt△ABC中,∠ACB=90°,AC=8,AB=10,由勾股定理得:BC===6,故答案为:6;(2)如图1,过点C作CH⊥AB于H,S△ABC=AC•BC=AB•CH,则×8×6=×10×CH,解得:CH=,当t=2时,AD=2×2=4,则S△ADC=×4×=;(3)当F A=FB时,DF⊥AB,∴AD=AB=×10=5,∴t=5÷2=;当AF=AB=10时,∠ACB=90°,则BF=2BC=12,∴AB•DF=BF•AC,即×10×DF=×12×8,解得:DF=,由勾股定理得:AD===,∴t=÷2=;当BF=AB=10时,∵BF=10,BC=6,∴CF=BF﹣BC=10﹣6=4,由勾股定理得:AF===4,∵BF=BA,FD⊥AB,AC⊥BF,∴DF=AC=8,∴AD===4,∴t=4÷2=2;综上所述,△ABF是等腰三角形时,t的值为或或2.。
2024年江苏省苏州市中考真题数学试卷含答案解析

2024年江苏省苏州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3-B.1C.2D.32.下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯D.1224710⨯⨯C.12247102.4710⨯B.10【答案】C【分析】本题考查的是科学记数法-表示较大的数,把一个大于10的数记成10na⨯的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.根据科学记数法-表示较大的数的方法解答.【详解】解:122470000000000 2.4710=⨯,故选:C .4.若1a b >-,则下列结论一定正确的是( )A .1a b+<B .1a b -<C .a b >D .1a b+>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.直接利用不等式的性质逐一判断即可.【详解】解:1a b >-,A 、1a b +>,故错误,该选项不合题意;B 、12a b ->-,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意;故选:D .5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒【答案】B 【分析】题目主要考查平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∴3180155BAD ∠=︒-∠-∠=︒,故选:B6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择( )A .甲、丁B .乙、戊C .丙、丁D .丙、戊【答案】C 【分析】本题主要考查了用中位数做决策,由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要选择100克以上的一个盲盒和100克以下的盲盒一个,根据选项即可得出正确的答案.【详解】解:由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要从第6号盲盒和第7号盲盒里选择100克以上的一个盲盒和100克以下的盲盒一个,因此可排除甲、丁,乙、戊,丙、戊故选:C .7.如图,点A 为反比例函数()10y x x =-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AO BO 的值为( )A .12B .14C D .13∴11122ACO S=⨯-= ,142BDO S =⨯= ∵OA OB ⊥,∴90AOC OBD BOD ∠=∠=︒-∠,∴AOC OBD △∽△,8.如图,矩形ABCD 中,AB ,1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为( )A B 2C .2D .1【答案】D 【分析】连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,根据直角三角形斜边中线的性质,可以得出G 的轨迹,从而求出AG 的最大值.∵四边形ABCD 是矩形,∴90ABC ∠=︒,OA OC =,AB ∴在Rt ABC △中,AC AB =∴112OA OC AC ===,二、填空题9.计算:32x x ⋅= .【答案】5x 【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.10.若2a b =+,则()2b a -= .【答案】4【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是 .12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠= .∵OB OC =,OBC ∠∴OCB OBC ∠=∠∴801OC OC B ∠∠=︒-113.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是 .设1l 与y 轴的交点为点B ,令0x =,得1y =-;令y =∴()1,0A ,()0,1B - ,∴1OA =,1OB =,即45OAB OBA ∠=∠=︒14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若AB == .(结果保留π)∵六条弧所对应的弦构成一个正六边形,∴60,AOB OA ∠=︒=∴AOB 为等边三角形,∵圆心C 恰好是ABO 15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则mn的值为 .16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE ,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .则90AHE ACB ︒∠=∠=,又∴AHE ACB ∽,三、解答题17.计算:()042-+-.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.18.解方程组:27233x y x y +=⎧⎨-=⎩.【答案】31x y =⎧⎨=⎩【分析】本题考查的是解二元一次方程组,解题的关键是掌握加减消元法求解.根据加减消元法解二元一次方程组即可.【详解】解:27233x y x y +=⎧⎨-=⎩①②-①②得,44y =,解得,1y =.将1y =代入①得3x =.∴方程组的解是31x y =⎧⎨=⎩19.先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--.其中3x =-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春)春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋)在12个等可能的结果中,抽取的书签1张为“春”,1张为122.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B (乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【答案】(1)见解析(2)72(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)利用C组的人数除以所占百分比求出总人数,然后用总人数减去A、B、C、E组的人数,最后补图即可;(2)用360︒乘以E组所占百分比即可;(3)用800乘以B组所占百分比即可.÷=,【详解】(1)解:总人数为915%60D组人数为6061891215----=,补图如下:(2)解:123607260︒⨯=︒,故答案为:72;(3)解:1880024060⨯=(人).答:本校七年级800名学生中选择项目23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).由题意可知,90B A ∠=∠=︒,又CE AD ⊥ ,∴四边形ABCE 为矩形.20BC =由题意可知,四边形ABFG 为矩形,90AGD ∴=︒△.在Rt AGD 中,tan DG AG α==34DG AG ∴=.24.如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.45∴∠=︒.BAC∥轴,PN x∴∠=∠=︒,∠NQM BLN BAC4525.如图,ABC 中,AB =D 为AB 中点,BAC BCD ∠=∠,cos ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.又22,AD=DE=∴.1∴在Rt AED△中,22=-=AE AD DEBAC BCD△∽△,26.某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D 1001次列车从A 站始发,经停B 站后到达C 站,G 1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A 站B 站C 站车次发车时刻到站时刻发车时刻到站时刻D 10018:009:309:5010:50G 10028:25途经B 站,不停车10:30请根据表格中的信息,解答下列问题:(1)D 1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟;(2)记D 1001次列车的行驶速度为1v ,离A 站的路程为1d ;G 1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______;②从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G 1002次列车的行驶过程中()25150t ≤≤,若1260d d -=,求t 的值.27.如图①,二次函数2y x bx c =++的图象1C 与开口向下的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.由二次函数的对称性得,∴PM NQ =.又PQ MP QN =+ ,而PQ PH PM ∴=.设()02PH t t =<<,则点将1x t =+代入(2y x =-+将21x t =+代入()(1y x =+P M y y = ,()(22t t ∴-+∴四边形IGJF 为矩形,IF GJ ∴=,IG FJ =.设2C 对应的函数表达式为 点D ,E 分别为二次函数图象将1x =分别代入22y x =-得4,4D E y y a =-=-,∴()1,4D -,()1,4E a -,4DG ∴=,2AG =,EG =。
苏科版中考数学复习基础必练习题:第三章-代数式(含解析)

2019备战中考数学基础必练(苏科版)-第三章-代数式(含解析)一、单选题1.多项式﹣y2﹣y﹣1的一次项是()A. 1B. ﹣1C.D.2.若x=2,y=﹣1,那么代数式x2+2xy+y2的值是()A. 0B. 1C. 2D. 43.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是()A. m = 2,n = 2B. m =-2,n = 2C. m = -1,n = 2D. m = 2 ,n =-14.下列代数式书写规范的是()A. 8x2yB. 1 bC. ax3D. 2m÷n5.如图,它是一个程序计算器,如果输入m=6,那么输出的结果为()A. 3.8B. 2.4C. 36.2D. 37.26.已知a+b=7,ab=10,则代数式(5ab+4a+7b)+(3a-4ab)的值为( )A. 49B. 59C. 77D. 1397.下面的式子中正确的是()A. 3a2﹣2a2=1B. 5a+2b=7abC. 3a2﹣2a2=2aD. 5xy2﹣6xy2=﹣xy28.如图是一个数值运算程序,当输入值为﹣2时,则输出的数值为()A. 3B. 8C. 64D. 639.下列合并同类项的结果正确的是( )A. a+3a=3a2B. 3a-a=2C. 3a+b=3abD. a2-3a2=-2a2二、填空题10.县化肥厂第一季度增产a吨化肥,以后每季度比上一季度增产x%,则第三季度化肥增产的吨数为________ 。
11.若单项式2x2y m与-的和仍为单项式,则m+n的值是________ .12.a与3的和的4倍,用代数式表示为________.13.若n表示整数,则奇数用n的代数式表示为________。
14.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k=________;当m=2,n=﹣3时代数式的值是________.15.单项式﹣的系数是________,次数是________.16.多项式-x3y2+3x2y4-2xy2的次数是________.17.根据如图所示的程序计算,若输入x的值为1,则输出y的值为________.18.如果多项式x4-(a-1)x3+3x2-(b+1)x-1中不含x3和x项,则a=________,b=________.三、计算题19.化简:3a2+2a-4a2-7a20.已知2x a y b+1+(a-1)x2是关于x,y的四次单项式,求a,b的值.四、解答题21.若单项式5x2y和42x m y n是同类项,求m+n的值.22.先化简,再求值:,其中x=2.五、综合题23.综合题。
2022年江苏省苏州市中考数学真题(解析版)

2022年苏州市初中学业水平考试试卷数学一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1. 下列实数中,比3大的数是( )A. 5B. 1C. 0D. -2【答案】A【解析】【分析】根据有理数的大小比较法则比较即可.【详解】解:因为-2<0<1<3<5,所以比3大的数是5,故选:A .【点睛】本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键.2. 2022年1月17日,国务院新闻办公室公布:截至2021年末全国人口总数为141260万,比上年末增加48万人,中国人口的增长逐渐缓慢.141260用科学记数法可表示为( )A. 60.1412610´ B. 61.412610´ C. 51.412610´ D. 414.12610´【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:141260=51.412610´,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 下列运算正确的是( )A. 7=-B. 2693¸=C. 222a b ab +=D. 235a b ab×=【答案】B 【解析】a =,判断A 选项不正确;C 选项中2a 、2b 不是同类项,不能合并;D 选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B 选项正确.【详解】A. 7==,故A 不正确;B. 2366932¸=´=,故B 正确;C. 222a b ab +¹,故C 不正确;D. 236a b ab ×=,故D 不正确;故选B .【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.4. 为迎接党的二十大胜利召开,某校开展了“学党史,悟初心”系列活动.学校对学生参加各项活动的人数进行了调查,并将数据绘制成如下统计图.若参加“书法”的人数为80人,则参加“大合唱”的人数为( )A. 60人B. 100人C. 160人D. 400人【答案】C【解析】【分析】根据参加“书法”的人数为80人,占比为20%,可得总人数,根据总人数乘以125%15%20%---即可求解.【详解】解:总人数为8020%400¸=.则参加“大合唱”的人数为()400125%15%20%160´---=人.故选C .【点睛】本题考查了扇形统计图,从统计图获取信息是解题的关键.5. 如图,直线AB 与CD 相交于点O ,75AOC Ð=°,125Ð=°,则2Ð的度数是( )A. 25°B. 30°C. 40°D. 50°【答案】D【解析】【分析】根据对顶角相等可得75BOD Ð=°,之后根据125Ð=°,即可求出2Ð.【详解】解:由题可知75BOD AOC Ð=Ð=°,125Ð=°Q ,217525BOD \Ð=Ð-Ð=°-°=50°.故选:D .【点睛】本题主要考查对顶角和角的和与差,掌握对顶角相等是解决问题的关键.6. 如图,在56´的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB 的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB (阴影部分)的概率是( )A. 12pB. 24pC.D. 【答案】A【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】解:由图可知,总面积为:5×6=30,OB ==,∴阴影部分面积为:90105= 3602p p´g,∴飞镖击中扇形OAB(阴影部分)的概率是52= 3012pp,故选:A.【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件发生的概率.7. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x步才能追上,根据题意可列出的方程是()A.60100100x x=- B.60100100x x=+ C.10010060x x=+ D.10010060x x=-【答案】B【解析】【分析】根据题意,先令在相同时间t内走路快的人走100步,走路慢的人只走60步,从而得到走路快的人的速度100t,走路慢的人的速度60t,再根据题意设未知数,列方程即可【详解】解:令在相同时间t内走路快的人走100步,走路慢的人只走60步,从而得到走路快的人的速度100 t ,走路慢的人的速度60t,设走路快的人要走x步才能追上,根据题意可得60100100xxtt=+´,\根据题意可列出的方程是60100100x x =+,故选:B.【点睛】本题考查应用一元一次方程解决数学史问题,读懂题意,找准等量关系列方程是解决问题的关键.8. 如图,点A的坐标为()0,2,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为(),3m,则m的值为()A. B. C. D.【答案】C【解析】【分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得AC BC AB===,可得=,即可解BD==OB==m得m=.【详解】解:过C作CD⊥x轴于D,CE⊥y轴于E,如图所示:∵CD⊥x轴,CE⊥y轴,∴∠CDO=∠CEO=∠DOE=90°,∴四边形EODC是矩形,∵将线段AB绕点A按逆时针方向旋转60°得到线段AC,∴AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AB=AC=BC,∵A(0,2),C(m,3),∴CE=m=OD,CD=3,OA=2,∴AE=OE−OA=CD−OA=1,∴AC BC AB====,在Rt△BCD中,BD==在Rt△AOB中,OB==∵OB+BD=OD=m,=,m化简变形得:3m4−22m2−25=0,解得:m=或m=(舍去),∴m=,故C正确.故选:C.【点睛】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.a a×=_______.9. 计算:3【答案】a4【解析】【分析】本题须根据同底数幂乘法,底数不变指数相加,即可求出答案.【详解】解:a3•a,=a3+1,=a4.故答案为:a4.【点睛】本题主要考查了同底数幂的乘法,在解题时要能灵活应用同底数幂的乘法法则,熟练掌握运算性质是解题的关键.10. 已知4x y +=,6-=x y ,则22x y -=______.【答案】24【解析】【分析】根据平方差公式计算即可.详解】解:∵4x y +=,6-=x y ,∴22()()4624x y x y x y -=+-=´=,故答案为:24.【点睛】本题考查因式分解的应用,先根据平方差公式进行因式分解再整体代入求值是解题的关键.11. 化简2222x x x x ---的结果是______.【答案】x【解析】【分析】根据分式的减法进行计算即可求解.【详解】解:原式=()22222x x x x x x x --==--.故答案为:x .【点睛】本题考查了分式的减法,正确的计算是解题的关键.12. 定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.【答案】6【解析】【分析】分类讨论:AB =AC =2BC 或BC =2AB =2AC ,然后根据三角形三边关系即可得出结果.【详解】解:∵△ABC 是等腰三角形,底边BC =3∴AB =AC当AB =AC =2BC 时,△ABC 是“倍长三角形”;当BC =2AB =2AC 时,AB +AC =BC ,根据三角形三边关系,此时A 、B 、C 不构成三角形,不符合题意;所以当等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为6.故答案为6.【点睛】本题考查等腰三角形,三角形的三边关系,涉及分类讨论思想,结合三角形三边关系,灵活运用【分类讨论思想是解题的关键.13. 如图,AB 是O e 的直径,弦CD 交AB 于点E ,连接AC ,AD .若28BAC Ð=°,则D Ð=______°【答案】62【解析】【分析】连接BD ,根据直径所对的圆周角是90°,可得90ADB Ð=°,由 CBCB =,可得BAC BDC Ð=Ð,进而可得90ADC BDC Ð=°-Ð.【详解】解:连接BD ,∵AB 是O e 的直径,∴90ADB Ð=°,Q CB CB=,\28BAC BDC Ð==а,\90ADC BDC Ð=°-Ð62=°故答案为:62【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.14. 如图,在平行四边形ABCD 中,AB AC ^,3AB =,4AC =,分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线,与BC 交于点E ,与AD 交于点F ,连接AE ,CF ,则四边形AEC F 的周长为______.【答案】10【解析】【分析】根据作图可得MN AC ^,且平分AC ,设AC 与MN 的交点为O ,证明四边形AECF 为菱形,根据平行线分线段成比例可得AE 为ABC V 的中线,然后勾股定理求得BC ,根据直角三角形中斜边上的中线等于斜边的一半可得AE 的长,进而根据菱形的性质即可求解.【详解】解:如图,设AC 与MN 的交点为O ,根据作图可得MN AC ^,且平分AC ,AO OC \=,Q 四边形ABCD 是平行四边形,AD BC \∥,FAO OCE \Ð=Ð,又AOF COE Ð=ÐQ ,AO CO = ,AOF COE \V V ≌,AF EC \=,AF CE ∥Q ,\四边形AECF 是平行四边形,MN Q 垂直平分AC ,EA EC \=,\四边形AECF 是菱形,Q AB AC ^,MN AC ^,EF AB \∥,1EC OC BE AO \==,E \为BC 中点,Rt ABC △中, 3AB =,4AC =,5BC \==,1522AE BC ==,\四边形AEC F 的周长为410AE =.故答案为:10.【点睛】本题考查了垂直平分线的性质,菱形的性质与判定,勾股定理,平行线分线段成比例,平行四边形的性质与判定,综合运用以上知识是解题的关键.15. 一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y (升)与时间x (分钟)之间的函数关系如图所示,则图中a 的值为______.【答案】293【解析】【分析】根据函数图像,结合题意分析分别求得进水速度和出水速度,即可求解.【详解】解:依题意,3分钟进水30升,则进水速度为30103=升/分钟,Q 3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完直至容器中的水全部排完,则排水速度为810201283´-=-升/分钟,\20812a -=,解得293a =.的故答案为:293.【点睛】本题考查了函数图象问题,从函数图象获取信息是解题的关键.16. 如图,在矩形ABCD 中23=AB BC .动点M 从点A 出发,沿边AD 向点D 匀速运动,动点N 从点B 出发,沿边BC 向点C 匀速运动,连接MN .动点M ,N 同时出发,点M 运动的速度为1v ,点N 运动的速度为2v ,且12v v <.当点N 到达点C 时,M ,N 两点同时停止运动.在运动过程中,将四边形MABN 沿MN 翻折,得到四边形MA B N ¢¢.若在某一时刻,点B 的对应点B ¢恰好在CD 的中点重合,则12v v 的值为______.【答案】35【解析】【分析】在矩形ABCD 中23=AB BC ,设2,3AB a BC a ==,运动时间为t ,得到212,3,,CD AB a AD BC a BN v t AM v t ======,利用翻折及中点性质,在Rt B CN ¢D 中利用勾股定理得到253v t a BN ==,然后利用EDB B CN ¢¢D D :得到34DE a A E ¢==,在根据判定的A EM ¢D ()DEB ASA ¢@D 得到1AM v t a ==,从而代值求解即可.【详解】解:如图所示:在矩形ABCD 中23=AB BC ,设2,3AB a BC a ==,运动时间为t,212,3,,CD AB a AD BC a BN v t AM v t \======,在运动过程中,将四边形MABN 沿MN 翻折,得到四边形MA B N ¢¢,21,B N BN v t A M AM v t ¢¢\====,若在某一时刻,点B 的对应点B ¢恰好在CD 的中点重合,DB B C a ¢¢\==,在Rt B CN ¢D 中,2290,,,3C B C a B N v t CN a v t ¢¢Ð=°===-,则253v t a BN ==,90A B N B Ð=Ð=°¢¢Q ,90A B D CB N ¢¢¢\Ð+Ð=°,90CNB CB N ¢¢Ð+Ð=°Q ,A B D CNB ¢¢¢\Ð=Ð,EDB B CN ¢¢\D D :,35433DE B C B C a DB CN BC BN a a ¢¢\====¢--,DB B C a ¢¢==Q ,3344DE DB a ¢\==,则54B E a ¢===,53244A E A B B E a a a ¢¢¢¢\=-=-=,即34DE a A E ¢==,在A EM ¢D 和DEB ¢D 中,90A D A E DEA EM DEB Ð=Ð=°ìï=íïТ=Т¢î¢ \A EM ¢D ()DEB ASA ¢@D ,A MB D a ¢¢\==,即1AM v t a ==,11223553v v t AM a v v t BN a \====,故答案为:35.【点睛】本题属于矩形背景下的动点问题,涉及到矩形的性质、对称性质、中点性质、两个三角形相似的判定与性质、勾股定理及两个三角形全等的判定与性质等知识点,熟练掌握相关性质及判定,求出相应线段长是解决问题的关键.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.17. 计算:)2321-+-.【答案】6【解析】【分析】先化简各式,然后再进行计算即可;【详解】解:原式341=+-6=【点睛】本题考查了零指数幂、绝对值、平方,准确化简式子是解题的关键.18. 解方程:311x x x +=+.【答案】32x =-【解析】【分析】根据解分式方程的步骤求出解,再检验即可.【详解】方程两边同乘以()1x x +,得()()2311x x x x ++=+.解方程,得32x =-.经检验,32x =-是原方程的解.【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解题的关键.即去分母,去括号,移项,合并同类项,系数化为1,检验.19. 已知23230x x --=,求()2213x x x æö-++ç÷èø的值.【答案】24213x x -+,3【解析】【分析】先将代数式化简,根据23230x x --=可得2213x x -=,整体代入即可求解.【详解】原式222213x x x x =-+++24213x x =-+.∵23230x x --=,∴2213x x -=.∴原式22213x x æö=-+ç÷èø211=´+3=.【点睛】本题考查了整式的乘法运算,代数式化简求值,整体代入是解题的关键.20. 一只不透明的袋子中装有1个白球,3个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,这个球是白球的概率为______;(2)搅匀后从中任意摸出1个球,记录颜色后放回,搅匀,再从中任意摸出1个球,求2次摸到的球恰好是1个白球和1个红球的概率.(请用画树状图或列表等方法说明理由)【答案】(1)14(2)2次摸到的球恰好是1个白球和1个红球的概率为38【解析】【分析】(1)直接利用概率公式求解即可求得答案;(2)画树状图表示所有等可能出现的情况,从中找出两个球颜色不同的结果数,进而求出概率.【小问1详解】解:∵一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,∴搅匀后从中任意摸出1个球,则摸出白球的概率为:11134=+ .故答案为:14;【小问2详解】解: 画树状图,如图所示:共有16种不同的结果数,其中两个球颜色不同的有6种,∴2次摸到的球恰好是1个白球和1个红球的概率为38.【点睛】考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.21. 如图,将矩形ABCD 沿对角线AC 折叠,点B 的对应点为E ,AE 与CD 交于点F .(1)求证:DAF ECF △≌△;(2)若40FCE Ð=°,求CAB Ð度数.【答案】(1)见解析 (2)25CAB Ð=°【解析】【分析】(1)由矩形与折叠的性质可得AD BC EC ==,90D B E Ð=Ð=Ð=°,从而可得结论;(2)先证明40DAF ECF Ð=Ð=°,再求解904050EAB DAB DAF Ð=Ð-Ð=°-°=°, 结合对折的性质可得答案.【小问1详解】证明:将矩形ABCD 沿对角线AC 折叠,则AD BC EC ==,90D B E Ð=Ð=Ð=°.在△DAF 和△ECF 中,DFA EFC D E DA EC Ð=ÐìïÐ=Ðíï=î,,, ∴DAF ECF △≌△.【小问2详解】解:∵DAF ECF △≌△,∴40DAF ECF Ð=Ð=°.∵四边形ABCD 是矩形,∴90DAB Ð=°.∴904050EAB DAB DAF Ð=Ð-Ð=°-°=°, ∵FAC CAB Ð=Ð,∴25CAB Ð=°.【点睛】本题考查的是全等三角形的判定与性质,轴对称的性质,矩形的性质,熟练的运用轴对称的性质证明边与角的相等是解本题的关键.的22. 某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如下表格:成绩(分)678910划记正正正正培训前人数(人)124754成绩(分)678910划记一正正正正培训后人数(人)413915(1)这32名学生2次测试成绩中,培训前测试成绩的中位数是m ,培训后测试成绩的中位数是n ,则m ______n ;(填“>”、“<”或“=”)(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少?(3)估计该校九年级640名学生经过培训,测试成绩为“10分”的学生增加了多少人?【答案】(1)<(2)测试成绩为“6分”的百分比比培训前减少了25%(3)测试成绩为“10分”的学生增加了220人【解析】【分析】(1)先分别求解培训前与培训后的中位数,从而可得答案;(2)分别求解培训前与培训后得6分的人数所占的百分比,再作差即可;(3)分别计算培训前与培训后得满分的人数,再作差即可.【小问1详解】解:由频数分布表可得:培训前的中位数为:787.5,2m +== 培训后的中位数为:9+9=9,2n = 所以,m n < 故答案为:<;【小问2详解】124100%100%25%,3232´-´=答:测试成绩为“6分”的百分比比培训前减少了25%.【小问3详解】培训前:46408032´=,培训后:1564030032´=,30080220-=.答:测试成绩为“10分”的学生增加了220人.【点睛】本题考查的是频数分布表,中位数的含义,利用样本估计总体,理解题意,从频数分布表中获取信息是解本题的关键.23. 如图,一次函数()20y kx k =+¹的图像与反比例函数()0,0my m x x=¹>的图像交于点()2,A n ,与y 轴交于点B ,与x 轴交于点()4,0C -.(1)求k 与m 的值;(2)(),0P a 为x 轴上的一动点,当△APB 的面积为72时,求a 的值.【答案】(1)k 的值为12,m 的值为6 (2)3a =或11a =-【解析】【分析】(1)把()4,0C -代入2y kx =+,先求解k 的值,再求解A 的坐标,再代入反比例函数的解析式可得答案;(2)先求解()0,2B .由(),0P a 为x 轴上的一动点,可得4PC a =+.由CAP ABP CBP S S S =+△△△,建立方程求解即可.【小问1详解】解:把()4,0C -代入2y kx =+,得12k =.∴122y x =+.把()2,A n 代入122y x =+,得3n =.∴()2,3A .把()2,3A 代入m y x=,得6m =.∴k 的值为12,m 的值为6.【小问2详解】当0x =时,2y =.∴()0,2B .∵(),0P a 为x 轴上的一动点,∴4PC a =+.∴1142422CBP S PC OB a a =×=´+´=+△,113434222CAPA S PC y a a =×=´+´=+△.∵CAP ABP CBP S S S =+△△△,∴374422a a +=++.∴3a =或11a =-.【点睛】本题考查的是利用待定系数法求解反比例函数与一次函数的解析式,坐标与图形面积,利用数形结合的思想,建立方程都是解本题的关键.24. 如图,AB 是O e 的直径,AC 是弦,D 是 AB 的中点,CD 与AB 交于点E .F 是AB 延长线上的一点,且CF EF =.(1)求证:CF 为O e 的切线;(2)连接BD ,取BD 的中点G ,连接AG .若4CF =,2BF =,求AG 的长.【答案】(1)见解析 (2)AG =【解析】【分析】(1)方法一:如图1,连接OC ,OD .由OCD ODC Ð=Ð,FC FE =,可得OED FCE Ð=Ð,由AB 是O e 的直径,D 是 AB 的中点,90DOE Ð=°,进而可得90OCF Ð=°,即可证明CF 为O e 的切线;方法二:如图2,连接OC ,BC .设CAB x Ð=°.同方法一证明90OCF Ð=°,即可证明CF 为O e 的切线;(2)方法一:如图3,过G 作GH AB ^,垂足为H .设O e 的半径为r ,则2OF r =+.在Rt △OCF 中,勾股定理求得3r =,证明GH DO ∥,得出BHG BOD V ∽,根据BH BGBO BD=,求得,BH GH ,进而求得AH ,根据勾股定理即可求得AG ;方法二:如图4,连接AD .由方法一,得3r =.6AB =,D 是 AB的中点,可得AD BD ==,根据勾股定理即可求得AG .小问1详解】(1)方法一:如图1,连接OC ,OD .∵OC OD =,∴OCD ODC Ð=Ð.∵FC FE =,∴FCE FEC Ð=Ð. ∵OED FEC Ð=Ð,【∴OED FCE Ð=Ð.∵AB 是O e 的直径,D 是 AB 的中点,∴90DOE Ð=°.∴90OED ODC Ð+Ð=°.∴90FCE OCD Ð+Ð=°,即90OCF Ð=°.∴OC CF ^.∴CF 为O e 的切线.方法二:如图2,连接OC ,BC .设CAB x Ð=°.∵AB 是O e 的直径,D 是 AB 的中点,∴45ACD DCB Ð=Ð=°.∴()45CEF CAB ACD x Ð=Ð+Ð=+°.∵FC FE =,∴()45FCE FEC x Ð=Ð=+°. ∴BCF x Ð=°.∵OA OC =,∴ACO OAC x Ð=Ð=°.∴BCF ACO Ð=Ð.∵AB 是O e 的直径,∴90ACB Ð=°.∴90OCB ACO Ð+Ð=°.∴90OCB BCF Ð+Ð=°,即90OCF Ð=°.∴OC CF ^.∴CF 为O e 的切线.【小问2详解】解:方法一:如图3,过G 作GH AB ^,垂足为H .设O e 的半径为r ,则2OF r =+.在Rt △OCF 中,()22242r r +=+,解之得3r =.∵GH AB ^,∴90GHB Ð=°.∵90DOE Ð=°,∴GHB DOE Ð=Ð.∴GH DO ∥.BHG BOD\V ∽∴BH BG BO BD=.∵G 为BD 中点,∴12BG BD =.∴1322BH BO ==,1322GH OD ==.∴6AH AB BH =-=-∴AG ==.方法二:如图4,连接AD .由方法一,得3r =.∵AB 是O e 的直径,∴90ADB Ð=°.∵6AB =,D 是 AB 的中点,∴AD BD ==∵G 为BD 中点,∴12DG BD ==∴AG ===【点睛】本题考查了切线的判定,勾股定理,相似三角形的性质与判定,综合运用以上知识是解题的关键.25. 某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m 千克甲种水果和3m 千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m 的最大值.【答案】(1)甲种水果的进价为每千克12元,乙种水果的进价为每千克20元(2)正整数m 的最大值为22【解析】【分析】(1)设甲种水果的进价为每千克a 元,乙种水果的进价为每千克b 元,根据总费用列方程组即可;(2)设水果店第三次购进x 千克甲种水果,根据题意先求出x 的取值范围,再表示出总利润w 与x 的关系式,根据一次函数的性质判断即可.【小问1详解】设甲种水果进价为每千克a 元,乙种水果的进价为每千克b 元.根据题意,得60401520,30501360.a b a b +=ìí+=î解方程组,得12,20.a b =ìí=î答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元.【小问2详解】设水果店第三次购进x 千克甲种水果,则购进()200x -千克乙种水果,根据题意,得()12202003360x x +-£.解这个不等式,得80x ³.设获得的利润为w 元,根据题意,得()()()()1712302020035352000w x m x m x m =-´-+-´--=--+.的∵50-<,∴w 随x 的增大而减小.∴当80x =时,w 的最大值为351600m -+.根据题意,得351600800m -+³.解这个不等式,得1607m £.∴正整数m 的最大值为22.【点睛】本题考查一次函数的应用、二元一次方程组的应用、解一元一次不等式,解答本题的关键是明确题意,找出等量关系,列出相应的二元一次方程,写出相应的函数解析式,利用一次函数的性质求最值.26. 如图,在二次函数2221y x mx m =-+++(m 是常数,且0m >)的图像与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D .其对称轴与线段BC 交于点E ,与x 轴交于点F .连接AC ,BD .(1)求A ,B ,C 三点的坐标(用数字或含m 的式子表示),并求OBC Ð的度数;(2)若ACO CBD Ð=Ð,求m 的值;(3)若在第四象限内二次函数2221y x mx m =-+++(m 是常数,且0m >)的图像上,始终存在一点P ,使得75ACP Ð=°,请结合函数的图像,直接写出m 的取值范围.【答案】(1)A (-1,0);B (2m +1,0);C (0,2m +1);45OBC Ð=°(2)1m =(3)0m <<【解析】【分析】(1)分别令,x y 等于0,即可求得,,A B C 的坐标,根据,90OC OB BOC =Ð=°,即可求得45OBC Ð=°;(2)方法一:如图1,连接AE .由解析式分别求得()21DF m =+,OF m =,1BF m =+.根据轴对称的性质,可得AE BE =,由1tan AE BE BF m ACE CE CE OF m+Ð====,建立方程,解方程即可求解.方法二:如图2,过点D 作DH BC ^交BC 于点H .由方法一,得()21DF m =+,1BF EF m ==+.证明AOC DHB ∽△△,根据相似三角形的性质建立方程,解方程即可求解;(3)设PC 与x 轴交于点Q ,当P 在第四象限时,点Q 总在点B 的左侧,此时CQA CBA Ð>Ð,即45CQA Ð>°.【小问1详解】当0y =时,22210x mx m -+++=.解方程,得11x =-,221x m =+.∵点A 在点B 的左侧,且0m >,∴()1,0A -,()21,0B m +.当0x =时,21=+y m .∴()0,21C m +.∴21OB OC m ==+.∵90BOC Ð=°,∴45OBC Ð=°.【小问2详解】方法一:如图1,连接AE .∵()()2222211y x mx m x m m =-+++=--++,∴()()2,1D m m +,(),0F m .∴()21DF m =+,OF m =,1BF m =+.∵点A ,点B 关于对称轴对称,∴AE BE =.∴45EAB OCB Ð=Ð=°.∴90CEA Ð=°.∵ACO CBD Ð=Ð,OCB OBC Ð=Ð,∴ACO OCB CBD OBC Ð+Ð=Ð+Ð,即ACE DBF Ð=Ð.∵EF OC ∥,∴1tan AE BE BF m ACE CE CE OF m+Ð====.∴()2111m m m m ++=+.∵0m >,∴解方程,得1m =.方法二:如图2,过点D 作DH BC ^交BC 于点H .由方法一,得()21DF m =+,1BF EF m ==+.∴2DE m m =+.∵45DEH BEF Ð=Ð=°,∴)2DH EH m m ===+,)1BE m ==+.∴)232BH BE HE m m =+=++.∵ACO CBD Ð=Ð,90AOC BHD Ð=Ð=°,∴AOC DHB ∽△△.∴OA DH OC BH =.∴121m =+,即1212m m m =++.∵0m >,∴解方程,得1m =.【小问3详解】0m <<设PC 与x 轴交于点Q ,当P 在第四象限时,点Q 总在点B 的左侧,此时CQA CBA Ð>Ð,即45CQA Ð>°.∵75ACQ Ð=°,∴60CAO Ð<°.tan CAO \Ð<,21OC m =+Q ,∴21m +<解得m <,又0m >,∴0m <<【点睛】本题考查了二次函数综合,求二次函数与坐标轴的交点,角度问题,解直角三角形,相似三角形的性质,三角形内角和定理,综合运用以上知识是解题的关键.27. (1)如图1,在△ABC 中,2ACB B Ð=Ð,CD 平分ACB Ð,交AB 于点D ,DE //AC ,交BC 于点E .①若1DE =,32BD =,求BC 的长;②试探究AB BE AD DE-是否为定值.如果是,请求出这个定值;如果不是,请说明理由.(2)如图2,CBG Ð和BCF Ð是△ABC 的2个外角,2BCF CBG Ð=Ð,CD 平分BCF Ð,交AB 的延长线于点D ,DE //AC ,交CB 的延长线于点E .记△ACD 的面积为1S ,△CDE 的面积为2S ,△BDE 的面积为3S .若2132916S S S ×=,求cos CBD Ð的值.【答案】(1)①94BC =;②AB BE AD DE -是定值,定值为1;(2)3cos 8CBD Ð=【解析】【分析】(1)①证明CED CDB V V ∽,根据相似三角形的性质求解即可;②由DE AC ∥,可得AB BC AD DE =,由①同理可得CE DE =,计算AB BE AD DE-1=;(2)根据平行线的性质、相似三角形的性质可得12S AC BC S DE BE ==,又32S BE S CE =,则1322S S BC S CE ×=,可得916BC CE =,设9BC x =,则16CE x =.证明CDB CED ∽△△,可得12CD x =,过点D 作DH BC ^于H .分别求得BD BH ,,进而根据余弦的定义即可求解.【详解】(1)①∵CD 平分ACB Ð,∴12ACD DCB ACB Ð=Ð=Ð.∵2ACB B Ð=Ð,∴ACD DCB B Ð=Ð=Ð.∴32CD BD ==.∵DE AC ∥,∴ACD EDC Ð=Ð.∴EDC DCB B Ð=Ð=Ð.∴1CE DE ==.∴CED CDB V V ∽.∴CE CD =CD CB.∴94BC =.②∵DE AC ∥,∴AB BC AD CE=.由①可得CE DE =,∴AB BC AD DE=.∴1AB BE BC BE CE AD DE DE DE DE -=-==.∴AB BE AD DE -是定值,定值为1.(2)∵DE AC ∥,BDE BAC\∽△△BC AB AC BE BD DE\==∴12S AC BC S DE BE==.∵32S BE S CE=,∴1322S S BC S CE×=.又∵2132916S S S ×=,∴916BC CE =.设9BC x =,则16CE x =.∵CD 平分BCF Ð,∴12ECD FCD BCF Ð=Ð=Ð.∵2BCF CBG Ð=Ð,∴ECD FCD CBD Ð=Ð=Ð.∴BD CD =.∵DE AC ∥,∴EDC FCD Ð=Ð.∴EDC CBD ECD Ð=Ð=Ð.∴CE DE =.∵DCB ECD Ð=Ð,∴CDB CED ∽△△.∴CD CB CE CD=.∴22144CD CB CE x =×=.∴12CD x =.如图,过点D 作DH BC ^于H .∵12BD CD x ==,∴1922BH BC x ==.∴932cos 128x BH CBD BD x Ð===.【点睛】本题考查了相似三角形的性质与判定,求余弦,掌握相似三角形的性质与判定是解题的关键.。
苏科版数学专题复习《一元二次方程》中考试题精选

苏科版数学专题复习《一元二次方程》中考试题精选一.选择题(共11小题)1.若(a+b+1)(a+b﹣1)=15,则a+b的值是()A.±2 B.±4 C.2 D.42.若x2﹣2x﹣5=0的一个解为a,则a(2a﹣3)+a(1﹣a)的值为()A.5 B.2√6+4C.√6D.﹣5 3.下列方程是一元二次方程的是()A.3x2﹣6y+2=0 B.ax2﹣bx+c=0 C.1x2+x=2D.x2=04.2020年﹣2022年无锡居民人均可支配收入由5.76万元增长至6.58万元,设人均可支配收入的平均增长率为x,下列方程正确的是()A.5.76(1+x)2=6.58 B.5.76(1+x2)=6.58C.5.76(1+2x)=6.58 D.5.76x2=6.585.已知x=1是关于x的一元二次方程x2+mx=0的一个根,则m的值是()A.﹣1 B.0 C.1 D.26.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为()A.82+x2=(x﹣3)2B.82+(x+3)2=x2C.82+(x﹣3)2=x2D.x2+(x﹣3)2=827.若关于x的一元二次方程mx2+x﹣m2+1=0的一个根为﹣1,则m的值为()A.0 B.1 C.﹣1或0 D.0或18.若一元二次方程x2﹣2x﹣k=0有两个实数根,则k的取值范围是()A.k≥﹣1 B.k≥﹣1 且k≠0 C.k≤1 D.k<﹣19.解方程2(4x﹣3)2=3(4x﹣3)最适当的方法是()A.直接开方法B.配方法C.公式法D.分解因式法10.将方程x2+4x+1=0配方后,原方程变形为()A.(x+4)2=3 B.(x+2)2=﹣3 C.(x+2)2=3 D.(x+2)2=﹣5 11.某工厂由于管理水平提高,生产成本逐月下降.原来每件产品的成本是1600元,两个月后降至900元,若产品成本的月平均降低率为x ,下面所列方程正确的是( )A .1600(1﹣x )2=900B .1600(1﹣2x )=900C .1600(1﹣x 2)=900D .1600(1﹣x )=900 二.填空题(共5小题)12.一元二次方程x 2+3x +1=0的根的判别式的值为 .13.已知a ,b 是一元二次方程x 2+5x ﹣3=0的两个根,则1b +1a 的值为 . 14.2023“全晋乐购”网上年货节活动期间,某商家购进一批进价为80元/盒的吕梁沙棘汁,按150元/盒的价格进行销售,每天可售出160盒.后经市场调查发现,当每盒价格降低1元时,每天可多售出8盒.若要每天盈利16000元,设每盒价格降低x 元,则可列方程为 .15.若实数a 、b 分别满足a 2﹣3a +2=0,b 2﹣3b +2=0,且a ≠b ,则1a +1b = .16.若关于x 的一元二次方程x 2﹣2x +m =0有两个不相等的实数根,则m 的取值范围是 .三.解答题(共4小题)17.据统计,目前某市5G 基站的数量约1.5万座,计划到2023年底,全市5G 基站数是目前的4倍,到2025年底,全市5G 基站数最将达到17.34万座.(1)计划到2023年底,全市5G 基站的数量是多少万座?(2)求2023年底到2025年底,全市5G 基站数量的年平均增长率.18.已知关于x 的一元二次方程x 2﹣(k +2)x +k ﹣1=0(1)求证:无论k 取何值,此方程总有两个不相等的实数根;(2)已知12是关于x 的方程x 2﹣(k +2)x +k ﹣1=0的一个根,而这个方程的两个根恰好是等腰三角形ABC 的两条边长.①求k的值;②求△ABC的周长.19.已知关于x的方程x2﹣bx+2b﹣4=0.(1)求证:方程总有两个实数根;(2)若b为正整数,且方程有一个根为负数,求b的值.20.按照指定方法解下列方程:(1)3x2﹣4x+1=0(配方法);(2)2x2−2√2x+1=0(公式法);(3)3x(x﹣2)=2x﹣4.。
中考苏教版数学试卷及答案

一、选择题(每小题3分,共30分)1. 下列数中,有理数是()。
A. √3B. πC. 2/3D. -5/22. 已知x² - 4x + 3 = 0,则x的值为()。
A. 1或3B. -1或3C. 1或-3D. -1或-33. 在直角坐标系中,点A(-2,3)关于y轴的对称点坐标是()。
A.(2,3)B.(-2,-3)C.(-2,3)D.(2,-3)4. 下列函数中,是反比例函数的是()。
A. y = x + 2B. y = 2xC. y = 3/xD. y = x²5. 下列命题中,正确的是()。
A. 平行四边形一定是矩形B. 等腰三角形一定是等边三角形C. 矩形一定是平行四边形D. 等边三角形一定是等腰三角形6. 在△ABC中,若∠A = 60°,∠B = 70°,则∠C =()。
A. 50°B. 40°C. 30°D. 20°7. 已知一次函数y = kx + b的图象经过点(2,3)和点(-1,1),则k和b的值分别是()。
A. k = 1,b = 1B. k = 1,b = 2C. k = 2,b = 1D. k = 2,b = 28. 下列数中,无理数是()。
A. √9B. √16C. √25D. √-49. 已知一元二次方程x² - 5x + 6 = 0的两个根分别是α和β,则α + β的值为()。
A. 5B. 6C. 1D. 210. 在平面直角坐标系中,点P(-3,4)到原点O的距离是()。
A. 5B. 7C. 9D. 11二、填空题(每小题3分,共30分)11. 已知a = -2,b = 3,则a² + b² = ________。
12. 若sin∠A = 1/2,则∠A = ________。
13. 下列函数中,是奇函数的是 ________。
14. 已知等腰三角形底边长为6,腰长为8,则该三角形的周长为 ________。
新苏教版七年级数学下册《二元一次方程组》近几年中考题及答案解析(精品试卷).docx

苏科新版七年级(下)近3年中考题单元试卷:第10章二元一次方程组一、选择题(共15小题)1.(2013•广州)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A.B.C.D.2.(2013•郴州)在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A. B.C. D.3.(2013•抚顺)小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x、y分钟,则列出的二元一次方程组是()A.B.C.D.4.(2013•崇左)一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为()A.B.C.D.5.(2013•朝阳)一批同学和部分家长结伴参加夏令营,同学和家长一共18人,同学数是家长数的2倍少3人.设家长有x人,同学有y人,根据题意,下面列出的方程组正确的是()A.B.C.D.6.(2013•南昌)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人.下面所列的方程组正确的是()A.B.C.D.7.(2013•漳州)如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组正确的是()A.B.C. D.8.(2015•台湾)如图为甲、乙、丙三根笔直的木棍平行摆放在地面上的情形.已知乙有一部分只与甲重迭,其余部分只与丙重迭,甲没有与乙重迭的部分的长度为1公尺,丙没有与乙重迭的部分的长度为2公尺.若乙的长度最长且甲、乙的长度相差x公尺,乙、丙的长度相差y公尺,则乙的长度为多少公尺?()A.x+y+3 B.x+y+1 C.x+y﹣1 D.x+y﹣39.(2013•宁夏)雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是()A.B.C.D.10.(2014•南昌)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.设每支中性笔x元和每盒笔芯y元,根据题意列方程组正确的是()A.B.C.D.11.(2013•内江)成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x千米/小时和y千米/小时,则下列方程组正确的是()A.B.C.D.12.(2014•新疆)“六•一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B型童装y套,依题意列方程组正确的是()A.B.C. D.13.(2014•温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A. B.C. D.14.(2013•潍坊)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.B.C.D.15.(2014•锦州)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.二、填空题(共4小题)16.(2015•哈尔滨)美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,则展出的油画作品有幅.17.(2013•江西)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组.18.(2014•丹东)小明和小丽到文化用品商店帮助同学们买文具.小明买了3支笔和2个圆规共花19元;小丽买了5支笔和4个圆规共花35元.设每支笔x元,每个圆规y元.请列出满足题意的方程组.19.(2014•盘锦)在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.三、解答题(共11小题)20.(2015•义乌市)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮.(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛.如图3,在草坪RPCQ中,已知RE⊥PQ于点E,CF⊥PQ于点F,求花坛RECF 的面积.21.(2015•株洲)P表示n边形对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P与n的关系式是P=(n2﹣an+b)(其中a,b是常数,n≥4)(1)填空:通过画图可得:四边形时,P= (填数字);五边形时,P= (填数字)(2)请根据四边形和五边形对角线的交点个数,结合关系式,求a和b的值.(注:本题中的多边形均指凸多边形)22.(2015•曲靖)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?23.(2015•黄冈)已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?24.(2015•娄底)假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费多少元?25.(2015•徐州)某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B 商品需要32元;打折后,买50件A商品和40件B商品仅需364元,这比打折前少花多少钱?26.(2015•吉林)根据图中的信息,求梅花鹿和长颈鹿现在的高度.27.(2015•巴彦淖尔)我市某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元,而店庆期间,购买10件甲商品和10件乙商品仅需520元,这比打折前少花多少钱?28.(2015•张家界)小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?29.(2015•福建)某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价(元/千克)3 4零售价(元/千克)47当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?30.(2015•佛山)某景点的门票价格如表:购票人数/人 1~50 51~100100以上每人门票价/元12 10 8某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?苏科新版七年级(下)近3年中考题单元试卷:第10章二元一次方程组参考答案与试题解析一、选择题(共15小题)1.(2013•广州)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】计算题.【分析】根据等量关系为:两数x,y之和是10;x比y的3倍大2,列出方程组即可.【解答】解:根据题意列方程组,得:.故选:C.【点评】此题主要考查了由实际问题抽象出二元一次方程组,要注意抓住题目中的一些关键性词语“x比y的3倍大2”,找出等量关系,列出方程组是解题关键.2.(2013•郴州)在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A. B.C. D.【考点】由实际问题抽象出二元一次方程组.【专题】压轴题.【分析】设买了甲种药材x斤,乙种药材y斤,根据甲种药材比乙种药材多买了2斤,两种药材共花费280元,可列出方程.【解答】解:设买了甲种药材x斤,乙种药材y斤,由题意得:.故选A.【点评】本题考查了有实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.3.(2013•抚顺)小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x、y分钟,则列出的二元一次方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据关键语句“到学校共用时20分钟”可得方程:x+y=20,根据“骑自行车的平均速度是200米/分,步行的平均速度是70米/分.他家离学校的距离是3350米”可得方程:200x+70y=3350,两个方程组合可得方程组.【解答】解:设他骑自行车和步行的时间分别为x、y分钟,由题意得:.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.4.(2013•崇左)一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90°,从图中可看出∠1+∠2+90°=180°;②∠1比∠2的度数大50°,则∠1=∠2+50°.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠1比∠2的度数大50°,得方程x=y+50.可列方程组为,故选:C.【点评】此题考查了学生对二元一次方程组的灵活运用,学生应该重视培养对应用题的理解能力,准确地列出二元一次方程组.5.(2013•朝阳)一批同学和部分家长结伴参加夏令营,同学和家长一共18人,同学数是家长数的2倍少3人.设家长有x人,同学有y人,根据题意,下面列出的方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据关键语句“同学和家长一共18人”可得方程x+y=18,“同学数是家长数的2倍少3人“可得2x﹣3=y,联立两个方程即可.【解答】解:设家长有x人,同学有y人,根据题意得:.故选:C.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住题目中的关键语句,找出等量关系,列出方程组.6.(2013•南昌)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人.下面所列的方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设到井冈山的人数为x人,到瑞金的人数为y人,根据共34人进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,即可得出方程组.【解答】解:设到井冈山的人数为x人,到瑞金的人数为y人,由题意得:.故选B.【点评】本题考查了有实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.7.(2013•漳州)如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组正确的是()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【专题】几何图形问题.【分析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【解答】解:根据图示可得,故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.8.(2015•台湾)如图为甲、乙、丙三根笔直的木棍平行摆放在地面上的情形.已知乙有一部分只与甲重迭,其余部分只与丙重迭,甲没有与乙重迭的部分的长度为1公尺,丙没有与乙重迭的部分的长度为2公尺.若乙的长度最长且甲、乙的长度相差x公尺,乙、丙的长度相差y公尺,则乙的长度为多少公尺?()A.x+y+3 B.x+y+1 C.x+y﹣1 D.x+y﹣3【考点】二元一次方程组的应用.【分析】设乙的长度为a公尺,则甲的长度为:(a﹣x)公尺;丙的长度为:(a﹣y)公尺,甲与乙重叠的部分长度为:(a﹣x﹣1)公尺;乙与丙重叠的部分长度为:(a﹣y﹣2)公尺,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,列出方程(a﹣x﹣1)+(a﹣y﹣2)=a,即可解答.【解答】解:设乙的长度为a公尺,∵乙的长度最长且甲、乙的长度相差x公尺,乙、丙的长度相差y公尺,∴甲的长度为:(a﹣x)公尺;丙的长度为:(a﹣y)公尺,∴甲与乙重叠的部分长度为:(a﹣x﹣1)公尺;乙与丙重叠的部分长度为:(a﹣y﹣2)公尺,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,∴(a﹣x﹣1)+(a﹣y﹣2)=a,a﹣x﹣1+a﹣y﹣2=a,a+a﹣a=x+y+1+2,a=x+y+3,∴乙的长度为:(x+y+3)公尺,故选:A.【点评】本题考查了考查了二元一次方程的应用,解决本题的关键是根据图形找到等量关系,列方程.9.(2013•宁夏)雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】等量关系有:①甲种帐篷的顶数+乙种帐篷的顶数=1500顶;②甲种帐篷安置的总人数+乙种帐篷安置的总人数=8000人,进而得出答案.【解答】解:根据甲、乙两种型号的帐篷共1500顶,得方程x+y=1500;根据共安置8000人,得方程6x+4y=8000.列方程组为:.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,列方程组解应用题的关键是找准等量关系,此题中要能够分别根据帐篷数和人数列出方程.10.(2014•南昌)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.设每支中性笔x元和每盒笔芯y元,根据题意列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设每支中性笔x元和每盒笔芯y元,根据20支笔和2盒笔芯,用了56元;买了2支笔和3盒笔芯,用了28元.列出方程组成方程组即可.【解答】解:设每支中性笔x元和每盒笔芯y元,由题意得,.故选:B.【点评】此题考查实际问题抽出二元一次方程组,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.(2013•内江)成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x千米/小时和y千米/小时,则下列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据等量关系:相遇时两车走的路程之和为170千米,相遇时,小汽车比客车多行驶20千米,可得出方程组.【解答】解:设小汽车和客车的平均速度为x千米/小时和y千米/小时,由题意得,.故选:D.【点评】本题考查了由实际问题抽象二元一次方程组的知识,解答本题的关键是仔细审题得到等量关系,根据等量关系建立方程.12.(2014•新疆)“六•一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B型童装y套,依题意列方程组正确的是()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【专题】应用题.【分析】设购买A型童装x套,B型童装y套,根据超市用3360元购进A,B两种童装共120套,列方程组求解.【解答】解:设购买A型童装x套,B型童装y套,由题意得,.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.13.(2014•温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A. B.C. D.【考点】由实际问题抽象出二元一次方程组.【专题】应用题.【分析】设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.【解答】解:设男生有x人,女生有y人,根据题意得,.故选:D.【点评】此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.14.(2013•潍坊)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】压轴题.【分析】根据“吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人,以及在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,”分别得出等式方程组成方程组,即可得出答案.【解答】解:设吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意得:.故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组,根据吸烟与不吸烟中患肺癌的比例得出正确的等量关系是解题关键.15.(2014•锦州)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】年龄问题.【分析】由弟弟的年龄是x岁,哥哥的年龄是y岁,根据“哥哥与弟弟的年龄和是18岁,”,哥哥与弟弟的年龄差不变得出18﹣y=y﹣x,列出方程组即可.【解答】解:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选:D.【点评】此题考查由实际问题列方程组,注意找出题目蕴含的数量关系解决问题.二、填空题(共4小题)16.(2015•哈尔滨)美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,则展出的油画作品有69 幅.【考点】二元一次方程组的应用.【分析】设展出的油画作品的数量是x幅,展出的国画作品是y幅,则根据“展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅”列出方程组并解答.【解答】解:设展出的油画作品的数量是x幅,展出的国画作品是y 幅,依题意得,解得,故答案是:69.【点评】本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.17.(2013•江西)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组.【考点】由实际问题抽象出二元一次方程组.【分析】根据关键语句“单位组织34人分别到井冈山和瑞金进行革命传统教育”可得方程x+y=34,“到井冈山的人数是到瑞金的人数的2倍多1人”可得x=2y+1,联立两个方程即可.【解答】解:设到井冈山的人数为x人,到瑞金的人数为y人,由题意得:,故答案为:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.18.(2014•丹东)小明和小丽到文化用品商店帮助同学们买文具.小明买了3支笔和2个圆规共花19元;小丽买了5支笔和4个圆规共花35元.设每支笔x元,每个圆规y元.请列出满足题意的方程组.【考点】由实际问题抽象出二元一次方程组.【专题】销售问题.【分析】设每支笔x元,每个圆规y元,根据买3支笔和2个圆规共花19元;买5支笔和4个圆规共花35元,列方程组.【解答】解:设每支笔x元,每个圆规y元,由题意得,.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.19.(2014•盘锦)在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.【考点】由实际问题抽象出二元一次方程组.【专题】应用题.【分析】设获得一等奖的学生有x名,二等奖的学生有y名,根据“一等奖和二等奖共30名学生,”“一等奖和二等奖共花费528元,”列出方程组即可.【解答】解:设获得一等奖的学生有x名,二等奖的学生有y名,由题意得.故答案为:.【点评】此题考查从实际问题中抽出二元一次方程组,注意找出题目蕴含的数量关系.三、解答题(共11小题)20.(2015•义乌市)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮.(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛.如图3,在草坪RPCQ中,已知RE⊥PQ于点E,CF⊥PQ于点F,求花坛RECF 的面积.【考点】二元一次方程组的应用;勾股定理的应用.【分析】(1)利用AM:AN=8:9,设通道的宽为xm,AM=8ym,则AN=9y,进而利用AD为18m,宽AB为13m得出等式求出即可;(2)根据题意得出纵向通道的宽为2m,横向通道的宽为1m,进而得出PQ,RE的长,即可得出PE、EF的长,进而求出花坛RECF的面积.【解答】解:(1)设通道的宽为xm,AM=8ym,∵AM:AN=8:9,∴AN=9y,∴,解得:.。
苏科版数学中考复习专题练习—方程及其应用(含答案)

方程及其应用一、学习目标1.能够识别一次方程(组)、分式方程、一元二次方程,并熟练掌握各类方程(组)的解法;2.理解方程(组)的解的意义,探究含字母参数的方程的解的问题;3.会列方程(组)求解实际问题、数学问题.二、典型例题题型一、方程(组)有关的概念及解法例题1.关于x 的方程(m +1)x |m |+1+(m -3)x -1=0.(1)m 取何值时,方程是一元二次方程,并求出此方程的解;(2)m 取何值时,方程是一元一次方程.例题2.解方程:x x -1=4 x 2-1 +1借题发挥:1.用加减消元法解二元一次方程组 ⎩⎨⎧ x +3y =4 ①, 2x -y =1 ②,时,下列方法中无法消元....的是( ) A . ①×2-② B .②×(-3) -① C . ①×(-2)+② D .①-②×32.用配方法解一元二次方程2x 2-3x -1=0,配方正确的是( )A .(x - 3 4 )2= 17 16B .(x - 3 4 )2= 1 2C .(x - 3 2 )2= 13 4D .(x - 3 2 )2= 11 4题型二、方程的解的意义例题3.已知关于x 、y 的方程组⎩⎨⎧ a x +23y =-103 x +y =4与⎩⎨⎧ x -y =2 x +b y =15 的解相同.求a 、b 的值.例题4.已知关x 的一元一次方程 1 2021 x +3=2x +m 的解为x =2, 那么关于y 的一元一次方程 1 2021(y +1)+3=2 (y +1)+m 的解为 . 借题发挥:1.学校计划用200元钱购买A 、B 两种奖品,A 种每个15元,B 种每个25元,在钱全部用完的情况下,有多少种购买方案( )A .2种B .3种C .4种D .5种2.甲、乙二人同时解方程组⎩⎨⎧ a x +y =3 2x -b y =1 ,甲看错了a ,解得⎩⎨⎧ x =1 y =-1 ;乙看错了b ,解得⎩⎨⎧ x =-1 y =3.求a 、b 的值.题型三、含字母参数的方程的解的问题例题5.若关于x 的分式方程3x x -2=m 2-x+5的解为正数,则m 的取值范围为( ) A .m <-10 B .m ≤-10C .m ≥-10且m ≠-6D .m >-10且m ≠-6例题6.等腰三角形的一边长是3,另两边的长是关于x 的方程x 2-4x +k =0的两个根,则k 的值为( )A .3B .4C .3或4D .7借题发挥:关于x 的方程kx 2﹣6x +9=0有实数根,k 的取值范围是( )A .k <1且k ≠0B .k <1C .k ≤1且k ≠0D .k ≤1题型四、用方程思想解决问题例题7.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?。
2020-2021学年苏科版数学中考复习专题练习—正多边形与圆及圆中有关计算(含答案)

正多边形与圆及圆中有关计算一、学习目标1.了解正多边形的概念及正多边形与圆的关系,并会进行有关计算;2.会用弧长公式、扇形面积公式、圆锥侧面积公式计算有关问题;3.体会方程思想和转化思想.二、题型训练题型一、正多边形与圆【例题1】如图,等边△ABC和正方形ADEF都内接于⊙O,则AD:AB=()A.22∶3B.2∶3C.23∶2D.3∶2【例题2】如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.【例题3】如图,A、B、C、D、E是⊙O上的5等分点,连接AC、CE、EB、BD、DA,得到一个五角星图形和五边形MNFGH.(1)计算∠CAD的度数;(2)连接AE,证明:AE=ME;(3)求证:ME2=BM·BE.【题小结】转化思想,正多边形转化为等腰三角形或直角三角形、三角形面积的转化、相等的线段之间的转化.借题发挥:1.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A、B、C、D、E、O均是正六边形的顶点.则点O是下列哪个三角形的外心()A.△AED B.△ABD C.△BCD D.△ACD2.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a=cm.借题发挥1借题发挥2ab借题发挥3例题3例题1例题23.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心,若∠ADB =18°,则这个正多边形的边数为 . 题型二、圆中与弧长、面积有关的计算 【例题4】如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,⌒FA 1,⌒A 1B 1,⌒B 1C 1,⌒C 1D 1,⌒D 1E 1,⌒E 1F 1,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 .【例题5】在△ABC 中,已知∠ABC =90°,∠BAC =30°,BC =1.如图所示,将△ABC 绕点A 按逆时针方向旋转90°后得到△AB ′C ′.则图中阴影部分面积为( )A .π4B .π-32C .π-34D .3π2【题小结】弄清旋转的本质,把不规则图形的面积转化为规则图形的面积.借题发挥:1.如图,半径为10的扇形AOB 中,∠AOB =90°,C 为⌒AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE 为36°,则图中阴影部分的面积为( )A .10πB .9πC .8πD .6π 2.若一个扇形的圆心角为60°,面积为π6cm 2,则这个扇形的弧长为 cm (结果保留π). 3.如图,AB 是⊙O 的弦,C 是⊙O 外一点,OC ⊥OA ,CO 交AB 于点P ,交⊙O 于点D ,且CP =CB .(1)判断直线BC 与⊙O 的位置关系,并说明理由;(2)若∠A =30°,OP =1,求图中阴影部分的面积.题型三、与圆锥有关的计算【例题6】已知圆锥的底面半径为1cm ,高为3cm ,则它的侧面展开图的面积为= cm 2.【例题7】已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是 度.【题小结】转化及方程思想:立体图形与平面图形的相互转化,由圆锥有关的公式列出方程解决问题. 借题发挥: 例题4 借题发挥1 例题5 借题发挥3A B C'C B'。
2023年中考苏科版数学一轮复习专题练习-一次函数与反比例函数综合应用

2023年中考数学一轮复习专题练习一次函数与反比例函数综合应用 一、选择题 1.下列式子:①y =3x −5;②y =x 1;③y=1-x ;④y 2=x ;⑤y =|x |,其中y 是x 的函数的个数是( )A .2个B .3个C .4个D .5个2.点P (3,﹣1)关于x 轴对称的点的坐标是( )A .(﹣3,1)B .(﹣3,﹣1)C .(1,﹣3)D .(3,1) 3.下列函数是反比例函数的是( )A .2x y =B .x y 1-=C .y =x 2D .y =2x +1 4.在反比例函数x m y 31-=的图像上有A (x 1,y 1),B (x 2,y 2)两点,x 1<0<x 2,y 1<y 2,则m 的取值范围是( )A .m >31B .m <31C .m≥31D .m≤31 5.一次函数y =—2x +3的图象与坐标轴的交点是 ( ) A .(3,1)(1,23) B .(1,3)(23,1) C .(3,0)(0,23) D .(0,3)(23,0) 6.若函数y =(m +2)x |m |﹣3是反比例函数,则m 的值是( ) A .2 B .﹣2C .±2D .不为2的实数 7.已知点A (﹣2,y 1)、B (﹣1,y 2)、C (3,y 3)都在反比例函数y =的图象上,则( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 8. 函数y 1=x 和y 2=x1的图像如图所示,则y 1>y 2的x 取值范围是( ) A .x <-1或x >1 B .x <-1或0<x <1C .-1<x <0或x >1D .-1<x <0或0<x <1 9. 如图,函数y =-x 与函数y =-x4的图像相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为C 、D ,则四边形ACBD 的面积为( ) A .2 B .4C .6D .8第8题第9题二、填空题10.已知直线y=k1x(k1≠0)与反比例函数y =(k2≠0)的图象交于M.N两点,若点M 的坐标是(1,2),则点N 的坐标是.11.如图,直线y 1=x+2与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1≤y2时,x的取值范围是.12.如图,一次函数y=x与反比例函数y=(k>0)的图象在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,则该反比例函数的函数表达式为.13.如图,直角坐标系xOy中,直线y=﹣x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=﹣的图象于点C,D(点C在第二象限内),过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若,则CD的长为.14.点A(a,b)是一次函数y=x﹣2与反比例函数y=的交点,则a2b﹣ab2=.三、解答题15.如图,点A和点E(2,1)是反比例函数y=kx(x>0)图象上的两点,点B在反比例函数y=6x(x<0)的图象上,分别过点A,B作y轴的垂线,垂足分别为点C,D,AC=BD,连接AB交y轴于点F.(1)k=;(2)设点A的横坐标为a,点F的纵坐标为m,求证:am=﹣2;(3)连接CE,DE,当∠CED=90°时,直接写出点A的坐标:.第11题第12题第13题16.如图,反比例函数y =与一次函数y =ax +b 的图象交于点A (﹣2,6)、点B (n ,1).(1)求反比例函数与一次函数的表达式;(2)点E 为y 轴上一个动点,若S △AEB =5,求点E 的坐标.(3)将一次函数y =ax +b 的图象沿y 轴向下平移n 个单位,使平移后的图象与反比例函数y =的图象有且只有一个交点,求n 的值.17.在平面直角坐标系中,O 为坐标原点,直线y =﹣x +3与x 轴交于点B ,与y 轴交于点C ,二次函数y =ax 2+2x +c 的图象过B 、C 两点,且与x 轴交于另一点A ,点M 为线段OB 上的一个动点,过点M 作直线l 平行于y 轴交BC 于点F ,交二次函数y =ax 2+2x +c 的图象于点E .(1)求二次函数的表达式;(2)当以C 、E 、F 为顶点的三角形与△ABC 相似时,求线段EF 的长度;(3)已知点N 是y 轴上的点,若点N 、F 关于直线EC 对称,求点N 的坐标.18.如图,在平面直角坐标系中.四边形OABC 为矩形,点C 、A 分别在x 轴和y 轴的正半轴上,点D 为AB 的中点已知实数0k ≠,一次函数3y x k =-+的图像经过点C 、D ,反比例函数()0k y x x=>的图像经过点B ,求k 的值.19.已知一次函数y=kx+b和反比例函数y=图象相交于A(2,4),B(n,﹣2)两点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出不等式kx+ b﹣<0的解集;(3)点C(a,b),D(a,c)(a>2)分别在一次函数和反比例函数图象上,且满足CD=2,求a的值.20如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)求出反比例函数解析式;(2)求证:△ACB∽△NOM.(3)延长线段AB,交x轴于点D,若点B恰好为AD的中点,求此时点B的坐标.21.如图,二次函数y=﹣x2﹣2x+4﹣a2的图象与一次函数y=﹣2x的图象交于点A、B(点B 在右侧),与y轴交于点C,点A的横坐标恰好为a.动点P、Q同时从原点O出发,沿射线OB分别以每秒和2个单位长度运动,经过t秒后,以PQ为对角线作矩形PMQN,且矩形四边与坐标轴平行.(1)求a的值及t=1秒时点P的坐标;(2)当矩形PMQN与抛物线有公共点时,求时间t的取值范围;(3)在位于x轴上方的抛物线图象上任取一点R,作关于原点(0,0)的对称点为R′,当点M恰在抛物线上时,求R′M长度的最小值,并求此时点R的坐标.22.如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)将直线l1:y=x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.23.如图,在平面直角坐标系中,□ABCO的顶点A在x轴正半轴上,两条对角线相交于点D,双曲线y=(x>0)经过C,D两点.(1)求□ABCO的面积.(2)若□ABCO是菱形,请直接写出:①tan∠AOC=.②将菱形ABCO沿x轴向左平移,当点A与O点重合时停止,则平移距离t与y轴所扫过菱形的面积S之间的函数关系式:.24.学习了图形的旋转之后,小明知道,将点P绕着某定点A顺时针旋转一定的角度α,能得到一个新的点P′,经过进一步探究,小明发现,当上述点P在某函数图象上运动时,点P′也随之运动,并且点P′的运动轨迹能形成一个新的图形.试根据下列各题中所给的定点A的坐标、角度α的大小来解决相关问题.【初步感知】如图1,设A(1,1),α=90°,点P是一次函数y=kx+b图象上的动点,已知该一次函数的图象经过点P1(﹣1,1).(1)点P1旋转后,得到的点P1′的坐标为;(2)若点P′的运动轨迹经过点P2′(2,1),求原一次函数的表达式.【深入感悟】如图2,设A(0,0),α=45°,点P是反比例函数y=﹣(x<0)的图象上的动点,过点P′作二、四象限角平分线的垂线,垂足为M,求△OMP′的面积.【灵活运用】如图3,设A(1,﹣),α=60°,点P是二次函数y=x2+2x+7图象上的动点,已知点B(2,0)、C(3,0),试探究△BCP′的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.。
专题. 反比例函数(中考真题专练)(基础篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)

专题11.35反比例函数(中考真题专练)(基础篇)(专项练习)一、单选题1.(2022·天津·统考中考真题)若点()()()123,2,,1,,4A x B x C x -都在反比例函数8y x=的图像上,则123,,x x x 的大小关系是()A .123x x x <<B .231x x x <<C .132x x x <<D .213x x x <<2.(2022·四川德阳·统考中考真题)一次函数1y ax =+与反比例函数ay x=-在同一坐标系中的大致图象是()A .B .C .D .3.(2022·湖北武汉·统考中考真题)已知点()11,A x y ,()22,B x y 在反比例函数6y x=的图象上,且120x x <<,则下列结论一定正确的是()A .120y y +<B .120y y +>C .12y y <D .12y y >4.(2022·江苏无锡·统考中考真题)一次函数y =mx +n 的图像与反比例函数y =mx的图像交于点A 、B ,其中点A 、B 的坐标为A (-1m,-2m )、B (m ,1),则△OAB 的面积()A .3B .134C .72D .1545.(2022·湖南怀化·统考中考真题)如图,直线AB 交x 轴于点C ,交反比例函数y =1a x-(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为()A .8B .9C .10D .116.(2022·广西贺州·统考中考真题)已知一次函数y kx b =+的图象如图所示,则y kx b =-+与by x=的图象为()A .B .C .D .7.(2022·四川内江·统考中考真题)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S △POQ =15,则k 的值为()A .38B .22C .﹣7D .﹣228.(2022·吉林长春·统考中考真题)如图,在平面直角坐标系中,点P 在反比例函数ky x=(0k >,0x >)的图象上,其纵坐标为2,过点P 作PQ //y 轴,交x 轴于点Q ,将线段QP 绕点Q 顺时针旋转60°得到线段QM .若点M 也在该反比例函数的图象上,则k 的值为()A .32B 3C .23D .49.(2022·山东东营·统考中考真题)如图,一次函数11y k x b =+与反比例函数22k y x=的图象相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为1-,则不等式21k k x b x+<的解集是()A .10x -<<或2x >B .1x <-或02x <<C .1x <-或2x >D .12x -<<10.(2022·贵州贵阳·统考中考真题)如图,在平面直角坐标系中有P ,Q ,M ,N 四个点,其中恰有三点在反比例函数()0ky k x=>的图象上.根据图中四点的位置,判断这四个点中不在函数ky x=的图象上的点是()A .点PB .点QC .点MD .点N二、填空题11.(2022·福建·统考中考真题)已知反比例函数ky x=的图象分别位于第二、第四象限,则实数k 的值可以是______.(只需写出一个符合条件的实数)12.(2022·江苏淮安·统考中考真题)在平面直角坐标系中,将点()2,3A 向下平移5个单位长度得到点B ,若点B 恰好在反比例函数ky x=的图像上,则k 的值是______.13.(2022·四川广元·统考中考真题)如图,已知在平面直角坐标系中,点A 在x 轴负半轴上,点B 在第二象限内,反比例函数ky x=的图象经过△OAB 的顶点B 和边AB 的中点C ,如果△OAB 的面积为6,那么k 的值是_____.14.(2022·四川内江·统考中考真题)如图,在平面直角坐标系中,一次函数y kx b =+的图象经过点()2,3,P 且与函数()20=>y x x的图象交于点(,)Q m n .若一次函数y 随x 的增大而增大,则m 的取值范围是____.15.(2022·黑龙江齐齐哈尔·统考中考真题)如图,点A 是反比例函数(0)ky x x=<图象上一点,过点A 作AB ⊥y 轴于点D ,且点D 为线段AB 的中点.若点C 为x 轴上任意一点,且△ABC 的面积为4,则k =______________.16.(2022·辽宁锦州·统考中考真题)如图,在平面直角坐标系中,△AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S △OAB =1,则k 的值为___________.17.(2022·辽宁丹东·统考中考真题)如图,四边形OABC 是平行四边形,点O 是坐标原点,点C 在y 轴上,点B 在反比例函数y =3x (x >0)的图象上,点A 在反比例函数y =k x(x >0)的图象上,若平行四边形OABC 的面积是7,则k =______.18.(2022·山东东营·统考中考真题)如图,OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数1(0)y x x=>的图象上,则经过点A 的反比例函数表达式为____________.三、解答题19.(2021·广西玉林·统考中考真题)先化简再求值:()2112a a a a -⎛⎫-+÷ ⎪⎝⎭,其中a 使反比例函数ay x=的图象分别位于第二、四象限.20.(2021·吉林·统考中考真题)如图,在平面直角坐标系中,一次函数423y x=-的图象与y轴相交于点A,与反比例函数kyx=在第一象限内的图象相交于点(),2B m,过点B作BC y⊥轴于点C.(1)求反比例函数的解析式;(2)求ABC的面积.21.(2021·四川德阳·统考中考真题)如图,在平面直角坐标系中,反比例函数ykx=(x>0)的图象经过点A(2,6),将点A向右平移2个单位,再向下平移a个单位得到点B,点B恰好落在反比例函数ykx=(x>0)的图象上,过A,B两点的直线与y轴交于点C.(1)求k的值及点C的坐标;(2)在y轴上有一点D(0,5),连接AD,BD,求△ABD的面积.22.(2021·山东淄博·统考中考真题)如图,在平面直角坐标系中,直线11y k x b =+与双曲线22k y x=相交于()()2,3,,2A B m --两点.(1)求12,y y 对应的函数表达式;(2)过点B 作//BP x 轴交y 轴于点P ,求ABP 的面积;(3)根据函数图象,直接写出关于x 的不等式21k k x b x+<的解集.23.(2022·河南·统考中考真题)如图,反比例函数()0k y x x=>的图像经过点()2,4A 和点B ,点B 在点A 的下方,AC 平分OAB ∠,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹,使用2B 铅笔作图)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证:CD AB ∥.24.(2021·山东德州·中考真题)已知点A 为函数4(0)y x x=>图象上任意一点,连接OA 并延长至点B ,使AB OA =,过点B 作//BC x 轴交函数图象于点C ,连接OC .(1)如图1,若点A 的坐标为(4,)n ,求点C 的坐标;(2)如图2,过点A 作AD BC ⊥,垂足为D ,求四边形OCDA 的面积.参考答案1.B【分析】将三点坐标分别代入函数解析式求出213x x x 、、,然后进行比较即可.解:将三点坐标分别代入函数解析式8y x=,得:182x =,解得1=4x ;28-1x =,解得2=-8x ;384x =,解得3=2x ;∵-8<2<4,∴231x x x <<,故选:B .【点拨】本题考查反比例函数,关键在于能熟练通过已知函数值求自变量.2.B【分析】A 选项可以根据一次函数与y 轴交点判断,其他选项根据图象判断a 的符号,看一次函数和反比例函数判断出a 的符号是否一致;解:一次函数与y 轴交点为(0,1),A 选项中一次函数与y 轴交于负半轴,故错误;B 选项中,根据一次函数y 随x 增大而减小可判断a <0,反比例函数过一、三象限,则-a >0,即a <0,两者一致,故B 选项正确;C 选项中,根据一次函数y 随x 增大而增大可判断a >0,反比例函数过一、三象限,则-a >0,即a <0,两者矛盾,故C 选项错误;D 选项中,根据一次函数y 随x 增大而减小可判断a <0,反比例函数过二、四象限,则-a <0,即a >0,两者矛盾,故D 选项错误;故选:B .【点拨】本题考查了一次函数、反比例函数图象共存问题,解决此类题目要熟练掌握一次函数、反比例函数图象与系数的关系.3.C【分析】把点A 和点B 的坐标代入解析式,根据条件可判断出1y 、2y 的大小关系.解:∵点()11,A x y ,()22,B x y )是反比例函数6y x=的图象时的两点,∴11226x y x y ==.∵120x x <<,∴120y y <<.故选:C .【点拨】本题主要考查反比例函数图象上点的坐标特征,掌握图象上点的坐标满足函数解析式是解题的关键.4.D【分析】将点A 的坐标代入可确定反比例函数关系式,进而确定点B 的坐标,再利用待定系数法求出一次函数关系式;求出直线AB 与y 轴交点D 的坐标,确定OD 的长,再根据三角形的面积公式进行计算即可.解:∵A (-1m ,-2m )在反比例函数y =mx的图像上,∴m =(-1m)•(-2m )=2,∴反比例函数的解析式为y =2x,∴B (2,1),A (-12,-4),把B (2,1)代入y =2x +n 得1=2×2+n ,∴n =-3,∴直线AB 的解析式为y =2x -3,直线AB 与y 轴的交点D (0,-3),∴OD =3,∴S △AOB =S △BOD +S △AOD =12×3×2+12×3×12=154.故选:D ..【点拨】本题考查一次函数与反比例函数的交点,把点的坐标代入函数关系式是解决问题常用的方法.5.D 【分析】设1a B m m -⎛⎫ ⎪⎝⎭,,由S △BCD =112a m m -⋅即可求解.解:设1a B m m -⎛⎫ ⎪⎝⎭,,∵BD ⊥y 轴∴S △BCD =112a m m-⋅=5,解得:11a =故选:D .【点拨】本题主要考查反比例函数的应用,掌握反比例函数的相关知识是解题的关键.6.A【分析】根据题意可得0,0k b >>,从而得到一次函数y kx b =-+的图象经过第一、二、四象限,反比函数b y x=的图象位于第一、三象限内,即可求解.解:根据题意得:0,0k b >>,∴0k -<,∴一次函数y kx b =-+的图象经过第一、二、四象限,反比函数b y x=的图象位于第一、三象限内.故选:A【点拨】本题主要考查了一次函数和反比例函数的图象和性质,熟练掌握一次函数和反比例函数的图象和性质是解题的关键.7.D【分析】设点P (a ,b ),Q (a ,k a ),则OM =a ,PM =b ,MQ =k a-,则PQ =PM +MQ =k b a -,再根据ab =8,S △POQ =15,列出式子求解即可.解:设点P (a ,b ),Q (a ,k a ),则OM =a ,PM =b ,MQ =k a -,∴PQ =PM +MQ =k b a-.∵点P 在反比例函数y =8x 的图象上,∴ab =8.∵S △POQ =15,∴12PQ •OM =15,∴12a (b ﹣k a)=15.∴ab ﹣k =30.∴8﹣k =30,解得:k =﹣22.故选:D .【点拨】本题主要考查了反比例函数与几何综合,熟练掌握反比例函数的相关知识是解题的关键.8.C【分析】作MN ⊥x 轴交于点N ,分别表示出ON 、MN ,利用k 值的几何意义列式即可求出结果.解:作MN ⊥x 轴交于点N ,如图所示,∵P 点纵坐标为:2,∴P 点坐标表示为:(2k ,2),PQ =2,由旋转可知:QM =PQ =2,∠PQM =60°,∴∠MQN =30°,∴MN =112QM =,QN ∴ON MN k = ,即:2k k =,解得:k =故选:C .【点拨】本题主要考查的是k 的几何意义,表示出对应线段是解题的关键.9.A【分析】根据不等式21k k x b x +<的解集即为一次函数图象在反比例函数图象下方时自变量的取值范围进行求解即可.解:由题意得不等式21k k x b x +<的解集即为一次函数图象在反比例函数图象下方时自变量的取值范围,∴不等式21k k x b x +<的解集为10x -<<或2x >,故选A .【点拨】本题主要考查了一次函数与反比例函数综合,利用数形结合的思想求解是解题的关键.10.C【分析】根据反比例函数的性质,在第一象限内y 随x 的增大而减小,用平滑的曲线连接发现M 点不在函数k y x =的图象上解:()0k y k x =>在第一象限内y 随x 的增大而减小,用平滑的曲线连接发现M 点不在函数k y x=的图象上故选C【点拨】本题考查了反比例函数的性质,掌握反比例数图象的性质是解题的关键.11.-5(答案不唯一)【分析】根据反比例函数的图象分别位于第二、四象限可知k <0,进而问题可求解.解:由反比例函数k y x=的图象分别位于第二、第四象限可知k <0,∴实数k 的值可以是-5;故答案为-5(答案不唯一).【点拨】本题主要考查反比例函数的图象,熟练掌握反比例函数的图象是解题的关键.12.4-【分析】将点()2,3A 向下平移5个单位长度得到点B ,再把点B 代入反比例函数k y x=,利用待定系数法进行求解即可.解:将点()2,3A 向下平移5个单位长度得到点B ,则()2,2B -,∵点B 恰好在反比例函数k y x =的图像上,∴()224k =⨯-=-,故答案为:4-.【点拨】本题考查了坐标与图形变化—平移,待定系数法求反比例函数的解析式,熟练掌握知识点是解题的关键.13.-4【分析】过B 作BD OA ⊥于D ,设B m n (,),根据三角形的面积公式求得12OA n=,进而得到点A 的坐标,再求得点C 的坐标,结合一次函数的解析式得到列出方程求解.解:过B 作BD OA ⊥于D ,如下图.∵点B 在反比例函数k y x=的图象上,∴设B m n (,).∵OAB 的面积为6,∴12OA n=,∴12,0A n ⎛⎫- ⎪⎝⎭.∵点C 是AB 的中点,∴12,22mn n C n -⎛⎫ ⎪⎝⎭.∵点C 在反比例函数k y x=的图象上,∴1222mn n mn n -⋅=,∴4mn =-,∴4k =-.故答案为:-4.【点拨】本题考查了反比例函数系数k 的几何意义,三角形的面积公式,中点坐标的求法,正确的理解题意是解题的关键.14.223m <<【分析】分别求出过点P ,且平行于x 轴和y 轴时对应的m 值,即可得到m 的取值范围.解:当PQ 平行于x 轴时,点Q 的坐标为(),3m ,代入2y x =中,可得23m =;当PQ 平行于y 轴时,点Q 的坐标为()2,n ,可得2m =;∵一次函数y 随x 的增大而增大,∴m 的取值范围是223m <<,故答案为:223m <<.【点拨】本题考查一次函数和反比例函数图象的交点问题,找到两个临界是解决本题的关键.15.4-【分析】设点,k A a a ⎛⎫ ⎪⎝⎭,利用()1242=⨯-⨯=ABC k S a a △即可求出k 的值.解:设点,k A a a ⎛⎫ ⎪⎝⎭,∵点D 为线段AB 的中点.AB ⊥y 轴∴22AB AD a ==-,又∵()1242=⨯-⨯=ABC k S a a△,∴4k =-.故答案为:4-【点拨】本题考查利用面积求反比例函数的k 的值,解题的关键是找出()1242=⨯-⨯=ABC k S a a△.16.2【分析】作A 过x 轴的垂线与x 轴交于C ,证明△ADC ≌△BDO ,推出S △OAC =S △OAB =1,由此即可求得答案.解:设A (a ,b ),如图,作A 过x 轴的垂线与x 轴交于C ,则:AC =b ,OC =a ,AC ∥OB ,∴∠ACD =∠BOD =90°,∠ADC =∠BDO ,∴△ADC ≌△BDO ,∴S △ADC =S △BDO ,∴S △OAC =S △AOD +S △ADC =S △AOD +S △BDO =S △OAB =1,∴12×OC ×AC =12ab =1,∴ab =2,∵A (a ,b )在y =k x上,∴k =ab =2.故答案为:2.【点拨】本题考查了反比例函数的性质,三角形的面积公式,全等三角形的判定和性质等知识,解题的关键是熟练掌握所学的知识,正确作出辅助线进行解题.17.-4【分析】连接OB ,根据反比例函数系数k 的几何意义得到|k |+3=7,进而即可求得k 的值.解:连接OB ,∵四边形OABC 是平行四边形,∴AB ∥OC ,∴AB ⊥x 轴,∴S △AOD =12|k |,S △BOD =132=32,∴S △AOB =S △AOD +S △BOD =12|k |+32,∴S 平行四边形OABC =2S △AOB =|k |+3,∵平行四边形OABC 的面积是7,∴|k |=4,∵在第四象限,∴k =-4,故答案为:-4.【点拨】本题考查了反比例系数k 的几何意义、平行四边形的面积,熟知在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |是解答此题的关键.18.1y x=-【分析】如图所示,过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥x 轴于D ,证明△ACO ≌△ODB 得到AC =OD ,OC =BD ,设点B 的坐标为(a ,b ),则点A 的坐标为(-b ,a ),再由点B 在反比例函数1y x =,推出1a b-=-,由此即可得到答案.解:如图所示,过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥x 轴于D ,则∠ACO =∠ODB =90°,由题意得OA =OB ,∠AOB =90°,∴∠CAO +∠COA =∠AOC +∠BOD =90°,∴∠CAO =∠DOB ,∴△ACO ≌△ODB (AAS ),∴AC =OD ,OC =BD ,设点B 的坐标为(a ,b ),则AC =OD =a ,OC =BD =b ,∴点A 的坐标为(-b ,a ),∵点B 在反比例函数1y x =,∴1ab =,∴1ab -=-,∴1a b-=-,∴经过点A 的反比例函数表达式为1y x =-,故答案为:1y x=-.【点拨】本题主要考查了反比例函数与几何综合,全等三角形的性质与判定,熟知相关知识是解题的关键.19.1-【分析】由题意易得a<0,然后对分式进化简,然后再求解即可.解:∵a 使反比例函数a y x=的图象分别位于第二、四象限,∴a<0,∴()2112a a a a -⎛⎫-+÷ ⎪⎝⎭=()22211a a a a a -+-⨯-=1-.【点拨】本题主要考查反比例函数的图象与性质及分式的化简求值,熟练掌握反比例函数的图象与性质及分式的运算是解题的关键.20.(1)6y x=;(2)6【分析】(1)因为一次函数与反比例函数交于B 点,将B 代入到一次函数解析式中,可以求得B 点坐标,从而求得k ,得到反比例函数解析式;(2)因为BC y ⊥轴,所以()0,2C ,利用一次函数解析式可以求得它与y 轴交点A 的坐标()0,2-,由A ,B ,C 三点坐标,可以求得AC 和BC 的长度,并且//BC x 轴,所以12ABC S AC BC =⋅V ,即可求解.解:(1)∵B 点是直线与反比例函数交点,∴B 点坐标满足一次函数解析式,∴4223m -=,∴3m =,∴()3,2B ,∴6k =,∴反比例函数的解析式为6y x=;(2)∵BC y ⊥轴,∴()0,2C ,//BC x 轴,∴3BC =,令0x =,则4223y x =-=-,∴()0,2A -,∴4AC =,∴162ABC S AC BC =⋅=△,∴ABC 的面积为6【点拨】本题考查了反比例函数与一次函数交点问题,三角形的面积,同时要注意在平面直角坐标系中如何利用坐标表示水平线段和竖直线段.21.(1)k=12,C (0,9);(2)4【分析】(1)由点(2,6)A 求出反比例函数的解析式为12y x=,可得k 值,进而求得(4,3)B ,由待定系数法求出直线AB 的解析式为392y x =-+,即可求出C 点的坐标;(2)由(1)求出CD ,根据ABD ACD ACD S S S ∆∆∆=-可求得结论.解:(1)把点(2,6)A 代入k y x=,2612k =⨯=,∴反比例函数的解析式为12y x=, 将点A 向右平移2个单位,4x ∴=,当4x =时,1234y ==,(4,3)B ∴,设直线AB 的解析式为y mx n =+,由题意可得6234m n m n=+⎧⎨=+⎩,解得329m n ⎧=-⎪⎨⎪=⎩,392y x ∴=-+,当0x =时,9y =,(0,9)C ∴;(2)由(1)知954CD =-=,1111||||444242222ABD BCD ACD B A S S S CD x CD x ∆∆∆∴=-=⋅-⋅=⨯⨯-⨯⨯=.【点拨】本题考查了反比例函数系数k 的几何意义,待定系数法求函数的解析式,三角形的面积的计算,求得直线AB 的解析式是解题的关键.22.(1)11y x =-+,26y x=-;(2)152ABP S = ;(3)20x -<<或3x >【分析】(1)由题意先求出2y ,然后得到点B 的坐标,进而问题可求解;(2)由(1)可得ABP 以PB 为底,点A 到PB 的距离为高,即为点A 、B 之间的纵坐标之差的绝对值,进而问题可求解;(3)根据函数图象可直接进行求解.解:(1)把点()2,3A -代入反比例函数解析式得:6k =-,∴26y x=-,∵点B 在反比例函数图象上,∴26m -=-,解得:3m =,∴()3,2B -,把点A 、B 作代入直线解析式得:112332k b k b -+=⎧⎨+=-⎩,解得:111k b =-⎧⎨=⎩,∴11y x =-+;(2)由(1)可得:()2,3A -,()3,2B -,∵//BP x 轴,∴3BP =,∴点A 到PB 的距离为()325--=,∴1153522ABP S =⨯⨯= ;(3)由(1)及图象可得:当21k k x b x+<时,x 的取值范围为20x -<<或3x >.【点拨】本题主要考查反比例函数与一次函数的综合,熟练掌握反比例函数与一次函数的图象与性质是解题的关键.23.(1)8y x=;(2)图见分析部分;(3)证明见分析【分析】(1)把点A 的坐标代入反比例函数解析式,即可得出答案;(2)利用基本作图作线段AC 的垂直平分线即可;(3)根据垂直平分线的性质和角平分线的定义可得到BAC DCA ∠=∠,然后利用平行线的判定即可得证.(1)解:∵反比例函数()0k y x x=>的图像经过点()2,4A ,∴当2x =时,42k =,∴8k =,∴反比例函数的表达式为:8y x =;(2)如图,直线EF 即为所作;(3)证明:如图,∵直线EF 是线段AC 的垂直平分线,∴AD CD =,∴DAC DCA ∠=∠,∵AC 平分OAB ∠,∴DAC BAC∠=∠,∴BAC DCA∠=∠,∴CD AB∥.【点拨】本题考查了作图—基本作图,用待定系数法求反比例函数的解析式,垂直平分线的性质,等腰三角形的性质,平行线的判定,角平分线的定义等知识.解题的关键是熟练掌握五种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).24.(1)点C的坐标为(2,2);(2)4【分析】(1)先求出点A的坐标为(4,1),再由AB OA=,可得点B的坐标为(8,2),从而得到点C的纵坐标为2,即可求解;(2)设4(,)A mm,可得点B的坐标为8(2,)mm,从而得到点D的坐标为8(,)mm,(2mC,8m,分别求出△BOC和△ABD的面积,即可求解.(1)解:将点A坐标代入到反比例函数4yx=中得,44n=,1n∴=,∴点A的坐标为(4,1),AB OA=,(0,0)O,∴点B的坐标为(8,2),//BC x轴,∴点C的纵坐标为2,令2y =,则42x=,2x ∴=,∴点C 的坐标为(2,2);(2)设4(,A m m,AB OA = ,∴点B 的坐标为8(2,)m m,//BC x 轴,BC y ∴⊥轴,又AD BC ⊥,//AD y ∴轴,∴点D 的坐标为8(,)m m,//BC x 轴,且点C 在函数图象上,(2m C ∴,8)m ,Δ18434(2)6222OBC m m S BC m m m m =⋅⋅=-⋅=⋅= ,Δ114222ADB S BD AD m m=⋅=⋅=,∴四边形OCDA 的面积为:ΔΔ624OBC ADB S S -=-=.【点拨】本题主要考查了反比函数的图象和性质,熟练掌握反比函数的图象和性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年江苏省中考数学压轴题精选精析1(08江苏常州28题)(答案暂缺)如图,抛物线24y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l ,设P 是直线l 上一动点.(1) 求点A 的坐标;(2) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;(3) 设以点A 、B 、O 、P 为顶点的四边形的面积为S,点P 的横坐标为x,当46S +≤+,求x 的取值范围.2(08江苏淮安28题)(答案暂缺)28.(本小题14分)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的顶点为P ,与x 轴交点为 A 、B ,与y 轴交点为C .连结BP 并延长交y 轴于点D. (1)写出点P 的坐标;(2)连结AP ,如果△APB 为等腰直角三角形,求a 的值及点C 、D 的坐标;(3)在(2)的条件下,连结BC 、AC 、AD ,点E(0,b)在线段CD(端点C 、D 除外)上,将△BCD 绕点E 逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S ,根据不同情况,分别用含b 的代数式表示S .选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b 为何值时,重叠部分的面积最大?写出最大值.(第28题)(第24题图)3(08江苏连云港24题)(本小题满分14分)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的AOB △,COD △处,直角边OB OD ,在x 轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至PEF △处时,设PE PF ,与OC 分别交于点M N ,,与x 轴分别交于点G H ,.(1)求直线AC 所对应的函数关系式;(2)当点P 是线段AC (端点除外)上的动点时,试探究:①点M 到x 轴的距离h 与线段BH 的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S 是否存在最大值?若存在,求出这个最大值及S 取最大值时点P 的坐标;若不存在,请说明理由.(08江苏连云港24题解析)解:(1)由直角三角形纸板的两直角边的长为1和2, 知A C ,两点的坐标分别为(12)(21),,,. 设直线AC 所对应的函数关系式为y kx b =+. ················ 2分有221k b k b +=⎧⎨+=⎩,.解得13k b =-⎧⎨=⎩,.所以,直线AC 所对应的函数关系式为3y x =-+. ·············· 4分 (2)①点M 到x 轴距离h 与线段BH 的长总相等. 因为点C 的坐标为(21),,所以,直线OC 所对应的函数关系式为12y x =. 又因为点P 在直线AC 上,所以可设点P 的坐标为(3)a a -,. 过点M 作x 轴的垂线,设垂足为点K ,则有MK h =.因为点M 在直线OC 上,所以有(2)M h h ,. ······ 6分 因为纸板为平行移动,故有EF OB ∥,即EF GH ∥.又EF PF ⊥,所以PH GH ⊥.法一:故Rt Rt Rt MKG PHG PFE △∽△∽△,(第24题答图)从而有12GK GH EF MK PH PF ===. 得1122GK MK h ==,11(3)22GH PH a ==-.所以13222OG OK GK h h h =-=-=.又有13(3)(1)22OG OH GH a a a =-=--=-. ··············· 8分所以33(1)22h a =-,得1h a =-,而1BH OH OB a =-=-,从而总有h BH =. ··························· 10分法二:故Rt Rt PHG PFE △∽△,可得12GH EF PH PF =-.故11(3)22GH PH a ==-.所以13(3)(1)22OG OH GH a a a =-=--=-.故G 点坐标为3(1)02a ⎛⎫-⎪⎝⎭,. 设直线PG 所对应的函数关系式为y cx d =+,则有330(1)2a ca d c a d -=+⎧⎪⎨=-+⎪⎩,.解得233c d a =⎧⎨=-⎩ 所以,直线PG 所对的函数关系式为2(33)y x a =+-. ············ 8分 将点M 的坐标代入,可得4(33)h h a =+-.解得1h a =-.而1BH OH OB a --=-,从而总有h BH =. ··············· 10分 ②由①知,点M 的坐标为(221)a a --,,点N 的坐标为12a a ⎛⎫ ⎪⎝⎭,.ONH ONG S S S =-△△1111133(1)222222a NH OH OG h a a a -=⨯-⨯=⨯⨯-⨯⨯- 22133133224228a a a ⎛⎫=-+-=--+ ⎪⎝⎭. ·················· 12分当32a =时,S 有最大值,最大值为38. S 取最大值时点P 的坐标为3322⎛⎫⎪⎝⎭,.···················· 14分4(08江苏南京28题)(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;问题解决 (5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?(08江苏南京28题解析)28.(本题10分) 解:(1)900; ······························· 1分 (2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇. ······· 2分 (3)由图象可知,慢车12h 行驶的路程为900km , 所以慢车的速度为90075(km /h)12=; ···················· 3分 当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶的速度之和为900225(km /h)4=,所以快车的速度为150km/h . ··············· 4分 (4)根据题意,快车行驶900km 到达乙地,所以快车行驶9006(h)150=到达乙地,此时两车之间的距离为675450(km)⨯=,所以点C 的坐标为(6450),.设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+,把(40),,(6450),代入得044506.k b k b =+⎧⎨=+⎩,解得225900.k b =⎧⎨=-⎩,所以,线段BC 所表示的y 与x 之间的函数关系式为225900y x =-. ······ 6分 自变量x 的取值范围是46x ≤≤. ····················· 7分 (5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h . 把 4.5x =代入225900y x =-,得112.5y =.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km ,所以两列快车出发的间隔时间是112.51500.75(h)÷=,即第二列快车比第一列快车晚出发0.75h . ······ 10分(第28题)y5(08江苏南通28题)(14分)已知双曲线k y x=与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线ky x=上的动点.过点B 作BD ∥y 轴交x 轴于点D .过N (0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C . (1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.(08江苏南通28题解析)解:(1)∵D (-8,0),∴B 点的横坐标为-8,代入14y x =中,得y =-2. ∴B 点坐标为(-8,-2).而A 、B 两点关于原点对称,∴A (8,2).从而8216k =⨯=.……………………………………………………………………3分(2)∵N (0,-n ),B 是CD 的中点,A 、B 、M 、E 四点均在双曲线上,∴mn k =,B (-2m ,-2n),C (-2m ,-n ),E (-m ,-n ). ……………4分 S 矩形DCNO 22mn k ==,S △DBO =1122mn k =,S △OEN =1122mn k =, ………………7分∴S 四边形OBCE = S 矩形DCNO -S △DBO - S △OEN =k .∴4k =. …………………………8分由直线14y x =及双曲线4y x=,得A (4,1),B (-4,-1), ∴C (-4,-2),M (2,2).………………………………………………………9分 设直线CM 的解析式是y ax b =+,由C 、M 两点在这条直线上,得 42,2 2.a b a b -+=-⎧⎨+=⎩ 解得23a b ==. ∴直线CM 的解析式是2233y x =+.………………………………………………11分 (3)如图,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1、M 1.(第28题)设A 点的横坐标为a ,则B 点的横坐标为-a .于是 111A M MA a mp MP M O m-===. 同理MB m aq MQ m+==,……………………………13分 ∴2a m m ap q m m-+-=-=-.……………………14分6(08江苏苏州28题)(答案暂缺)28.(本题9分) 课堂上,老师将图①中△AOB 绕O 点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化当△AOB 旋转90°时,得到△A 1OB 1.已知A(4,2)、B(3,0).(1)△A 1OB 1的面积是 ;A 1点的坐标为( , ;B 1点的坐标为( , ); (2)课后,小玲和小惠对该问题继续进行探究,将图②中△AOB 绕AO 的中点C(2,1)逆时针旋转90°得到△A′O ′B ′,设O ′B ′交OA 于D ,O ′A ′交x 轴于E .此时A ′、O ′和B ′的坐标分别为(1,3)、(3,-1)和(3,2),且O ′B ′ 经过B 点.在刚才的旋转过程中,小玲和小惠发现旋转中的三角形与△AOB 重叠部分的面积不断变小,旋转到90°时重叠部分的面积(即四边形CEBD 的面积)最小,求四边形CFBD 的面积;(3)在(2)的条件一下,△AOB 外接圆的半径等于 .7(08江苏宿迁27题)(本题满分12分)如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为)0,5(,顶点D 在⊙O 上运动.(1)当点D 运动到与点A 、O 在同一条直线上时,试证明直线CD 与⊙O 相切; (2)当直线CD 与⊙O 相切时,求CD 所在直线对应的函数关系式;(3)设点D 的横坐标为x ,正方形ABCD 的面积为S ,求S 与x 之间的函数关系式,并求出S 的最大值与最小值.第27题(08江苏宿迁27题解析)解:(1) ∵四边形ABCD 为正方形 ∴CD AD ⊥ ∵A 、O 、D 在同一条直线上 ∴︒=∠90ODC ∴直线CD 与⊙O 相切; (2)直线CD 与⊙O 相切分两种情况:①如图1, 设1D 点在第二象限时,过1D 作x E D ⊥11轴于点1E ,设此时的正方形的边长为a ,则2225)1(=+-a a ,解得4=a 或3-=a (舍去).由BOA Rt ∆∽11OE D Rt ∆ 得OBOD BA E D OA OE 1111== ∴54,53111==E D OE ∴)54,53(1-D ,故直线OD 的函数关系式为x y 34-=;②如图2, 设2D 点在第四象限时,过2D 作x E D ⊥22轴于点2E ,设此时的正方形的边长为b ,则2225)1(=++b b ,解得3=b 或4-=b (舍去).由BOA Rt ∆∽22OE D Rt ∆得OBOD BA E D OA OE 2222== ∴53,54222==E D OE ∴)53,54(2-D ,故直线OD 的函数关系式为x y 43-=. (3)设),(0y x D ,则201x y -±=,由)0,5(B 得x x x DB 1026)1()5(22-=-+-=∴x x BD S 513)1026(21212-=-==∵11≤≤-x∴851318513=-==+=最小值最大值,SS .第27题图1第27题图28(08江苏泰州29题)已知二次函数)0(21≠++=a c bx ax y 的图象经过三点(1,0),(-3,0),(0,23-)。