几何定理证明

合集下载

(完整版)初中几何几个著名定理及证明

(完整版)初中几何几个著名定理及证明

① AC(BP+DP)=AD ・ BC+AB ・ DC ・ 即 AC ・ BD=AB ・ CD+AD ・ BC.2.托勒密定理的逆定理若一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这 个凸四边形內接于一圆。

己知:在凸四边形ABCD 中,AB • CD+AD • BC 二 BD • AC 。

求证:A 、B 、C 、D 四点共圆。

证明:分别以E 、A 为顶点,在 四边形ABCD初屮见何甩个著名炙龌及证明 识玻堵泗阳展療口屮曇蒐疋屮 一.托勒密定理 1.托勒密定理 圆內接四边形中,两条对角线的乘积等于两组对边乘积之和。

己知:圆內接四边形AECD,求证:AC ・BD 二AB • CD+AD ・BC 。

证明:如图所示,过C 作CP 交BD 于P, 使Z1=Z2,又Z3=Z4, AACD^ABCP. 冴 BP BC EP • AC 二 AD • BC 又 ZACB=ZDCP, Z5= Z6,,即 •:A ACB S A DCP . 得需=舘,即DP ・AC =AB ・DC内,作ZABF= ZDBC> ZBAF=ZBDC,—=—=> AB CD^BD-AF则厶ABF^ADBC 〜Ar CDAH _Bn亦—斎又•,• ZABD = Z ABF +ZEBF= ZEBF + ZDBC = ZFBC•'•△ABD S A FB C =x> —=—=>JD-/R-=Hzrc/--HC CF•••AB ・ CD+AD ・ BC=BD* (AF+CF)又VAB・CD+AD ・BC=BD・AC (己知〉,•••AC=AF + CF;「.A、F、C三点共线;ZBAC=ZBAF = ZBDC;:4、B、C、D 四点共圆。

3.托勒密不等式在任意凸四边形中,两组对边乘积的和不小于其两条对角线的乘积。

〈托勒密定理可视作托勒密不等式的特殊情况。

)即在任意凸四边形ABCD中,必有AC ・BDWAB • CD+AD * BC,当且仅当A、B、C、D四点共圆(托勒密定理)或共线(欧扌立几何定理)时取等号。

初中几何证明方法

初中几何证明方法

初中几何证明方法
1. 直角三角形定理证明:利用勾股定理证明直角三角形的特征。

2. 等边三角形定理证明:通过三条边全等证明三角形的三个角都是60度。

3. 同位角证明:沿着一组平行线切割两条平行线,证明同位角相等。

4. 对顶角证明:利用两组平行线切割一条横线,证明对顶角相等。

5. 三角形内角和定理证明:通过将三角形分解成三个直角三角形,证明三角形的内角和为180度。

6. 圆的面积公式证明:通过四个等腰直角三角形的组合和排列得出圆的面积公式。

7. 相似三角形定理证明:通过两个三角形的对应角相等,证明两个三角形相似。

8. 等腰三角形定理证明:通过证明两个底角相等,证明等腰三角形的另外两条边相等。

9. 正方形定理证明:通过证明正方形的四个角都是直角且四条边相等,证明正方形的特征。

10. 角平分线定理证明:利用角平分线将一个角分成两个相等的角,证明相邻的角互补且对顶角相等。

平面几何-五大定理及其证明

平面几何-五大定理及其证明

平面几何定理及其证明梅涅劳斯定理1 .梅涅劳斯定理及其证明 定理:一条直线与 ABC 的三边AB BC CA 所在直线分别交于点 D E 、F ,且D E 、F 均证明:如图,过点C 作AB 的平行线,交EF 于点G. 因为 CG // AB ,所以 CG CF --------------------- ( 1)AD FA因为 CG // AB ,所以 EC ( 2) DB BEC F ,即得 AD C FEC FA DB EC FA2.梅涅劳斯定理的逆定理及其证明定理:在 ABC 的边AB BC 上各有一点 D E ,在边 AC 的延长线上有一点 F ,若二、 塞瓦定理3 .塞瓦定理及其证明定理:在ABC 内一点P,该点与ABC 的三个顶点相连所在的 三条直线分别交 ABCE 边AB BC CA 于点D E 、F ,且D E 、F 三点均不是 ABC不是ABC 的顶点,则有AD BECF 1DB EC由(1)宁(2) DB可得兀AD BE CF DB EC FA1,那么,D E 、F 三点共线.证明:设直线EF 交AB 于点D ,则据梅涅劳斯定理有AD /BE CF 丽EC FA因为AD Bl CF DB EC FA1,所以有誥段AB 上,所以点D 与D 重合.即得D鴿.由于点D D 都在线 E 、F 三点共线.证明:运用面积比可得 ADDB S ADP S BDPS ADC S BDC根据等比定理有S ADP S ADCSADC S ADP S APCSSBDPBDCSBDCSBDPS的顶点,则有AD BE CF “1 DB EC FA .所以AD S A PC .同理可得BE SDB S BPCAPB, CFEC S APC FA SBPCS APB三式相乘得竺吏 DB EC CF i FA 4.塞瓦定理的逆定理及其证明 定理:在 ABC 三边AB BC CA 上各有一点 H 1,那么直线CD AE BF 三线共点. DE 、F ,且 D E 、 F 均不是 ABC 的顶点,AD BE若 DB EC证明:设直线AE 与直线BF 交于点P,直线CP 交AB 于点D ,则 据塞瓦定理有 AD Z DBBE EC CA1 -1,所以有 段AB 上,所以点D 与D 重合.即得 因为竺 DB EC CF FA AD DB D DDB •由于点D D 都在线 E 、F 三点共线.三、西姆松定理 5.西姆松定理及其证明 定理:从 ABC 外接圆上任意一点 F ,则D E 、F 三点共线. 证明:如图示,连接PC ,连接EF P 向BC CA AB 或其延长线引垂线, 垂足分别为DE、交BC 于点D ,连接P D• 因为PE 因为A 、 所以, 共圆. 所以, 即 PD BC 由于过点 F D E 、 四、 6 AE,PF AF,所以A 、F 、P 、E 四点共圆,可得B 、P 、C 四点共圆,所以 FEP = BCP 即 DEP = CDP + CEP = 180°。

几何定理证明范文

几何定理证明范文

几何定理证明范文要证明几何定理,通常需要使用几何性质和已知条件,以及运用几何推理和数学推断等方法。

本文选取了三个较为经典的几何定理进行证明,分别是直角三角形的勾股定理、垂线定理和相交弦定理。

下面分别对这三个定理进行证明。

一、直角三角形的勾股定理直角三角形的勾股定理是指在一个直角三角形中,直角边的平方等于两个直角边分别平方之和。

即若有一个直角三角形ABC,其中∠C=90°,则有AB²=AC²+BC²。

证明过程如下:设直角三角形ABC,其中∠C=90°。

连接AC和BC,延长AC到点D,使得CD=BC。

由于∠C=90°,则四边形ABCD是一个矩形。

根据矩形的性质,对角线互相平分。

即AC=BD,BC=AD。

根据勾股定理的推广形式,有AC²=AB²+BC²,以及BD²=AB²+AD²。

由于AC=BD,所以AB²+BC²=AB²+AD²。

消去AB²,得BC²=AD²。

因此,直角三角形的勾股定理得证。

二、垂线定理垂线定理是指在平面上,如果一直线段垂直于另一直线段,那么这两条直线段互相垂直。

即若有一直线段AB垂直于另一直线段CD,则有∠ABC=90°。

证明过程如下:设直线段AB垂直于CD,交于点M。

连接AM和BM。

根据垂线的性质,AM和BM分别垂直于CD,即∠CAM=90°和∠CBM=90°。

根据平行线的性质,互相平行的直线切割同一条直线时,所得的对应角相等。

因此,∠CAB=∠ACM=90°,即∠ABC=90°。

这样,垂线定理得证。

三、相交弦定理相交弦定理是指在一个圆内,两条相交弦的互补弦乘积相等。

即若有一圆内的两条弦AB和CD相交于点E,则有AE×EB=CE×ED。

十大高中平面几何几何定理汇总及证明

十大高中平面几何几何定理汇总及证明

高中平面几何定理汇总及证明1.共边比例定理有公共边AB的两个三角形的顶点分别是P、Q,AB与PQ的连线交于点M,则有以下比例式成立:△ PAB的面积:△ QAB的面积=PM:QM.证明:分如下四种情况,分别作三角形高,由相似三角形可证S△PAB=S△PAM-S△PMB=S△PAM/S△PMB-1×S△PMB=AM/BM-1×S△PMB等高底共线,面积比=底长比同理,S△QAB=AM/BM-1×S△QMB所以,S△PAB/S△QAB=S△PMB/S△QMB=PM/QM等高底共线,面积比=底长比定理得证特殊情况:当PB∥AQ时,易知△PAB与△QAB的高相等,从而S△PAB=S△QAB,反之,S△PAB=S△QAB,则PB∥AQ;2.正弦定理在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆半径的2倍”,即a/sinA = b/sinB =c/sinC = 2r=Rr为外接圆半径,R为直径证明:现将△ABC,做其外接圆,设圆心为O;我们考虑∠C及其对边AB;设AB长度为c;若∠C为直角,则AB就是⊙O的直径,即c= 2r;∵特殊角正弦函数值∴若∠C为锐角或钝角,过B作直径BC`交⊙O于C`,连接C'A,显然BC'= 2r=R; 若∠C为锐角,则C'与C落于AB的同侧,此时∠C'=∠C同弧所对的圆周角相等∴在Rt△ABC'中有若∠C为钝角,则C'与C落于AB的异侧,BC的对边为a,此时∠C'=∠A,亦可推出;考虑同一个三角形内的三个角及三条边,同理,分别列式可得;3.分角定理在△ABC中,D是边BC上异于B,C或其延长线上的一点,连结AD,则有BD/CD=sin∠BAD/sin∠CADAB/AC;证明:S△ABD/S△ACD=BD/CD………… 1.1S△ABD/S△ACD=1/2×AB×AD×sin∠BAD/1/2 ×AC×AD×sin∠CAD= sin∠BAD/sin∠CAD ×AB/AC…………1.2由1.1式和1.2式得BD/CD=sin∠BAD/sin∠CAD ×AB/A C4.张角定理在△ABC中,D是BC上的一点,连结AD;那么;证明:设∠1=∠BAD,∠2=∠CAD由分角定理,S△ABD/S△ABC=BD/BC=AD/ACsin∠1/sin∠BAC→ BD/BCsin∠BAC/AD=sin∠1/AC 1.1S△ACD/S△ABC=CD/BC=AD/ABsin∠2/sin∠BAC→ CD/BCsin∠BAC/AD=sin∠2/AB 1.21.1式+1.2式即得 sin∠1/AC+sin∠2/AB=sin∠BAC/AD5.帕普斯定理直线l1上依次有点A,B,C,直线l2上依次有点D,E,F,设AE,BD交于G,AF,DC交于I,BF,EC交于H,则G,I,H共线;6.蝴蝶定理设S为圆内弦AB的中点,过S作弦CF和DE;设CF和DE各相交AB于点M和N,则S 是MN的中点;证明:过O作OL⊥ED,OT⊥CF,垂足为L、T,连接ON,OM,OS,SL,ST,易明△ESD∽△CSF∴ES/CS=ED/FC根据垂径定理得:LD=ED/2,FT=FC/2∴ES/CS=EL/CT又∵∠E=∠C∴△ESL∽△CST∴∠SLN=∠STM∵S是AB的中点所以OS⊥AB∴∠OSN=∠OLN=90°∴O,S,N,L四点共圆,一中同长同理,O,T,M,S四点共圆∴∠STM=∠SOM,∠SLN=∠SON∴∠SON=∠SOM∵OS⊥AB∴MS=NS7.西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边或其延长线上的垂线,则三垂足共线;此线常称为西姆松线;证明:若L、M、N三点共线,连结BP,CP,则因PL⊥BC,PM⊥AC,PN⊥AB,有B、L、P、N和P、M、C、L分别四点共圆,有∠NBP = ∠NLP = ∠MLP= ∠MCP.故A、B、P、C四点共圆;若A、P、B、C四点共圆,则∠NBP= ∠MCP;因PL⊥BC,PM⊥AC,PN⊥AB,有B、L、P、N和P、M、C、L四点共圆,有∠NBP = ∠NLP= ∠MCP= ∠MLP.故L、M、N三点共线;西姆松逆定理:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上;证明:PM⊥AC,PN⊥AB ,所以A,M,N,P共圆8.清宫定理设P、Q为△ABC的外接圆上异于A、B、C的两点,P关于三边BC、CA、AB的对称点分别是U、V、W,且QU、QV、QW分别交三边BC、CA、AB或其延长线于D、E、F,则D、E、F在同一直线上.证明:A、B、P、C四点共圆,因此∠PCE=∠ABP点P和V关于CA对称所以∠PCV=2∠PCE又因为P和W关于AB对称,所以∠PBW=2∠ABP从这三个式子,有∠PCV=∠PBW另一方面,因为∠PCQ和∠PBQ都是弦PQ所对的圆周角,所以∠PCQ=∠PBQ两式相加,有∠PCV+∠PCQ=∠PBW+∠PBQ即∠QCV=∠QBW即△QCV和△QBW有一个顶角相等,因此但是,,所以同理,于是根据梅涅劳斯定理的逆定理,D、E、F三点在同一直线上;9.密克定理三圆定理:设三个圆C1, C2, C3交于一点O,而M, N, P分别是C1 和C2, C2和C3, C3和C1的另一交点;设A为C1的点,直线MA交C2于B,直线PA交C3于C;那么B, N, C这三点共线;逆定理:如果是三角形,M, N, P三点分别在边AB, BC, CA上,那么△AMP、△BMN、△CPN 的外接圆交于一点O;完全四线形定理如果ABCDEF是完全四线形,那么三角形的外接圆交于一点O,称为密克点;四圆定理设C1, C2,C3, C4为四个圆,A1和B1是C1和C2的交点,A2和B2是C2 和C3的交点,A3和B3是C3和C4的交点,A4和B4是C1和C4的交点;那么A1, A2, A3, A4四点共圆当且仅当B1, B2, B3, B4四点共圆;证明:在△ABC的BC,AC,AB边上分别取点W,M,N,对AMN,△BWN和△CWM分别作其外接圆,则这三个外接圆共点;该定理的证明很简单,利用“圆内接四边形对角和为180度”及其逆定理;现在已知U是和的公共点;连接UM和UN,∵四边形BNUW和四边形CMUW分别是和的内接四边形,∴∠UWB+∠UNB=∠UNB+∠UNA=180度∴∠UWB=∠UNA;同理∠UWB+∠UWC=∠UWC+∠UMC=180度∴∠UWB=∠UMC;∵∠UMC+∠UMA=180度∴∠UNA+∠UMA=180度,这正说明四边形ANUM是一个圆内接四边形,而该圆必是,U必在上;10.婆罗摩笈多定理圆内接四边形ABCD的对角线AC⊥BD,垂足为M;EF⊥BC,且M在EF上;那么F是A D 的中点;证明:∵AC⊥BD,ME⊥BC∴∠CBD=∠CME∵∠CBD=∠CAD,∠CME=∠AMF∴∠CAD=∠AMF∴AF=MF∵∠AMD=90°,同时∠MAD+∠MDA=90°∴∠FMD=∠FDM∴MF=DF,即F是AD中点逆定理:若圆内接四边形的对角线相互垂直,则一边中点与对角线交点的连线垂直于对边;证明:∵MA⊥MD,F是AD中点∴AF=MF∴∠CAD=∠AMF∵∠CAD=∠CBD,∠AMF=∠CME∴∠CBD=∠CME∵∠CME+∠BME=∠BMC=90°∴∠CBD+∠BME=90°∴EF⊥BC11.托勒密定理圆内接四边形中,两条对角线的乘积两对角线所包矩形的面积等于两组对边乘积之和一组对边所包矩形的面积与另一组对边所包矩形的面积之和.圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.得AC:BC=AD:BP,AC·BP=AD·BC ①;又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.得AC:CD=AB:DP,AC·DP=AB·CD ②;①+②得ACBP+DP=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.12.梅涅劳斯定理当直线交三边所在直线于点时,;证明:过点C作CP∥DF交AB于P,则两式相乘得梅涅劳斯逆定理:若有三点F、D、E分别在边三角形的三边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线;证明:先假设E、F、D三点不共线,直线DE与AB交于P;由梅涅劳斯定理的定理证明如利用平行线分线段成比例的证明方法得:AP/PBBD/DCCE/EA=1;∵ AF/FBBD/DCCE/EA=1;∴ AP/PB=AF/FB ;∴ AP+PB/PB=AF+FB/FB ;∴ AB/PB=AB/FB ;∴ PB=FB;即P与F重合;∴ D、E、F三点共线;13.塞瓦定理在△ABC内任取一点O,延长AO、BO、CO分别交对边于D、E、F,则BD/DC×CE/EA×AF/FB=1;∵△ADC被直线BOE所截,∴CB/BDDO/OAAE/EC=1①∵△ABD被直线COF所截,∴BC/CDDO/OAAF/FB=1②②/①约分得:DB/CD×CE/EA×AF/FB=114.圆幂定理相交弦定理:如图Ⅰ,AB、CD为圆O的两条任意弦;相交于点P,连接AD、BC,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以;所以有:,即:;割线定理:如图Ⅱ,连接AD、BC;可知∠B=∠D,又因为∠P为公共角,所以有,同上证得;切割线定理:如图Ⅲ,连接AC、AD;∠PAC为切线PA与弦AC组成的弦切角,因此有∠PBC=∠D,又因为∠P为公共角,所以有,易证图Ⅳ,PA、PC均为切线,则∠PAO=∠PCO=90°,在直角三角形中:OC=OA=R,PO为公共边,因此;所以PA=PC,所以;综上可知,是普遍成立的;弦切角定理:弦切角的度数等于它所夹的弧所对的圆心角度数的一半,等于它所夹的弧所对的圆周角度数;点对圆的幂P点对圆O的幂定义为点P在圆O内→P对圆O的幂为负数;点P在圆O外→P对圆O的幂为正数;点P在圆O上→P对圆O的幂为0;三角形五心:内心:三角形三条内角平分线的交点外心:三角形三条边的垂直平分线中垂线的相交点重心:三角形三边中线的交点垂心:三角形的三条高线的交点旁心:三角形的旁切圆与三角形的一边和其他两边的延长线相切的圆的圆心九点圆心:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆的圆心15.根心定理三个两两不同心的圆,形成三条根轴,则必有下列三种情况之一:1 三根轴两两平行;2 三根轴完全重合;3 三根轴两两相交,此时三根轴必汇于一点,该点称为三圆的根心;平面上任意三个圆,若这三个圆圆心不共线,则三条根轴相交于一点,这个点叫它们的根心;若三圆圆心共线,则三条根轴互相平行;根轴定义:A与B的根轴L1:到A与B的切线相等的点;B与C的根轴L2:到B与C的切线相等的点;证明设A、B、C三个圆,圆心不重合也不共线;考察L1与L2的交点P;因为P在L1上,所以:P到A的切线距离=P到B的切线距离;因为P在L2上,所以:P到B的切线距离=P到C的切线距离;所以:P到A的切线距离=P到B的切线距离=P到C的切线距离;也就是:P到A的切线距离=P到C的切线距离;所以:P在A与C的根轴上; 所以:三个根轴交于一点;16.鸡爪定理设△ABC的内心为I,∠A内的旁心为J,AI的延长线交三角形外接圆于K,则KI=KJ=KB=KC;证明:由内心和旁心的定义可知∠IBC=∠ABC/2,∠JBC=180°-∠ABC/2∴∠IBC+∠JBC=∠ABC/2+90°-∠ABC/2=90°=∠IBJ同理,∠ICJ=90°∵∠IBJ+∠ICJ=180°∴IBJC四点共圆,且IJ为圆的直径∵AK平分∠BAC∴KB=KC相等的圆周角所对的弦相等又∵∠IBK=∠IBC+∠KBC=∠ABC/2+∠KAC=∠ABI+∠BAK=∠KIB∴KB=KI由直角三角形斜边中线定理逆定理可知K是IJ的中点∴KB=KI=KJ=KC逆定理:设△ABC中∠BAC的平分线交△ABC的外接圆于K;在AK及延长线上截取KI=KB=KJ,其中I在△ABC的内部,J在△ABC的外部;则I是△ABC的内心,J是△ABC 的旁心;证明:利用同一法可轻松证明该定理的逆定理;取△ABC的内心I'和旁心J’,根据定理有KB=KC=KI'=KJ'又∵KB=KI=KJ∴I和I'重合,J和J’重合即I和J分别是内心和旁心17.费尔巴哈定理三角形的九点圆与其内切圆以及三个旁切圆相切设△ABC的内心为I,九点圆的圆心为V;三边中点分别为L,M,N,内切圆与三边的切点分别是P,Q,R,三边上的垂足分别为D,E,F;不妨设AB>AC;假设⊙I与⊙V相切于点T,那么LT与⊙I相交,设另一个交点为S;过点S作⊙I的切线,分别交AB和BC于V,U,连接AU;又作两圆的公切线TX,使其与边AB位于LT的同侧;由假设知∠XTL=∠LDT而TX和SV都是⊙I的切线,且与弦ST所夹的圆弧相同,于是∠XTL=∠VST因此∠LDT=∠VST则∠UDT+∠UST=180°这就是说,S,T,D,U共圆;而这等价于:LU×LD=LS×LT又LP²=LS×LT故有LP²=LU×LD另一方面,T是公共的切点,自然在⊙V上,因此 L,D,T,N共圆,进而有∠LTD=∠LND由已导出的S,T,D,U共圆,得∠LTD=∠STD=180°-∠SUD=∠VUB=∠AVU-∠B而∠LND=∠NLB-∠NDB=∠ACB-∠NBD=∠C-∠B这里用了LN∥AC,以及直角三角形斜边上中线等于斜边的一半所以,就得到∠AVU=∠C注意到AV,AC,CU,UV均与⊙I相切,于是有∠AIR=∠AIQ∠UIS=∠UIP∠RIS=∠QIS三式相加,即知∠AIU=180°也即是说,A,I,U三点共线;另外,AV=AC,这可由△AIV≌△AIC得到;这说明,公切点T可如下得到:连接AI,并延长交BC于点U,过点U作⊙I的切线,切点为S,交AB于V,最后连接LS,其延长线与⊙I的交点即是所谓的公切点T;连接CV,与AU交于点K,则K是VC的中点;前面已得到:LP²=LU×LD而2LP=BL+LP-CL-LP=BP-CP=BR-CQ=BR+AR-CQ+AQ=AB-AC=AB-AV=BV即 LP=BV然而LK是△CBV的中位线于是 LK=BV因之 LP=LK故LK²=LU×LD由于以上推导均可逆转,因此我们只需证明:LK²=LU×LD;往证之这等价于:LK与圆KUD相切于是只需证:∠LKU=∠KDU再注意到 LK∥ABLK是△CBV的中位线,即有∠LKU=∠BAU又AU是角平分线,于是∠LKU=∠CAU=∠CAK于是又只需证:∠CAK=∠KDU即证:∠CAK+∠CDK=180°这即是证:A,C,D,K四点共圆由于 AK⊥KC易得,AD⊥DC所以 A,C,D,K确实共圆;这就证明了⊙I与⊙V内切;旁切圆的情形是类似的;证毕另略证:OI2=R2-2RrIH2=2r2-2Rr'OH2=R2-4Rr'其中r‘是垂心H的垂足三角形的内切圆半径,R、r是三角形ABC外接圆和内切圆半径FI2=1/2OI2+IH2-1/4OH2=1/2R-r2FI=1/2R-r这就证明了九点圆与内切圆内切九点圆半径为外接圆半径一半;F是九点圆圆心,I为内心18.莫利定理将三角形的三个内角三等分,靠近某边的两条三分角线相交得到一个交点,则这样的三个交点可以构成一个正三角形证明:设△ABC中,AQ,AR,BR,BP,CP,CQ为各角的三等分线,三边长为a,b,c,三内角为3α,3β,3γ,则α+β+γ=60°;在△ABC中,由正弦定理,得AF=csinβ/sinα+β;不失一般性,△ABC外接圆直径为1,则由正弦定理,知c=sin3γ,所以AF=sin3γsinβ/sin60°-γ= sinβsinγ3-4sin²γ/1/2√3cosγ-sinγ= 2sinβsinγ√3cosγ+sinγ= 4sinβsinγsin60°+γ.同理,AE=4sinβsinγsin60°+β∴AF:AE=4sinβsinγsin60°+γ:4sinβsinγsin60°+β=sin60°+γ:sin60°+β=sin∠AEF:sin∠AFE∴∠AEF=60°+γ,∠AFE=60°+β.同理得,∠CED=60°+α∠FED=180°-CED-AEF-α-γ=180°-60°-α-60°+α=60°∴△FED为正三角形19.拿破仑定理若以任意三角形的各边为底边向形外作底角为60°的等腰三角形,则它们的中心构成一个等边三角形;在△ABC的各边上向外各作等边△ABF,等边△ACD,等边△BCE;。

八年级数学上册几何定理的表达 与证明

八年级数学上册几何定理的表达 与证明

八上数学定理的几何表达一、三角形的三边关系三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

几何表达式:在△ABC中,AB+AC>BC;AB-AC<BC;二、三角形的高线从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线。

几何表达式:(1)∵AH是ΔABC的高∴∠AHC=90°(垂直定义)(2) ∵∠AHC=90°∴AH是ΔABC的高(判定垂直)三、三角形的中线在三角形中,连结一个顶点和它对边中点的线段叫做三角形的中线.几何表达式:(1) ∵AD是三角形的中线∴BD = CD(性质)(2) ∵BD = CD∴AD是三角形的中线(判定)四、三角形的角平分线三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.几何表达式:(1)∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义)(2) ∵∠BAD=∠CAD∴AD是∠BAC的平分线(角平分线判定)五、三角形的内角和与外角和(1)三角形的内角和180°;(2)直角三角形的两个锐角互余;(3)三角形的一个外角等于和它不相邻的两个内角的和;(4)三角形的一个外角大于任何一个和它不相邻的内角。

(1)在△ABC中,∠ A+ ∠ B+ ∠ C=180°(2)在Rt△ABC中,∵∠B=90°∴∠A+∠C=90°(3)∠ACD=∠A+∠B(4)∠ACD>∠A∠ACD>∠B六、全等三角形的性质全等三角形的对应边相等,对应角相等。

∵△ABC≌△DEF∴AB=DE, AC=DF, BC=EF∴∠A=∠D, ∠B=∠E, ∠C=∠F.七、全等三角形的判定1. 三边对应相等的两个三角形全等. 边边边(SSS)2. 两边和它们的夹角对应相等的两个三角形全等. 边角边(SAS)3. 两角和它们的夹边对应相等的两个三角形全等. 角边角(ASA)4. 两角和其中一角的对边对应相等的两个三角形全等. 角角边(AAS)5. 斜边和一条直角边对应相等的两个直角三角形全等. 斜边、直角边(HL)(1)在△ABC和△DEF中∴△ABC≌△DEF(SSS)(2)在△ABC和△DEF中AB=DEAC=DFBC=EFAB=DE∴△ABC≌△DEF(SAS)(3)在△ABC和△DEF中∴△ABC≌△DEF(ASA)(4)在△ABC和△DEF中∴△ABC≌△DEF(AAS)(5)在Rt△ABC和Rt△A′B′C′中∴Rt△ABC≌Rt△A′B′C′(HL)或在Rt△ABC和Rt△A′B′C′中∴Rt△ABC≌Rt△A′B′C′(HL)∠A=∠D∠B=∠EAB=DE∠A=∠DBC=EF∠B=∠EAC=A′C′AB=A′B′BC=B′C′AB=A′B′八、角平分线的性质角平分线上的点到角的两边的距离相等。

几何定理证明的一般步骤

几何定理证明的一般步骤

几何定理证明的一般步骤几何是数学中的一个重要分支,也是运用最多的数学分支之一。

几何定理就是指几何中比较重要或有代表性的定理,这些定理在学习和实践几何时尤为重要。

其中证明几何定理是其中一个重要环节,证明一个几何定理有自己的规律,下面就来详细介绍一下通常情况下,几何定理证明的一般步骤。

首先,几何定理证明的第一步是确定几何定理的形式,也就是确定几何定理的前提和结论。

例如,如果要证明二边角和定理,那么前提就是三角形的三个内角的和为180°,而结论则是任意三角形的两边角和的和也是180°。

第二步,确定定理的假设。

假设是证明几何定理的基础,也就是说,在证明定理的过程中,我们必须确定定理的假设。

一般情况下,在证明定理时,我们需要将定理的假设问题分为若干子问题,以平行性问题为例,我们需要确定两个平行线段和它们的构成点的情况,确定其中两点是否是对称的,也需要确定两个线段中的两点是否在同一直线上。

第三步,引入几何工具。

在证明几何定理时,根据定理要求需要引入一些几何工具,比如直线、圆、圆弧和三角等几何工具。

这些几何工具有助于我们从抽象的数学理论到现实的几何图形的转换,以帮助我们更好地理解几何定理所表达的意思。

第四步,推导公式。

几何定理本身是一个抽象的结论,我们可以合理推导出其数学公式,从而使几何定理更加清晰明了,并帮助我们在证明过程中避免误差。

第五步,结合具体的几何图形证明定理。

在证明几何定理时,根据定理的假设,我们可以把定理分解为具体的几何问题,把这些几何问题绘制成几何图形,通过具体的几何图形的分析,从而证明几何定理,使定理更加清晰地表达出来。

最后,在证明几何定理时,我们需要将上述所有步骤结合起来,以有效地证明几何定理。

在证明几何定理时,我们需要结合数学具体内容,把抽象的几何概念转换成具体的几何图形,从而使几何定理得以有效地证明。

以上就是几何定理证明的一般步骤,在此基础上,读者也可以根据具体的几何定理,结合上述步骤,有效地证明几何定理。

几何定理证明:几何定理的证明

几何定理证明:几何定理的证明

几何定理证明:几何定理的证明几何定理是数学中非常重要的一部分,它们是建立和推导几何关系的基础。

在几何学中,定理的证明是确保定理的正确性和可靠性的关键步骤。

本文将介绍几何定理的证明过程,并以几个典型的几何定理为例进行详细阐述。

一、直角三角形的勾股定理证明勾股定理是几何中最经典且重要的定理之一,它声称:直角三角形的两条直角边的平方和等于斜边的平方。

该定理的证明可以通过几何方法或代数方法来展开。

几何方法证明:以直角三角形ABC为例,其中∠B为直角。

我们可以通过画图来证明勾股定理。

1. 以BC为边,作一个正方形BCDE。

2. 连接AC和AE。

3. 证明四边形ABED是一个平方。

4. 由于正方形的性质,我们可以得出AE和BD是相等的。

5. 观察三角形ACD和三角形ABC,它们的两个角分别相等,并且一边相等,所以它们是全等三角形。

6. 根据全等三角形的性质,我们可以得出AD和AB相等。

7. AD是直角边的平方,AB是斜边的平方,因此AD的平方加上AB的平方等于斜边AC的平方,从而证明了勾股定理。

代数方法证明:我们可以使用代数方法证明勾股定理。

设直角三角形ABC中,∠B为直角,AB=a,BC=b,AC=c。

根据直角三角形的定义,我们可以得到两个关系式:a² + b² = c²(1)tan(∠B) = a/b (2)将式(2)代入式(1),得到:a² + (a/tan(∠B))² = c²经过变形和化简,我们最终可以得到:(1 + tan²(∠B))a² = c²由于tan²(∠B) + 1 = sec²(∠B)(余切定理),所以我们可以进一步化简为:sec²(∠B) a² = c²最后,我们得到了勾股定理的形式。

二、等腰三角形底角定理证明等腰三角形是指两边相等的三角形。

在等腰三角形中,底角定理成立,即等腰三角形的底角是两个顶角的一半。

初中数学所有几何证明定理

初中数学所有几何证明定理

初中数学所有几何证明定理初中数学中的几何证明定理有很多,下面列举一些较为常见和重要的:1.垂线定理:如果两条直线相交,且其中一条直线垂直于另一条直线,那么相交的两条直线分成的两对相邻角互为互补角。

证明:假设直线AB与直线CD相交于点O,且直线AB垂直于直线CD,那么∠AOC和∠BOD构成一对互补角,同时∠AOD和∠BOC构成一对互补角。

2.同位角定理:如果两条平行线被一条横截线相交,那么相交的各对同位角相等。

证明:假设平行线AB与CD被平行于它们的条横截线EF相交于点O,那么∠AEO和∠COF,∠FEO和∠DOF互相等。

3.对顶角定理:如果两条直线AB和CD相交,那么由相交而分成的四个角中的相邻角互为对顶角。

证明:假设直线AB与直线CD相交于点O,那么∠AOB和∠COD、∠BOC和∠AOD互为对顶角。

4.垂直角定理:如果两条直线AB和CD相交,那么由相交而分成的四个角中的互为相对角的两对角中,有一对互为垂直角。

证明:假设直线AB与直线CD相交于点O,那么∠AOC和∠BOC互为相对角,如果直线AB与直线CD垂直,那么∠AOC和∠BOC互为垂直角。

5.三角形的内角和定理:一个三角形的内角的和等于180°。

证明:假设三角形的三个顶点为A、B、C,以AB为边作一个封闭的三角形ABC,再以BC为边作一个封闭的三角形ACB。

根据同位角定理,∠BAC+∠BCE=∠ACB+∠ACD,即∠BAC+∠ACB+∠BCE=∠ACB+∠ACD+∠BCE,因此∠BAC+∠ACB+∠BCE=∠ACB+∠ACB,即∠BAC+∠ACB+∠ACB=180°。

6.线段的三等分定理:对于线段AB上的任意一点C,如果AC与CB 的长度相等,那么AC与CB将线段AB分为三个相等的部分。

证明:利用数学归纳法,首先取一点D在线段AB上,并且AD的长度为BD的两倍,那么根据线段的加法性质,我们有AB=AD+BD=AD+AD=2AD。

平面几何五大定理及其证明

平面几何五大定理及其证明

平面几何定理及其证明一、梅涅劳斯定理1.梅涅劳斯定理及其证明G定理:一条直线与ABC的三边AB、BC、CA所在直线分别交于点D、E、F,且D、E、F均不是ABC的顶点,则有.证明:如图,过点C作AB的平行线,交EF于点G.因为CG // AB,所以————(1)因为CG // AB,所以————(2)由(1)÷(2)可得,即得.2.梅涅劳斯定理的逆定理及其证明定理:在ABC的边AB、BC上各有一点D、E,在边AC的延长线上有一点F,若,那么,D、E、F三点共线.证明:设直线EF交AB于点D/,则据梅涅劳斯定理有.因为,所以有.由于点D、D/都在线段AB上,所以点D与D/重合.即得D、E、F三点共线.二、塞瓦定理3.塞瓦定理及其证明定理:在ABC内一点P,该点与ABC的三个顶点相连所在的三条直线分别交ABC三边AB、BC、CA于点D、E、F,且D、E、F三点均不是ABC的顶点,则有.证明:运用面积比可得.根据等比定理有,所以.同理可得,.三式相乘得.4.塞瓦定理的逆定理及其证明定理:在ABC三边AB、BC、CA上各有一点D、E、F,且D、E、F均不是ABC的顶点,若,那么直线CD、AE、BF三线共点.证明:设直线AE与直线BF交于点P,直线CP交AB于点D/,则据塞瓦定理有.因为,所以有.由于点D、D/都在线段AB上,所以点D与D/重合.即得D、E、F三点共线.三、西姆松定理5.西姆松定理及其证明定理:从ABC外接圆上任意一点P向BC、CA、AB或其延长线引垂线,垂足分别为D、E、F,则D、E、F三点共线.证明:如图示,连接PC,连接 EF 交BC于点D/,连接PD/.因为PE AE,PF AF,所以A、F、P、E四点共圆,可得FAE =FEP.因为A、B、P、C四点共圆,所以BAC =BCP,即FAE =BCP.所以,FEP =BCP,即D/EP =D/CP,可得C、D/、P、E四点共圆.所以,CD/P +CEP = 1800。

初中几何定理的证明

初中几何定理的证明

初中几何定理的证明几何定理是数学中的基本定理之一,它们是通过推导和证明得出的,以确保它们的正确性。

本文将介绍一些常见的初中几何定理以及它们的证明。

1.三角形内角和定理:三角形的三个内角和等于180度。

证明:设三角形的三个内角分别为A、B、C,连接线段AB、AC,将三角形ABC分成两个三角形ABD和ACD。

根据直线与角平分线垂直的性质,可得出∠BAD=∠CAD。

由AD是角ABC的平分线,可得出∠BAD=∠DAC。

所以,∠DAC=∠CAD,即角ADC是个等角。

同理,通过连接线段BC可以得知∠ACB=∠ABC。

在三角形ABC中,∠ADC+∠ACD+∠BAC=180度。

根据等角的性质,可得出∠ADC=∠BAC,∠ACD=∠ABC。

所以,∠ADC+∠ACD+∠BAC=∠BAC+∠ABC+∠ACB。

由此,我们得出三角形内角和等于180度的结论。

2.三角形外角定理:三角形的一个外角等于与它不相邻的两个内角的和。

证明:设三角形的一个外角为∠ABC,连接线段AC,延长线段BA得到点D。

由延长线段与直线的交角性质,可得出∠ACB和∠ABC相等。

在三角形ABC中,∠ACB+∠CAB+∠ABC=180度。

我们已知∠ACB+∠CAB=180度,所以∠ABC+∠ACB=180度。

这就证明了三角形外角等于与它不相邻的两个内角的和的定理。

3.相似三角形的性质:两个三角形的相对应的角相等,则它们相似;若两个三角形的对应边成比例,则它们相似。

证明:(1)若两个三角形的相对应的角相等,则它们相似。

设两个三角形分别为△ABC和△DEF,且∠A=∠D,∠B=∠E。

在△ABC和△DEF中,由于∠A=∠D,∠B=∠E,所以∠C=∠F。

根据角对应定理,可得出△ABC与△DEF相似。

(2)若两个三角形的对应边成比例,则它们相似。

设两个三角形分别为△ABC和△DEF,且AB/DE=AC/DF=BC/EF。

在△ABC和△DEF中,由于AB/DE=AC/DF=BC/EF,根据边对应定理,可得出△ABC与△DEF相似。

证明几何图形的定理和定律

证明几何图形的定理和定律

证明几何图形的定理和定律1.三角形的内角和定理:三角形的三个内角之和等于180度。

2.三角形的两边之和大于第三边。

3.三角形的两边之差小于第三边。

4.等腰三角形的性质:两腰相等,底角相等。

5.等边三角形的性质:三边相等,三角相等。

6.直角三角形的性质:有一个90度的角,斜边大于其他两边。

7.勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。

8.四边形的内角和定理:四边形的四个内角之和等于360度。

9.平行四边形的性质:对边平行且相等,对角相等。

10.矩形的性质:四个角都是直角,对边平行且相等。

11.菱形的性质:四条边相等,对角相等。

12.正方形的性质:四条边相等,四个角都是直角。

13.梯形的性质:一组对边平行,一组对边不平行。

14.圆的定义:平面上所有到圆心距离相等的点的集合。

15.圆的性质:圆心到圆上任意一点的距离等于半径。

16.圆的周长公式:C = 2πr,其中C为周长,r为半径。

17.圆的面积公式:A = πr²,其中A为面积,r为半径。

18.弧的性质:圆上任意两点间的部分。

19.弦的性质:圆上任意两点间的线段。

20.圆心角的性质:圆心所对的角等于它所对的弧的两倍。

四、相似图形1.相似图形的定义:形状相同,大小不同的图形。

2.相似图形的性质:对应角相等,对应边成比例。

3.相似三角形的性质:对应角相等,对应边成比例。

4.相似四边形的性质:对应角相等,对应边成比例。

五、全等图形1.全等图形的定义:形状和大小都相同的图形。

2.全等图形的性质:对应边相等,对应角相等。

3.全等三角形的性质:对应边相等,对应角相等。

4.全等四边形的性质:对应边相等,对应角相等。

六、几何图形的变换1.平移:在平面内,将一个图形上的所有点按照某个方向作相同距离的移动。

2.旋转:在平面内,将一个图形绕着某一点转动一个角度的图形变换。

3.轴对称:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。

立体几何证明8条定理

立体几何证明8条定理

文字语言
图形语言
判 一个平面内的两条相交直线
定 与另一个平面平行,则这两 定 个平面平行(简记为线面平 理
行⇒面面平行)
性 质 如果两个平行平面同时和第 定 三个平面相交,那么它们的
理 交线平行
符号语言
l⊄α a⊂α ⇒l∥α l∥a a∥α a⊂β ⇒a∥b α∩β=b
符号语言 a⊂α
b⊂α a∩b=P ⇒α∥β a∥β
直线与平面平行的判定定理与性质定理
文字语言
判 不在平面内的一条直线与此 定 平面内的一条直线平行,则 定 该直线与此平面平行(简记为 理
线线平行⇒线面平行)
图形语言
性 一条直线与一个平面平行, 质 则过这条直线的任一平面与 定 此平面的交线与该直线平行 理 (简记为线面平行⇒线线平
行)
平面与平面平行的判定定理与性质定理
b∥β
α ∥β α ∩γ =a⇒a∥b β∩γ=b
直线与平面垂直的判定定理及性质定理
文字语言
图形语言
判 一条直线与平面内的两条相
定 交直线都垂直,则该直线与此
定 平面垂直

性 质 垂直于同一个平面的两条直 定 线平行 理
平面与平面垂直的判定定理及性质定理
文字语言
图形语言
判定 定理
一个平面过另一个平面的一 条垂线,则这两个平面互相垂 直
性质 定理
两个平面互相垂直,则一个平 面内垂直于交线的直线垂直 于另一个平面
符号语言
a,b⊂α
a∩b=O l⊥a
⇒l⊥α
l⊥b
a⊥α b⊥α
⇒a∥b
符号语言
l⊂β l⊥α
⇒α⊥β
α ⊥α
l⊥a

高中数学几何证明公式定理

高中数学几何证明公式定理

高中数学几何证明相关定理公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。

(1)判定直线在平面内的依据(2)判定点在平面内的方法公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线(1)判定两个平面相交的依据(2)判定若干个点在两个相交平面的交线上公理3:经过不在一条直线上的三点,有且只有一个平面。

(1)确定一个平面的依据(2)判定若干个点共面的依据推论1:经过一条直线和这条直线外一点,有且仅有一个平面。

(1)判定若干条直线共面的依据(2)判断若干个平面重合的依据(3)判断几何图形是平面图形的依据推论2:经过两条相交直线,有且仅有一个平面。

推论3:经过两条平行线,有且仅有一个平面。

立体几何直线与平面空间二直线平行直线公理4:平行于同一直线的两条直线互相平行等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。

异面直线空间直线和平面位置关系(1)直线在平面内——有无数个公共点(2)直线和平面相交——有且只有一个公共点(3)直线和平面平行——没有公共点立体几何直线与平面直线与平面所成的角(1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角(2)一条直线垂直于平面,定义这直线与平面所成的角是直角(3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角三垂线定理在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直三垂线逆定理在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直空间两个平面两个平面平行判定性质(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行(2)垂直于同一直线的两个平面平行(1)两个平面平行,其中一个平面内的直线必平行于另一个平面(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面相交的两平面二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角平面角是直角的二面角叫做直二面角两平面垂直判定性质如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直(1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面(2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内立体几何多面体、棱柱、棱锥多面体定义由若干个多边形所围成的几何体叫做多面体。

几何定理证明

几何定理证明

几何定理证明1、重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。

该点叫做三角形的重心。

先证明交于一点,如图一中线AD、BE交于G,延长CG交AB于F,即证明F为AB中点即可,延长GD至H使GD=DH,又BD=DC∴BDCG为平行四边形,∴BE∥CH,CF∥BH,又E为AC中点,EG为中位线,∴G为AH中点,又CF∥BH,∴FG为中位线,即F为AB中点,∴三条中线交于一点。

再证明2倍问题证明1:如图:△ABC的中线AD、BE交于G(重心),求证:AG=2GD取CE的中点F,连接DF,则CE=2EF=AE ,∴DF是△BCE的中位线,∴GE∥DF ,AG/GD=AE/EF=2,∴AG=2GD 。

证明2:面积法(三条中线将三角形分成6个面积相等的三角形)△ABC,AB、BC、CA中点分别为D、E、F,交于一点G。

∵D、E、F为中点∴S△CAD=S△CDB=S△ABE=S△ACE=S△ABF=S△BCF=S△ABC/2∴S△ADG=S△CEG=S△BEG同理S△BDG=S△BEG∴S△ABG=2S△BEG∴AG/GE=2即AG=2GE证明3:相似三角形△ABC,AB、BC、CA中点分别为D、E、F,交于一点G。

∴DF//BC,DF=BC/2 ①(中位线定理)。

∴△ADF∽△ABC, E为BC中点,∴H为DF中点(可证AH/AE=DH/BE=HF/EC, BE=EC, ∴DH=HF)∴HF=DF/2 , BE=BC/2,又可由①知HF=BE/2∴HF//BE.又∵∠BGE=∠FGH。

∴△BGE∽△FGH∴BG/GF=BE/HF=2。

∴BG=(2/3)BF2、外心定理:三角形的三条中垂线一定交于一点,称之为三角形的外心,之所以称之为三角形的外心,是因为它是三角形外接圆的圆心。

已知:如图8-21所示, PD、NE、MF是△ABC的3条边上的中垂线。

求证:PD、NE、MF交于一点O。

几何定理的证明

几何定理的证明

几何定理的证明几何学是数学的一个分支,研究空间中的形状、位置、大小关系以及它们的性质和变化规律。

在几何学中,定理是通过严密的逻辑推导得出的结论,用于解决各种几何问题。

在本文中,将对几何学中的一些重要定理进行证明。

一、勾股定理的证明勾股定理是初中数学中最为人所熟知的定理之一,表述如下:直角三角形的两直角边的平方和等于斜边的平方。

也可以表示为 a² + b² = c²,其中a、b为两直角边的长度,c为斜边的长度。

证明:设直角三角形的两直角边为a、b,斜边为c。

根据勾股定理的定义,可以得到以下等式:a² + b² = c²二、圆的面积公式的证明圆是一个非常重要的几何形状,具有许多独特的性质和定理。

其中,圆的面积公式是指圆的面积S与其半径r之间的关系,表达式为S = πr²,其中π为圆周率,约等于3.14159。

证明:要证明圆的面积公式,我们可以利用数学归纳法。

首先,我们将圆分成许多小的扇形,并将这些扇形分别展开成弧和射线,形成一个近似于矩形的形状。

然后,我们计算这个近似的矩形的面积,并将其与原来圆的面积进行比较。

通过将这个过程重复无限次,我们可以得出结论,即圆的面积公式成立。

三、正方形的对角线长度的证明正方形是一种具有特殊性质的四边形,它的四条边相等且四个角都为直角。

一个重要的定理是正方形的对角线长度相等。

证明:设正方形的边长为a,其中一条对角线为d₁,另一条对角线为d₂。

根据正方形的性质,可以得到以下等式:d₁² = a² + a² = 2a²d₂² = a² + a² = 2a²由于d₁² = d₂²,所以d₁ = d₂。

因此,正方形的对角线长度相等。

四、相似三角形的比例关系的证明在几何学中,相似三角形是指具有相同形状但大小不同的三角形。

平面几何中几个重要定理的证明

平面几何中几个重要定理的证明

证明:如图,过点C作AB的平行线,交EF于点G.
因为CG // AB,所以 ————(1)
因为CG // AB,所以 ————(2)
由(1)÷(2)可得 ,即得 .
注:添加的辅助线CG是证明的关键“桥梁”,两次运用相似比得出两个比例等式,再拆去“桥梁”(CG)使得命题顺利获证.
4.梅涅劳斯定理的逆定理及其证明
由于 DAE = BAM,所以 DAM = BAE,即 DAC = BAE。而 ABD = ACD,即 ABE = ACD,所以 ABE∽ ACD.即得
,即 ————(2)
由(1)+(2)得

所以AB·CD + BC·AD = AC·BD.
注:巧妙构造三角形,运用三角形之间的相似推得结论.这里的构造具有特点,不容易想到,需要认真分析题目并不断尝试.
三、托勒密定理
5.托勒密定理及其证明
定理:凸四边形ABCD是某圆的内接四边形,则有
AB·CD + BC·AD = AC·BD.
证明:设点M是对角线AC与BD的交点,在线段BD上找一点,使得 DAE = BAM.
因为 ADB= ACB,即 ADE = ACB,所以 ADE∽ ACB,即得
,即 ————(1)
五、欧拉定理
9.欧拉定理及其证明
定理:设ΔABC的重心、外心、垂心分别用字母G、O、H表示.则有G、O、H三点共线(欧拉线),且满足 .
证明(向量法):连BO并延长交圆O于点D。连接CD、AD、HC,设E为边BC的中点,连接OE和OC.则
———①
因为CD⊥BC,AH⊥BC,所以AH // CD.同理CH // DA.
另外,待定系数法在其中扮演了非常重要的角色,需注意掌握其用法.

几何定理证明的一般步骤

几何定理证明的一般步骤

几何定理证明的一般步骤
几何定理的证明一般可以分为以下几个步骤:
1.确定已知条件:首先,我们需要明确定理的已知条件,这些已知条件可以是给定的线段长度、角度,或者其他已知几何形状的性质。

2.建立辅助构造:有时候,为了证明定理,我们需要引入一些辅助构造。

辅助构造通常是通过在图形中引入其他线段、点、圆等,以帮助我们推导出所需的结论。

3.画出图形并标记:根据已知条件和辅助构造,我们应该画出图形,并在图形中恰当地标记已知量和未知量。

4.运用几何定理:根据已知条件和所需的结论,我们需要根据几何定理运用相应的性质和定理来推导出所需的结果。

这可能涉及到角的性质、相似性、比例等。

5.列出证明步骤:在证明过程中,我们应该清晰地列出每一步的推导过程,以确保每一步都是合理的。

这包括通过引用已知条件和几何定理来推导出结果。

6.逻辑推理:根据之前的证明步骤,我们需要运用逻辑推理来确保每一步都是有效的。

这可能涉及到逻辑规则如“事实推出事实”、“否定推理”等。

7.对齐所需的结论:最后,我们应该根据之前的证明步骤,确认我们的证明是否对所需的结论进行了适当的对齐。

如果我们成功地以已知条件和几何定理推导出了所需的结论,则可以得出定理的证明。

需要注意的是,不同的几何定理证明过程会有所不同,有些定理可能需要更复杂的步骤和推导过程。

另外,对于证明几何定理时,我们也可以尝试使用间接证明、反证法等推理方法来达到证明的目的。

总之,几何定理的证明需要逻辑严密和推理严谨,确保每一步都是正确的。

几何证明选讲定理大全

几何证明选讲定理大全

几何证明选讲定理大全几何证明是数学中的一项重要内容,它通过推理和逻辑推导来证明几何定理的正确性。

下面是一些常见的几何定理的证明:1.直角三角形的斜边平方等于两直角边平方和定理(勾股定理):设直角三角形的两直角边长度分别为a和b,斜边长度为c,根据勾股定理可得:c²=a²+b²。

证明如下:画出一个以a和b为直角边的正方形,将其分成两个小正方形和两个矩形。

则大正方形的面积等于a²+b²,而两个小正方形和两个矩形的面积之和等于c²。

因此,c²=a²+b²。

2.等腰三角形底角的平分线也是高的平分线:设ABC为等腰三角形,AB=AC,且BD为底角ABC的平分线,BE为高的平分线。

证明如下:连接AE和BD。

由于BE是高的平分线,所以角BED=90°。

又由于BD 是角ABC的平分线,所以角ABE=角EBC。

因此,三角形ABE和BEC是全等的。

根据全等三边对应定理,可得AE=BE。

因此,BD也是高的平分线。

3.任意角的正弦定理:设三角形ABC的边长分别为a、b、c,角A的对边长度为a,角B的对边长度为b,角C的对边长度为c。

根据正弦定理可得:sinA/a = sinB/b = sinC/c。

证明如下:假设有一个单位圆O,并在圆上取一点D,作OD ⊥ AB。

则AD = b·sinA,BD = b·cosA,OC = b。

连接DC,OC。

根据正弦的定义,可得sinA = AD/OD = AD/OC = b·sinA/b = BD/b。

同理,可得sinB = AD/a,sinC = BD/c。

因此,sinA/a = sinB/b = sinC/c。

4.正方形的对角线相等定理:设ABCD为正方形,对角线AC和BD相交于点O。

证明如下:连接AO和DO。

根据正方形的定义,AB=BC=CD=DA。

高中数学几何证明定理

高中数学几何证明定理

高中数学几何证明定理数学几何证明是数学中常见的一种推理方式,通过应用已知的几何定理和性质,来推导出新的结论和定理。

在高中阶段,学生需要学习和掌握一系列的几何定理,并能够运用这些定理来进行证明。

本文将介绍几个高中数学中常见的几何证明定理。

一、三角形内角和定理的证明在一个三角形中,三个内角的和等于180度。

下面将给出这一定理的证明过程。

证明:设三角形ABC中,AB、AC为两边,∠B、∠C为对应的两个内角。

首先,建立与BC边平行的直线DE,并设直线DE与AB、AC分别交于点D、E。

那么,可以得到∠DBC与∠B之间的对应角相等,即∠DBC = ∠B;同理,∠CEB与∠C之间的对应角相等,即∠CEB = ∠C。

然后,根据平行线的性质可得∠EDC = ∠B;∠EBD = ∠C。

由于三角形内角和的定义,我们有∠ABC + ∠B + ∠C = 180°。

而根据前述角度关系,可以得到∠ABC + ∠DBC + ∠B + ∠CEB = 180°。

将上述两式相减,得到∠DBC + ∠CEB = ∠EDC + ∠EBD。

再根据三角形内角的定义可知∠DBC + ∠CEB + ∠DEB = 180°。

将上述两式相减得∠EBD = ∠EDC。

由此可知∠B = ∠EDC。

将该结论代入三角形内角和的定义中,可得∠ABC + ∠EDC + ∠C = 180°。

整理得∠ABC + ∠C + ∠ACB = 180°。

由此便证明了三角形内角和定理。

二、三角形相似定理的证明在几何学中,我们经常会遇到相似三角形的问题。

下面将证明相似定理中的一个重要结论。

证明:设两个三角形ABC和DEF,满足∠A = ∠D,∠B = ∠E,那么它们是相似三角形。

首先,通过画出辅助直线,使得AB与DE两边平行,并设两个平行线的交点为点G。

那么,∠DEG = ∠ABG。

同时,由于∠A = ∠D,∠B = ∠E,所以∠ABG = ∠DEG。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何定理证明1、重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。

该点叫做三角形的重心。

先证明交于一点,如图一中线AD、BE交于G,延长CG交AB于F,即证明F为AB中点即可,延长GD至H使GD=DH,又BD=DC∴BDCG为平行四边形,∴BE∥CH,CF∥BH,又E为AC中点,EG为中位线,∴G为AH中点,又CF∥BH,∴FG为中位线,即F为AB中点,∴三条中线交于一点。

再证明2倍问题证明1:如图:△ABC的中线AD、BE交于G(重心),求证:AG=2GD取CE的中点F,连接DF,则CE=2EF=AE ,∴DF是△BCE的中位线,∴GE∥DF ,AG/GD=AE/EF=2,∴AG=2GD 。

证明2:面积法(三条中线将三角形分成6个面积相等的三角形)△ABC,AB、BC、CA中点分别为D、E、F,交于一点G。

∵D、E、F为中点∴S△CAD=S△CDB=S△ABE=S△ACE=S△ABF=S△BCF=S△ABC/2∴S△ADG=S△CEG=S△BEG同理S△BDG=S△BEG∴S△ABG=2S△BEG∴AG/GE=2即AG=2GE证明3:相似三角形△ABC,AB、BC、CA中点分别为D、E、F,交于一点G。

∴DF//BC,DF=BC/2 ①(中位线定理)。

∴△ADF∽△ABC, E为BC中点,∴H为DF中点(可证AH/AE=DH/BE=HF/EC, BE=EC, ∴DH=HF)∴HF=DF/2 , BE=BC/2,又可由①知HF=BE/2∴HF//BE.又∵∠BGE=∠FGH。

∴△BGE∽△FGH∴BG/GF=BE/HF=2。

∴BG=(2/3)BF2、外心定理:三角形的三条中垂线一定交于一点,称之为三角形的外心,之所以称之为三角形的外心,是因为它是三角形外接圆的圆心。

已知:如图8-21所示, PD、NE、MF是△ABC的3条边上的中垂线。

求证:PD、NE、MF交于一点O。

思路:先作两条边AB、AC上的中垂线MF、NE相交于O点,过O作OD⊥BC于D,其反向延长线与AB交于P。

然后再证明D是BC的中点。

证明:作AB、BC边上的中垂线MF、NE相交于O点,过O作OD⊥BC于D,其反向延长线与AB交于P。

∵ MF⊥AB于F,AF=FB;∴ OA=OB;∵ NE⊥AC于E,AE=EC;∴ OA=OC;∴ OB=OC;∵ OD⊥BC于D;∴ POD是BC边上的中垂线。

∴ NE、MF、PD交于一点O;即,三角形的三条中垂线交于一点。

结论:该证法采用直接证法,简单明了,其中运用了中垂线的性质定理和判定定理。

3、垂心定理:三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

证明1:已知:ΔABC中,AD、BE是两条高,AD、BE交于点H,连接CH并延长交AB于点F ,求证:CF⊥AB证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE∵∠EAH=∠DAC ∠AEH=∠ADC∴ΔAEH∽ΔADC∴AE/AH=AD/AC ∴ΔEAD∽ΔHAC ∴∠ACF=∠ADE=∠ABE又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB因此,垂心定理成立证明2:(利用外心定理来证明),如图过A、B、C分别做BC、AC、AB的平行线相交于A'、B'、C',∵AD⊥BC,B'C'//BC∴DA⊥B'C'∵B'C'//BC,A' C'//AC∴四边形BCA C'与四边形BCA B'为平行四边形∴AC'=A B' 即A为B'C'中点,又DA⊥B'C'∴DA为B'C'中垂线同理可证EB、CF为A' C'、A' B'中垂线∴AD、BE、CF交于一点(外心定理)4、内心定理:三角形的三内角平分线交于一点。

该点叫做三角形的内心。

内心到三角形三边等距,即为三角形内切圆的圆心。

如图,已知:ΔABC中,AI、BI是∠A、∠B的角平分线,ID⊥BC,IE⊥AC,IF⊥AB,求证:∠ACI=∠BCI,IE=IF=ID证明:∵AI是∠A的角平分线、∴∠IAC=∠IAB∵IE⊥AC,IF⊥AB∴∠IEA=∠IFA=90°又IA=IA∴△AIE≌△AIF∴IE=IF同理可证IF=ID 即IE=IF=ID∵ID⊥BC,IE⊥AC∴∠IEC=∠IDC =90°又IC=IC ∴△CIE≌△CID ∴∠ECI=∠DCI即∠ACI=∠BCI5、旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点。

该点叫做三角形的旁心。

三角形有三个旁心。

如图,已知OC、OB为ΔABC中∠C、∠B的外角平分线,连接OA,证明:∠OAC=∠OAB证明:作OD⊥AB、 OE⊥AC、OF⊥BC∵OC、OB 为∠BCE、∠CBD的平分线,OF⊥BC,OE⊥AC∴OE=OF ,同理OF=OD∴OE=OD,又OD⊥AB、 OE⊥AC,OA=OA∴ΔAEO≌ΔOAD∴∠OAC=∠OAB6、中位线定理:三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。

证明如图,已知△ABC中,D,E分别是AB,AC两边中点。

求证DE平行于BC且等于BC/2方法一:过C作AB的平行线交DE的延长线于G点。

∵CG∥AD∴∠A=∠ACG∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)∴△ADE≌△CGE (A.S.A)∴AD=CG(全等三角形对应边相等)∵D为AB中点∴AD=BD∴BD=CG又∵BD∥CG∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)∴DG∥BC且DG=BC∴DE=DG/2=BC/2∴三角形的中位线定理成立.方法二:相似法:∵D是AB中点∴AD:AB=1:2∵E是AC中点∴AE:AC=1:2又∵∠A=∠A∴△ADE∽△ABC∴AD:AB=AE:AC=DE:BC=1:2∠ADE=∠B,∠AED=∠C∴BC=2DE,BC∥DE方法三:坐标法:设三角形三点分别为(x1,y1),(x2,y2),(x3,y3)则一条边长为:根号(x2-x1)^2+(y2-y1)^2另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2)这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2最后化简时将x3,y3消掉正好中位线长为其对应边长的一半方法四:延长DE到点G,使EG=DE,连接CG∵点E是AC中点∴AE=CE∵AE=CE、∠AED=∠CEF、DE=GE∴△ADE≌△CGE (S.A.S)∴AD=CG、∠G=∠ADE∵D为AB中点∴AD=BD∴BD=CG∵点D在边AB上∴DB∥CG∴BCGD是平行四边形∴DE=DG/2=BC/2∴三角形的中位线定理成立[2]方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3]∴DE//BC且DE=BC/2中位线逆定理逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。

如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。

逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2证明:取AC中点E',连接DE',则有AD=BD,AE'=CE'∴DE'是三角形ABC的中位线∴DE'∥BC又∵DE∥BC∴DE和DE'重合(过直线外一点,有且只有一条直线与已知直线平行)∴E是中点,DE=BC/27、角平分线定理及逆定理定理1:在角平分线上的任意一点到这个角的两条边的距离相等。

逆定理:在一个角的内部(包括顶点),到这个角的两边距离相等的点在这个角的角平分线上。

定理2:三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例,如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC注:定理2的逆命题也成立,证明过程见后文。

角平分线的定义∙角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。

∙三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。

∙PS:三角形的角平分线不是角的平分线,是线段。

角的平分线是射线。

拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。

四种证明法已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC证明方法一:面积法S△ABM=(1/2)·AB·AM·sin∠BAM,S△ACM=(1/2)·AC·AM·sin∠CAM,∴S△ABM:S△ACM=AB:AC又△ABM和△ACM是等高三角形,面积的比等于底的比,即三角形ABM面积S:三角形ACM面积S=BM:CM∴AB/AC=MB/MC证明方法二:相似形过C作CN∥AB交AM的延长线于N则△ABM∽△NCM∴AB/NC=BM/CM又可证明∠CAN=∠ANC∴AC=CN∴AB/AC=MB/MC证明方法三:相似形过M作MN∥AB交AC于N则△ABC∽△NMC,∴AB/AC=MN/NC而在△ABC内,∵MN∥AB∴AN/NC=BM/MC又可证明∠CAM=∠AMN∴AN=MN∴AB/AC=AN/NC∴AB/AC=MB/MC证明方法四:正弦定理作三角形的外接圆,AM交圆于D(起标明交点作用,对证明无影响)由正弦定理,得,AB/sin∠BMA=BM/sin∠BAM,AC/sin∠CMA=CM/sin∠CAM又∠BAM=∠CAM,∠BMA+∠AMC=180°sin∠BAM=sin∠CAM,sin∠BMA=sin∠AMC,∴AB/AC=MB/MC。

相关文档
最新文档