双曲线知识点归纳总结

合集下载

高考双曲线知识点总结

高考双曲线知识点总结

高考双曲线知识点总结双曲线方程1. 双曲线的第一定义:⑴①双曲线标准方程:. 一般方程:.⑵①i. 焦点在x轴上:顶点:焦点:准线方程渐近线方程:或ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或 .②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距两准线的距离;通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程分别为双曲线的左、右焦点或分别为双曲线的上下焦点长加短减原则:构成满足与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.例如:若双曲线一条渐近线为且过,求双曲线的方程?解:令双曲线的方程为:,代入得.⑹直线与双曲线的.位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.2若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.⑺若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.简证: =.常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.感谢您的阅读,祝您生活愉快。

双曲线知识点总结

双曲线知识点总结

椭 圆一、1.椭圆的定义:平面内与两定点F 1,F 2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|=2c};这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。

(212F F a =时为线段21F F ,212F F a <无轨迹)。

2.标准方程: 222c a b =-①焦点在x 轴上:12222=+by a x (a >b >0); 焦点F (±c ,0) ②焦点在y 轴上:12222=+bx a y (a >b >0); 焦点F (0, ±c ) 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1 二.椭圆的简单几何性质:1.范围(1)椭圆12222=+by a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b (2)椭圆12222=+bx a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a 2.对称性 椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心3.顶点(1)椭圆的顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b )(2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。

4.离心率(1)我们把椭圆的焦距与长轴长的比22c a ,即ac 称为椭圆的离心率, 记作e (10<<e ),22221()b e a a ==-c 5.三个技巧:(1)用待定系数法求椭圆方程:根据椭圆焦点是在x 轴还是y 轴上,设出相应形式的标准方程,然后根据条件确定关于a 、b 、c 的方程组,解出a 2、b 2,从而写出椭圆的标准方程.(2)椭圆上任意一点M 到焦点F 的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a +c ,最小距离为a -c .(3)求椭圆离心率e 时,只要求出a ,b ,c 的一个齐次方程,再结合b 2=a 2-c 2就可求得e (0<e <1).1.椭圆22221x y a b+=的左右焦点分别为12,F F ,过点1F 的直线交椭圆于,A B 两点,若△ABF 2的周长为20,离心率为35,则椭圆方程为( ) A .221259x y += B .2212516x y += C .221925x y += D .2211625x y += 2.已知椭圆2221(02)4x y b b +=<<与y 轴交于,A B 两点,点F 为该椭圆的一个焦点,则△ABF 面积的最大值为( ) A.1 B.2 C.4 D.83.直线y x =与椭圆2222:1x y C a b+=的交点在x 轴上的射影恰好是椭圆的焦点,则椭圆C 的离心率为 A .152-+ B .152+ C .352- D .124.已知P 是以12,F F 为焦点的椭圆22221(0)x y a b a b +=>>上一点,且120PF PF ⋅=,且121tan 2PF F ∠=,则此椭圆的离心率为( )A .12 B .23 C .13D .53 5.设12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,过2F 的直线交椭圆于,P Q 两点,若01160,||||F PQ PF PQ ∠==,则椭圆的离心率为( ) A .13B .23C .233D .33 6.已知设12,F F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ︒∠=,则椭圆C 的离心率为( )A .33B .36C .13D . 16 7.已知椭圆22221x y a b +=上的点P 到左、右两焦点1F 、2F 的距离之和为22,离心率22e = (I )求椭圆的方程;(II )过右焦点2F 且不垂直于坐标轴的直线l 交椭圆于A ,B 两点,试问:线段2OF 上是否存在一点M ,使得||||MA MB =?请作出并证明。

双曲线知识点总结

双曲线知识点总结

双曲线知识点总结一.双曲线的定义及其性质1. 定义:平面上到两定点F 1(-c,0) ,F 2(c,0)的距离之差等于定值2a(a<c)点的集合。

2. 求轨迹的方法:(1)设点的坐标 ;(2)找条件 ;(3)代入点的坐标,列等式;(4)化简;(5)检验。

3. 双曲线的标准方程及其性质 (1)双曲线的方程标准方程:12222=-by a x (若x 的系数为正,则焦点x 在轴上;若x 的系数为负,则焦点在y 轴上)共焦点双曲线的方程: 12222=--+m b y m a x ; 共离心率双曲线的方程: 12222=-mb y ma x 共渐近线的双曲线的方程:λ=-2222by a x(2)性质: ①c 2=b 2+a 2;②e=a c =2222221⎪⎭⎫ ⎝⎛+=+=a b a b a a c或e=ac =a c22=aR R R PF PF F F sin sin )sin(sin 2sin 2sin 22121-+=-=-ββααβθ③当PF 2⊥x 轴时,|PF 2|=ab 2④若点P (x 0,y 0)在双曲线12222=-by a x 上,则过点P 与双曲线相切的直线方程为12020=-byy a x x ; ⑤若点P (x 0,y 0)双曲线上任一点,以PF 1为直径的圆一定与x 2+y 2=a 2相切。

二.双曲线的焦点三角形(1)若|PF 1|=m , |PF 2|=n , ∠F 1PF 2= Θ ;mn=θcos 122-b ),[2+∞∈b ;θθcos 1cos 2-=b n m ),[2+∞-∈b ;S∆PF 1F 2=2tan 2θb .证明如下:①(2c)2=m 2+n 2-2mncosΘ=(m -n)2-2mn(1-cosΘ)=4a 2+2mn(1-cosΘ)⇒mn=θcos 122-b②S∆PF 1F 2=21mnsinΘ=2tan 2sin 22cos2sin2cos 1sin 2212222θθθθθθb b b ==-三.双曲线的中点弦(1)AB 是不平行于对称轴的弦,P 是AB 的中点,则K AB K OP =b 2/a 2 (2)若A 、B 关于原点O 对称,P 是椭圆上异于A 、B 的任一点,则K PA K PB =b 2/a 2(3)A 、B 为渐近线上的两点,P 是AB 的中点则K AB K OP =b 2/a 2 (4)A 、B 为渐近线上关于原点O 对称的两点,P 为渐近线上任一点,则K PA K PB =b 2/a 2。

双曲线知识点与性质大全

双曲线知识点与性质大全

双曲线与方程【知识梳理】 1、双曲线的定义(11222,0a F F a a >>的点的轨迹称为双曲线,其中两称为双曲线的焦点,定长称为双曲线的实轴长,线段.此定义为双曲线的第一定义.,此时P 点轨迹为两条射线.(2点,定直线称为双曲线的准线,定值e 称为双曲线的离心率.此定义为双曲线的第二定义. 2、双曲线的简单性质3、渐近线双曲线()221,0x y a b a b -=>的渐近线为220x y a b -=,即0a b ±=,或y x a=±. 【注】①与双曲线221x y a b -=具有相同渐近线的双曲线方程可以设为()220x y a bλλ-=≠;②渐近线为y x a=±的双曲线方程可以设为()220x y a b λλ-=≠;③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线. 4、焦半径双曲线上任意一点P 到双曲线焦点F .()221,0x y a b a b-=>上的任意一点,e =. 5、通径过双曲线()221,0x y a b -=>焦点F 作垂直于虚轴的直线,交双曲线于A 、B 两点,称线段AB 为双曲线的通径,且AB =.6、焦点三角形P 为双曲线()221,0a b a b-=>三角形.122cot2F PF S b ∆=.7、双曲线的焦点到渐近线的距离为b (虚半轴长).8、双曲线()221,0a b a b-=>9、直线与双曲线的位置关系,双曲线Γ:()221,0a b a b-=>,则l 与Γ相交;l 与Γ相切22222; 与Γ相离.10、平行于(不重合)渐近线的直线与双曲线只有一个交点.【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条. 11、焦点三角形角平分线的性质()221,0a b -=>是双曲线的焦点,M 是0F M MP ⋅=u u u u r u u u r,即动点M 的点的轨迹为x y a x a +=≠±【推广211()221,0a b a b -=>于C D 、两点,交直线于点E .若E为CD 的中点,则122b k k a=.13、中点弦的斜率直线l 过()221,0x y a b -=>则直线l 的斜率02AB b x k a y =.14、点()221,0x y a b -=>上的动点,过P 定值.15、点()221,0x y a b -=>上的动点,过P 作渐近线的平行线,2.【典型例题】例1、,焦距为10,这双曲线的方程为_________.【变式1】若曲线141x y k k+=+-表示双曲线,则k 的取值范围是_________.【变式2】双曲线148x y -=的两条渐近线的夹角为_________.【变式3】已知椭圆22135x y m n +=和双曲线22123x y m n-=有公共的焦点,那么双曲线的渐近线方程为_________.【变式4】若椭圆1(0)m n +=>>和双曲线1(0,0)a b -=>>,P 为两曲线的一个交【变式5】的图像与曲线恰好有两个不同的公共点,则实数λ的取值范围是( )A .B . 1,0-C .D .【变式6】直线2=x 14:2=-y x C 两点,设P 为双曲线C OB b OA a OP +=(),则下列不等式恒成立的是( )A .B .222≥+b a C . D .222a b +≤【变式7】设连接双曲线221x y a b -=与221y x b a-=,连接其四个焦点的四边形面积为1S 的最大值为_________.例2、219y x -=的左右焦点,若点P 在双曲线上,=0PF PF u u u r u u u u r g【变式1】过双曲线1109x y -=的左焦点的弦,则(为右焦点)的周长为_________.【变式2】双曲线11620-=,P 是双曲线上的动点,且例3、2214x y -=的两个焦点,点P 是双曲线的任意一点,且123F PF ∠=.例4、31x y -=有A B 、两个不同的交点,如果以AB 为直径的圆恰好过原点O ,试求k 的值.例5、31x y -=相交于A B 、两点,那么是否存在实数k 使得A B 、两点关于直线对称?若存在,求出k 的值;若不存在,说明理由.例6、已知双曲线1124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,求此直线的斜率的取值范围为_________.【变式1】已知曲线C : (1)画出曲线C 的图像;(2)若直线l :与曲线C 有两个公共点,求k 的取值范围; (3)若0P p ,0p >为曲线C 上的点,求.【变式2】直线l :与曲线C :21x y -=. (1)若直线l 与曲线C 有且仅有一个交点,求实数a 的取值范围;(2)若直线l 被曲线C 截得的弦长PQ =,求实数a 的取值范围;(3)是否存在实数a ,使得以为直径的圆经过原点,若存在,求出a 的值;若不存在,请说明理由.例7、已知F 是双曲线1412x y -=的左焦点,(14)A ,,P 是双曲线右支上的动点,求.P 1916-=254x y ++=251x y -+=_________.例8、已知动圆P 与两个定圆251x y -+=2549x y ++=都外切,求动圆圆心P 的轨迹方程.【变式1】ABC ∆50A -,5,0B ABC ∆的内切圆圆心在直线3x =上,则顶点C _________.【变式2与其相交于M N 、两点,线段MN的中点的横坐标为3-,求此双曲线的方程.例9、已知双曲线1916x y -=,若点M 为双曲线上任一点,则它到两渐近线距离的乘积为_________.例10、焦点在x 轴上的双曲线C 的两条渐近线经过原点,且两条渐近线均与以点1为半径的圆相切,又知双曲线C 的一个焦点与P 关于直线y x =对称 (1)求双曲线的方程;(2与双曲线C 的左支交于两点,另一直线l 经过点及AB 的中点,求直线l 在轴上的截距n 的取值范围.【变式】设直线l 的方程为,等轴双曲线C :右焦点为().(1)求双曲线的方程;(2)设直线l 与双曲线的右支交于不同的两点A B 、,记AB 中点为M ,求实数k 的取值范围,并用k 表示点M 的坐标;(3)设点1,0Q -y .例11、已知双曲线C 方程为:212y x -=. (1)与双曲线C 交于不同的两点A B 、,且线段AB 的中点在圆5x y +=求m 的值;(2)设直线l 是圆O :2x y +=)处的切线,l 与双曲线C 交于不同的两点A B 、,证明AOB ∠的大小为定值.例12、在x 轴上,其渐近线方程是6,6P (1)求双曲线的方程;(2)动直线l 经过12的重心G ,与双曲线交于不同的两点M N 、,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.例13、为双曲线C :()01222>=-b by x 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且.圆O 的方程是b y x =+(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为、,求的值;(3)过圆O 上任意一点()作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,例14、已知双曲线C :()2210,0x y a b a b-=>>,且.(1)求双曲线C 的方程;(2)的直线l 的一个法向量为,当直线l 与双曲线C 求实数m 的取值范围;并证明AB 中点M 在曲线(3)设(2)中直线l 与双曲线C 的右支相交于两点,问是否存在实数m ,使得AOB ∠为锐角?若存在,请求出m 的范围;若不存在,请说明理由.。

双曲线经典知识点总结

双曲线经典知识点总结
X2、y2的系数,如果
其渐近线方程为t?沪ab n d
注意:(1)已知双曲线方程,将双曲线方
程中的“常数”换成“0”,然后因式分解即得渐近线方程。
y轴上。注意:对于双 曲线,a不一定大于b,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条坐标轴上。
4.方程Ax2+By2=C(A、B C均不为零)表示双曲线的条件
①待定系数法
:由题目条件确定焦点的位置,从而确定方程的类
车车豹
方程可设为总b(A>U,焦点在X轴上,AvU,焦点在y轴上)(4)等轴双曲线
型,设出标准方程,再由条件确定方程中的参数d
b、C的值。其主要步骤是“先定型,再定量”;
②定义法:由题目条件判断出动点的轨迹是什么图形,
然后再根据定义确定方程。
2 2
双曲线的实半轴长、虚半轴长和半焦距长,均为正数,且三个量的大小关系为:
3.如何由双曲线标准方程判断焦点位置
33
-丄二1知识点五:双曲线的渐近线:(1)已知双曲线方程求渐近线方程:若双曲线方程为a, *2,则
双曲线的焦点总在实轴上,因此已知标准方程,判断焦点位置的方法是:看
2 2
X项的系数是正的,那么焦点在X轴上;如果y项的系数是正的,那么焦点在
(2)范围:双曲线上所有的点都在两条平行直线
(a>0,b>0),把X换成一
—y,方程都不变,所以双曲线/H且是以原点为对称中心的中心对称图形,
=1
(a>0,b
这个对称中心
x=—a和x=a的两侧,是无限延伸的。
因此双曲线
围成一个矩形(如图),
双曲线的渐近线。 注意:双曲线与它的渐近线无限接近,但永不相交。
J323

双曲线知识点总结

双曲线知识点总结

双曲线知识点总结1.双曲线的定义如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支F1,F2为两定点,P为一动点,(1)若||PF1|-|PF2||=2a①0<2a<|F1F2|则动点P的轨迹是②2a=|F1F2|则动点P的轨迹是③2a=0则动点P的轨迹是(2) 若|P F1|-|PF2|=2a①0<2a<|F1F2|则动点P的轨迹是②2a=|F1F2|则动点P的轨迹是③2a=0则动点P的轨迹是2.双曲线的标准方程3.双曲线的性质(1)焦点在x轴上的双曲线标准方程x,y的范围顶点焦点对称轴对称中心实半轴的长虚半轴的长焦距离心率e= 范围e越大双曲线的开口越e越小双曲线的开口越准线渐近线焦半径公式|PF1|= |PF2|= (F1,F2点)(1)焦点在y轴上的双曲线标准方程x,y的范围顶点焦点对称轴对称中心实半轴的长虚半轴的长焦距离心率e= 范围e越大双曲线的开口越e越小双曲线的开口越准线渐近线焦半径公式|PF1|= |PF2|= (F1,F2分别为双曲线的下上两焦点,P为椭圆上的一点)1.等轴双曲线:22(0)x yλλ-=≠特点①实轴与虚轴长相等②渐近线互相垂直=±③离心率为y x2.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原双曲线的共轭双曲线特点①有共同的渐近线②四焦点共圆双曲线22221x ya b+=的共轭双曲线是6.双曲线系(1)共焦点的双曲线的方程为2221x yk k c+=-(0<k<c2,c为半焦距)(2)共渐近线的双曲线的方程为2222(0) x ya bλλ-=≠。

双曲线的基本知识点总结

双曲线的基本知识点总结

双曲线的基本知识点总结双曲线基本知识点总结1. 定义双曲线是二次曲线的一种,它是由一个平面和一个双圆锥面相交,除去与锥面的两个交点(焦点)所得到的曲面。

在笛卡尔坐标系中,标准形式的双曲线方程为 \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) 或 \( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \),其中 \( a \) 和 \( b \) 是实数,且 \( a > 0 \) 和 \( b > 0 \)。

2. 几何性质- 焦点:双曲线有两个焦点,位于主轴上,且距离为 \( 2c \),其中 \( c^2 = a^2 + b^2 \)。

- 实轴:通过双曲线中心的一条轴,且与双曲线的两个分支相切。

- 虚轴:垂直于实轴并通过双曲线中心的轴。

- 半焦距:焦点到双曲线中心的距离,等于 \( c \)。

- 半实轴:实轴的一半,长度为 \( a \)。

- 半虚轴:虚轴的一半,长度为 \( b \)。

- 渐近线:双曲线的两条直线,它们不与双曲线相交,但双曲线的分支趋近于这些线。

渐近线的方程为 \( y = \pm \frac{b}{a}x \)。

3. 标准方程- 横向双曲线:\( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \),其中 \( a \) 和 \( b \) 是正实数,且 \( a^2 < b^2 \)。

- 纵向双曲线:\( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \),其中 \( a \) 和 \( b \) 是正实数,且 \( a^2 < b^2 \)。

4. 双曲线的类型- 右双曲线:中心在原点,实轴向右延伸。

- 左双曲线:实轴向左延伸。

- 上双曲线:实轴向上延伸。

- 下双曲线:实轴向下延伸。

5. 双曲线的性质- 双曲线的两个分支是对称的。

数学双曲线知识点 总结

数学双曲线知识点 总结

数学双曲线知识点总结一、双曲线的定义1. 定义:双曲线是平面上一个点到两个给定点的距离之差等于一个常数的动点轨迹。

这两个给定点称为焦点,常数称为离心率。

双曲线的离心率小于1。

双曲线有两个分支,每个分支有一组渐近线。

2. 方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1。

其中,a和b分别为双曲线在x轴和y轴上的焦点坐标。

3. 参数方程:双曲线的参数方程为x = a·secθ, y = b·tanθ。

其中,a和b分别为双曲线在x 轴和y轴上的焦点坐标,θ为参数。

4. 极坐标方程:双曲线的极坐标方程为r^2 = a^2·sec^2θ - b^2·tan^2θ。

其中,a和b分别为双曲线在x轴和y轴上的焦点坐标,θ为参数。

二、双曲线的性质1. 对称性:双曲线关于x轴和y轴均对称。

2. 渐近线:双曲线有两条渐近线。

两条渐近线的夹角等于双曲线的离心率e的反正切值。

第一条渐近线的斜率为b/a,第二条渐近线的斜率为-b/a。

3. 凹凸性:双曲线的两个分支分别为凹曲和凸曲。

4. 渐进性质:当x趋于正无穷时,双曲线的y趋于无穷;当x趋于负无穷时,双曲线的y 趋于无穷。

当y趋于正无穷时,双曲线的x趋于无穷;当y趋于负无穷时,双曲线的x趋于无穷。

5. 双曲线的离心率e的物理意义:离心率e表示焦距和直距的比值,即e=c/a。

其中,c 为焦点之间的距离,a为双曲线在x轴上的焦点坐标。

6. 双曲线的离心率与点到焦点的距离的关系:双曲线上任意一点P到两个焦点F1和F2的距离之差等于一个常数2a。

即|PF1 - PF2| = 2a。

三、双曲函数1. 双曲正弦函数:sinh x = (e^x - e^(-x))/2,定义域为x∈R,值域为y>0。

2. 双曲余弦函数:cosh x = (e^x + e^(-x))/2,定义域为x∈R,值域为y≥1。

3. 双曲正切函数:tanh x = sinh x / cosh x = (e^x - e^(-x))/(e^x + e^(-x)),定义域为x∈R,值域为y∈(-1, 1)。

双曲线相关知识点总结

双曲线相关知识点总结

双曲线相关知识点总结一、双曲线的定义双曲线是平面上一组点的集合,满足到两个定点的距离之差等于一个常数的性质。

具体来说,设F1(-c,0)和F2(c,0)是平面上的两个定点,c是正实数,点P(x,y)在双曲线上当且仅当PF1-PF2=2a(a>0)。

双曲线分为左右两支,由F1和F2确定的两支双曲线分别称为向左开口和向右开口的双曲线,分别称为左双曲线和右双曲线。

二、双曲线的基本性质1. 定义域和值域:双曲线的定义域是实数集R,值域是实数集R。

2. 对称性:关于坐标轴和原点对称。

3. 渐近线:y=±a/x(斜渐近线)。

4. 渐近线性质:双曲线与其渐近线的交点趋于无穷,且渐近线是双曲线的渐近线。

5. 单调性:双曲线在x轴的两侧都是单调递增或单调递减。

6. 拐点:双曲线的两支在原点都有拐点,拐点的坐标为(0,±a)。

7. 渐近线与曲线的位置关系:当a为正数时,双曲线的两支位于渐近线的两侧;当a为负数时,双曲线的两支位于渐近线的同一侧。

三、双曲线的方程1. 标准方程:双曲线的标准方程分别为x^2/a^2-y^2/b^2=1(右双曲线)和y^2/b^2-x^2/a^2=1(左双曲线),其中a和b分别为双曲线两支离心率的绝对值。

2. 中心点、顶点和焦点:双曲线的中心点为坐标原点,顶点为(±a,0),焦点为(±c,0)。

3. 离心率:双曲线的离心率为e=c/a。

4. 参数方程:双曲线的参数方程分别为x=acosh(t),y=bsinh(t)(右双曲线)和x=asinh(t),y=bcosh(t)(左双曲线),其中t为参数。

四、双曲线的图像1. 双曲线的图像具有对称性,关于x轴和y轴对称,同时关于原点对称。

2. 双曲线与其渐近线之间的位置关系决定了双曲线的图像形状。

3. 当a和b的取值变化时,双曲线的形状也随之变化。

五、双曲线的应用1. 物理学中,双曲线常用于描述波的传播和衰减,尤其是在光学和声学中有着广泛的应用。

双曲线知识点归纳总结

双曲线知识点归纳总结

第二章 双曲线标准方程(焦点在 x 轴)标准方程(焦点在 y 轴)双曲线x 2y 2 1(a 0, b 0)y 2x21(a 0, b 0)a2b222a b第必定义:平面内与两个定点 F 1 , F 2 的距离的差的绝对值是常数(小于 F 1F 2 )的点的轨迹叫双曲线。

这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。

M MF 1 MF 2 2a 2aF 1F 2yyyyPF 2xxF 1F 2xxP定义F 1第二定义:平面内与一个定点F 和一条定直线 l 的距离的比是常数 e ,当 e 1 时,动点的轨迹是双曲线。

定点 F 叫做双曲线的焦点,定直线叫做双曲线的准线,常数 e ( e 1 )叫做双曲线的离心率。

yyyPyPPF 2xxF 1F 2xxPF 1范围 x a , y R y a , x R对称轴 x 轴 , y 轴;实轴长为 2a , 虚轴长为 2b对 称 中 原点 O (0,0)心焦 点 坐F 1( c,0) F 2 (c,0) F 1 (0, c) F 2 (0, c)标焦点在实轴上, c a2 b2;焦距: F1F22c顶点坐( a ,0)(a,0)(0,a ,) (0, a )标离心率e c(e 1)aa 2ya 2准线方x cc程准线垂直于实轴且在两极点的内侧;两准线间的距离:)到准线 l1( l 2)的距离为a2顶点到极点 A1( A2ac准线的2极点 A1( A2)到准线 l 2( l1)的距离为a a距离c焦点到焦点 F1( F2)到准线l1(l2)的距离为c a2c准线的焦点 F1( F2)到准线l2( l 1)的距离为a2c距离c渐近线y b x y a xa b 方程共渐近x 2y 2k (k 0)y2x 2k (k0 )a 2b2 a 2b2线的双曲线系方程2a c21.双曲线的定义①当| MF1| -| MF2|=2 a 时,则表示点 M 在双曲线右支上;当MF2MF12a时,则表示点 M 在双曲线左支上;②注意定义中的“(小于F1F2)”这一限制条件,其依据是“三角形两边之和之差小于第三边” 。

双曲线知识点归纳总结

双曲线知识点归纳总结

双曲线知识点归纳总结本文档将对双曲线的相关知识点进行归纳总结,以帮助读者更好地理解和应用双曲线。

1. 双曲线的定义双曲线是二次曲线的一种,其方程可以表示为:\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad (a > 0, b > 0) \]其中,\[ a \] 和 \[ b \] 分别为椭圆的半轴。

2. 双曲线的基本性质- 双曲线有两个分支,分别向左右两个方向无限延伸。

- 双曲线的焦点为椭圆的焦点,焦点到曲线上任意一点的距离之差等于常数 \[ 2a \]。

- 双曲线的渐近线是通过焦点的直线,其斜率为 \[ \pm\frac{b}{a} \],与曲线的交点即为曲线的渐近点。

3. 双曲线的图像特征- 当 \[ a > b \] 时,双曲线的主轴平行于 \[ x \] 轴。

- 当 \[ a < b \] 时,双曲线的主轴平行于 \[ y \] 轴。

- 当 \[ a = b \] 时,双曲线为特殊情况,即为双曲线的渐近线。

4. 双曲线的应用双曲线的应用非常广泛,包括但不限于以下领域:- 数学分析:双曲线是解析几何研究的重要方向,应用于函数的图像分析、曲线的参数化等。

- 物理学:双曲线广泛应用于描述物体的运动轨迹、电磁场的传播等。

- 经济学:双曲线模型被应用于市场供需曲线、货币供给曲线等的分析与建模。

- 工程学:双曲线被应用于设计天地线、曲线形状的构造等。

5. 参考文献1. 张三, "双曲线的基本性质研究", 《高等数学学报》, 2010.2. 李四, "双曲线在物理学中的应用研究", 《物理学杂志》, 2012.以上是对双曲线知识点的简要归纳总结,希望能对读者理解和应用双曲线有所帮助。

双曲线知识点归纳总结

双曲线知识点归纳总结

双曲线知识点归纳总结双曲线作为数学中的重要曲线之一,具有广泛的应用领域。

本文将对双曲线的基本概念、性质以及相关公式进行归纳总结,以帮助读者更好地理解和应用双曲线。

一、双曲线的基本概念和标准方程在数学中,双曲线是由于两个焦点的特殊点之间的距离差等于一常数而定义的曲线。

其标准方程为:(x² / a²) - (y² / b²) = 1 (1)其中,a和b分别为双曲线的半轴长度。

二、双曲线的性质1. 对称性:双曲线关于x轴、y轴以及原点具有对称性。

2. 渐近线:双曲线的渐近线分为两类,即斜渐近线和水平/垂直渐近线。

斜渐近线的斜率为±(b / a),水平渐近线为y = ±(b / a),垂直渐近线为x = ±(a / b)。

3. 离心率:双曲线的离心率为e = √(1 + (b² / a²))。

4. 焦点和准线:双曲线有两个焦点和两条准线,焦点到双曲线上任意一点的距离差等于双曲线的半焦距。

5. 直径和短轴:双曲线的直径为两个焦点之间的距离,短轴为双曲线的两个半焦距之和。

除了标准双曲线外,双曲线还有一些常见的变形形式,如:1. 椭圆形式:当双曲线的焦点在y轴上,准线在x轴上时,其方程可表示为:(y² / b²) - (x² / a²) = 1 (2)2. 倾斜形式:当双曲线的焦点不在x轴或y轴上时,其方程可表示为:(x - h)² / a² - (y - k)² / b² = 1 (3)其中,(h, k)为双曲线中心的坐标。

四、双曲线的重要公式在应用中,我们常常需要根据已知条件求解双曲线的相关参数。

以下是一些重要的计算公式:1. 长轴长度:2a = |焦点之间的距离|2. 短轴长度:2b = |2半焦距之和|3. 离心率:e = √(1 + (b² / a²))4. 焦点坐标:(±ae, 0)5. 垂直渐近线方程:x = ±(a / e)6. 水平渐近线方程:y = ±(b / e)双曲线在数学中具有广泛的应用,尤其在科学、工程和实际问题的建模和分析中发挥着重要作用。

高中数学双曲线知识点归纳

高中数学双曲线知识点归纳

高中数学双曲线知识点归纳1. 双曲线的定义双曲线是数学中的一种曲线形状,定义为平面上满足一定关系式的点的集合。

双曲线由两个分离的曲线支构成,且每个支都是无限延伸的。

双曲线有许多重要的性质和应用。

2. 双曲线的标准方程双曲线的标准方程可以表示为以下形式:- 横轴双曲线方程:$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$,其中$a>0$且$b>0$。

- 纵轴双曲线方程:$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$,其中$a>0$且$b>0$。

3. 双曲线的焦点和准线双曲线的焦点和准线是双曲线的重要概念。

- 焦点:对于横轴双曲线,焦点是位于横轴上的两个点;对于纵轴双曲线,焦点是位于纵轴上的两个点。

焦点具有很多重要的性质,如与双曲线的离心率相关等。

- 准线:对于横轴双曲线,准线是位于横轴上的两个点;对于纵轴双曲线,准线是位于纵轴上的两个点。

准线也与双曲线的离心率有关。

4. 双曲线的性质双曲线具有许多特殊的性质,包括但不限于:- 双曲线是对称的,关于$x$轴和$y$轴都具有对称性。

- 双曲线的离心率为超过1的正实数,离心率越大,曲线形状越扁平。

- 双曲线的渐近线是曲线的两个分支的极限位置,与曲线的形状和方程有关。

5. 双曲线的应用双曲线在数学和其他领域中有广泛的应用。

- 物理学中的抛物线轨迹、光学中的抛物面反射、天体力学中的行星轨道等问题都涉及到双曲线。

- 经济学中的供求曲线、成本曲线等也可以用双曲线进行建模和分析。

以上是对高中数学中双曲线知识点的简要归纳,希望对你有所帮助。

双曲线是数学中一个重要而有趣的概念,深入学习和应用双曲线将能拓宽你的数学视野。

双曲线知识点归纳总结[参考]

双曲线知识点归纳总结[参考]

双曲线知识点归纳总结[参考]# 一、双曲线的定义双曲线是椭圆形外表面的主要特点,特别是那种双曲线比圆轴稍长的特殊类型,其自然按照常见的中心对称(镜面对称)。

双曲线是定义域上二次代数多项式等式的解析解集合,也是几何学中一种十分重要的曲线形式。

1. 过原点的双曲线可以由自变量的两个方程式构成,分别是水平方向的变量和竖直方向的变量。

2. 当椭圆的焦点同比例缩放或者映射,双曲线还是双曲线,但是其离心率会发生变化。

3. 双曲线的部分图像是一个二次曲线,而它们的反函数具有很高的解析式。

4. 双曲线存在两条任意的翼线,它们的端点被称为焦点。

5. 双曲线的参数方程是曲线的标准方程,与通常的椭圆不同,它们大部分情况都是通过横纵坐标表示的。

6. 双曲线的证明可以非常好的运用到平面几何,特别是在关于椭圆方程的求解、椭圆定理的应用中,双曲线有重要的作用。

7. 双曲线本质上是椭圆形,有时也被归类为椭圆,但是它们的特殊性质使它们有独立的定义。

1. 在光学学科中,双曲线可以用于计算和分析光照度因子和反射率,这也是设计镜头、反射镜等光学元件时使用的重要工具。

2. 数学方法中,双曲线可以用来解决有关空间变换的问题,例如它们可以帮助研究部分变换的结构,而这些变换又是许多高等数学理论的基础。

3. 在概率论中,双曲线也可以表示正态分布的可视图像,从而方便对正态分布的深入研究。

4. 在物理学中,双曲线用于研究静电场,例如设计拉普拉斯力场和电荷发射器等元件而取得了波动之类的重要发现。

5. 在游戏和美学艺术中,双曲线作为客观几何学的表现展示出来,被大量应用于游戏的角色和场景的设计上。

# 四、总结双曲线是一种具有孤立特征的椭圆形,它们具有两个不同方向的旋转轴,运用于光学学科、数学方法、概率论、物理学和美学艺术等领域具有重要的作用,是多学科交叉研究的基本要素之一。

双曲线结论知识点总结

双曲线结论知识点总结

双曲线结论知识点总结一、双曲线的定义双曲线是平面上一种特殊的曲线,其定义是动点到两个不相交定点的距离的差等于常数的轨迹。

双曲线有两支,分别称为实轴和虚轴,其中实轴是连接两焦点的直线,虚轴是与实轴垂直的直线。

二、双曲线的性质1. 双曲线是一种非闭合曲线,其两支无交点。

2. 双曲线的轴线是连接两焦点的直线,在坐标系中通常与x轴或y轴平行。

3. 双曲线在两支的极限位置有渐近线,实轴和虚轴分别为双曲线的渐近线。

4. 双曲线的焦点到曲线上任意一点的距离之和等于常数,即双曲线的定义。

5. 双曲线具有反射性质,通过焦点发出的光线被双曲线反射后会聚于另一焦点。

三、双曲线的方程双曲线的标准方程有两种形式:横轴上的双曲线和纵轴上的双曲线。

1. 横轴上的双曲线的标准方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。

2. 纵轴上的双曲线的标准方程为:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$。

其中,a和b分别代表横轴和纵轴上的焦点到曲线的距离之和的一半。

四、双曲线的焦点双曲线有两个焦点,分别位于实轴和虚轴上,距离轴线的距离分别为c和-c。

五、双曲线的渐近线双曲线的渐近线是实轴和虚轴,其方程分别为y=±c/b*x和x=±a/c*y。

六、双曲线的参数方程双曲线的参数方程为$x=a\cdot \cosh t, y=b\cdot \sinh t$或$x=a\cdot \sec t, y=b\cdot \tan t$,其中t为参数。

七、双曲线的应用双曲线在现实生活中有许多应用,例如在天文学中描述行星轨道的形状、在物理学中描述光线的反射和折射等。

总结一下,双曲线是一种重要的曲线,在数学和物理学中有广泛的应用。

我们从双曲线的定义、性质、方程、焦点、渐近线、参数方程以及应用等方面对双曲线进行了总结,希望对读者有所帮助。

双曲线的知识点总结

双曲线的知识点总结

双曲线的知识点总结双曲线知识点总结1. 定义双曲线是二次曲线的一种,它是所有与两个固定点(焦点)距离之差为常数的点的集合。

这两个固定点称为双曲线的焦点。

2. 标准方程双曲线的标准方程有两种形式,分别对应于水平和垂直方向的开口。

- 水平开口:\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\)- 垂直开口:\(\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1\)其中,\(a\) 是实轴半长,\(b\) 是虚轴半长。

3. 性质- 实轴:双曲线上最长的轴,两端分别指向两个焦点。

- 虚轴:与实轴垂直的轴,两端是双曲线的顶点。

- 焦点:双曲线上两个特定的点,所有曲线上的点到这两个点的距离之差为常数。

- 焦距:两个焦点之间的距离,用 \(2c\) 表示,其中 \(c^2 = a^2+ b^2\)。

- 顶点:双曲线与虚轴的交点,坐标为 \((±a, 0)\)(水平开口)或\((0, ±b)\)(垂直开口)。

- 渐近线:双曲线的两条直线,它们不与双曲线相交,但双曲线会无限接近这些线。

渐近线的方程为 \(y = ±\frac{b}{a}x\)(水平开口)或 \(x = ±\frac{a}{b}y\)(垂直开口)。

4. 应用双曲线在许多领域都有应用,包括:- 物理学:在描述某些行星轨道和电磁波的传播时使用。

- 工程学:在设计某些类型的天线和雷达系统中使用。

- 几何学:在研究对称性和变换中经常出现。

5. 图形特征- 双曲线是开放的曲线,没有封闭的区域。

- 它有两个分支,每个分支都无限延伸。

- 双曲线的图形是对称的,关于实轴和虚轴对称。

6. 变换双曲线可以通过平移和旋转进行几何变换。

例如,通过改变标准方程中的常数项,可以平移双曲线;通过组合平移和旋转,可以得到任意位置和方向的双曲线。

7. 双曲线的参数- 离心率 \(e\):表示双曲线相对于其焦点的扩展程度,计算公式为\(e = \frac{c}{a}\)。

(完整版)双曲线经典知识点总结

(完整版)双曲线经典知识点总结

双曲线知识点总结班级姓名知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨迹为线段F1F2的垂直平分线。

知识点二:双曲线的标准方程1.当焦点在轴上时,双曲线的标准方程:,其中;2.当焦点在轴上时,双曲线的标准方程:,其中.注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2.在双曲线的两种标准方程中,都有;3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线的简单几何性质双曲线(a>0,b>0)的简单几何性质(1)对称性:对于双曲线标准方程(a>0,b>0),把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以双曲线(a>0,b >0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。

(2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。

因此双曲线上点的横坐标满足x≤-a或x≥a。

(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。

②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 2.3 双曲线
① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上;
② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。

若2a =2c 时,即2
12
1F F MF MF =-,当2121F F MF MF =-,动点轨迹是以2F 为端点向
右延伸的一条射线;当2
112
F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一
条射线;
若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是:
如果2x 项的系数是正数,则焦点在x 轴上;
如果2y 项的系数是正数,则焦点在y 轴上.
对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部
(1)点00(,)P x y 在双曲线22
221(0,0)x y a b a b
-=>>的内部2200221x y a b ⇔->.
(2)点00(,)P x y 在双曲线22
221(0,0)x y a b a b
-=>>的外部2200221x y a b ⇔-<.
4. 形如)0(12
2 AB By Ax =+的方程可化为11122=+
B
y A x 当01
,01 B A ,双曲线的焦点在y 轴上; 当01
,01 B A ,双曲线的焦点在x 轴上;
5.求双曲线的标准方程,
应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.
6. 离心率与渐近线之间的关系
22
2
22222
1a
b a b a a
c e +=+== 1)2
1⎪⎭

⎝⎛+=a b e 2) 12-=e a b
7. 双曲线的方程与渐近线方程的关系
(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a
b
y ±=.
(2)若渐近线方程为x a
b
y ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .
(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22
22b
y a x (0>λ,焦点在x
轴上,0<λ,焦点在y 轴上).
(4)与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-22
22b
y a x 0(≠λ
(5)与双曲线12222=-b
y a x 共焦点的双曲线系方程是122
2
2=--+k b y k a x (6)当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲
线为等轴双曲线,可设为λ=-22y x ; 8. 双曲线的切线方程
(1)双曲线22
221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.
(2)过双曲线22
221(0,0)x y a b a b
-=>>外一点00(,)P x y 所引两条切线的切点弦方程
是00221x x y y
a b
-=. (3)双曲线22
221(0,0)x y a b a b
-=>>与直0Ax By C ++=相切的条件是22222A a B b c -=.
9. 直线与双曲线的位置关系
直线l :)0(≠+=m m kx y 双曲线C :122
22=-b
y a x (a >0,b >0)
⎪⎩⎪⎨⎧=-+=1
2222
b y
a
x m
kx y ⇒ 02)(222222222=----b a m a mkx a x k a b 1) 当02
22=-k a b ,即a
b
k ±
=时,直线l 与双曲线的渐进线_平行_,直线与双曲线C 相交于一点;
2) 当b 2-a 2k 2≠0,即a
b k ±≠时,△=(-2a 2mk)2-4(b 2-a 2k 2)(-a 2k 2)(-a 2m 2-a 2b 2)
① 0 ∆时,直线l 与双曲线相交,有两个公共点 ② 0=∆时,直线l 与双曲线相切,有且仅有一个公共点 ③ 0 ∆时,直线l 与双曲线相离,无公共点
3) 直线与双曲线只有一个公共点,则直线与双曲线必相切吗?为什么?(不一定)
10. 关于直线与双曲线的位置关系问题常用处理方法
直线l :)0(≠+=m m kx y 双曲线C :122
22=-b
y a x (a >0,b >0)
① 联立方程法:
⎪⎩⎪⎨⎧=-+=1
2222
b y
a
x m
kx y ⇒ 02)(222222222=----b a m a mkx a x k a b 设交点坐标为),(11y x A ,),(22y x B ,则有0 ∆,以及2121,x x x x +,还可进一步求出
m
x x k m kx m kx y y 2)(212121++=+++=+,
2212122121)())((m x x km x x k m kx m kx y y +++=++=
在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长
2122122124)(11x x x x k x x k AB -++=-+=a
k ∆
+=2
1 或 2122122124)(1111y y y y k y y k AB -++=-+
=a
k ∆+=2
1 b. 中点),(00y x M , 2210x x x +=
, 2
2
10y y y += ② 点差法:
设交点坐标为),(11y x A ,),(22y x B ,代入双曲线方程,得
122
122
1=-b y a x 122
2
22
2=-b
y a x 将两式相减,可得
2
212122121)
)(())((b
y y y y a x x x x -+=-+ )()
(2122122121y y a x x b x x y y ++=
-- a. 在涉及斜率问题时,)
()
(212
212y y a x x b k AB
++=
b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M ,
20
20202212122y a x b y a x b x x y y =••=--, 即0
20
2y a x b k AB
=, 11. 焦点三角形面积公式:)(,2
tan
212
2
1
PF F b S PF F ∠==∆θθ。

相关文档
最新文档