Multisim10-正弦稳态交流电路仿真实验
Multisim电路仿真实验报告
Multisim电路仿真实验报告精33张聪20130106571实验目的:熟悉电路仿真软件Muitisim的功能,掌握使用Muitisim进行输入电路、分析电路和仪表测试的方法。
2使用软件:NIMultisimstudentV12。
(其他版本的软件界面稍有不同)3预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。
4熟悉软件功能(1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。
初步了解各部分的功能。
(2)初步定制:定制元件符号:Options|Globalpreferences,选择Components标签,将SymbolStandard区域下的元件符号改为DIN。
自己进一步熟悉全局定制Options|Globalpreferences窗口中各标签中的定制功能。
(3)工具栏定制:选择:View|Toolbars,从显示的菜单中可以选择显示或者隐藏某些工具栏。
通过显示隐藏各工具栏,体会其功能和工具栏的含义。
关注几个主要的工具栏:Standard(标准工具栏)、View(视图操作工具栏)、Main(主工具栏)、Components(元件工具栏)、Instruments(仪表工具栏)、Virtual(虚拟元件工具栏)、Simulation(仿真)、Simulationswitch(仿真开关)。
(4)Multisim中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。
另有一类只有封装没有模型的元件,只能布线不能仿真。
在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。
元件库的结构:元件库有三个:Masterdatabase(主库)、Corporatedatabase (协作库)和Userdatabase(用户库)。
Multisim10-正弦稳态交流电路仿真实验
暨南大学本科实验报告专用纸课程名称电路分析CAI 成绩评定实验工程名称正弦稳态交流电路仿真实验指导教师实验工程编号0806109705实验工程类型验证型实验地点计算机中心C305学生姓学号学院电气信息学院专业实验时间2021 年5月28日一、实验目的1.分析和验证欧姆定律的相量形式和相量法。
定律的相量形式和相量法。
二、实验环境定律微机,windows XP,Microsoft office,2.电路仿真设计工具Multisim10三、实验原理1在线性电路中,当电路的鼓励源是正弦电流〔或电压〕时,电路的响应也是同频的正弦向量,称为正弦稳态电路。
正弦稳态电路中的KCL和KVL适用于所有的瞬时值和向量形式。
2.基尔霍夫电流定律〔KCL〕的向量模式为:具有相同频率的正弦电流电路中的任一结点,流出该结点的全部支路电流向量的代数和等于零。
3. 基尔霍夫电压定律〔KVL〕的向量模式为:具有相同频率的正弦电流电路中的任一回路,沿该回路全部的支路电压向量的代数和等于零。
四、实验内容与步骤1. 欧姆定律相量形式仿真①在Multisim 10中,搭建如图〔1〕所示正弦稳态交流实验电路图。
翻开仿真开关,用示波器经行仿真测量,分别测量电阻R、电感L、电容C两端的电压幅值,并用电流表测出电路电流,记录数据于下表②改变电路参数进行测试。
电路元件R、L和C参数不变,使电源电压有效值不变使其频率分别为f=25Hz和f=1kHz参照①仿真测试方法,对分别对参数改变后的电路进行相同内容的仿真测试。
③将三次测试结果数据整理记录,总结分析比拟电路电源频率参数变化后对电路特性影响,研究、分析和验证欧姆定律相量形式和相量法。
暨南大学本科实验报告专用纸(附页)欧姆定律向量形式数据V Rm/V V Lm/V V Cm/V I/mA 理论计算值仿真值〔f=50Hz〕理论计算值仿真值〔f=25Hz〕理论计算值仿真值〔f=1kHz〕在Multisim10中建立如图〔2〕所示仿真电路图。
Multisim 10仿真实验课件第二章
(5)在同一电路窗口中,根据有源单口网络的开路 电压和等效内阻,建立有源单口网络的戴维南等效 电路,如图2-13(参数自定)。
四、实验注意事项
(1)进行仿真实验时,要注意电压、电流的实际方 向。
(2)要先停止仿真,然后再改接电路。 (3)运行仿真时,要等电路达到稳定后,再读取电
流表、电压表的读数。
二、实验原理
电压:电路中两点之间的电位差称为电压。电流流过负载 形成电压。电压符号:U,单位:V。A,B两点之间的电 压用用表U红A表B表棒示接,A含,义黑是表从棒A接点B到。B点之间的电压,测量时万
电位:电路中某点相对于参考点之间的电压。电位符号: U点。之单间位的:电V压。,A点测的量电时位万用用U表A表红示表,棒含接义A,是黑从表A点棒到接参参考考 点。
二、实验原理
电桥的概念:最简单的电桥是由四个支路组成的电 路。各支路称为电桥的“臂”。如图2-6电路中有一电 阻为未知(Rx),一对角线中接入直流电源E,另一 对角线接入电流表V1(或电压表)。可以通过调节 各已知电阻的值使电流表指示为0(或电压表无电 压),则电桥平衡,此时R1/Rx=R2/R。通常R1、R2为 固定电阻,R为可调电阻,Rx为被测电阻。电桥平衡 时,可由电桥平衡条件求得被测电阻阻值。
(4)运行仿真时,要等电路达到稳定后,再读取电 流表、电压表的读数。
2.5 戴维南定理的验证
一、实验目的 (1)掌握测量等效电源的等效电动势和等效内阻的
方法。 (2)通过仿真实验验证戴维南定理,加深对“等效”
概念的理解。 二、实验原理 具有两个引出端纽,内部含有独立电源且两个端纽
上的电流为同一电流(这称为端口条件)的部分电 路称为有源单口网络(图2-10),也称为有源二端网 络。
正弦稳态电路及其MATLAB仿真
正弦交流电是随时间按照正弦函数规律变化的电压和电流,在现代工农业生产和日常生活中具有广泛的应用。
在正弦激励的动态电路中, 若各电压、电流均为与激励同频率的正弦波, 则称该电路为正弦稳态电路。
无论在理论研究还是实际应用中, 对于正弦稳态电路的分析都是十分重要的。
它是变压器、交流电机以及电子电路的理论基础, 在实际应用中, 许多电气设备的设计、性能指标就是按正弦稳态来考虑的。
因此, 分析和计算正弦稳态电路是工程技术和科学研究中常常会碰到的问题。
一、正弦稳态电路及其分析的重要性 (1)1.1 正弦稳态电路的定义 (1)1.2 分析正弦稳态电路的重要性 (1)2.1相量分析法 (1)2.2 Matlab分析 (1)三、Matlab在正弦稳态电路分析中的应用 (2)3.1 Matlab的概况 (2)3.2 Matlab分析的优势 (2)3.2.1 友好的工作平台和编程环境 (2)3.2.2 简单易用的程序语言 (3)3.2.3 强大的科学计算机数据处理能力 (3)3.2.4 出色的图形处理功能 (3)3.2.5 应用广泛的模块集合工具箱 (4)3.2.6 实用的程序接口和发布平台 (4)3.2.7 应用软件开发 (4)3.3 分析流程 (4)四、正弦稳态电路分析实例 (5)4.1 电路图 (5)4.2采用节点电压法求解 (5)4.3 用Matlab编程计算 (6)4.4电流向量图和波形图绘制 (6)五、结束语 (9)六、参考文献 (10)七、成绩评定 (11)一、正弦稳态电路及其分析的重要性1.1正弦稳态电路的定义线性时不变动态电路在角频率为ω的正弦电压源或电流源激励下,随着时间的增长,当暂态响应消失,只剩下正弦稳态响应,电路中全部电压电流都是角频率为ω的正弦波时,称电路处于正弦稳态。
满足这类条件的动态电路通常称为正弦电流电路或正弦稳态电路。
1.2 分析正弦稳态电路的重要性1.2.1 很多实际电路都工作于正弦稳态。
multisim10实验总结
multisim10实验总结
一、实验背景
Multisim 10是一款广泛使用的电路仿真软件,它可以帮助电子工程师和学生在计算机上设计和测试电路。
通过使用Multisim 10,用户可以创建电路图、进行电路仿真、分析电路性能,以及与真实世界电路进行交互。
二、实验目的
本次实验的主要目的是学习和掌握Multisim 10的基本操作和功能,包括电路图的创建、元件库的使用、电路仿真和分析等。
通过实验,希望学生能够理解电路的基本原理,掌握电子电路设计的基本流程和方法。
三、实验过程
1. 安装Multisim 10软件并熟悉界面。
2. 学习使用元件库,选择合适的元件搭建电路。
3. 创建电路图,并对其进行布局和布线。
4. 设置仿真参数,进行电路仿真。
5. 分析仿真结果,优化电路设计。
四、实验结果及分析
在本次实验中,我们成功地使用Multisim 10软件创建了一个简单的RC电路,并对其进行了仿真和分析。
通过调整RC电路的参数,我们观察到了不同频率下的电压响应。
实验结果表明,Multisim 10
能够准确地模拟电路的行为,为电路设计和优化提供了有力的支持。
五、实验总结
通过本次实验,我们深入了解了Multisim 10软件的使用方法和功能,掌握了电路设计和仿真的基本流程。
Multisim 10的强大功能和易用性使得电路设计和分析变得更加简单和高效。
在未来的学习和工作中,Multisim 10将成为我们设计和测试电子电路的重要工具。
《电工技术基础与仿真(Multisim 10)》项目4单相正弦交流电路分析
p
ui
Im
sin tU m
sin(t
2
)
U m I m cos t sin t
UI sin 2t
在电感元件的交流电路中,没有任何能量消耗,只 有电源与电感元件之间的能量交换,其能量交换的 规模用无功功率Q来衡量,它的大小等于瞬时功率 的幅值。
QL UI I 2 X L
4.2.3 纯电容电路
将开关K1闭合,K2和K3断开,分别按给定的频 率值调节信号源的频率,每次在信号发生器中设 置好频率后,打开仿真开关,双击万用表符号, 得到测量数据,
任务3 相量法分析正弦交流电路
4.3.1 RLC串联电路 1.RLC串联电路电压电流关系 (1)瞬时关系 由于电路是串联的,所以流过R、L、C三元
件的电流完全相同
1 Z1
1 Z2
(2)复阻抗并联的分流关系
I1
U Z1
I
Z Z1
I
Z2 Z1 Z2
U
I2
I Z1 Z1 Z2
I I1 I2 Z1 Z2
a)
I
U
Z
b)
4.3.3 功率因数的提高
1.提高功率因数的意义 功率因数愈大,所损耗的功率也就愈小,
输电效率也就愈高。 负载的功率因数 愈高,发电机可提供的有
1.电压与电流的关系 线性电容元件在图所示的关联方向的条件下
iC
C duc dt
i +
u
C
_
i C duc dt
C dUm sin t
dt
U mC cost
U
mC
s
in(t
2
)
据此,可得出电容元件电压与电流关系的结论:
Multisim电路仿真实验
仿真错误
遇到仿真错误时,首先 检查电路原理是否正确 ,然后检查元件库是否
完整。
界面显示问题
如果界面显示异常,可 以尝试调整软件设置或
重启软件。
导出问题
在导出电路图或仿真结 果时出现问题,检查文 件路径和格式是否正确
。
THANKS
分析实验结果,验证电路的功 能和性能是否符合预期。
如果实验结果不理想,需要对 电路进行调整和优化。
04
电路仿真实验分析
实验数据整理
1 2 3
实验数据整理
在Multisim中进行电路仿真实验后,需要将实验 数据导出并整理成表格或图表形式,以便后续分 析和处理。
数据格式
数据整理时需要确保数据的准确性和完整性,包 括电压、电流、电阻、电容、电感等参数,以及 仿真时间和波形图等。
数据存储
整理好的数据应妥善存储,以便后续查阅和引用。
数据分析与处理
数据分析
对整理好的实验数据进行深入分 析,包括参数变化趋势、波形图 特征等,以揭示电路的性能和特 性。
数据处理
根据分析结果,对数据进行必要 的处理,如计算平均值、求取标 准差等,以得出更准确的结论。
误差分析
分析实验数据中可能存在的误差 来源,如测量误差、电路元件误 差等,以提高实验的准确性和可 靠性。
Multisim软件
Multisim软件是进行电路仿真实验的核心工具,用户可以在软件中创建电路图、设置元件参数、 进行仿真实验等操作。
实验电路板
实验电路板是用来搭建实际电路的硬件设备,用户可以在上面放置电路元件、连接导线等,实现 电路的物理连接。
元件库
Multisim软件提供了丰富的元件库,用户可以从元件库中选择需要的元件,将其添加到电路图中 ,方便快捷地搭建电路。
Multisim 10仿真实验课件第四章
4.6 JK触发器功能测试
一、实验目的 (1)通过实验,熟悉JK触发器的功能。 (2)了解时钟脉冲的作用。 (3)了解抢答器电路的工作过程。
二、实验原理
(1)JK触发器简介
JK触发器能在触发脉冲边沿到来瞬间,将依据输入端 JK的信号,改变触发器的状态,由Q端输出。触发脉 冲消失,输出能保持不变。
逻辑门不论其输入变量A、B、C、…还是输出变量W、Y、 Z、…其取值只有1和0,而基本逻辑运算为与、或、非。
与逻辑为1×1=1、1×0=0、0×0=0 非逻辑为 =0、 =1 而与非是与和非的组合;
数字电路的功能可以用三种方法描述,逻辑表达式、电路 图、波形图。
图4-1所示为与门逻辑功能测试仿真电路图。
(1)实验电路
4532BP优先编码器为16脚集成芯片,图4-8为其逻辑 符号,实物器件的16号脚VDD为电源,8号脚接地。
(2)工作原理
三、 实验内容和步骤
搭建如图4-10 所示电路,编码器电路功能仿真电路 图并保存。注意将电源电压调至芯片的额定电压10V, 将指示灯的电压调节到5V。将排阻的阻值调节至10K。
5)双击逻辑转换仪打开逻辑转换仪面板,点击右侧上部的原理 图到真值表转换按钮 ,则可出现完整的真值表,图4-2右侧。
(2)逻辑电路测试与非门电路功能仿真分析。 将电路图4-1里的与门替换成与非门,重复上述1、2步。将相应
结果记录表4-2中。 (3)虚拟仪器测试与非门输入输出信号波形仿真分析。 1)搭建如图4-5所示电路并保存。 2)函数信号发生器设置为方波脉冲输出,频率1kHz,幅度5V。 3)字信号发生器设置为外部触发,加计数,范围0~4。 4)单击仿真开关,激活电路。双击逻辑分析仪图标,打开逻辑
Multisim10的基本使用-电路的仿真测量
2.测量白炽灯交流电路的电流、电压有效值
(1)搭建白炽灯交流测量电路,如图1-61所示。
图1-61白炽灯交流电路
① 保存新建电路,命名为“白炽灯交流电路”
② 调用各元器件、灯泡和测量仪表放置到电路工作区
在电源元件库(Sources)中调用交流电源、接地;在指示器库(Indicators)调用120V 100W灯泡(LAMP),如图1-62所示;也可在指示器库调用电压表和电流表,如图1-63所示。
Multisim10的基本使用
---------电路的仿真测量
学会在NI Multisim10虚拟电子实验平台调用测量元件和仪器仪表,并能设置和使用电流表、电压表、数字万用表、函数信号发生器、示波器和频率计。
知识准备
Multisim10提供了种类齐全的测量工具和虚拟仪器仪表,它们的操作、使用、设置、连接和观测方法与真实仪器几乎完全相同,就好像在真实的实验室环境中使用仪器。在仿真过程中,这些仪器能够非常方便地监测电路工作情况和对仿真结果进行显示及测量。
图1-69万用表XMM1的面板
按下万用表面板的设置按键“ ”,将弹出如图1-70所示的万用表设置对话框,对话框有电气设置和显示设置两栏内容。电气设置中可设置电流表内阻、电压表内阻、电阻表电流和相对分贝值,一般采用系统默认值:电流表内阻1nΩ,电压表内阻1GΩ;万用表显示设置中可设置电流表、电压表、电阻表的最大量程,系统默认显示最大电流1GA、显示最大电压1GV、显示最大电阻10GΩ,这里都采用系统默认参数,不作修改,故按下“取消”退出设置。
完成电路连接和仪表设置后,打开仿真电源开关“ ”,如图1-65所示,灯泡发光并闪烁,表示是交流电供电,电流表显示0.833mA(理论计算值:I=P/U=100/120=0.833mA),灯泡X1两端电压为120V。
Multisim10——电路仿真基本操作
用户仿真界面的设置2.1.1全局参数的设置选项(option)—》Global preferences弹出如下所示:路径(显示Multisim 10在电脑中所有的文件的路径,可按照习惯更改系统默认存储路径)保存:对文件的保存方式进行设置,用户可选择创建安全备份、设置自动保存时间间隔和仿真结果保存。
零件:●符号标准:ANSI美国标准DIN欧洲标准,我国的元器件符号与欧洲的相近。
●数字仿真设置:理想的可实现快速仿真,真实的更加贴近真实不过需要电源和接地端。
常规2.1.2图纸属性设置选项(option)—》sheet preferences 电路PCB(印刷电路板)可见2.2元器件基本操作2.2.1选取元器件(鼠标放在上面不动时有中文解释)2.2.2搜索元器件单击元器件》元器件选择对话框》搜索元器件》单击高级可提供更多的搜索条件2.2.3复制元器件选中要复制的元器件快捷键复制Ctrl+C 张贴Ctrl+V 或者2.2.4元器件的调整2.2.5元器件的删除delete2.3连接线的基本操作2.3.1线路的连接1)元器件与元器件的连接2)元器件与连接线的连接3)连接线交叉连接如下所示,如果没有节点说明两条线没有接到一起4)在已经连接好的连接线上添加元器件2.3.2连接线位置的调整单击导线,将鼠标放置在导线上,光标变成可调整的状态时即可拖动导线2.3.3连接线颜色的调整连接线的默认颜色可以在图纸设置进行修改或者只需改变某一段连接线的颜色,单击连接线在按鼠标右键即可2.3.4节点的操作放置》节点删除:选中节点,鼠标右键删除2.3.5删除导线选中,鼠标右键或者直接delete2.4文本和标题栏2.4.1修改元件标识1.元器件双击所要修改的某个元器件(如下所示),便可以对参数进行设置。
2.节点节点标号自动分配,要修改则双击要更改节点的导线2.4.2添加文本放置》文本2.4.3添加注释放置》注释双击注释图标2.4.4电路标题栏放置》标题栏title blockNI公司标志、标题、设计人、审核人、审批人、描述、文档编号、日期、图纸编号、版本、图纸尺寸2.5电路图打印2.6Multisim 10帮助。
Multisim10模拟电路仿真分析_Multisim实验三
I0(mA)
VR(V)
VL(V)
VC(V)
Q
15915.5
1.369
1.369mV
13.865mV
13.51V
10
159.15
1.409
1.409mV
1.409V
1.409V
1000
品质因数Q=10
品质因数Q=1000
2.占空比可调的矩形波发生电路仿真:
1)测量矩形波的频率、幅度及占空比。
3)瞬态分析:求出电压放大倍数。
实验现象:由瞬态分析图像可知,放大电压最大值为240uV左右,电压放大倍数约为3倍左右。
4)参数扫描分析:对电阻R2=35kΩ,R2=45kΩ,R2=55kΩ进行分析,画出幅频曲线。
5)温度扫描分析:对温度-250C,250C,500C进行分析,画出瞬态波形曲线
6)容差分析:分析三极管2N5224的模型参数Cje的容差,相对误差为80%,分析该容差对电路频率特性的影响,画出曲线。
一、实验目的:
熟悉使用Multisim10的模拟电路仿真功能、主要分析方法和后处理功能。
二、实验容:
1. Multisim10 RLC串联谐振电路仿真
2. Multisim10占空比可调的矩形波发生电路仿真
3. Multisim10电路分析方法应用
三、实验步骤:
1.RLC串联谐振电路仿真:
1)调节电源频率,使电路进入谐振状态(电抗等于0、电流与电源电压同相时),测量电路谐振时的电流I0、VR、VL、VC,计算电路Q值。填入表中。
由示波器显示的波形图像可知周期为65ms,由 得,矩形波的频率 96.66 ,幅度为5.2V,高电平占空比为50%左右。
2)如果要得到占空比为40%的矩形波,应如何实现?调试并得到占空比40%的矩形波,记录波形。
正弦交流电路仿真实验报告
正弦交流电路仿真实验
一、实验目的
1、帮助理解正弦交流电三要素;
2、帮助理解阻容感元件在正弦交流电路中的特性;
3、提高示波器的操作能力。
二、工作任务及要求
任务一:用示波器观察正弦交流电三要素
1、用Multisim搭建如图仿真电路,用示波器观察交流信号源参数。
2、按下表设置交流电源的参数,仿真,记录示波器参数及显示的波形。
Phase:0 Deg 波形:
Voltage :10V Frequency:1KHZ Phase:90 Deg 最大值:Um=垂直灵敏度 5V /Div ×格数 2.8 = 14 V
周期:T=水平灵敏度 500us /Div×格数 2 = 1 ms 波形:
Voltage :10V Frequency:10kHZ 最大值:Um=垂直灵敏度 5V /Div ×格数 2.8 = 14 V 周期:T=水平灵敏度 50us /Div×格数 2 = 0.1 ms
任务二:仿真验证阻容感元件在正弦交流电路中的特性
仿真电路仿真结果
波形:
根据波形:电压与电流相位关系是同相。
Multisim10电路仿真软件的使用精讲
? VHDL Simulation: VHDL语言程序仿真 。
? Global Component Tolerances… : 全局元件容差设置。
Transfer---文件输出
单击主菜单栏的Transfer按 钮,将弹出下拉菜单,如图所示, 菜单中常用命令及功能如下:
? 可以对被仿真的电路中的元器件设置各种故障、如开路、
短路和不同程度的漏电等,从而观察不同故障情况下的 电路工作状况;
? 在进行仿真的同时,软件还可以存储测试点的所有数据,
列出被仿真电路的所有元器件清单,以及存储测试仪器 的工作状态、显示波形和具体数据等。
利用MULTISIM 可以实现计算机仿真设计与虚拟实验, 与传统的电子电路设计与实验方法相比,具有如下特点:
? Transfer to Ultiboard:传送给 Ultiboard(PCB板设计软件)。
? Transfer to other PCB Layout:传 送给其他PCB板设计软件。
? Backannotate from :从Ultiboard 返回主要信息。
? Export Netlist:输出网络表文件。
窗口。 ? Toolbars :设置工具栏是否显示。 ? Grapher :打开图形窗口。
Place---放置
单击主菜单栏的Place按钮, 将弹出下拉菜单,如图所示,菜 单中常用命令及功能如下: ? Component…:放置元件。
? Junction:放置节点。 ? Wrie:放置连接线。 ? Bus:放置总线。 ? Connectors:放置连接端子。
电子设计基础
Multisim 10电路仿真软件的使用
Multisim 10仿真实验课件第五章
(4)提高输入正弦电压的幅值,使输出达最大值, 但失真尽可能小,测量并读出此时输入及输出电压 的效值。用示波器实测,并记录相关各点波形。
一、实验目的 (1)深刻理解RC桥式振荡电路的组成及特点。 (2)了解振荡产生的幅度与相位条件。 (2)掌握RC桥式振荡电路振荡频率的计算。
二、实验原理 实验电路如图5-12所示。
三、实验内容与步骤
(1)按图5-12,在Multisim 10中绘制实验原理图。 (2)将电源调制直流15V,将三极管的放大倍数调到200。 (3)测量三极管静态Q1、Q2工作点,并记录。 (4)用示波器实测,并画出相关各点波形。
形。。
5.19 OTL功率放大电路
一、实验目的 (1)了解功率放大电路的性能指标与电路特点。 (2)熟悉推挽电路、自举电路构成与功能。 (3)掌握克服交越失真方法。
二、实验原理
三、实验内容与步骤
(1)按图5-19,在Multisim 10中绘制实验原理图。
(2)将电源调至直流6V,将三极管的放大倍数调到 200。
(3)通过测量结果简述电路的工作原理,说明三极 管是否有电流放大作用,静态工作点是否合适。
5.2 单相半波、电容滤波、稳压管ห้องสมุดไป่ตู้压电路
一、实验目的 (1)熟悉半波整流、滤波、稳压电路特点及功能。 (2)掌握电路输出电压Uo与电路元件、参数之间的
关系。
二、实验原理
实验电路如图5-2所示。
二、实验原理 实验电路如图5-11所示。
三、实验内容与步骤
(1)按图5-11,在Multisim 10中绘制实验原理图。 (2)将电源调制直流12V,将三极管的放大倍数调 到200。
Multisim10中的三相交流电路仿真实验
Multisim仿真实验:三相交流电路姓名:马骁班级:电气1341 学号:17一、实验目的1. 学习用电设备三相供电线路的正确联接方法。
了解不正确连接对负载工作的影响,了解三相四线制供电线路中中线的作用。
2.验证三相对称负Y接和△接时,线电压与相电压、线电流和相电流之间的关系。
3.掌握三相不对称负载Y接和△接时,各线电压、相电压、线电流、相电流的变化情况。
二、实验原理1.三相交流电路主要是由三相电源、三相负载与三线输电线路三部分组成。
对称三相电源是由3个同频率、等幅值、初相依次滞后120度的正弦电压源链接成星(Y)形或三角(△)形组成的电源。
3个阻抗连接成Y形(或△形)就构成星形(或三角形)负载,只有当3个阻抗相等时,才构成对称三相负载。
将三相电源与三相负载连接可形成三相四线制或三相三线制的三线电路。
2. 负载应作星形联接时,三相负载的额定电压等于电源的相电压。
这种联接方式的特点是三相负载的末端连在一起,而始端分别接到电源的三根相线上。
负载应作三角形联接时,三相负载的额定电压等于电源的线电压。
这种联接方式的特点是三相负载的始端和末端依次联接,然后将三个联接点分别接至电源的三根相线上。
3.电流、电压的“线量”与“相量”关系:负载对称星形联接时,线量与相量的关系为:(1)UL=Up (2)IL=Ip负载对称三角形联接时,线量与相量的关系为:(1)UL=Up (2)IL=Ip4、星形联接时中性线的作用三相四线制负载对称时中性线上无电流,不对称时中性线上有电流。
中性线的作用是能将三相电源及负载变成三个独立回路,保证在负载不对称时仍能获得对称的相电压。
如果中性线断开,这时线电压仍然对称,但每相负载原先所承受的对称相电压被破坏,各相负载承受的相电压高低不一,有的可能会造成欠压,有的可能会过载。
四、实验内容与结果分析1.制作星形三相四线制电路2.三相四线制星形(Y)负载的三相电路仿真实验搭建如图(1)所示的三相四线制星形(Y)对称负载的三相仿真电路图。
详解Multisim10仿真实验步骤
详解Multisim10仿真实验步骤详解Multisim 10仿真实验步骤一、实验目的熟悉并掌握Multisim10对单片机的仿真过程。
加深对单片机硬件以及软件理论知识的理解。
二、实验原理1、Multisim10美国国家仪器公司下属的ElectroNIcs Workbench Group在今年年初发布了Multisim 10。
新版的Multisim10,加入了MCU模块功能,可以和8051等单片机进行编程联调,该软件元件丰富,界面直观,虚拟仪器的逼真度达到了让人相当高的程度,是电子设计、电路调试、虚拟实验必备良件。
工程师们可以使用Multisim 10交互式地搭建电路原理图,并对电路行为进行仿真。
Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。
通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。
下面将简单介绍一下Multisim10刚加进来的MCU模块的使用方法。
双击桌面上的multisim10图标,由于软件比较大,需要等待一定的时间才能进入以下界面(图一):图一Multisim10界面和Office工具界面相似,包括标题栏、下拉菜单、快捷工具、项目窗口、状态栏等组成。
标题栏用于显示应用程序名和当前的文件名。
下拉菜单提供各种选项。
快捷工具分为:文件工具按钮,器件工具按钮,调试工具按钮,这些按钮在下拉菜单中都有,并经常用到,现在放在工具栏里是为了方便使用。
项目窗口中的电路窗口是用来搭建电路的,Design Toolbox工具栏是用来显示全部工程文件和当前打开的文件。
状态栏用于显示程序的错误和警告,如果有错误和警告那还还需要重新修改程序。
直到没有错误为止才能正常加载程序。
在电路窗口的空白处点击鼠标右键,将出现如下菜单(图二):图二菜单包括:放置元件(place component)、连接原理图(place schematic)、放置图形(place graphic)、标注(place comment)等,这里我们最常用到的只有第一个放置元件:点击菜单中第一个选项或者按“CTRL+W”会出现以下元器件选择对话框(图三):图三在Group中选择我们需要的器件的类别,在Family中选择我们需要的器件,点击“OK”即可。
基于Multisim 10的正弦波振荡电路仿真
基于Multisim 10的正弦波振荡电路仿真
吴凌燕
【期刊名称】《国外电子测量技术》
【年(卷),期】2011(30)7
【摘要】以文氏电桥正弦波振荡电路仿真为例,分析了基本及稳幅文氏电桥正弦波发生器的特点,并采用Multisim 10软件对文氏电桥正弦波发生器进行了仿真,仿真结果与理论分析结果一致。
软件仿真在课堂教学、电路设计、及实验教学中的应用,使得课堂教学信息量饱满,设计、实验变得轻松,使教学的效果得到提升,在教学领域具有重要的推广、应用价值。
【总页数】3页(P75-76)
【关键词】电路仿真软件;文氏电;正弦波振荡电路
【作者】吴凌燕
【作者单位】海军航空工程学院青岛分院
【正文语种】中文
【中图分类】TP399
【相关文献】
1.基于Multisim的正弦波振荡电路仿真 [J], 刘旭
2.基于Multisim的正弦波振荡电路仿真 [J], 刘旭
3.基于Multisim的RC正弦波振荡电路仿真分析 [J], 李咏红;
4.基于Multisim10的RC正弦波振荡电路仿真设计 [J], 赵国树;周黎英;翟力欣
5.基于Multisim 10的RC桥式正弦波振荡电路仿真分析 [J], 马敬敏
因版权原因,仅展示原文概要,查看原文内容请购买。