高中数学椭圆练习题(文科)

合集下载

高二文科数学椭圆练习题

高二文科数学椭圆练习题

高二文科数学椭圆练习题一、选择题1. 设椭圆E的中心为O,焦点为F1,F2,焦距为2c,离心率为e。

已知2a = 6,e = 1/3,则椭圆的焦距c等于:A. 1/3B. 2/3C. 1D. 4/32. 椭圆E的长轴的长度为2a,短轴的长度为2b,离心率为e,则焦距c满足下列哪个条件?A. c = a + bB. c = a - bC. c^2 = a^2 - b^2D. c^2 = b^2 - a^23. 椭圆E的中心为O,焦点为F1,F2,离心率为e。

已知OF1 = a,OF2 = b,则a和b的关系是:A. a = bB. a > bC. a < bD. 无法确定二、填空题4. 已知椭圆E的长轴的长度为10,短轴的长度为6,则离心率e的值为________。

5. 椭圆E的中心为O,长轴的长度为2a,短轴的长度为2b,则焦距c的值为________。

6. 椭圆E的离心率为1/4,长轴的长度为12,则短轴的长度b为________。

三、解答题7. 已知点P(a, b)在椭圆E上,且OP过椭圆的焦点F,若椭圆E的长轴的长度为20,焦距为8,求椭圆E的方程。

解答:设椭圆E的中心为O(0, 0)。

由于点P(a, b)在椭圆E上,根据椭圆的定义可得:OP + PF1 = PF2(F1和F2为焦点)根据题目给出的信息,可以得到以下两个方程:√(a^2 + b^2) + √((a - 8)^2 + b^2) = √((a + 8)^2 + b^2)将上述方程两边平方,整理后可得:(a^2 + b^2) + ((a - 8)^2 + b^2) + 2√(a^2 + b^2)√((a - 8)^2 + b^2) = (a + 8)^2 + b^2化简上述方程,得:a^2 + b^2 + a^2 - 16a + 64 + 2√(a^2 + b^2)√((a - 8)^2 + b^2) = a^2 + 16a + 64将方程两边整理,得:2√(a^2 + b^2)√((a - 8)^2 + b^2) = 32a将上述方程两边平方,得:4(a^2 + b^2)((a - 8)^2 + b^2) = 1024a^2继续化简,得:4(a^2 + b^2)(a^2 - 16a + 64 + b^2) = 1024a^2将方程展开,整理,最终得到:5a^4 - 80a^3 + 64a^2 + 320a^2 - 4096a + 2560 = 0以上即为椭圆E的方程。

文科数学总复习练习:椭圆

文科数学总复习练习:椭圆

第5讲椭圆基础巩固题组(建议用时:40分钟)一、选择题1.椭圆x2m+错误!=1的焦距为2,则m的值等于( )A.5 B.3 C.5或3 D.8解析当m>4时,m-4=1,∴m=5;当0〈m〈4时,4-m=1,∴m=3.答案C2.“2<m〈6”是“方程x2m-2+错误!=1表示椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若错误!+错误!=1表示椭圆.则有错误!∴2〈m<6且m≠4。

故“2〈m<6”是“错误!+错误!=1表示椭圆”的必要不充分条件.答案B3.设椭圆C:错误!+错误!=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为() A。

错误! B.错误!C。

12D.错误!解析在Rt△PF2F1中,令|PF2|=1,因为∠PF1F2=30°,所以|PF1|=2,|F1F2|= 3.故e=错误!=错误!=错误!.故选D。

答案D4.(2015·全国Ⅰ卷)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E 的两个交点,则|AB|=() A.3 B.6C.9 D.12解析抛物线C:y2=8x的焦点坐标为(2,0),准线方程为x=-2。

从而椭圆E的半焦距c=2。

可设椭圆E的方程为错误!+错误!=1(a>b>0),因为离心率e=错误!=错误!,所以a=4,所以b2=a2-c2=12。

由题意知|AB|=错误!=2×错误!=6.故选B。

答案B5.(2016·江西师大附中模拟)椭圆ax2+by2=1(a>0,b>0)与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为错误!,则错误!的值为( ) A。

错误!B。

错误!C.错误!D。

错误!解析设A(x1,y1),B(x2,y2),则ax2,1+by错误!=1,ax错误!+by错误!=1,即ax错误!-ax错误!=-(by错误!-by错误!),错误!=-1,错误!=-1,∴错误!×(-1)×错误!=-1,∴ba=错误!,故选B。

数学(文科,人教版)二轮专题复习提分训练:椭圆

数学(文科,人教版)二轮专题复习提分训练:椭圆

椭 圆高考试题考点一 椭圆的定义及应用 1。

(2009年北京卷,文13)椭圆29x +22y =1的焦点为F 1、F 2,点P在椭圆上.若|PF 1|=4,则|PF 2|= ,∠F 1PF 2的大小为 .解析:由椭圆方程29x +22y =1可知a 2=9,b 2=2,∴c 2=7,7,a=3.由椭圆定义知|PF 1|+|PF 2|=6, 由|PF 1|=4,得|PF 2|=2。

在△PF 1F 2中,由余弦定理的推论有 cos ∠F 1PF 2=2221212122PF PF F F PE PE +-=224228242+-⨯⨯=—12.∴∠F 1PF 2=120°. 答案:2 120°2。

(2009年上海卷,文12)已知F 1、F 2是椭圆C:22x a +22y b=1(a>b 〉0)的两个焦点,P 为椭圆C 上一点,且1PF ⊥2PF ,若△PF 1F 2的面积为9,则b= 。

解析:由题意可知,121PF |2PF |=9, ①|1PF |2+|2PF |2=|12F F |2=(2c )2, ② 由椭圆定义可知,|PF 1|+|PF 2|=2a , ③联立①②③解得a 2-c 2=9, 即b 2=9,∴b=3。

答案:3考点二 椭圆的方程及其简单性质应用1.(2013年广东卷,文9)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )(A)23x +24y =1 (B)24x 2(C ) 24x +22y =1 (D ) 24x +23y =1解析:因椭圆中心在原点,右焦点为(1,0),所以其方程应为22x a+22y b=1,且a 2-b 2=c 2=1.又离心率c a=12,∴a=2,b 2=a 2—c 2=3。

故选D.答案:D2.(2013年大纲全国卷,文8)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A 、B 两点,且AB =3,则C 的方程为( )(A )22x +y 2=1 (B )23x +22y =1(C )24x +23y =1 (D )25x +24y =1解析:依题意设椭圆C的方程为22x a +22y b=1(a>b 〉0),由条件可得A (1,2b a),B(1,—2b a),因|AB |=2b a —(-2b a )=22b a=3,即2b2=3a,所以222223,1,b a a bc ⎧=⎪⎨-==⎪⎩解得2,a b =⎧⎪⎨=⎪⎩所以椭圆C的方程为24x +23y =1。

椭圆经典练习题44道

椭圆经典练习题44道
A、 B、 C、 D、
24.已知焦点在 轴的椭圆 的左、右焦点分别为 ,直线 过右焦点 ,和椭圆交于 两点,且满足 , ,则椭圆 的标准方程为( )
A. B. C. D.
25.椭圆 的一个焦点为 ,若椭圆上存在一个点 ,满足以椭圆短轴为直径的圆与线段 相切于该线段的中点,则椭圆的离心率为( )
A. B. C. D.
28.过椭圆 (a>b>0)左焦点F斜率为1的直线交椭圆于A,B两点,向量 与向量a=(3,-l)共线,则该椭圆的离心率为
A. B. C. D.
29.已知直线 与椭圆 相交于 、 两点,若椭圆的离心率为 ,焦距为2,则线段 的长是( )
A. B. C. D.
30.直线y=kx+1,当k变化时,此直线被椭圆 截得的最大弦长等于( )
5.B
【解析】
试题分析:设椭圆的标准方程为 =1,
在第一象限内取点(x,y),设x=acosθ,y=bsinθ,(0<θ< ),
则椭圆的内接矩形长为2acosθ,宽为2bsinθ,内接矩形面积为2acosθ•2bsinθ=2absin2θ≤2ab,
由已知得:3b2≤2ab≤4b2,3b≤2a≤4b,平方得:9b2≤4a2≤16b2,
代入椭圆得 ,
两式相减得 ,整理得
∴弦所在的直线的斜率为 ,其方程为y-2= (x+1),整理得 .故选A.
考点:椭圆中点弦问题;直线方程的求法.
16.C
【解析】设P1(x1,y1),P2(x2,y2),P(x0,y0),则x12+2y12=2,x22+2y22=2,两式作差得x12-x22+2(y12-y22)=0,故k1= =- =- ,又k2= ,∴k1k2=- .
椭圆训练题一

高二椭圆题型12题

高二椭圆题型12题

高二椭圆题型12题椭圆是经典的二次曲线,在高二数学课程中,我们会遇到一些关于椭圆的题型。

在本文中,我将为您解答高二椭圆题型的12道题目。

1. 给定椭圆的长轴为10,短轴为8,求其离心率。

答案:离心率e = √(1 - (短轴长度/长轴长度)²) = √(1 - (8/10)²) = 0.62. 已知椭圆的焦点为F1和F2,F1F2的距离为10,椭圆的长轴长度为16,求其离心率。

答案:离心率e = F1F2/长轴长度 = 10/16 = 0.6253. 求椭圆 x²/25 + y²/16 = 1 的焦点坐标。

答案:由于该椭圆的长轴在x轴上,短轴在y轴上,所以焦点坐标为(±√(25-16), 0),即 (±3, 0)。

4. 求椭圆 (x-2)²/16 + (y+3)²/9 = 1 的长、短轴长度。

答案:由标准方程得,长轴长度为 2a = 2*4 = 8,短轴长度为2b = 2*3 = 6。

5. 已知椭圆的焦点F1(2,0)和F2(4,0),点P到焦点F1的距离为3,求点P到椭圆的最短距离。

答案:由椭圆性质可知,点P到椭圆的最短距离为焦点线段PF1的垂直平分线与椭圆的交点到焦点F1的距离。

即最短距离为3/2 = 1.5。

6. 已知椭圆的焦点F1(0,3)和F2(0,-3),椭圆经过点P(4,2),求椭圆的方程。

答案:根据椭圆的定义,椭圆上任意一点到两个焦点的距离之和等于常数。

带入点P的坐标得到方程 (4-0)² + (2+3)² + (4-0)² + (2-(-3))² = c,化简得 17c = 65。

因此,椭圆方程为 9x² + 4y² = 585。

7. 已知椭圆的方程为x²/36 + y²/25 = 1,求其上离点A(9, 0)最近的点B的坐标。

高考数学试卷椭圆真题

高考数学试卷椭圆真题

一、选择题(每题5分,共50分)1. 设椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$($a>b>0$),若点$P(m,n)$在椭圆上,则下列说法正确的是()A. $m^2+n^2=a^2-b^2$B. $m^2+n^2=a^2+b^2$C. $m^2+n^2=a^2$D. $m^2+n^2=b^2$2. 已知椭圆的离心率为$\frac{1}{2}$,且经过点$(2,3)$,则椭圆的方程为()A. $\frac{x^2}{16}+\frac{y^2}{12}=1$B. $\frac{x^2}{9}+\frac{y^2}{4}=1$C. $\frac{x^2}{4}+\frac{y^2}{9}=1$D. $\frac{x^2}{12}+\frac{y^2}{16}=1$3. 已知椭圆的方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$,则椭圆的焦距为()A. 2B. 2$\sqrt{2}$C. 2$\sqrt{3}$D. 44. 椭圆$\frac{x^2}{4}+\frac{y^2}{9}=1$的左、右焦点分别为$F_1$、$F_2$,点$P$在椭圆上,且$\angle F_1PF_2=60^\circ$,则$|PF_1|$的取值范围是()A. $[1,2]$B. $[2,3]$C. $[3,4]$D. $[4,5]$5. 椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$的右顶点为$A$,左焦点为$F$,则直线$AF$的斜率为()A. $\frac{3}{2}$B. $\frac{2}{3}$C. $\frac{1}{2}$D. $\frac{1}{3}$二、填空题(每题5分,共50分)1. 已知椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$($a>b>0$),若椭圆的离心率为$\frac{1}{2}$,则$\frac{b^2}{a^2}$的值为______。

【高考复习】2020年高考数学(文数) 椭圆 小题练(含答案解析)

【高考复习】2020年高考数学(文数) 椭圆 小题练(含答案解析)

【高考复习】2020年高考数学(文数)椭圆 小题练一、选择题1.已知椭圆C :x 2a 2+y24=1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22D .2232.已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于12,则C 的方程是( )A .x 23+y 24=1B .x 24+y 23=1 C .x 24+y 23=1 D .x 24+y 2=13.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程为( ) A.x 22+y 24=1 B .x 2+y 26=1 C.x 26+y 2=1 D.x 28+y 25=14.已知椭圆的中心在坐标原点,长轴长是8,离心率是34,则此椭圆的标准方程是( )A.x 216+y 27=1 B .x 216+y 27=1或x 27+y 216=1 C.x 216+y 225=1 D .x 216+y 225=1或x 225+y 216=15.已知动点M(x ,y)满足(x +2)2+y 2+(x -2)2+y 2=4,则动点M 的轨迹是( )A .椭圆B .直线C .圆D .线段6.已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,且点N(2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线7.已知点A(-1,0)和B(1,0),动点P(x ,y)在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( )A .55B .105C .255D .21058.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 等于( )A .12B .2C .4D .149.已知椭圆x 2a 2+y2b2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y轴于点P.若AP ―→=2PB ―→,则椭圆的离心率是( )A.32B.22C.13D.1210.以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则该椭圆的离心率是( )A.13 B .33 C.34 D .22311.设F 1,F 2分别为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( ) A.514 B .513 C.49 D .5912.已知椭圆x 2a 2+y2b2=1(a >b >0)的右顶点和上顶点分别为A 、B ,左焦点为F.以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M 、N 两点.若四边形FAMN 是平行四边形,则该椭圆的离心率为( ) A.35 B .12 C.23 D .34二、填空题13.已知椭圆x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,且满足c 2-b 2+ac <0,则该椭圆的离心率e 的取值范围是________.14.设e 是椭圆x 24+y 2k =1的离心率,且e=23,则实数k 的值是________.15.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为4,则椭圆的标准方程为________.16.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a>b>0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.17.设F1,F2是椭圆x249+y224=1的两个焦点,P是椭圆上的点,且|PF1|∶|PF2|=4∶3,则△PF1F2的面积为________.18.设椭圆C:(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为 .答案解析1.答案为:C ;解析:根据题意,可知c =2,因为b 2=4,所以a 2=b 2+c 2=8,即a =22,所以椭圆C 的离心率为e =222=22.故选C .2.答案为:C ;解析:依题意,所求椭圆的焦点位于x 轴上,且c =1,e =c a⇒a =2,b 2=a 2-c 2=3,因此其方程是x 24+y23=1,故选C .3.答案为:B ;4.答案为:B.解析:因为a=4,e=34,所以c=3,所以b 2=a 2-c 2=16-9=7.因为焦点的位置不确定,所以椭圆的标准方程是x 216+y 27=1或x 27+y216=1.5.答案为:D ;解析:设点F 1(-2,0),F 2(2,0),由题意知动点M 满足|MF 1|+|MF 2|=4=|F 1F 2|, 故动点M 的轨迹是线段F 1F 2.故选D .6.答案为:B ;解析:点P 在线段AN 的垂直平分线上,故|PA|=|PN|,又AM 是圆的半径,所以|PM|+|PN|=|PM|+|PA|=|AM|=6>|MN|,由椭圆定义知,动点P 的轨迹是椭圆.故选B .7.答案为:A ;解析:A(-1,0)关于直线l :y =x +3的对称点为A′(-3,2),连接A′B 交直线l 于点P ,则此时椭圆C 的长轴长最短,为|A′B|=25,所以椭圆C 的离心率的最大值为15=55.故选A .8.答案为:D ;解析:由x 2+y21m=1及题意知,21m =2×2×1,m =14,故选D .9.答案为:D ;∵AP ―→=2PB ―→,∴|AP ―→|=2|PB ―→|.又∵PO ∥BF ,∴|PA||AB|=|AO||AF|=23,即a a +c =23,∴e=c a =12.10.答案为:D.解析:不妨令椭圆方程为x 2a 2+y2b2=1(a >b >0).因为以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,所以2b=2a 3,即a=3b ,则c=a 2-b 2=22b ,则该椭圆的离心率e=c a =223.故选D.11.答案为:B.解析:由题意知a=3,b=5,c=2.设线段PF 1的中点为M ,则有OM∥PF 2,因为OM⊥F 1F 2,所以PF 2⊥F 1F 2,所以|PF 2|=b 2a =53.又因为|PF 1|+|PF 2|=2a=6,所以|PF 1|=2a -|PF 2|=133,所以|PF 2||PF 1|=53×313=513,故选B.12.答案为:A.解析:因为圆O 与直线BF 相切,所以圆O 的半径为bc a ,即OC=bc a , 因为四边形FAMN 是平行四边形,所以点M 的坐标为⎝⎛⎭⎫a +c 2,bc a , 代入椭圆方程得(a +c )24a 2+c 2b 2a 2b 2=1,所以5e 2+2e -3=0, 又0<e <1,所以e=35.故选A.13.答案为:⎝⎛⎭⎫0,12;解析:∵c 2-b 2+ac <0,∴c 2-(a 2-c 2)+ac <0,即2c 2-a 2+ac <0,∴2c 2a 2-1+ca<0,即2e 2+e -1<0,解得-1<e <12.又∵0<e <1,∴0<e <12.∴椭圆的离心率e 的取值范围是⎝⎛⎭⎫0,12.14.答案为:209或365; 解析:当k >4 时,有e=1-4k =23,解得k=365;当0<k <4时,有e=1-k 4=23,解得k=209.故实数k 的值为209或365.15.答案为:x 216+y24=1;解析:由题意可知e=c a =32,2b=4,得b=2,所以⎩⎪⎨⎪⎧c a =32,a 2=b 2+c 2=4+c 2,解得⎩⎪⎨⎪⎧a =4,c =23,所以椭圆的标准方程为x 216+y 24=1.16.答案为:63; 解析:由已知条件易得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F(c ,0), ∴BF →=c +32a ,-b 2,CF →=c -32a ,-b 2,由∠BFC =90°,可得BF →·CF →=0,所以⎝ ⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0,c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2,所以c 2a 2=23,则e =c a =63.17.答案为:24;解析:因为|PF 1|+|PF 2|=14,又|PF 1|∶|PF 2|=4∶3,所以|PF 1|=8,|PF 2|=6.因为|F 1F 2|=10,所以PF 1⊥PF 2.所以S △PF 1F 2=12|PF 1|·|PF 2|=12×8×6=24.18.答案为:.。

高三文科椭圆题型全解

高三文科椭圆题型全解

高三文科数学椭圆练习..........2021.....1.24..... 1..“..m>n>0.....〞是“方程.....mx ..2.+.ny ..2.=.1.表示焦点在.....y .轴上的椭圆〞的.......____________............条件....2..椭圆...x .2.10..-.m .+.y .2.m .-.2.=.1.,长轴在....y .轴上.假设焦距为........4.,那么...m .等于..___________.............3..假设椭圆.....x .2.m .+.y .2.n .=.1.〔.m .>.n .>.0.〕上的点到右准线的距离是到右焦点距离的...................3.倍,那么....m .n .=.________..........4..过椭圆....x .2.a .2.+.y .2.b .2.=.1.〔.a .>.b .>.0.〕的左焦点.....F .1.作.x .轴的垂线交椭圆.......于点..P .,.F .2.为右焦点,假设∠........PF ..2.F .1.=.30..°,那么椭圆的离心率为..........________________..................5..从一块短轴长为........2b ..的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是.............................[3b ...2,..4b ..2.].,那么这一椭圆离心率..........e .的取值范围是......________________..................6..椭圆...C .:.x .2.2.+.y .2.=.1.的右焦点为.....F .,右准线为.....l .,点..A .∈.l .,线段...AF ..交.C .于点..B...假设..FA ..→.=.3.FB ..→.,那么...|.AF ..→.|.=._____________. ..............7..过椭圆....x .2.6.+.y .2.5.=.1.内的一点....P .〔.2.,-..1.〕的弦,恰好被.......P .点平分,那么这条弦所在的直线..............方程..___________.............8..椭圆...x .2.9.+.y .2.2.=.1.的焦点为....F .1.、.F .2.,点..P .在椭圆上.假设.......|PF ...1.|.=.4.,那么...|PF ...2.|.=.__________..........;. ∠.F .1.PF ..2.的大小为...._._________...........9..椭圆...G .的中心在坐标原点,长轴在............x .轴上,离心率为.......3.2.,且..G .上一点到....G .的两个焦点的......距离之和为.....12..,那么椭圆.....G .的方程为....____________..............10....A .、.B .为椭圆...C .:.x .2.m .+.1.+.y .2.m .=.1.的长轴的两个端点,.........P .是椭圆...C .上的动点,且∠.......APB ...的最大...值是..2.π.3.,那么实数.....m .的值是...__________............11....A .、.B .两点分别是椭圆.......C .:.x .2.a .2.+.y .2.b .2.=.1.〔.a .>.b .>.0.〕的左顶点和上顶点,而...........F .是椭圆...C .的右焦点,假设.......AB ..→.·BF ..→.=.0.,那么椭圆.....C .的离心率....e .=.________..........12...直线...l .:.x .-.2y ..+.2.=.0.过椭圆左焦点......F .1.和一个顶点.....B .,那么该椭圆......的离心率为.....___________.............13...椭圆...x .2.16..+.y .2.12..=.1.的左、右焦点分别为.........F .1.、.F .2.,.M .是椭圆上一点,.......N .是.MF ..1.的中点,假设......|ON|....=.1.,那么...MF ..1.的长等于....______......________..........14...过椭圆....x .2.a .2.+.y .2.b .2.=.1.〔.a .>.b .>.0.〕的左焦点.....F .1.作.x .轴的垂线交椭圆于点.........P .,.F .2.为右焦点,假......设∠..F .1.PF ..2.=.60..°,那么椭圆的离心率.........__________............15...知椭圆....x .2.a .2.+.y .2.b .2.=.1.〔.a .>.b .>.0.〕的左焦点为......F .,右顶点为.....A .,点..B .在椭..圆上,且....BF ..⊥.x .轴,直线....AB ..交.y .轴于点...P...假设..AP ..→.=.2.PB ..→.,那么椭....圆的..离心率是...._________...........16...椭圆...5x ..2.-.ky ..2.=.5.的一个焦点是〔.......0.,.2.〕,那么....k .=.________..........17....F .1.、.F .2.是椭圆...x .2.a .2.+.y .2.9.=.1.的左、右两焦点,........P .为椭圆的一个顶点,假设△............PF ..1.F .2.是等边三角.....形,那么....a .2.=.________..........18....F .1.、.F .2.为椭圆...x .2.25..+.y .2.9.=.1.的两个焦点,过.......F .1.的直线交椭圆于.......A .、.B .两点.假设.....|F ..2.A|..+.|F ..2.B|..=.12..,那么...|AB|....=.________..........19....〔-..2.,.0.〕,..B .〔.2.,.0.〕,过点....A .作直线...l .交以..A .、.B .为焦点的椭圆于.......M .、.N .两点,线段.....MN ..的中点到....y .轴的距离为.....4.5.,且直线....l .与圆..x .2.+.y .2.=.1.相切,求该椭圆的方程............20....设.A .〔.x .1.,.y .1.〕,..B .〔.x .2.,.y .2.〕是椭圆....y .2.a .2.+.x .2.b .2.=.1.〔.a .>.b .>.0.〕上的两点,......m .=〔..x .1.b .,.y .1.a .〕,..n .=.〔.x .2.b .,.y .2.a .〕,且满足.....m .·n .=.0.,椭圆的离心率.......e .=.3.2.,短轴长为.....2.,.O .为坐标原点.......〔Ⅰ〕求椭圆的方程;..........〔Ⅱ〕假设存在斜率为..........k .的直线...AB ..过椭圆的焦点......F .〔.0.,.c .〕〔..c .为半焦距〕,求直线.........AB ..的斜..率.k .的值....21....在平面直角坐标系........xoy 中,圆心在第二象限、半径为.............的圆..C 与直线...y x =相切于...坐标原点....O .椭圆...22219x y a +=与圆..C 的一个交点到椭圆两焦点的距离之和为.................10..〔Ⅰ〕求圆.....C 的方程;....〔Ⅱ〕试探究圆.......C 上是否存在异于原点的点...........Q ,使..Q 到椭圆右焦点......F 的距离等于线段.......OF 的长.假设存在,请求出点............Q 的坐标;假设不存在,请说明.............理由....高三文科数学椭圆练习答案与解析...............2021.11.27.......... 1...解析:把椭圆方程化为..........x .2.1.m .+.y .2.1.n .=.1...假设..m>n>0.....,那么...1.n .>.1.m .>0....所以椭圆的焦点在........y .轴上.反....之,假设椭圆的焦点在..........y .轴上,那么.....1.n .>.1.m .>0..即有..m>n>0.......故为..充要条件....。

高二文科椭圆练习题

高二文科椭圆练习题

高二文科椭圆练习题椭圆是数学中的一个重要概念,广泛应用于几何学和物理学等领域。

对于高二文科学生来说,掌握椭圆的基本知识和解题方法是必不可少的。

本文将通过一系列练习题的形式,帮助同学们巩固和提高对椭圆的理解与应用。

题目一:给定椭圆的焦距为2,离心率为5/4,求椭圆的长轴长和短轴长。

解析:我们知道椭圆的焦距是指椭圆上任意一点到两个焦点的距离之和。

离心率是焦距与长轴的比值。

根据这些已知条件,我们可以列方程求解。

设椭圆的长轴长为2a,短轴长为2b。

根据焦距定义,有2ae=2。

根据离心率定义,有e=a/b=5/4。

联立以上两个方程,得到a=5,b=8/5。

因此,椭圆的长轴长为10,短轴长为16/5。

题目二:已知椭圆的长轴长为8,短轴长为6,求椭圆的焦点坐标和离心率。

解析:椭圆的焦点坐标可以通过长轴和短轴的长度求得。

设焦点坐标为(c,0)。

根据椭圆的定义,我们可以列方程求解。

由于椭圆的长轴长为8,短轴长为6,可以推导出c^2=a^2-b^2=4。

解方程得到c=2。

因此,椭圆的焦点坐标为(2,0)和(-2,0)。

离心率的计算可以通过焦距和长轴的比值得到。

根据焦距定义,有2ae=8。

联立已知条件,得到e=1/2。

题目三:已知椭圆的焦点坐标为(2,0)和(-2,0),离心率为2/3,求椭圆的长轴长和短轴长。

解析:根据焦点坐标和离心率,我们可以求解长轴长和短轴长。

假设长轴长为2a,短轴长为2b。

由于焦点在椭圆的x轴上,说明椭圆的方程为x^2/a^2+y^2/b^2=1。

根据离心率定义,有e=a/b=2/3。

由焦距定义,得到2ae=4。

联立以上两个方程,可以解得a=6,b=9。

因此,椭圆的长轴长为12,短轴长为18。

通过以上三道椭圆练习题,我们可以巩固和提高对椭圆的理解与应用。

同学们在解题过程中要注意仔细分析已知条件,正确建立方程并解方程,最后将结果代回原方程进行验证。

希望同学们通过这些练习题,能够对椭圆有更深刻的理解,提高数学解题能力。

最新历年文科高考椭圆题 带解析资料

最新历年文科高考椭圆题 带解析资料

精品文档第六节 椭圆 强化训练当堂巩固1.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A.45 B.35 C.25 D.15答案:B解析:由2a,2b,2c 成等差数列,所以2b=a+c. 又222b a c =-,所以222()4()a c a c +=-. 所以53a c =.所以35c e a ==.2.已知椭圆22221(y x a b a b+=>>0)的左焦点为F,右顶点为A,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P.若AP 2PB =,则椭圆的离心率是( )C.13D.12答案:D解析:对于椭圆,∵AP 2PB =,则OA 2OF =, ∴a=2c.∴12e =.3.已知椭圆22221(yx a b a b+=>>0)的左、右焦点分别为1(0)F c -,、2(0)F c ,,若椭圆上存在一点P 使1221sin PFF sin PF F a c =,∠∠则该椭圆的离心率的取值范围为 . 答案:11)-,解析:因为在△12PF F 中,由正弦定理得211221sin PFF sin PF F PF PF ||||=,∠∠则由已知,得1211a c PF PF =,||||即a|1PF |=c|2PF由椭圆的定义知|1PF |+|2PF |=2a,则c a|2PF |+|2PF |=2a,即|2PF |22a c a=,+由椭圆的几何性质知|2PF |<a+c,则22a ca<+a+c,即2220c c a +->, 所以221e e +-,解得1e <-或1e >-.又(01)e ∈,,故椭圆的离心率11)e ∈,.4.椭圆22192y x +=的左、右焦点分别为1F 、2F ,点P 在椭圆上,若|1PF |=4,则|2PF |= ;12F PF ∠的大小为 .答案:2 120解析:∵2292a b =,=,∴c ===∴|12F F|=又|1PF |=4,|1PF |+|2PF |=2a=6, ∴|2PF |=2.又由余弦定理,得cos 1212F PF ∠==-,∴12120F PF ∠=,故应填2,120.5.已知椭圆22221(y x a b a b+=>>0)的离心率e =连接椭圆的四个顶点得到的菱形的面积为4. (1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A,B.已知点A 的坐标为(-a,0). ①若|AB|=求直线l 的倾斜角;②若点0(0)Q y ,在线段AB 的垂直平分线上,且QA QB ⋅=4.求0y 的值.解:(1)由c e a==得2234a c =.再由222c a b =-,解得a=2b. 由题意可知12242a b ⨯⨯=,即ab=2.解方程组 22a b ab =,⎧⎨=,⎩得a=2,b=1.所以椭圆的方程为2214x y +=. (2)①由(1)可知点A 的坐标是(-2,0).设点B 的坐标为11()x y ,,直线l 的斜率为k. 则直线l 的方程为y=k(x+2).于是A,B 两点的坐标满足方程组22(2)14y k x x y =+,⎧⎪⎨+=.⎪⎩ 消去y 并整理,得 2222(14)16(164)0k x k x k +++-=.由212164214k x k --=,+得2122814k x k-=+.从而12414k y k =+. 所以|AB|==由|AB|==. 整理得42329230k k --=,即22(1)(3223)0k k -+=,解得1k =±. 所以直线l 的倾斜角为4π或34π.②设线段AB 的中点为M,由①得M 的坐标为22282()1414k k k k -,++.以下分两种情况:(ⅰ)当k=0时,点B 的坐标是(2,0),线段AB 的垂直平分线为y 轴, 于是0QA (2)y =-,-,0QB (2)y =,-.由QA QB ⋅=4,得0y =±.(ⅱ)当0k ≠时,线段AB 的垂直平分线方程为222281()1414k k y x k k k -=-+++.令x=0,解得02614k y k=-+.由0QA (2)y =-,-,QB 110()x y y =,-,QA QB ⋅10102()x y y y =---222222(28)646()14141414k k k k k k k k --=++++++ 42224(16151)4(14)k k k +-==,+整理得272k =.故k =所以0y =.综上0y ,=±或0y =课后作业巩固提升见课后作业A题组一 椭圆的离心率问题1.椭圆22221(y x a b a b+=>>0)的右焦点为F,其右准线与x 轴的交点为A,在椭圆上存在点P 满足线段AP 的垂直平分线过点F,则椭圆离心率的取值范围是( )A.(0B.1(0]2,C.11),D.1[1)2,答案:D解析:|AF|22a b c c c =-=,而|PF|a c ≤+, 所以2b ac c+≥,即2210e e +-≥,解得112e ≤<.2.已知12F F ,是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△2ABF 是等腰直角三角形,则这个椭圆的离心率是( )1答案:C解析:根据题意:2145AF F ∠=2222b c e e a,=,+-1=0,又(01)e ∈,,∴1e =-. 3.设椭圆22221(0y x m m n+=>,n>0)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为A.2211216y x +=B.2211612y x +=C.2214864y x += D.2216448y x += 答案:B解析:由题意可知:c=2,且焦点在x 轴上.由12e =,可得m=4,∴22212n m c =-=.故选B.题组二 椭圆的定义4.设P 是椭圆2212516y x +=上的点.若12F F ,是椭圆的两个焦点,则|1PF |+|2PF |等于( ) A.4 B.5 C.8 D.10 答案:D解析:因为a=5,所以|1PF |+|2PF |=2a=10.5.设直线l :2x+y-2=0与椭圆2214y x +=的交点为A 、B,点P 是椭圆上的动点,则使△PAB 面积为13的点P的个数为( )A.1B.2C.3D.4 答案:D解析:联立方程组 2222014x y y x +-=,⎧⎪⎨+=,⎪⎩ 消去y 整理解得:02x y =,⎧⎨=⎩ 或 10x y =,⎧⎨=,⎩|AB|= 结合图象知P 的个数为4.题组三 椭圆的综合应用6.已知椭圆G 的中心在坐标原点,长轴在x 轴上,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为 .答案:221369y x += 解析:212e a a ==,=6,b=3,则所求椭圆方程为221369y x +=. 7.已知1F 、2F 是椭圆C:22221(y x a b a b+=>>0)的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥.若△12PF F 的面积为9,则b= .答案:3解析:依题意,有 1212222122184PF PF a PF PF PF PF c ||+||=,⎧⎪||⋅||=,⎨⎪||+||=,⎩ 可得2436c +24a =,即229a c -=,∴b=3.8.在平面直角坐标系xOy 中1212A A B B ,,,,为椭圆22221(y x a b a b+=>>0)的四个顶点,F 为其右焦点,直线12A B 与直线1B F 相交于点T,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为 .答案:5-解析:直线12A B 的方程为:1yx ab+=-;直线1B F 的方程为:1y x c b +=-;二者联立解得点()2()b a c ac T a c a c+,,--则OT 中点()()2()b a c ac M a c a c +,--在椭圆22221(y x a b a b+=>>0)上,222222()11030()4()a c c c ac a a c a c ++=,+-=,--3e +10e-3=0,解得5e =-.9.已知椭圆C:2212x y +=的两焦点为12F F ,,点00()P x y ,满足2200012x y <+<,则|1PF |+|2PF |的取值范围为,直线02x x+01y y =与椭圆C 的公共点个数为 .答案:[2, 0解析:延长1PF 交椭圆C 于点M,故|12F F |≤|1PF |+|2PF |<|1MF |+|2MF |=2a,即2≤|1PF |+|2PF|<当00y =时2002x ,<<,直线0012x xy y +=为x=02()x ∈⋃与椭圆C 无交点当00y ≠时,直线0012x xy y +=为0012x xy y -=,代入2212x y +=中有 222000()222x y x x x +-+-2020y= ∵2222000044()(22)2x x y y ∆=-+-22008(1)02x y =+-<,∴直线与椭圆无交点.10.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D,且2BF FD =,则椭圆C 的离心率为 .答案解析:如图,不妨设B(0,b)为上顶点,F(c,0)为右焦点,设D(x,y).由2BF FD =,得(c,-b)=2(x-即 2()2c x c b y =-,⎧⎨-=,⎩ 解得 322c x b y ⎧=,⎪⎨⎪=-,⎩ 3()22c b D ,-.由2BF FD =,可得|FD |12=|BF |2a =, ①又由椭圆第二定义知,|FD |2233()()22a c ac c e c c a=-⋅=-⋅. ②由①②解得223a c =,即213e =,∴e =11.如图,椭圆C:22221y x a b+=的顶点为1212A A B B ,,,,焦点为12F F ,,|11A B |=1122B A B A S11222B F B F S =.(1)求椭圆C 的方程;(2)设n 为过原点的直线,l 是与n 垂直相交于P 点.与椭圆相交于A,B 两点的直线,|OP |=1.是否存在上述直线l 使0OA OB ⋅=成立?若存在,求出直线l 的方程;若不存在,请说明理由解:(1)由|11A B |=知227a b +=, ① 由112211222B A B A B F B F SS=知a=2c, ②又222b a c =-, ③由①②③,解得2243a b =,=,故椭圆C 的方程为22143y x +=. (2)设A,B 两点的坐标分别为1122()()x y x y ,,,,假设使0OA OB ⋅=成立的直线l 存在,①当l 不垂直于x 轴时,设l 的方程为由l 与n 垂直相交于P 点且|OP |=1得1=,即221m k =+.由0OA OB ⋅=得12120x x y y +=.将y=kx+m 代入椭圆方程,得222(34)8(412)0k x kmx m +++-=, 由求根公式可得122834km x x k-+=,+ ④212241234m x x k -=+. ⑤ 121212120()()x x y y x x kx m kx m =+=+++221212(1)()k x x km x x m =++++,将④⑤代入上式并化简得222222(1)(412)8(34)0k m k m m k +--++=. ⑥ 将221m k =+代入⑥并化简得25(1)0k -+=,矛盾 即此时直线l 不存在.②当l 垂直于x 轴时,满足|OP |=1的直线l 的方程为x=1或x=-1,则A,B 两点的坐标为33(1)(1)22,,,-或(-133)(1)22,,-,-,当x=1时33(1)(1)22OA OB ,⋅=,⋅,-=504-≠当x=-1时3(1)(12OA OB ,⋅=-,⋅-,32-5)04=-≠,∴此时直线l 也不存在.综上可知,使0OA OB ⋅=成立的直线l 不存在12.如图,已知椭圆22221y x a b+=(a>b>0)过点(1,左 、右焦点分别为F 1 、F 2.点P 为直线l:x+y=2上且不在x 轴上的任意一点,直线1PF 和2PF 与椭圆的交点分别为A B ,和C ,D ,O .为坐标原点(1)求椭圆的标准方程.(2)设直线1PF ,PF 2的斜率分别为1k ,k 2.(ⅰ)证明:12312k k -=.(ⅱ)问直线l 上是否存在点P,使得直线OA OB OC OD ,,,的斜率k OA ,k OB ,k OC ,k OD 满足+OA k +0OB OC OD k k k +=?若存在,求出所有满足条件的点P 的坐标;存不存在,说明理由.解:(1)因为椭圆过点(1e ,=所以221112c a a b+=,=.又222a b c =+,所以1a b c ==,=1.故所求椭圆的标准方程为2212x y +=. (2)(ⅰ)证明:方法一:由于1(10)F -,,F 21(10)PF ,,,PF 2的斜率分别为1k ,k 2,且点P 不在x 轴上,所以121200k k k k ≠,≠,≠.又直线12PF PF ,的方程分别为12(1)(1)y k x y k x =+,=-,联立方程解得 122112212k k x k k k k y k k +⎧=,⎪-⎪⎨⎪=,-⎪⎩所以121221212()k k k k P k k k k +,--. 由于点P 在直线x+y=2上,所以12122122k k k k k k ++=-.因此1212230k k k k +-=, 即12312k k -=,结论成立.方法二:设00()P x y ,,则00120011y yk k x x =,=+-. 因为点P 不在x 轴上,所以0y ≠. 又002x y +=,所以000012000013(1)422312x x x y k k y y y y +---=-===. 因此结论成立.(ⅱ)设()()()A A B B C C A x y B x y C x y ,,,,,,()D D D x y,联立直线1PF 与椭圆的方程得 122(1)12y k x x y =+,⎧⎪⎨+=,⎪⎩ 化简得2222111(21)4220k x k x k +++-=,因此221122114222121A B A B k k x x x x k k -+=-,=,++由于OA,OB 的斜率存在,所以00A B x x ≠,≠,因此2101k ≠,. 因此11(1)(1)A B A B OA OB A B A By y k x k x k k x x x x +++=+=+ 211112142(2)22A B A B x x k k k k x x k +=+=--12121k k =--. 相似地,可以得到220001C D x x k ≠,≠,≠,,22221OC OD k k k k +=-,- 故1222122()11OA OB OC OD k k k k k k k k +++=-+-- 2212112222122(1)(1)k k k k k k k k -+-=--- 121222122(1)()(1)(1)k k k k k k -+=---. 若0OA OB OC OD k k k k +++=,须有120k k +=或121k k =.①当120k k +=时,结合(ⅰ)的结论,可得22k =-,所以解得点P 的坐标为(0,2);②当121k k =时,结合(ⅰ)的结论,解得23k =或21(k =-此时11k =-,不满足12k k ≠,舍去),此时直线CD 的方程为y=3(x-1),联立方程x+y=2得5344x y =,=.因此53()44P ,.综上所述,满足条件的点P 的坐标分别为(0532)()44,,,精品文档精品文档。

高考文科数学练习题含解析椭圆

高考文科数学练习题含解析椭圆

课时跟踪检测(四十九) 椭圆[A 级 基础题——基稳才能楼高]1.椭圆mx 2+ny 2+mn =0(m <n <0)的焦点坐标是( ) A .(0,±m -n ) B .(±m -n ,0) C .(0,±n -m )D .(±n -m ,0)解析:选C 化为标准方程是x 2-n +y 2-m =1,∵m <n <0,∴0<-n <-m .∴焦点在y 轴上,且c =-m -(-n )=n -m .2.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程为( ) A.x 22+y 24=1 B .x 2+y 26=1 C.x 26+y 2=1 D.x 28+y 25=1 解析:选B 椭圆9x 2+4y 2=36可化为x 24+y 29=1,可知焦点在y 轴上,焦点坐标为(0,±5),故可设所求椭圆方程为y 2a 2+x 2b 2=1(a >b >0),则c = 5.又2b =2,即b =1,所以a 2=b 2+c 2=6, 则所求椭圆的标准方程为x 2+y 26=1. 3.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为( )A .5B .7C .13D .15解析:选B 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7.4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x轴,直线AB 交y 轴于点P .若AP ―→=2PB ―→,则椭圆的离心率是( )A.32B.22C.13D.12解析:选D ∵AP ―→=2PB ―→,∴|AP ―→|=2|PB ―→|.又∵PO ∥BF ,∴|PA ||AB |=|AO ||AF |=23,即a a +c =23,∴e =c a =12. 5.(2019·长沙一模)椭圆的焦点在x 轴上,中心在原点,其上、下顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆的标准方程为( )A.x 22+y 22=1 B.x 22+y 2=1 C.x 24+y 22=1 D.y 24+x 22=1 解析:选C 由条件可知b =c =2,a =2,所以椭圆的标准方程为x 24+y 22=1.故选C.6.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A.⎣⎡⎭⎫23,1B.⎣⎡⎦⎤13,22 C.⎣⎡⎭⎫13,1D.⎝⎛⎦⎤0,13 解析:选C 如图所示,∵线段PF 1的中垂线经过F 2,∴|PF 2|=|F 1F 2|=2c ,即椭圆上存在一点P ,使得|PF 2|=2c .∴a -c ≤2c ≤a +c .∴e =c a ∈⎣⎡⎭⎫13,1.[B 级 保分题——准做快做达标]1.(2019·武汉模拟)曲线x 225+y 29=1与曲线x 225-k +y 29-k =1(k <9)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等解析:选D 曲线x 225+y 29=1表示焦点在x 轴上的椭圆,其长轴长为10,短轴长为6,焦距为8,离心率为45.曲线x 225-k +y 29-k =1(k <9)表示焦点在x 轴上的椭圆,其长轴长为225-k ,短轴长为29-k ,焦距为8,离心率为425-k.对照选项,知D 正确.故选D. 2.(2019·德阳模拟)设P 为椭圆C :x 249+y 224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为点G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为( )A .24B .12C .8D .6解析:选C ∵P 为椭圆C :x 249+y 224=1上一点,|PF 1|∶|PF 2|=3∶4,|PF 1|+|PF 2|=2a=14,∴|PF 1|=6,|PF 2|=8,又∵|F 1F 2|=2c =249-24=10,∴易知△PF 1F 2是直角三角形,S △PF 1F 2=12|PF 1|·|PF 2|=24,∵△PF 1F 2的重心为点G ,∴S △PF 1F 2=3S △GPF 1,∴△GPF 1的面积为8,故选C.3.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455 C.4105D.8105解析:选C 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t , 由⎩⎪⎨⎪⎧x 24+y 2=1,y =x +t ,消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =2· ⎝⎛⎭⎫-85t 2-4×4(t 2-1)5=425·5-t 2, 当t =0时,|AB |max =4105. 4.(2019·贵阳摸底)P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,A 为左顶点,F 为右焦点,PF ⊥x 轴,若tan ∠PAF =12,则椭圆的离心率e 为( )A.23B.22C.33D.12解析:选D 不妨设点P 在第一象限,因为PF ⊥x 轴,所以x P =c ,将x P =c 代入椭圆方程得y P =b 2a ,即|PF |=b 2a ,则tan ∠PAF =|PF ||AF |=b 2a a +c =12,结合b 2=a 2-c 2,整理得2c 2+ac -a 2=0,两边同时除以a 2得2e 2+e -1=0,解得e =12或e =-1(舍去).故选D.5.(2019·长郡中学选拔考试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与圆D :x 2+y 2-2ax +316a 2=0交于A ,B 两点,若四边形OADB (O 为原点)是菱形,则椭圆C 的离心率为( )A.13 B.12 C.32D.62解析:选B 由已知可得圆D :(x -a )2+y 2=1316a 2,圆心D (a ,0),则菱形OADB 对角线的交点的坐标为⎝⎛⎭⎫a 2,0,将x =a 2代入圆D 的方程得y =±3a4,不妨设点A 在x 轴上方,即A ⎝⎛⎭⎫a 2,3a 4,代入椭圆C 的方程可得14+9a 216b 2=1,所以34a 2=b 2=a 2-c 2,解得a =2c ,所以椭圆C 的离心率e =c a =12.6.(2019·沙市中学测试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,双曲线x 2-y 2=1的渐近线与椭圆C 有4个交点,以这4个交点为顶点的四边形的面积为8,则椭圆C 的方程为( )A.x 28+y 22=1 B.x 212+y 26=1 C.x 26+y 23=1 D.x 220+y 25=1 解析:选C 由题意知双曲线x 2-y 2=1的渐近线方程为y =±x ,由椭圆的对称性可知以这4个交点为顶点的四边形是正方形,由四边形的面积为8,知正方形的边长为22,所以点(2,2)在椭圆上,所以2a 2+2b2=1.①又椭圆的离心率为22, 所以a 2-b 2a 2=12,所以a 2=2b 2.②由①②得a 2=6,b 2=3,所以椭圆C 的方程为x 26+y 23=1.故选C.7.(2019·安阳模拟)已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上一点,且PF 1―→·(OF 1―→+OP ―→)=0(O 为坐标原点),若|PF 1―→|=2|PF 2―→|,则椭圆的离心率为( )A.6- 3B.6-32 C.6- 5D.6-52解析:选A 以OF 1,OP 为邻边作平行四边形,根据向量加法的平行四边形法则, 由PF 1―→·(OF 1―→+OP ―→)=0知,此平行四边形的对角线垂直,即此平行四边形为菱形,∴|OP ―→|=|OF 1―→|,∴△F 1PF 2是直角三角形,即PF 1⊥PF 2.设|PF 2|=x ,则|PF 1|=2x ,结合椭圆的性质和三角形勾股定理可得⎩⎨⎧2x +x =2a ,(2x )2+x 2=(2c )2,∴e =c a =32+1=6- 3.故选A.8.(2019·西宁复习检测)在平面直角坐标系xOy 中,P 是椭圆y 24+x 23=1上的一个动点,点A (1,1),B (0,-1),则|PA |+|PB |的最大值为( )A .5B .4C .3D .2解析:选A ∵椭圆的方程为y 24+x 23=1,∴a 2=4,b 2=3,c 2=1,∴B (0,-1)是椭圆的一个焦点,设另一个焦点为C (0,1),如图所示,根据椭圆的定义知,|PB |+|PC |=4,∴|PB |=4-|PC |,∴|PA |+|PB |=4+|PA |-|PC |≤4+|AC |=5.9.已知点P 是椭圆x 216+y 28=1(x ≠0,y ≠0)上的动点,F 1,F 2分别是椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上一点,且F 1M ―→·MP ―→=0,则|OM ―→|的取值范围是( )A .[0,3)B .(0,22)C .[22,3)D .(0,4]解析:选B 如图,延长F 1M 交PF 2的延长线于点G . ∵F 1M ―→·MP ―→=0,∴F 1M ―→⊥MP ―→. 又MP 为∠F 1PF 2的平分线, ∴|PF 1|=|PG |,且M 为F 1G 的中点. ∵O 为F 1F 2的中点,∴OM 綊12F 2G .∵|F 2G |=||PF 2|-|PG ||=||PF 1|-|PF 2||, ∴|OM ―→|=12|2a -2|PF 2||=|4-|PF 2||.∵4-22<|PF 2|<4或4<|PF 2|<4+22, ∴|OM ―→|∈(0,22).10.已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b 2=1的两个焦点,P 在椭圆上且满足PF 1―→·PF 2―→=c 2,则此椭圆离心率的取值范围是( )A.⎣⎡⎭⎫33,1 B.⎣⎡⎦⎤33,22C.⎣⎡⎦⎤13,12D.⎝⎛⎦⎤0,22 解析:选B 设P (x ,y ),则x 2a 2+y 2b 2=1,y 2=b 2-b 2a 2x 2,-a ≤x ≤a ,PF 1―→=(-c -x ,-y ),PF 2―→=(c -x ,-y ).所以PF 1―→·PF 2―→=x 2-c 2+y 2=⎝⎛⎭⎫1-b 2a 2x 2+b 2-c 2=c 2a 2x 2+b 2-c 2.因为-a ≤x ≤a ,所以b 2-c 2≤PF 1―→·PF 2―→≤b 2. 所以b 2-c 2≤c 2≤b 2. 所以2c 2≤a 2≤3c 2. 所以33≤c a ≤22.故选B. 11.设e 是椭圆x 24+y 2k =1的离心率,且e =23,则实数k 的值是________.解析:当k >4 时,有e =1-4k =23,解得k =365;当0<k <4时,有e =1-k4=23,解得k =209.故实数k 的值为209或365. 答案:209或36512.(2019·湖北稳派教育联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,且满足c 2-b 2+ac <0,则该椭圆的离心率e 的取值范围是________.解析:∵c 2-b 2+ac <0,∴c 2-(a 2-c 2)+ac <0,即2c 2-a 2+ac <0,∴2c 2a 2-1+c a <0,即2e 2+e -1<0,解得-1<e <12.又∵0<e <1,∴0<e <12.∴椭圆的离心率e 的取值范围是⎝⎛⎭⎫0,12.答案:⎝⎛⎭⎫0,12 13.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1PA 2为钝角,则此椭圆的离心率的取值范围为______.解析:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),∠B 1PA 2为钝角可转化为B 2A 2―→,F 2B 1―→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,即b 2<ac ,则a 2-c 2<ac ,故⎝⎛⎭⎫c a 2+c a -1>0,即e 2+e -1>0,解得e >5-12或e <-5-12,又0<e <1,所以5-12<e <1.答案:⎝⎛⎭⎪⎫5-12,114.(2019·辽宁联考)设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.解析:在椭圆x 225+y 216=1中,a =5,b =4,c =3,所以焦点坐标分别为F 1(-3,0),F 2(3,0).根据椭圆的定义得|PM |+|PF 1|=|PM |+(2a -|PF 2|)=10+(|PM |-|PF 2|).∵|PM |-|PF 2|≤|MF 2|,当且仅当P 在直线MF 2上时取等号, ∴当点P 与图中的点P 0重合时,有(|PM |-|PF 2|)max =(6-3)2+(4-0)2=5,此时得|PM |+|PF 1|的最大值,为10+5=15.答案:1515.(2019·武汉调研)设O 为坐标原点,动点M 在椭圆C :x 2a 2+y 2=1(a >1,a ∈R )上,过O 的直线交椭圆C 于A ,B 两点,F 为椭圆C 的左焦点.(1)若△FAB 的面积的最大值为1,求a 的值;(2)若直线MA ,MB 的斜率乘积等于-13,求椭圆C 的离心率.解:(1)S △FAB =12|OF |·|y A -y B |≤|OF |=a 2-1=1,所以a = 2.(2)由题意可设A (x 0,y 0),B (-x 0,-y 0),M (x ,y ),则x 2a 2+y 2=1,x 20a 2+y 20=1, k MA ·k MB =y -y 0x -x 0·y +y 0x +x 0=y 2-y 20x 2-x 20=1-x 2a 2-⎝⎛⎭⎫1-x 20a 2x 2-x 20=-1a 2(x 2-x 20)x 2-x 20=-1a 2=-13,所以a 2=3,所以a =3,所以c =a 2-b 2=2, 所以椭圆的离心率e =c a =23=63.16.(2019·广东七校联考)已知动点M 到定点F 1(-2,0)和F 2(2,0)的距离之和为4 2. (1)求动点M 的轨迹C 的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交C 于不同于N 的两点A ,B ,直线NA ,NB 的斜率分别为k 1,k 2,求k 1+k 2的值.解:(1)由椭圆的定义,可知点M 的轨迹是以F 1,F 2为焦点,42为长轴长的椭圆.由c =2,a =22,得b =2.故动点M 的轨迹C 的方程为x 28+y 24=1.(2)当直线l 的斜率存在时,设其方程为y +2=k (x +1),由⎩⎪⎨⎪⎧x 28+y 24=1,y +2=k (x +1),得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0.Δ=[4k (k -2)]2-4(1+2k 2)(2k 2-8k )>0,则k >0或k <-47.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k (k -2)1+2k 2,x 1x 2=2k 2-8k1+2k 2.从而k 1+k 2=y 1-2x 1+y 2-2x 2=2kx 1x 2+(k -4)(x 1+x 2)x 1x 2=2k -(k -4)4k (k -2)2k 2-8k=4.当直线l 的斜率不存在时,得A ⎝⎛⎭⎫-1,142,B ⎝⎛⎭⎫-1,-142.所以k 1+k 2=4. 综上,恒有k 1+k 2=4.。

高中数学_椭圆经典练习题_配答案解析

高中数学_椭圆经典练习题_配答案解析

椭圆练习题一.选择题:1.已知椭圆上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( D )A .2B .3C .5D .72.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( C )A. B. C. D. 3.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为4的椭圆方程是( B )A4.椭圆的一个焦点是,那么等于( A )A. B.C.D.5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( B ) A.B.C.D.6.椭圆两焦点为 , ,P 在椭圆上,若 △的面积的最大值为12,则椭圆方程为( B )A.B .C .D . 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是( C )。

A +=1B +=1C +=1D +=18.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( C )(A)450 (B)600 (C)900 (D)1209.椭圆上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为( A ) A. 4 B . 2 C. 8 D .1162522=+y x 22143x y +=22134x y +=2214x y +=2214y x +=51858014520125201202522222222=+=+=+=+y x D y x C y x B y x 2255x ky -=(0,2)k 1-1512221(4,0)F -2(4,0)F 12PF F 221169x y +=221259x y +=2212516x y +=221254x y +=16x 29y 216x 212y 24x 23y 23x 24y 2221259x y +=2310.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 ( C )(A )2 3 (B )6 (C )4 3 (D )12二、填空题:11.方程表示焦点在轴的椭圆时,实数的取值范围_____12.过点且与椭圆有共同的焦点的椭圆的标准方程为_13.设,,△的周长是,则的顶点的轨迹方程为14.如图:从椭圆上一点向轴作垂线,恰好通过椭圆的左焦点,且它的长轴端点及短轴的端点的连线∥,则该椭圆的离心率等于_____________三、解答题:15.已知椭圆的对称轴为坐标轴,离心率,短轴长为,求椭圆的方程。

高二椭圆练习题及答案

高二椭圆练习题及答案

高二椭圆练习题及答案椭圆是高中数学中的一个重要的几何概念,它在解析几何和微积分等数学分支中有着广泛的应用。

为了帮助高二学生巩固和提高对椭圆的理解和应用能力,以下提供一些高二椭圆练习题及其答案。

练习题一:1. 椭圆的离心率等于0的特殊情况是什么?该椭圆的形状如何?2. 某椭圆的焦点坐标为(2,0)和(-2,0),长轴长度为8. 求该椭圆的方程。

3. 某椭圆的长轴长度为10,短轴长度为8. 如果该椭圆的焦点到椭圆上任意点的距离之和为15,求该椭圆的方程。

4. 某椭圆的方程为(x-1)²/25 + y²/16 = 1,求该椭圆的焦点坐标及离心率。

5. 某椭圆的离心率为1/2,焦点为(0,-4)和(0,4)。

求该椭圆的方程。

答案一:1. 当椭圆的离心率等于0时,它的焦点和中心重合,长轴和短轴相等,椭圆变为一个圆。

2. 根据焦点坐标和长轴的长度,我们可以确定椭圆的中心坐标和短轴的长度。

所以该椭圆的方程为(x-2)²/16 + y²/4 = 1。

3. 根据题目信息,我们可以利用椭圆的定义来求解。

假设该椭圆的焦点为(c, 0),根据定义可得2a = 10,2ae = 15。

解方程组得a = 5/2,c = 3/2。

所以该椭圆的方程为(x-3/2)²/25 + y²/16 = 1。

4. 根据方程的形式,我们可以直接确定椭圆的中心坐标和长短轴长度。

所以该椭圆的焦点坐标为(1±√9, 0),离心率为√(1-16/25) = 3/5。

5. 根据焦点坐标和离心率的信息,我们可以利用椭圆的定义来求解。

假设该椭圆的焦点为(c, 0),根据定义可得2a = 2e,a = 4,c = 2。

所以该椭圆的方程为(x-2)²/16 + y²/9 = 1。

练习题二:1. 已知椭圆的离心率为2/3,焦点坐标为(±4,0),求该椭圆的方程。

历年文科高考椭圆题 带解析

历年文科高考椭圆题 带解析

第六节 椭圆 强化训练当堂巩固1.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A.45 B.35 C.25 D.15答案:B解析:由2a,2b,2c 成等差数列,所以2b=a+c. 又222b a c =-,所以222()4()a c a c +=-. 所以53a c =.所以35c e a ==.2.已知椭圆22221(y x a b a b+=>>0)的左焦点为F,右顶点为A,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P.若AP 2PB =u u u r u u u r,则椭圆的离心率是( )A.32B.22C.13D.12答案:D解析:对于椭圆,∵AP 2PB =u u u r u u u r,则OA 2OF =u u u r u u u r , ∴a=2c.∴12e =.3.已知椭圆22221(y x a b a b+=>>0)的左、右焦点分别为1(0)F c -,、2(0)F c ,,若椭圆上存在一点P 使1221sin PFF sin PF F a c =,∠∠则该椭圆的离心率的取值范围为 . 答案:(211)-,解析:因为在△12PF F 中,由正弦定理得211221sin PFF sin PF F PF PF ||||=,∠∠则由已知,得1211a c PF PF =,||||即a|1PF |=c|2PF |. 由椭圆的定义知|1PF |+|2PF |=2a,则c a |2PF |+|2PF |=2a,即|2PF |22a c a=,+ 由椭圆的几何性质知|2PF |<a+c,则22a c a<+a+c,即2220c c a +->, 所以221e e +-,解得21e <-或21e >-.又(01)e ∈,,故椭圆的离心率(211)e ∈,.4.椭圆22192y x +=的左、右焦点分别为1F 、2F ,点P 在椭圆上,若|1PF |=4,则|2PF |= ;12F PF ∠的大小为 .答案:2 120o解析:∵2292a b =,=,∴22927c a b =-=-=∴|12F F |7=又|1PF |=4,|1PF |+|2PF |=2a=6, ∴|2PF |=2.又由余弦定理,得cos 2221224(27)12242F PF +-∠==-,⨯⨯∴12120F PF ∠=o ,故应填2,120o .5.已知椭圆22221(y x a b a b+=>>0)的离心率3e =连接椭圆的四个顶点得到的菱形的面积为4. (1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A,B.已知点A 的坐标为(-a,0). ①若|AB|42=求直线l 的倾斜角;②若点0(0)Q y ,在线段AB 的垂直平分线上,且QA QB ⋅u u u r u u u r=4.求0y 的值.解:(1)由32c e a==得2234a c =.再由222c a b =-,解得a=2b. 由题意可知12242a b ⨯⨯=,即ab=2.解方程组 22a b ab =,⎧⎨=,⎩ 得a=2,b=1.所以椭圆的方程为2214x y +=. (2)①由(1)可知点A 的坐标是(-2,0).设点B 的坐标为11()x y ,,直线l 的斜率为k. 则直线l 的方程为y=k(x+2).于是A,B 两点的坐标满足方程组22(2)14y k x x y =+,⎧⎪⎨+=.⎪⎩ 消去y 并整理,得 2222(14)16(164)0k x k x k +++-=.由212164214k x k --=,+得2122814k x k -=+.从而12414k y k =+. 所以|AB|22222241284(2)()1414k k k k k +-=--+=++由|AB|42=24142k +=. 整理得42329230k k --=,即22(1)(3223)0k k -+=,解得1k =±. 所以直线l 的倾斜角为4π或34π.②设线段AB 的中点为M,由①得M 的坐标为22282()1414k k k k-,++. 以下分两种情况:(ⅰ)当k=0时,点B 的坐标是(2,0),线段AB 的垂直平分线为y 轴,于是0QA (2)y =-,-,u u u r 0QB (2)y =,-u u u r. 由QA QB ⋅u u u r u u u r=4,得022y =±.(ⅱ)当0k ≠时,线段AB 的垂直平分线方程为222281()1414k k y x k k k -=-+++.令x=0,解得02614k y k =-+.由0QA (2)y =-,-,u u u r QB u u u r110()x y y =,-, QA QB ⋅u u u r u u u r10102()x y y y =---222222(28)646()14141414k k k k k k k k --=++++++ 42224(16151)4(14)k k k +-==,+整理得272k =.故147k =±,所以02145y =±.综上022y ,=±或02145y =±.课后作业巩固提升见课后作业A题组一 椭圆的离心率问题1.椭圆22221(y x a b a b+=>>0)的右焦点为F,其右准线与x 轴的交点为A,在椭圆上存在点P 满足线段AP 的垂直平分线过点F,则椭圆离心率的取值范围是( )A.2(0]2,B.1(0]2,C.[211)-,D.1[1)2,答案:D解析:|AF|22a b c c c=-=,而|PF|a c ≤+,所以2b a c c+≥, 即2210e e +-≥,解得112e ≤<.2.已知12F F ,是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△2ABF 是等腰直角三角形,则这个椭圆的离心率是( )A.32B.22C.21-D.2答案:C解析:根据题意:2145AF F ∠=o 2222b c e e a,=,+-1=0,又(01)e ∈,,∴21e =-.3.设椭圆22221(0y x m m n+=>,n>0)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )A.2211216y x += B.2211612y x +=C.2214864y x += D.2216448y x += 答案:B解析:由题意可知:c=2,且焦点在x 轴上.由12e =,可得m=4,∴22212n m c =-=.故选B.题组二 椭圆的定义4.设P 是椭圆2212516y x +=上的点.若12F F ,是椭圆的两个焦点,则|1PF |+|2PF |等于( ) A.4 B.5 C.8 D.10 答案:D解析:因为a=5,所以|1PF |+|2PF |=2a=10.5.设直线l :2x+y-2=0与椭圆2214y x +=的交点为A 、B,点P 是椭圆上的动点,则使△PAB 面积为13的点P的个数为( )A.1B.2C.3D.4 答案:D解析:联立方程组 2222014x y y x +-=,⎧⎪⎨+=,⎪⎩ 消去y 整理解得:02x y =,⎧⎨=⎩ 或 10x y =,⎧⎨=,⎩|AB|= 结合图象知P 的个数为4.题组三 椭圆的综合应用6.已知椭圆G 的中心在坐标原点,长轴在x 轴上,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为 .答案:221369y x += 解析:212e a a ==,=6,b=3,则所求椭圆方程为221369y x +=. 7.已知1F 、2F 是椭圆C:22221(y x a b a b+=>>0)的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥u u u u u u u r u u u u u u u r .若△12PF F 的面积为9,则b= .答案:3解析:依题意,有 1212222122184PF PF a PF PF PF PF c ||+||=,⎧⎪||⋅||=,⎨⎪||+||=,⎩ 可得2436c +24a =,即229a c -=,∴b=3.8.在平面直角坐标系xOy 中1212A A B B ,,,,为椭圆22221(y x a b a b+=>>0)的四个顶点,F 为其右焦点,直线12A B 与直线1B F 相交于点T,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为 .答案:5-解析:直线12A B 的方程为:1yx ab+=-;直线1B F 的方程为:1y x c b +=-;二者联立解得点()2()b a c ac T a c a c+,,--则OT 中点()()2()b a c ac M a c a c +,--在椭圆22221(y x a b a b+=>>0)上, 222222()11030()4()a c c c ac a a c a c ++=,+-=,--3e +10e-3=0,解得275e =-.9.已知椭圆C:2212x y +=的两焦点为12F F ,,点00()P x y ,满足2200012x y <+<,则|1PF |+|2PF |的取值范围为,直线02x x+01y y =与椭圆C 的公共点个数为 .答案:[222), 0解析:延长1PF 交椭圆C 于点M,故|12F F |≤|1PF |+|2PF |<|1MF |+|2MF |=2a,即2≤|1PF |+|2PF |22<;当00y =时2002x ,<<,直线0012x xy y +=为x=02(2)(2)x ∈-∞,-⋃,+∞与椭圆C 无交点; 当00y ≠时,直线0012x xy y +=为0012x xy y -=,代入2212x y +=中有 222000()222x y x x x +-+-2020y =. ∵2222000044()(22)2x x y y ∆=-+-22008(1)02x y =+-<,∴直线与椭圆无交点. 10.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D,且2BF FD =,u u u r u u u r则椭圆C的离心率为 .答案:33解析:如图,不妨设B(0,b)为上顶点,F(c,0)为右焦点,设D(x,y).由2BF FD =,u u u r u u u r得(c,-b)=2(x-c,y),即 2()2c x c b y =-,⎧⎨-=,⎩ 解得 322c x b y ⎧=,⎪⎨⎪=-,⎩ 3()22c b D ,-.由2BF FD =,u u u r u u u r 可得|FD u u u r |12=|BF u u u r |2a =, ①又由椭圆第二定义知,|FD u u u r |2233()()22a c a c c e c c a=-⋅=-⋅. ②由①②解得223a c =,即213e =,∴33e =11.如图,椭圆C:22221y x a b+=的顶点为1212A A B B ,,,,焦点为12F F ,,|11A B |7=,1122B A B A S Y 11222B F B F S =Y .(1)求椭圆C 的方程;(2)设n 为过原点的直线,l 是与n 垂直相交于P 点.与椭圆相交于A,B 两点的直线,|OP u u u r|=1.是否存在上述直线l 使0OA OB ⋅=u u u r u u u r成立?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)由|11A B |7=知227a b +=, ① 由112211222B A B A B F B F S S =Y Y 知a=2c, ②又222b a c =-, ③由①②③,解得2243a b =,=,故椭圆C 的方程为22143y x +=. (2)设A,B 两点的坐标分别为1122()()x y x y ,,,,假设使0OA OB ⋅=u u u r u u u r成立的直线l 存在,①当l 不垂直于x 轴时,设l 的方程为y=kx+m ,由l 与n 垂直相交于P 点且|OP u u u r|=1得 211m k ||=,+即221m k =+. 由0OA OB ⋅=u u u r u u u r得12120x x y y +=.将y=kx+m 代入椭圆方程,得222(34)8(412)0k x kmx m +++-=, 由求根公式可得122834km x x k-+=,+ ④212241234m x x k -=+. ⑤ 121212120()()x x y y x x kx m kx m =+=+++221212(1)()k x x km x x m =++++,将④⑤代入上式并化简得222222(1)(412)8(34)0k m k m m k +--++=. ⑥ 将221m k =+代入⑥并化简得25(1)0k -+=,矛盾. 即此时直线l 不存在.②当l 垂直于x 轴时,满足|OP u u u r|=1的直线l 的方程为x=1或x=-1, 则A,B 两点的坐标为33(1)(1)22,,,-或(-133)(1)22,,-,-,当x=1时33(1)(1)22OA OB ,⋅=,⋅,-=u u u r u u u r504-≠;当x=-1时3(1)(12OA OB ,⋅=-,⋅-,u u u r u u u r32-5)04=-≠,∴此时直线l 也不存在.综上可知,使0OA OB ⋅=u u u r u u u r成立的直线l 不存在.12.如图,已知椭圆22221yxa b+=(a>b>0)过点2(1)2,,离心率为22,左、右焦点分别为F1、F2.点P为直线l:x+y=2上且不在x轴上的任意一点,直线1PF和2PF与椭圆的交点分别为A B,和C, D,O.为坐标原点(1)求椭圆的标准方程.(2)设直线1PF,PF2的斜率分别为1k,k2.(ⅰ)证明:12312k k-=.(ⅱ)问直线l上是否存在点P,使得直线OA OB OC OD,,,的斜率kOA,kOB,kOC,kOD满足+OAk+0OB OC ODk k k+=?若存在,求出所有满足条件的点P的坐标;存不存在,说明理由.解:(1)因为椭圆过点22(1e,=所以2221112caa b+=,=.又222a b c=+,所以21a b c==,=1.故所求椭圆的标准方程为2212x y+=.(2)(ⅰ)证明:方法一:由于1(10)F-,,F21(10)PF,,,PF2的斜率分别为1k,k2,且点P不在x轴上,所以121200k k k k≠,≠,≠.又直线12PF PF,的方程分别为12(1)(1)y k x y k x=+,=-,联立方程解得122112212k kxk kk kyk k+⎧=,⎪-⎪⎨⎪=,-⎪⎩所以121221212()k k k kPk k k k+,--.由于点P在直线x+y=2上,所以12122122k k k kk k++=-.因此1212230k k k k+-=,即12312k k-=,结论成立.方法二:设00()P x y,,则00120011y yk kx x=,=+-.因为点P不在x轴上,所以0y≠.又002x y+=,所以00001213(1)422312x x x y k k y y y y +---=-===. 因此结论成立.(ⅱ)设()()()A A B B C C A x y B x y C x y ,,,,,,()D D D x y ,.联立直线1PF 与椭圆的方程得 122(1)12y k x x y =+,⎧⎪⎨+=,⎪⎩ 化简得2222111(21)4220k x k x k +++-=,因此221122114222121A B A B k k x x x x k k -+=-,=,++由于OA,OB 的斜率存在,所以00A B x x ≠,≠,因此2101k ≠,. 因此11(1)(1)A B A B OA OB A B A By y k x k x k k x x x x +++=+=+ 211112142(2)22A B A B x x k k k k x x k +=+=--12121k k =--. 相似地,可以得到220001C D x x k ≠,≠,≠,,22221OC OD k k k k +=-,- 故1222122()11OA OB OC OD k k k k k k k k +++=-+-- 2212112222122(1)(1)k k k k k k k k -+-=--- 121222122(1)()(1)(1)k k k k k k -+=---. 若0OA OB OC OD k k k k +++=,须有120k k +=或121k k =.①当120k k +=时,结合(ⅰ)的结论,可得22k =-,所以解得点P 的坐标为(0,2);②当121k k =时,结合(ⅰ)的结论,解得23k =或21(k =-此时11k =-,不满足12k k ≠,舍去),此时直线CD 的方程为y=3(x-1),联立方程x+y=2得5344x y =,=.因此53()44P ,.综上所述,满足条件的点P 的坐标分别为(0532)()44,,,.文档鉴赏。

高中椭圆试题及答案

高中椭圆试题及答案

高中椭圆试题及答案一、选择题1. 椭圆的标准方程是()A. \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)B. \( \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \)C. \( \frac{x^2}{b^2} + \frac{y^2}{b^2} = 1 \)D. \( \frac{x^2}{a^2} + \frac{y^2}{a^2} = 1 \)2. 椭圆的焦点到椭圆上任意一点的距离之和是()A. 长轴长度B. 短轴长度C. 焦距D. 半焦距3. 椭圆的离心率范围是()A. \( 0 < e < 1 \)B. \( 0 \leq e < 1 \)C. \( e > 1 \)D. \( e \leq 1 \)二、填空题4. 已知椭圆的长轴为10,短轴为6,则其离心率为______。

5. 椭圆 \( \frac{x^2}{25} + \frac{y^2}{9} = 1 \) 的焦点坐标为______。

三、解答题6. 已知椭圆 \( \frac{x^2}{16} + \frac{y^2}{9} = 1 \),求椭圆的长轴、短轴和焦距。

7. 椭圆 \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) 经过点(3,2),若 \( a > b \),求椭圆的方程。

四、证明题8. 证明:椭圆 \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) 上的任意一点到两个焦点的距离之和等于椭圆的长轴长度。

答案:一、选择题1. A2. A3. B二、填空题4. \( \frac{\sqrt{a^2 - b^2}}{a} \)5. \( (\pm\sqrt{25-9}, 0) \) 或 \( (0, \pm\sqrt{9-25}) \)三、解答题6. 长轴:8,短轴:6,焦距:\( 2\sqrt{7} \)7. \( \frac{x^2}{9} + \frac{y^2}{5} = 1 \)四、证明题8. 证明:设椭圆上任意一点为 \( P(x, y) \),焦点为 \( F_1(-c, 0) \) 和 \( F_2(c, 0) \),则 \( PF_1 + PF_2 = \sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} \)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆练习题(文科)
1.椭圆22
11625
x y +=的焦点坐标为_______________________ 2.已知a =4, b =1,焦点在x 轴上的椭圆方程是_______________________
3.已知焦点坐标为(0, -4), (0, 4),且a =6的椭圆方程是_______________________
4.若椭圆22
110036
x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是_____ 5.已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是
(A )椭圆 (B )直线 (C )圆 (D )线段
6.过点(3, -2)且与椭圆4x 2+9y 2
=36有相同焦点的椭圆的方程是 (A )2211510x y += (B )221510x y += (C )22
11015
x y += (D )2212510x y += 7.点P 为椭圆22
154
x y +=上一点,以点P 以及焦点F 1, F 2为顶点的三角形的面积为1,则点P 的坐标是(A )(±
, 1) (B ), ±1) (C )(D )(, ±1)
8=10为不含根式的形式是
(A )2212516x y += (B )221259x y += (C )2211625x y += (D )22
1925
x y += 9.椭圆22
125
x y m m +=-+的焦点坐标是 (A )(±7, 0) (B )(0, ±7) (C )(±7,0) (D )(0, ±7)
10.过椭圆4x 2+2y 2
=1的一个焦点F 1的弦AB 与另一个焦点F 2围成的三角形△ABF 2的周长是 . 11.已知椭圆方程为22
1499
x y +=中,F 1, F 2分别为它的两个焦点,则下列说法正确的有_____ ①焦点在x 轴上,其坐标为(±7, 0);② 若椭圆上有一点P 到F 1的距离为10,则P 到F 2的距离为4;③焦点在y 轴上,其坐标为(0, ±210);④ a =49, b =9, c =40,
12.如果椭圆的焦距、短轴长、长轴长成等差数列,则其离心率为
(A )53 (B )312 (C )43 (D )910
13.设椭圆的标准方程为22
135x y k k
+=--,若其焦点在x 轴上,则k 的取值范围是_____ 14.椭圆的对称轴为坐标轴,若长、短轴之和为18,焦距为6,那么椭圆的方程为
(A )221916x y += (B )2212516x y += (C )2212516x y +=或2211625x y += (D )22
11625
x y += 15.经过点P (-3, 0), Q (0, -2)的椭圆的标准方程是 .
16.对于椭圆C 1: 9x 2+y 2
=36与椭圆C 2: 22
11612x y +=,更接近于圆的一个是 . 17.曲线221259x y +=与22
1259x y k k
+=-- (k <9)有相同的 (A )短轴 (B )焦点 (C )准线 (D )离心率
18.若椭圆22189x y k +=+的离心率为e =2
1,则k 的值等于 . 19.若椭圆的一短轴端点与两焦点连线成120°角,则该椭圆的离心率为 .
20.离心率为3
2,长轴长为6的椭圆的标准方程是 21.点P 与定点(1, 0)的距离和它到直线x =5的距离的比是
33,求P 的轨迹方程 22.椭圆22
14924
x y +=上一点P 与椭圆两焦点F 1, F 2的连线的夹角为直角,求Rt △PF 1F 2的面积。

相关文档
最新文档