时间连续状态连续的马尔科夫过程资料

合集下载

5-1时间连续、状态离散的马尔可夫过程

5-1时间连续、状态离散的马尔可夫过程

P{X (s t ) j | X (s) i, X ( ) k ( ),0 s}
P{X (s t ) j | X (s) i}
则称X(t)为时间连续的马尔可夫链。记
pij (s, t ) P{X (s t ) j | X (s) i} 如果 pij (s, t ) 与s无关,记为 pij (t )
(2) Ti与Tj独立 ( i j );
vi t F ( t ) 1 e (3) Ti服从参数为vi指数分布 i
当vi 时,称状态i为瞬时状态; 当vi 0时,称状态i为吸收状态。
解放军电子技术学院

证 (1) Ti与进入状态i的时刻无关;
P(Ti t | X (t0 ) i) P{X ( ) i, t0 t0 t | X (t0 ) i}
Gi (t s) Gi (s)Gi (t )
Gi (t ) e
vi t
解放军电子技术学院

定理1 证明泊松过程是一个时间连续的马氏 链。求泊松过程的转移概率。 已证
P{X (tn ) kn X (t1 ) k1 , X (t2 ) k2 ,
X (t2 ) X (t1 ) k2 k1 ,
kE
pik t pkj
kE
解放军电子技术学院

记:Ti为在状态i停留的时间。即: X ( ) i, 0 Ti , X (Ti ) j; X ( ) j, Ti Ti T j , X (Ti T j ) k (1) Ti与进入状态i的时刻无关; 引理:
P{X ( ) i,0 t | X (0) i}
P(Ti t | X Tj独立 (i j );

随机过程-第五章-连续时间的马尔可夫链

随机过程-第五章-连续时间的马尔可夫链

第五章 连续时间的马尔可夫链5.1连续时间的马尔可夫链考虑取非负整数值的连续时间随机过程}.0),({≥t t X定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有})(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++=})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链.由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关.记(5.1)式条件概率一般形式为),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率.定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij =其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程.假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有},{}{t h P s h t s h P i i i >=>+>可见,随机变量i h 具有无记忆性,因此i h 服从指数分布.由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;(2) 当过程离开状态i 时,接着以概率ij p 进行状态j,1=∑≠ij ij p .上述性质也是我们构造连续时间马尔可夫链的一种方法.当∞=i v 时,称状态i 为瞬时状态,因为过程一旦进入此状态立即就离开.0=i v 时,称状态i 为吸收状态,因为过程一旦进入状态就永远不再离开了.尽管瞬时状态在理论上是可能的,但以后假设对一切i, ∞<≤i v 0.因此,实际上一个连续时间的马尔可夫链是一个这样的随机过程,它按照一个离散时间的马尔可夫链从一个状态转移到另一个状态,但在转移到下一个状态之前,它在各个状态停留的时间服从指数分布.此外在状态i 过程停留的时间与下一个到达的状态必须是相互独立的随机变量.因此下一个到达的状态依赖于i h ,那么过程处于状态i 已有多久的信息与一个状态的预报有关,这与马尔可夫性的假定相矛盾.定理5.1 齐次马尔可夫过程的转移概率具有下列性质:;0)1(≥ij p (2);1=∑∈ij Ij p(3) ∑∈=+Ik kj ik ij s p t p s t p )()()(.其中(3)式即为连续时间齐次马尔可夫链的切普曼—柯尔哥洛夫方程. 证明 只证(3).由全概率公式及马尔可夫性可得 ===+=+)})0()({)(i X j s t X P s t p ij =∑∈===+Ik i X k t X j s t X P })0()(,)({=})()({})0()({k t X j s t X P i X k t X P Ik ==+==∑∈∑∈=Ik kj ik s p t p )()(.对于转移概率)(t p ij ,一般还假定它满足:⎩⎨⎧≠==→.,0,1)(lim 0j i ji t p ij t(5.3)称(5.3)式为正则条件.正则条件说明,过程刚进入某状态不可能立即又跳跃到另一状态.这正好说明一个物理系统要在有限时间内发生限多次跳跃,从而消耗无穷多的能量这是不可能的.定义5.3 对于任 一0≥t 记 },)({)(j t X P t p j ==,},)0({)0(I j j X P p p j j ∈===分别称}{},),({,I j p I j t p j j ∈∈ 齐次马尔可夫过程的绝对概率分布和初始概率分布.定理5.2齐次马尔可夫过程的绝对概率及有限维概率分布具有下列性质: (1) ,0)(≥t p j (2),1)(=∑∈t p j Ij(3) )()(t p p t p ij Ii i j ∑∈=;(4) );()()(h p t p h t p ij Ii i j ∑∈=+(5)).()...(})(,...,)({112111211-∈--====-∑n n i i i i ii Ii i n n t t p t t p p p i t X i t X p n n例5.1试证明泊松过程}0),({≥t t X 为连续时间齐次马尔可夫链. 证明 先证泊松过程具有马尔可夫性,再证明齐次性.由泊松过程的定义 它是独立增量过程,且X(0)=0.11,...0+<<<n n t t t ,有})(,...,)()({1111n n n n i t X i t X i t X P ===++= ,.)0()()()({1111i X t X i i t X t X P n n n n =--==-++ =,111212)()(,...)()(---=--=-n n n n i i t X t X i i t X t X } = })()({11n n n n i i t X t X P -=-++ . 另一方面,因为})()({11n n n n i t X i t X P ==++=})0()()()({11n n n n n n i X t X i i t X t X P =--=-++ =})()({11n n n n i i t X t X P -=-++所以})(,...,)()({1111n n n n i t X i t X i t X P ===++=})()({11n n n n i t X i t X P ==++. 即泊松过程是一个连续时间马尔可夫过程.以下证明齐次性. 当i j ≥ 时,由泊松过程的定义})()({i s X j t s X P ==+= })()({i j s X t s X P -=-+=)!()(i j t eij t---λλ j<i.时,由于过程的增量只取非负整数,故,0),(=t s p ij 所以⎪⎩⎪⎨⎧<≥-==--i j ij i j t e t p t s p i j t ij ij ,0,)!()()(),(λλ, 即转移概率只与t 有关,泊松过程具有齐次性.5.2柯尔莫哥洛夫微分方程对于连续时间齐次马尔可夫链转移概率)(t p ij 的求解一般比较复杂.下面首先讨论)(t p ij 的可微性及)(t p ij 满足的柯尔莫哥洛夫微分程.引理5.1 设齐次马尔可夫过程满足正则性条件(5.3),则对于任意固定的)(,,t p I j i ij ∈是t 的一致连续函数.证明 设h>0,由定理5.1得)()()()()(t p t p h p t p h t p ij rj Ir ir ij ij -=-+∑∈)()()()()(t p t p h p t p h p ij ij ii rj ir ir -+=∑≠=)()](1[)()(t p h p t p h p ij ii rj ir ir --=∑≠故有)],(1[)()](1[)()(h p t p h p t p h t p ii ij ii ij ij --≥--=-+ ),(1)()()()()(h p h p t p h p t p h t p ii ir ir rj ir ir ij ij -=≤≤-+∑∑≠≠因此).(1)()(h p t p h t p ii ij ij -≤-+对于h<0,同样有).(1)()(h p t p h t p ii ij ij --≤-+ 综上所述得到).(1)()(h p t p h t p ii ij ij -≤-+ 由正则性条件知,0)()(lim 0=-+→t p h t p ij ij h 即)(t p ij 关于t 是一致连续的.以下我们恒设齐次马尔可夫过程满足正则性条件(5.3)式.定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率,则下列极限存在 (1);)(1lim 0∞≤==∆∆-→∆ii i ii t q v t t p (2).,)(lim 0j i q tt p ij ij t ≠∞<=∆∆→∆我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移概率或跳跃强度.定理中的极限的概率意义为:在长为t ∆的时间区间内,过程从状态i 转移到另一其他状态的转移概率为)(1t p ii ∆-等于t q ii ∆加一个比t ∆高阶的无穷小量,而过程从状态i 转移到状态j 的转移概率为)(t p ij ∆等于t q ij ∆加一个比t ∆高阶的无穷小量. 推论 对有限齐次马尔可夫过程,有 ∞<=∑≠ij ij ii q q证明 由定理5.1 ,有)()(1,1)(t p t p t pij ij ii Ij ij∆=∆-=∆∑∑≠∈由于求和是在有限集中进行,故有.)(lim )(1lim 00∑∑≠≠→∆→∆=∆∆=∆∆-=ij ij ij i j t ii t ii q t t p t t p q (5.4)对于状态空间无限的齐次马尔可夫过程,一般只有 ∑≠≥ij ij ii q q .若连续时间齐次马尔可夫是具有有限状态空间I={0,1,2,…,n},则其转移速率构成以下形式的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=nn n n n n q q q q q qq q q Q .....................11111000100 (5.5) 由(5.4)式知,Q 矩阵的每一行元素之和为0,对角线元素为负或0,其余.0,≥ij q 利用Q 矩阵可以推出任意时间间隔t 的转移概率所满足的方法组,从而可以求解转移概率.由切普曼---柯尔莫哥洛夫方程有 ),()()(t p h p h t p Ik kj ik ij ∑∈=+或等价地)()](1[)()()()(t p h p t p h p t p h t p ij ii kj ik ik ij ij --=-+∑≠两边除以h 后令0→h 取极限,应用定理5.3得到 )()()(lim )()(lim 00t p q t p hh p ht p h t p ij ii kj ik ik h ij ij h -=-+∑≠→→ (5.6) 假定在(5.6)式的右边可交换极限与求和,再运用定理5.3,于是得到以下结论: 定理5.4 (柯尔莫哥洛夫向后方程)假设,ii ik ik q q =∑≠则对一切i,j 及0≥t ,有,)()(ij ii ik kj ik ijp q t p q t p -='∑≠ (5.7) 证明 只要证明(5.6)式右边极限与求和可交换次序.现在对于任意固定的N,有≥∑≠→)()(inflim 0t p hh p kj ik ik h )()()(inf lim ,,0t p q t p h h p kj Nk i k ik kj Nk i k ik h ∑∑<≠<≠→= 因为上式对一切N 成立,所以)()()(inflim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≥ (5.8) 为了倒转不等式,注意对于N>i,由于,1)(≤t p kj 所以 ≤∑≠→)()(sup lim ,0t p hh p kj i k ik h ≤+≤∑∑≥<≠→])()()(sup[lim ,0Nk ik kj Nk i k ik h h h p t p h h p ≤--+≤∑∑<≠<≠→])()(1)()(sup[lim ,,0Nk i k ik ii kj Nk i k ik h h h p h h p t p h h p ,)(,,∑∑<≠<≠-+≤Nk i k ikii kj Nk i k ikqq t p q令∞→N ,由定理5.3和条件得)()()(sup lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≤. 上式连同(5.8)可得 )()()(lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→=.定理5.4中)(t p ij 满足的微分方程组以柯尔莫可洛夫向后方程著称.称它们为向后方程,是因为在计算时刻t+h 的状态的概率分布时我们对退后到时刻h 的状态取条件,即我们从)()(})0()({..})(,)0()({)(h p t p i X k h X P k h X i X j h t X P h t p ik Ik kj Ik ij ∑∑∈∈======+=+开始计算.对时刻t 的状态取条件,我们可以导出另一组方程,称为柯尔莫哥洛夫向前方程.可得),()()(h p t p h t p kj Ik ik ij ∑∈=+)()()()()(t p h p t p t p h t p ij kj Ik ik ij ij -=-+∑∈=)()](1[)()(t p h p h p t p ij jj kj jk ik --=∑≠,所以 )}.()(1)()({lim )()(lim 00t p h h p h h p t p ht p h t p ij jj kj jk ik h ij ij h --=-+∑≠→→假定我们能交换极限与求和,则由定理5.3便得到),()()(t p q q t p t p ij ii jk kj ik ij-='∑≠ 令人遗憾的是上述极限与求和的交换不是恒成立,所以上式并非总是成立.然而在大多数模型中----包括全部生灭过程与全部有限状态的模型,它们是成立的. 定理5.5(柯尔莫哥洛夫向前方程) 在适当的正则条件下,,)()()(jj ij kj ik ik ijq t p q t p t p -='∑≠ (5.9) 利用方程组(5.7)或(5.9)及初始条件 .,0)0(,1)0(j i p p ij ii ≠==我们可以解得)(t p ij .柯尔莫哥洛夫向后和向前方程虽然形式不同,但是可以证明它们所求得的解)(t p ij 是相同的.在实际应用中,当固定最后所处状态j,研究)(t p ij 时(i=0,1,2,…,n),采用向后方程比较方便;当固定状态i,研究)(t p ij 时(j=0,1,2,…,),则采用向前方程较方便.向后方程和向前方程可以写成矩阵形式),()(t QP t P =' (5.10) ,)()(Q t P t P =' (5.11) 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---= (222120121110)020100q q q q q qq q q Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=............ (222120121110)020100p p p p p pp p p P 这样,连续时间马尔可夫链的转移概率的求解问题就是矩阵微分方程的求解问题,其转移概率由其转移速率矩阵Q 决定.特别地,若Q 是一个有限维矩阵,则(5.10)和(5.11)的解为 .!)()(0∑∞===j jQtj Qt et P定理5.6 .齐次马尔可夫过程在t 时刻处于状态I j ∈的绝对概率)(t p j 满足下列方程:.)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' (5.12)证明 由定理5.2,有)()(t p p t p ij Ii i j ∑∈=t将向前方程(5.9)式两边乘以,i p 并对i 求和得.)())(()(kj jk ikiIi jj ijiIi ijIi iq t pp q t pp t p p ∑∑∑∑≠∈∈∈+-='故 .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' .与离散马尔可夫链类似,我们讨论转移概率 )(t p ij 当 ∞→t 时的极限分布与平稳分布的有限性质.定义5.4 设)(t p ij 为连续时间马尔可夫链的转移概率,若存在时刻 21,t t ,使得 ,0)(1>t p ij ,0)(2>t p ij则称状态i 和j 是互通的.若所有状态都是互通的,则称此马尔可夫链为不可约的.定理5.7 设连续时间的马尔可夫是不可约的,则有下列性质:(1) 若它是正常返的,则极限)(lim t p ij t ∞→存在且等于.,0I j j ∈>π这里.,0I j j ∈>π是方程组1,==∑∑∈≠Ij j kj jk k jj j q q πππ (5.13)的唯一非负解.此时称.,0{I j j ∈>π是该过程的平稳分布,并且有 .)(lim j j t t p π=∞→ (2) 若它是零常返的或非常返的,则.,,0)(lim )(lim I j i t p t p j t ij t ∈==∞→∞→在实际问题中,有些问题可以用柯尔莫哥洛夫方程直接求解,有些问题虽然不能求解但是可以用方程(5.13)求解.例5.2 考虑两个状态的连续时间马尔可夫链,在转移到状态1之前链在状态0停留的时间是参数为λ的指数变量,而在回到状态0之前它停留在状态1的时间是参数为μ的指数变量,显然该链是一个齐次马尔可夫过程,其状态转移概率为 ),()(01h o h h p +=λ),()(10h o h h p +=μ由定理5.3知由柯尔莫哥洛夫向前方程得到)()()(000100t p t p t p λμ-='=,)()(00μμλ++-t p 其中最后一个等式来自).(1)(0001t p t p -=因为,1)0(00=p 由常数变易法得 ,)()(00t e t p μλμλλμλμ+-+++=若记,,00μλμμμλλλ+=+=则,)()(0000t e t p μλλμ+-+=类似地由向前方程)()()(010001t p t p t p μλ-=' ,)()(lim )(1lim 1001010011011q h p dhdhh p h h p q h h h ====-==→→μ,)()(lim )(1lim 0100101000000q h p dhdhh p h h p q h h h ====-==→→λ可解得 ,)()(0001t e t p μλλλ+--= 由对称性知,)()(0011t e t p μλμλ+-+= ,)()(0010t e t p μλμμ+--= 转移概率的极限为),(lim )(lim 10000t p t p t t ∞→∞→==μ),(lim )(lim 11001t p t p t t ∞→∞→==λ 由此可见,当∞→t 时, )(t p ij 的极限存在且与i 无关.定理5.6知,平稳分布为 0100,λπμπ== 若取初始分布为平稳分布,即,}0)0({00μ===p X P ,}1)0({01λ===p X P 则过程在时刻t 的绝对概率分布为 )()()(1010000t p p t p p t p +==0)(000)(00]1[][μμλμλμμλμλ=-+++-+-t t e e=0)(000)(00][]1[λμλλλμμλμλ=++-+-+-t t e e .例5.3 机器维修问题.设例5.2中状态0代表某机器正常工作状态1代表机器出故障.状态转移概率与例5.2相同,即在h 时间内,机器从正常工作变为出故障的概率为),()(01h o h h p +=λ在h 时间内,机器从有故障变为经修复后正常工作的概率为),()(10h o h h p +=μ试求在t=0时正常工作的机器,在t=5时为正常工作的概率. 解 由例5.2已求得该过程的Q 矩阵为⎪⎪⎭⎫⎝⎛--=μμλλQ .根据题意,要求机器最后所处的状态为正常工作,只需计算)(00t p 即可. 由例5.2知,)()(0000t e t p μλλμ+-+=,,00μλμμμλλλ+=+=故 ,)5(5)(0000μλλμ+-+=e p 因为P{X(0)=0}=1=,0p 所以)()()(1010101t p p t p p t p +=====)5()5(}0)5({0000p p p X P .)5(5)(0000μλλμ+-+=e p5.3 生灭过程连续时间马尔可夫链的一类重要特殊情形是生灭过程,它的特征是在很短的时间内,系统的状态只能从状态i 转移到状态i-1或i+1或保持不变,确切定义如下. 定义5.5 设齐次马尔可夫过程}0),({≥t t X 的状态空间为I={0,1,2,…},转移概率为)(t p ij ,如果,0),()(1,>+=+i i i i h o h h p λλ,0,0),()(01,=>+=-μμμi i i i h o h h p),()(1)(,h o h h p i i i i ++-=μλ则称 }0),({≥t t X 为生灭过程,i λ为出生率, i μ为死亡率.若,λλi i =μλμμ,(,i i =是正常数),则称}0),({≥t t X 为线性生灭过程. 若0≡i μ,则称}0),({≥t t X 为纯生过程. 若0≡i λ,则称}0),({≥t t X 为纯灭过程. 生灭过程可作如下概率解释:若以X(t)表示一个生物群体在t 时刻的大小,则在很短的时间h 内(不计高阶无穷小),群体变化有三种可能,状态由i 变到i+1,即增加一个个体,其概率为h i λ;.状态由i 变到i-1,即减少一个个体,.其概率为h i μ;群体大小保持不变,其概率为.)(1h i i μλ+-由定理5.3得到,0,)()(,0≥+=-==i h p dhd t q i i h ii ii μλ ⎩⎨⎧≥-=≥+====,1,1,,0,1,)()(0i i j i i j h p dh d t q ii h ij ij μλ ,2,0≥-=j i q ij故柯尔莫哥洛夫向前方程为.,),()()()()(1,11,1I j i t p t p t p t p j i j ij j j j i j ij∈++-='++--μμλλ 故柯尔莫哥洛夫向后方程为.,),()()()()(,11,I j i t p t p t p t p j i i ij j j j i i ij∈++-='+-λμλμ 因为上述方程组的求解较为困难,我们讨论其平稳分布.由(5.13)式,有 ,2),()(,≥-=j i h o h p j i,1100πμπλ=.1,)(1111≥+=+++--j j j j j j j j πμπλπμλ逐步递推得,0101πμλπ=…, ,11--=j jj j πμλπ 再利用11=∑∞=j j π,得平稳分布,11211100)......1(-∞=-∑+=j j j μμμλλλπ, 112111021110)......1(......-∞=--∑+=j jj j j j μμμλλλμμμλλλπ 例5.4 生灭过程例子M/M/S 排队系统.假设顾客按照参数为λ的泊松过程来到一个有s 个服务员的服务站,即相继来到之间的时间是均值为λ1的独立指数随机变量,每一个顾客一来到,如果有服务员空闲,则直接进行服务,否则此顾客加入排队系列.当一个服务员结束对一位顾客的服务时顾客就离开服务系统,排队中的下一顾客进入服务. 假定相继的服务时间是独立的指数随机变量,均值为μ1.如果我们以X(t)记时刻t 系统中的人数,则}0),({≥t t X 是生灭过程⎩⎨⎧>≤≤=,,,1,s n s s n n n μμμ .0,≥=n n λλM/M/s 排队系统中M 表示马尔可夫过程,s 代表s 个服务员.特别在M/M/1排队系统中,μμλλ==n n ,,若1<μλ,则由(5.14)可得 .0),1()()(1)(1≥-=+=∑∞=n n n nnn μλμλμλμλπ。

马尔可夫过程

马尔可夫过程

马尔可夫过程用于描述连续时间变化下具有离散状态的随机过程,可用来分析系统可用度。

Isograph的Markov工具采用马尔可夫过程方法,对系统状态转移图进行可用度分析。

对于产品在寿命周期连续时间下离散工作状态的分析,Markov过程分析方法是一个有力的数学工具。

马尔可夫分析法(Markov)以系统状态转移图为分析对象,对服从给定状态转移率系统的离散稳定状态或连续时间变化状态进行分析。

在该模型中系统的连续时间变化被划分成多个状态以代表不同时刻的工作模式,比如故障状态或修理状态。

Markov分析方法在可靠性分析领域具有明显的促进作用,例如在可靠性框图分析和故障树分析工作中。

Isograph的Markov工具是应用马尔可夫过程分析的最佳工具。

用户在图形化的界面中建立多状态马尔可夫过程模型,并将这些模型集成到故障树分析中。

建立好状态转移图后,用户可以在简单对话框中输入状态转移概率。

用户可以使用编辑工具尝试输入不同的设定数据对图表进行调整。

系统的寿命周期可以划分为多个工作阶段,如预防维修阶段或待命阶段。

马尔可夫过程模型可以精确地描述产品失效机制之间的依赖关系,如对共因故障、衰减故障、诱因故障、从属故障以及包含多种运行状态的部件和其它时序事件。

Isograph的Markov工具使用状态转移图来分析系统可靠性问题。

在Markov工具中,用户可以使用完整的图形编辑工具定义产品寿命周期各阶段状态之间的联系关系,既节省了画图的大量时间,又提高了图形绘制结果的准确性,而且用户还可以将更多的精力投入到系统的设计分析工作中。

Markov工具提供可视化界面来建造图表并用数值积分法来解决问题,通过定义与时间相关的转移率来分析非均匀过程。

严格地讲,具有与时间相关的转移率的系统是非马尔可夫链的,但是Markov工具的附加功能允许模拟特定类型的时效过程。

状态转移图定义了系统所有的离散状态和状态间可能的转移。

在Markov中状态间的转移频率仅仅由当前状态的概率和状态间的转移率决定。

连续时间的马尔可夫链

连续时间的马尔可夫链
P X t n 1 i n 1 X t1 i1 , X t 2 i 2 , ..., X t n i n P X t n 1 in 1 X t n in




成立,称{X(t),t ≥0}为连续参数马尔可夫链。
(0)
1, Pij
(0)
1 , i j 0 ( i j ) 知 lim p ij ( t ) t 0 0 , i j
定义5.5:连续参数齐次马氏链{X(t),t ≥0}称 p P X 0 j
j
即X(0)的概率分布,为连续参数齐次马氏链的初 始分布。 称
ii ii
(1) lim
1 p ii ( t ) t p ij ( t ) t
t 0
i q ii
( 2 ) lim
t 0
q ij , j i
q ii 表 示 在 t时 刻 通 过 状 态 i的 通 过 速 度 , q ij 表 示 在 时 刻 t由 状 态 i 到 状 态 j的 速 度 。

由切普曼-柯尔莫哥洛夫方程有

kI
p ij ( t h )
p ik ( h ) p k j ( t )
p ij ( t h ) p ij ( t ) p ij ( t ) lim

k i
p ik ( h ) p k j ( t ) [1 p ii ( h )] p ij ( t )
e p ij ( s , t ) p ij ( t ) 0
t
( j i )! , j i
, j i
转移概率与s无关,泊松过程具有齐次性。

马尔可夫决策过程中的连续时间建模方法(Ⅱ)

马尔可夫决策过程中的连续时间建模方法(Ⅱ)

马尔可夫决策过程(Markov Decision Process, MDP)是一种用来描述随机决策过程的数学模型。

在实际应用中,很多问题都可以被建模成MDP并通过合适的算法进行求解。

在MDP中,状态空间、动作空间和奖励函数的离散性是基本前提,但在某些应用中,这些变量可能是连续的。

本文将介绍马尔可夫决策过程中的连续时间建模方法,探讨其在实际问题中的应用。

一、连续时间马尔可夫决策过程MDP最早是由Bellman提出的,它适用于描述状态和动作都是离散的情形。

但是,很多实际问题中,状态空间和/或动作空间是连续的,这时需要进行连续时间建模。

连续时间MDP(Continuous-time Markov Decision Process, CTMDP)是对MDP的一种扩展,它考虑状态和动作空间是连续的情形。

在CTMDP中,状态转移由随机微分方程描述,动作空间是连续的。

状态空间一般也是连续的,但有时也可以是离散的。

奖励函数在时间上是连续的,与状态和动作相关。

CTMDP的目标是找到一个策略,使得期望累积奖励最大化。

二、CTMDP的求解方法CTMDP的求解方法与MDP有些不同。

在MDP中,常用的求解方法是值迭代或策略迭代,但这些方法不适用于CTMDP,因为连续状态空间和动作空间使得价值函数和策略函数难以表示。

对于CTMDP,常用的求解方法是近似动态规划。

近似动态规划是通过近似值函数和/或策略函数来求解CTMDP的方法。

其中,近似值函数方法包括函数逼近和蒙特卡洛方法,而近似策略函数方法包括策略梯度和Q-learning等。

近似值函数方法通过对值函数进行逼近来求解CTMDP。

常用的函数逼近方法包括线性函数逼近、非线性函数逼近和神经网络逼近等。

在CTMDP中,值函数是关于状态和动作的函数,它的逼近可以通过对状态和动作空间进行离散化,然后对每个离散状态和动作进行值函数逼近。

此外,蒙特卡洛方法也可以用于求解CTMDP,它通过采样得到的轨迹来估计值函数。

马尔可夫决策过程中的连续时间建模方法(四)

马尔可夫决策过程中的连续时间建模方法(四)

马尔可夫决策过程(Markov Decision Process, MDP)是用来描述随机决策过程的数学框架,它包括一个状态空间、一个动作空间和一个奖励函数。

MDP可以应用于很多领域,比如人工智能、运筹学和经济学等。

在这篇文章中,我们将讨论马尔可夫决策过程中的连续时间建模方法。

首先,让我们回顾一下标准的离散时间马尔可夫决策过程。

在离散时间模型中,状态和动作空间是有限的,时间步长是离散的。

然而,在现实世界中,许多决策问题的时间是连续的,比如股票交易、机器人控制等。

因此,我们需要将马尔可夫决策过程扩展到连续时间模型。

在连续时间模型中,状态和动作空间通常是无限的。

为了解决这个问题,我们可以使用随机微分方程(Stochastic Differential Equations, SDE)来建模状态的演化。

SDE是一种描述随机过程的微分方程,它可以用来描述状态在连续时间内的变化。

在连续时间马尔可夫决策过程中,我们可以将SDE和MDP结合起来,得到一个连续时间的马尔可夫决策过程模型。

为了解决连续时间MDP的求解问题,我们可以使用一些数值方法,比如蒙特卡洛方法、动态规划和近似方法等。

蒙特卡洛方法是一种基于随机抽样的求解方法,它可以用来估计价值函数和策略函数。

动态规划是一种递归求解方法,它可以用来求解最优策略和价值函数。

近似方法是一种用来处理大规模问题的方法,它可以用来近似求解连续时间MDP模型。

在实际应用中,连续时间MDP模型可以应用于很多领域。

比如,在金融领域,我们可以使用连续时间MDP模型来建立股票交易策略。

在工程领域,我们可以使用连续时间MDP模型来设计自动控制系统。

在医疗领域,我们可以使用连续时间MDP 模型来制定治疗方案。

总之,连续时间MDP是马尔可夫决策过程的一个重要扩展,它可以应用于很多实际问题,并且可以通过数值方法来求解。

希望本文可以对读者理解马尔可夫决策过程中的连续时间建模方法有所帮助。

马尔可夫决策过程中的连续时间建模方法(八)

马尔可夫决策过程中的连续时间建模方法(八)

在现实生活中,我们经常面临需要做出决策的情况,例如在金融市场中选择投资策略、在医疗领域中做出治疗方案等。

在这些情况下,我们需要考虑各种不确定性因素,并且需要基于当前的状态做出最优的决策。

这正是马尔可夫决策过程(Markov Decision Process,MDP)所涉及的问题。

MDP是一个能够描述在随机环境中做出决策的数学框架,它包括状态空间、动作空间、状态转移概率、奖励函数等要素。

而在实际应用中,为了更好地建模和求解MDP,连续时间建模方法变得尤为重要。

一、连续时间马尔可夫决策过程概述连续时间马尔可夫决策过程(Continuous-Time Markov Decision Process,CTMDP)是MDP的一种扩展,它考虑的是状态和动作的连续性。

在CTMDP中,状态空间和动作空间通常是连续的,而状态转移概率和奖励函数也会随着时间的变化而变化。

这使得CTMDP在描述一些实际问题时更加准确和灵活。

二、连续时间马尔可夫决策过程的建模在CTMDP的建模过程中,需要考虑状态空间、动作空间、状态转移率、奖励函数等要素。

对于状态空间和动作空间是连续的情况,通常会使用概率密度函数来描述状态和动作的分布。

状态转移率和奖励函数也会相应地被表示为连续的函数。

这种连续性的描述能够更准确地反映系统的动态演化过程,从而为决策提供更充分的信息。

三、连续时间马尔可夫决策过程的求解求解CTMDP通常是通过一些数学方法和算法来实现的。

其中,最常用的方法之一是动态规划。

动态规划是一种基于状态值函数或者动作值函数的迭代算法,它能够找到最优的策略和值函数。

在CTMDP中,由于状态空间和动作空间是连续的,因此通常需要使用适当的数值计算方法来近似求解。

例如,常用的方法包括蒙特卡洛方法、时序差分学习方法等。

四、连续时间马尔可夫决策过程的应用CTMDP在实际应用中有着广泛的应用,例如在金融领域中,可以用来描述股票价格的变化,并且基于当前的价格做出投资决策;在医疗领域中,可以用来制定个性化的治疗方案,并且根据患者的实时状态做出调整。

工程随机过程_3_马尔可夫过程(Markov)

工程随机过程_3_马尔可夫过程(Markov)

College of Science, Hohai University
Stochastic Processes
定理2 若随机变量序列{X(n),n0}对任何n 均满足下式,则该序列为马氏链。
P{ X (0) i0 , X (1) i1 ,, X ( n) in }
P { X ( 0) i 0 } P{ X (1) i1 | X (0) i0 } P{ X ( 2) i2 | X (1) i1 } P { X ( 3 ) i 3 | X ( 2) i 2 } P{ X ( n) in | X ( n 1) in1 }
Pn ( P1 )
n
College of Science, Hohai University
Stochastic Processes
初始概率分布: 马氏链在初始时刻(即零时刻)取各状态 的概率分布 p0 ( i0 ) P{ X (0) i0 } i E 0 称为它的初始概率分布。 绝对概率分布: 马氏链在第n时刻(n 0)取各状态的概 率分布 p ( j ) P{ X (n) j } j E
第三章
马尔可夫过程 (Markov)
College of Science, Hohai University
Stochastic Processes
Markov过程是一个具有无后效性的随机过程. 无后效性: 当过程在时刻tm所处的状态为已知时, 过程在 大于tm的时刻t所处状态的概率特性只与过程在 tm时刻所处的状态有关, 而与过程在tm时刻之前 的状态无关. (1)参数和状态都离散 -----马氏链 (2)参数离散, 状态连续 -----马氏序列 (3)其余皆为马氏过程.

随机过程 14连续时间马尔科夫链

随机过程 14连续时间马尔科夫链

p21 ( t ) ?
pm1(t )
p12 (t) ? p22 (t ) ?
?? pm 2(t ) ?
p1m
(
t
)
? ?
p2m (t ) ?
? pmm(Βιβλιοθήκη t)? ???
证 由概率的定义,(1)(2) 显然成立,下证(3)
pij (t ? s) ? P{X (t ? s) ? j | X (0) ? i}
? 则称{X(t),t ? 0 }为连续时间马尔可夫链。
经过时间t后的转移概率
转移概率:在s时刻处于状态i,经过时间t后 转移到状态j的概率: pij(s,t)= P{X(s+t)=j|X(s)=i}
定义5.2 齐次转移概率 pij(s,t)=pij(t)
(与起始时刻s无关,只与时间间隔t有关)
? 经过时间t转移概率矩阵: P(t)=(pij(t)) ,i,j? I,t ? 0
? ? P{X (t ? s) ? j, X (t ) ? k | X (0) ? i} k? I
? ? P{X (t ? s) ? j | X (t) ? k , X (0) ? i}?P{X (t) ? k | X (0) ? i} k? I
? ? P{X (t ? s) ? j | X (t ) ? k }P{X (t ) ? k | X (0) ? i} k? I
? (2)
pij (t) ? 1;
j? I
? (3) pij (t ? s) ? pik (t ) pkj (s) k? I
? 性质3用矩阵表示就是:
? ?
p11 (s
?
t)
? p21(s ? t )
? ???

2014第七章 马尔可夫过程

2014第七章 马尔可夫过程
E[( X (ta ) X (tb ))( X (tc ) X (td ))] 2 (ta tb )(tc td )
若 ta tc tb td,则时间间隔 (ta tb ) 和 (tc td ) 相重叠(图2b)),因此, 上式不再成立。
td td tc tb (b) tb (a) tc ta ta
PX n X 1 ,, X n1 xn ; t n x1 , , xn 1 ; t1 , , t n 1
Pn xn xn1; tn1 , tn
PX n X n1 xn ; t n xn 1 ; t n 1
PX n X n1 xn , xn 1 ; t n 1 , t n PX n1 xn 1 ; t n 1

k

e

(k 1)!
k 1

k 1
= e e (ta tb ) ②. 均方值与方差 令 (ta tb ) ,故均方值为
k k k E[( X (ta ) X (tb )) ] k e k (k 1) e k e k! k! k! k 0 k 0 k 0 k 2 2 2 2 (ta tb )2 (ta tb ) = e k 2 (k 2)!
a b
先来讨论服从泊松分布的随机变量[ X (ta ) X (tb )] 及 [ X (tc ) X (td )] 的数学期望,方差和相关函数等统计量。
(ta tb ) ,因此,均值为 ①.数学期望 令
E[ X (ta ) X (tb )] k e k! k 0
2 2
而方差为

第五章连续时间马尔可夫链随机过程

第五章连续时间马尔可夫链随机过程

三、生灭过程 定义:具有状态 0,1,2, 的连续时间马尔可夫链若 | i j | 1 时
qij 0,则称为生灭过程。一个生灭过程从状态 i 只能转移到状
态 i-1 或 i+1,当状态增长 l 时,就说生了一个;而当它减少 1 分别称为生长率与死亡率。因为
vi i i , Pi ,i 1
对一切 i j , qij 定义为 qij vi Pij 因为 v i 是过程离开状态 i 的速率而 Pij 是它转移到 j 的概率,所以
qij 是过程从状态 i 转移到状态 j 的速率;称 qij 是从 i 到 j 的转移
率。显然 vi qij
ji
因此,可以这样设想马尔可夫过程,每当过程处于状态 i 时, 直 到 转 移 到 状 态 j 的 时 间 服 从 参 数 为 qij 的 指 数 分 布 ,
j 0,1,
则在 i 逗留时间为 , i 1, i 1, பைடு நூலகம்这些时间互相独立,
直到转移到各状态的时间中的最短的时间,服从参数为
v i qij 的指数分布。
ji
以 Pij ( t ) 记马尔可夫链现在处于状态 i,再经过一段时间 t 后处于状态 j 的概率,即 Pij (t ) P{ X (t s ) j | X ( s ) i }
0
0 1
1
2 …
2
3
n 1

n
n
1
2
3
n
n1
图中的圆圈表示状态,圆圈中的标号是状态符号。图中的箭头表 示从一个状态到另一个状态的转移。
例 5.3(a) 两个生灭过程。 (1) M/M/s 排队系统.顾客按照参数为 的泊松过程来到一个 有 s 个服务员的服务站,每个顾客一来到,如果有服务员空闲,则 直接进入服务 ,否则顾客排队等待 .当一个服务员结束对一位顾 客的服务时,顾客便离开服务系统,排队中的下一个顾客 (若有顾 客在等待)进入服务.相继的服务时间是独立的指数随机变量 ,均 值为 1/.以 X(t)记时刻 t 系统中的人数,则{X(t),t0}是生灭过程.

马尔可夫链

马尔可夫链

马尔可夫链马尔可夫过程按其状态和时间参数是连续的或离散的,可分为三类: (1) 时间,状态都是离散的马尔可夫过程,称为马尔可夫链.(2) 时间连续,状态离散的马尔可夫过程,称为连续时间的马尔可夫 (3) 时间,状态都连续的马尔可夫过程. 4.1马尔可夫链的概念及转移概率 一,定义假设马尔可夫过程},{T n X n ∈的参数集T 是离散的时间集合,即 T={0,1,2,…},其相应n X 可能取值的全体组成的状态空间是离散的状态集,...}.,{21i i I =定义4.1 设有随机过程},{T n X n ∈,若对于任意的整数T n ∈和任意的I i i i i n ∈+.,...,,,1210,条件概率满足n n n n i X i X i X i X P ====++,...,,{110011}=},{11n n n n i X i X P ==++ (4.1) 则称},{T n X n ∈为马尔可夫链,简称.马氏链.(4.1)式是马尔可夫链的马氏性(或无后效性)的数学表达式.由定义知 ],...,,{1100n n i X i X i X P =====}.,...,,{111100--====n n n n i X i X i X i X P },...,,{111100--===n n i X i X i X P =}{11--==n n n n i X i X P .},...,,{111100--===n n i X i X i X P =… =}{11--==n n n n i X i X P }{2211----==n n n n i X i X P …}{0011i X i X P ==}.{00i X P =可见,马尔可夫链的统计特性完全由条件概率}{11n n n n i X i X P ==++所决定. 二,转移概率条件概率}{1i X j X P n n ==+的直观含义为系统在时刻n 处于状态i 的条件下,在时刻n+1系统处于状态j 的概率.它相当于随机游动的质点在时刻n 处于状态i 的条件下,下一步转移到状态j 的概率.记此条件概率为).(n p ij 定义4.2 称条件概率).(n p ij = }{11n n n n i X i X P ==++为马尔可夫链},{T n X n ∈在时刻n 的一步转移概率,其中i,j I ∈,简称为转移概率. 定义4.3 若对任意i,j I ∈,马尔可夫链},{T n X n ∈的转移概率).(n p ij 与n 无关,则称马尔可夫链是齐次的,并记).(n p ij 为.ij p下面我们只讨论齐次马尔可夫链,通常将齐次两字省略.设p 表示一步转移概率.ij p 所组成的矩阵,且状态空间I={1,2,…},则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=...........................2222111211nnp p p p p p p 称为系统的一步转移概率矩阵,它有性质: (1) .,1)2(;,,0∑∈∈=∈≥Ij ij ijI i p I j i p通常称满足上述(1),(2)性质的矩阵为随机矩阵. 定义4.4称条件概率ij n p )(= )1,0,,(},{≥≥∈==+n m I j i i X j X P m n m 为马尔可夫链},{T n X n ∈的n 步转移概率,.并称)()()(n ij n p p =为马尔可夫链的n 步转移矩阵,其中(1) .,1)2(;,,0)(∑∈∈=∈≥Ij ij n ij n I i p I j i p 即也是随机矩阵.当n=1 时, .)1(ij p =.ij p ,此时一步转移矩阵.)1(p p =此外我们规定 ⎩⎨⎧=≠=.,1,,0)0(j i j i pij定理4.1设},{T n X n ∈为马尔可夫链,则对任意整数n l n <≤≥0,0和,,I j i ∈n 步转移概率.)(ij n p 具有下列性质:(1)))()()(l n kj Ik l ik n ij p p p -∈∑=; (4.2)(2) ;......112111)(j k Ik k k ik Ik n ij n n p p p p --∑∑∈∈= (4.3)(3);)1()(-=n n PP P (4.4) (4).)(n n P P =(4.5)证明(1) 利用全概率公式及马尔可夫性,有}{)(i X j X P p m n m n ij ===+=}{},{i X P j X i X P m n m m ===+}{},{.},{},,{i X P k X i X P k X i X P j X k X i X P m l m m Ik l m m n m l m m =========+∈+++∑}{}{i X k X P k X j X P m l m l m Ik n m =====++∈+∑=)()()()(m p l m p l ik Ik l n ij +∑∈-=)()(.l n kjIk l ik p p -∈∑. (2)在(1)中令1,1k k l ==得))1()(111-∈∑=n jkIk ik n ij p p p 这是一个递推公式,可递推下下去即得(4.3). (3)在(1).令l=1利用矩阵乘法可得. (4) 由(3),利用归纳法可证.定理4.1中的(1)式称为切普曼---柯尔哥洛夫方程,简称C-K 方程 .定义4.5设},{T n X n ∈为马尔可夫链,称 },{0j X P p j ==)(},{)(I j j X P n p n j ∈==为},{T n X n ∈的初始概率和绝对概率,并分别称}),({},,{I j n p I j p j j ∈∈为},{T n X n ∈的初始分布和绝对分布.简记为}.),({},,{n p p j j 称概率向量 )0(),...),(),(()(21>=n n p n p n P T 为n 时刻的绝对概率向量,而称)0(,...),,(21>=n p p P T为初始向量.定理4.2设},{T n X n ∈为马尔可夫链,则对任意整数I j n ∈≥,1,绝对概率).(n p j 具有下列性质:(1)))()(n ij Ii i j p p n p ∑∈=; (4.6)(2) ij Ii i j p n p p )1(-=∑∈ (4.7)(3);)0()()(n T T P P n P = (4.8) (4)P n P n P T T )1()(-= (4.9)证明(1) ===}{)(j X P n p n j},{0j X i XP n Ii ==∑∈= }{}{00i X P i X j XP nIi ===∑∈ =)(n ijIi i p p ∑∈ (2)===}{)(j X P n p n j },{1j X i X P n Ii n ==∑∈-=}{}{11i X P i X j X P n n n Ii ===--∈∑==ij Ii i p n p ∑∈-)1((3)与(4)是(1)与(2)的矩阵形式.定理4.3 设},{T n X n ∈为马尔可夫链,则对任意,1,,...,1≥∈n I i i n 有 },...{11n n i X i X P ===....11n n i i ii i p p p -∑ (4.10) 证明 由全概率公式及马氏性有},...{11n n i X i X P ===},...,,{110n n Ii i X i X i X P ===∈=},...,,{110n n Ii i X i X i X P ===∑∈=}.,{}{0110i X i X P i X P Ii ===∑∈...},...,{110--===n n n n i X i X i X P=}.,{}{0110i X i X P i X P Ii ===∑∈..}{11--==n n n n i X i X P=n n i i ii Ii i p p p 11...-∑∈.三,马尔可夫链的例子例4.1 无限制随机游动设质点在数轴上移动,每次移动一格,向右移动的概率为p,向左移动的概率为 q=1-p,这种运动称为无限制随机游动.以n X 表示时刻n 质点所处的位置,则},{T n X n ∈是一个齐次马尔可夫链,试写出它的一步和k 步转移概率. 解 },{T n X n ∈的状态空间,...},2,1,0{±±=I 其一步转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=.....................00.........0.....................p q p q P 设在第k 步转移中向右移了x 步向左移动了y 步,且经过k 步转移状态从j 进入j,则⎩⎨⎧-=-=+i j y x k y x ,.2)(,2)(i j k y i j k x --=-+=由于x,y 都只取整数,所以)(i j k -±必须是偶数.又在k 步中哪x 步向右,哪y 步向左是任意的,选取的方法有x k C 种.于是⎩⎨⎧-+-+=是奇数是偶数)(,0)(,i j k i j k q p C p y x x k k ij.例4.2赌徒输光问题.两赌徒甲,乙进行一系列赌博.赌徒甲有a 元,赌注乙有b 元,每赌一局输者给赢者1元,没有和局,直到两人中有一个输光为止.设在每一局中,甲赢的概率为p,输的概率为q=1-p,求甲输光的概率.这个问题实质上是带有两个吸收壁的随机游动,其状态空间为I={0,1,2,…,c} c=a+b.故现在的问题是求质点从a 出发到达0状态先于到达c=a+b 状态的概率.解 设i u 表示甲从状态i 出发转移到状态0的概率,要计算的是a u ..由于0和c 是吸收状态,故,10=u .0=c u i u 由全概公式).1,...,2,1(,11-=+=-+c i qu pu u i i i (4.11) 上式的含义是,甲从状态i 出发开始赌到输光的概率等于’他接下去赢了一局(概率为p)处于状态i+1后再输光”;和他接下去输一局(概率为q),处于状态i-1后再输光”这两个事件的概率.由于p+q=1,(4.11)实质上是一个差分方程.1,...,2,1),(11-=-=--+c i u u r u u i i i i (4.12)其中pqr =,其边界条件为.0,10==c u u (4.13) 先讨论r=1,即p=q=1/2的情况,(4.12)成为 .1,...,2,1),(11-=-=--+c i u u r u u i i i i 令,01α+=u u 得,2012αα+=+=u u u …,01ααi u u u i i +=+=- …,01ααc u u u c c +=+=-将,1,00==u u c 代于最后一式,得参数,1c-=α所以.1,...,2,1,1-=-=ci ciu i 令i=a, 求得甲输光的概率为.1ba bc a u a +=-= 由于甲,乙的地位是对称的,故乙输光的概率为.ba a u a +=再讨论1≠r ,即q p ≠的情况.由(4.12)式得到)(11--=-=-∑i c k i i k c u u r u u =)(011u u r c ki i-=∑-=.1)1(1r r r u ck ---= (4.14) 令k=0,由于,0=c u 有rr u c---=11)1(11即,11)1(1crru --=- 代入(4.14)式,得.1,...,2,1,1-=--=c k rr r u cck k 令k=a,得到输光的概率,1cca a rr r u --= 由对称性,乙输光的概率为.,11111q p r r r r u c cb b =--= 由于,1=+b a u u 因此在1≠r 时,即q p ≠时两个人中也总有一个人要输光的. 例4.3 天气预报问题设昨日,今日都下雨,明日有雨的概率为0.7;昨日无雨今日有雨,明日有雨的概率为0.5;昨日有雨,今日无雨明日有雨的概率为0.4;昨日,今日均无雨,明日有雨的概率为0.2.若星期一星期二均下雨,求星期四下雨的概率.解 设昨日,今日连续两天有雨称为状态0(RR),昨日无雨今日有雨称为状态1(NR),昨日有雨今日无雨称为状态2(RN),昨日今日无雨称为状态3(NN),于是天气预报模型可看作一个四状态的马尔可夫链,其中转移概率为 7.0}{}{}{00====今昨明今昨明今连续三天有雨R R R P P R R R R P p , )(0}{01不可能事件今昨明今==R R R N P p ,,3.07.01}{}{02=-===今昨明今昨明今R R N P R R N R P p)(0}{03不可能事件今昨明今==R R N N P p ,其中R 代表有雨,N 代表无雨.类似地可得到所有状态的一步转移概率,于是它的一步转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=33323130232221201312111003020100p p p p p p p p p p p p p p p p P =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0其中两步转移矩阵为==P P P .)2(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡.64.010.016.010.048..020.012.020.030.015.020.035.018.021.012.049.0 由于星期四下雨意味着过程所处的状态为0或1,因此星期一星期二连续下雨,星期四下雨的概率为.61.012.049.0)2(01)2(00=+=+=p p p例 4.4 设质点在线段[1,4]上作随机游动,假设它只能在时刻T n ∈发生移动,且只能停留在1,2,3,4点上.当质点转移到2,3点时,它以1/3的概率向左或向右移动一格或停留在原处.当质点称动到点1时,它以概率1停留在原处.当质点移动到点4时,它以概率1移动到点3.若以n X 表示质点在时刻n 所处的位置,则},{T n X n ∈ 是一个齐次马尔可夫链,其转移概率矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=0100313131003131310001P 例中的点1称为吸收壁,即质点一旦到达这种状态后就被吸收住了,不再移动;点4称为反射壁,即质点一旦到达这种状态后,必然被反射出去.例4.5生灭链.观察某种生物群体,以n X 表示在时刻n 群体的数目,设为i 个数量单位,如在时刻n+1增生到i+1个单位的概率为i b ,减灭到i 个数量单位的概率为i a ,保持不变的概率为)(1i i i b a r +-=,则}0,{≥n X n 为齐次马尔可夫链,I={0,1,2,…,}.其转移概率为⎪⎩⎪⎨⎧+==+==.1,,,1,i j a j i r i j b p ii i ij称此马尔可夫链为生灭链. 4.2 遍历性设齐次马氏链的状态空间为I,若对于所有,,I a a j i ∈转移概率)(n P ij 存在极限 j ij n n P π=∞→)(lim (不依赖于i)或 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→=................................................)(212121j j jn P n P πππππππππ则称此链具有遍历性.又若∑=jj 1π,则同时称,...),(21πππ=为链的极限分布.齐次马氏链在什么条件下才具有遍历性?如何求出它的极限分布?这问题在理论上已经解决,但是要较多的篇幅.下面对有限链的遍历性给出一个充分条件. 定理4.4设齐次马氏链},{T n X n ∈的状态空间为P a a a I n },,...,,{21=是它的一步转移概率矩阵,如果存在正整数m,使对任意的j i a a ,都有 ,,...,2,1,,0)(N j i m p ij =>则此链具有遍历性,且有极限分布, ),,...,,(21N ππππ=它是方程组 P ππ=或即ij Ni i j p ∑==1ππ的满足条件∑==>Nj j j 11,0ππ的唯一解.在定理条件下马氏链的极限分布又是平稳分布.即若用π作为链的初始分布,即π=)0(p ,则链在任一时刻T n ∈的分布)(n p 永远与π一致,事实上ππππ======-P P P n P p n p n n ...)()0()(1 例4..6 设马尔可夫链的转移概率矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9.005.005.01.08.01.02.01.07.0P 解 容易证明满足定理4.4条件.可得方程组⎪⎪⎩⎪⎪⎨⎧=++++=++=++=1,9.01.02.0,05.08.01.0,05.01.07.0321321332123211πππππππππππππππ解上述方程组得平稳分布为.5882.0,2353.0,1765.0321===πππ。

连续时间马尔可夫链例题

连续时间马尔可夫链例题

连续时间马尔可夫链连续时间马尔可夫链(Continuous-time Markov Chain)是马尔可夫链在连续时间下的一种模型。

它受到时间的连续性限制,可以用于描述一些随机过程。

马尔可夫链基本概念马尔可夫链是指具有“无记忆性”的随机过程。

在离散时间中,马尔可夫链指的是一个随机变量序列,其中每个随机变量的取值依赖于其前一时刻的取值。

这个过程可以用一个状态转移概率矩阵来描述。

在连续时间中,马尔可夫链则是一个具有无记忆性的连续随机过程。

与离散时间不同,连续时间马尔可夫链的状态在一定时间段内可以发生任意多次的改变。

连续时间马尔可夫链的定义连续时间马尔可夫链是一个随机过程,其状态空间为有限个数。

该过程在任意时刻处于某个状态,并且满足无记忆性的马尔可夫性质。

连续时间马尔可夫链的演变是通过指数分布来描述的。

在每个状态之间的转移时间服从指数分布,转移时间的参数与当前状态有关。

连续时间马尔可夫链的转移速率矩阵与离散时间马尔可夫链中的状态转移矩阵类似,连续时间马尔可夫链使用转移速率矩阵来描述状态之间的转换关系。

设连续时间马尔可夫链的状态空间为{1, 2, …, n},转移速率矩阵为Q。

矩阵Q的元素qij表示从状态i到状态j的速率,且满足以下条件:•qij≥0, i≠j;•对于每一个状态i,有qii = -∑qij(i≠j)。

在连续时间马尔可夫链中,从状态i到状态j的转移概率为pij(t),t表示时间。

转移概率在给定时间段内满足以下等式:equation1其中X(t)表示在时刻t的状态,P表示概率。

连续时间马尔可夫链的性质连续时间马尔可夫链有许多属性与离散时间马尔可夫链类似。

•遍历性:如果状态空间中的每一个状态在有限时间内是可达的,则称连续时间马尔可夫链是遍历的。

•稳态概率分布:马尔可夫链可能存在稳态概率分布,对于连续时间马尔可夫链也是如此。

稳态概率分布表示在长时间内各个状态的概率分布。

•等距离转换概率:等距离转换概率描述了在任意的相同时间间隔内,从一个状态转移到另一个状态的概率。

马尔可夫过程模型及其应用研究

马尔可夫过程模型及其应用研究

马尔可夫过程模型及其应用研究随着人工智能、人工智能驱动的机器学习和数据处理技术的发展,越来越多的领域开始将马尔可夫过程的模型应用到其研究领域中。

马尔可夫过程是一种随机过程,其描述了在某个时刻的状态与在下一时刻的状态之间的条件性概率分布。

本文将重点介绍马尔可夫过程的主要性质、分类及其应用研究。

1. 马尔可夫过程的基本概念1.1 马尔可夫链马尔可夫链是指一个具有马尔可夫性质的随机过程。

马尔可夫性质是指,在时间的变化过程中,一个系统只与其先前的状态有关,而与先前的状态历史无关。

1.2 马尔可夫性质马尔可夫性质是指一个过程中,某个状态的发生概率只与其前一个状态有关,而与更早的状态无关。

这种性质称为马尔可夫性质。

1.3 马尔可夫模型马尔可夫模型可以看作是一种将可观察数据与状态之间建立联系的模型。

在马尔可夫模型中,状态是不可观测的,但是其下一时刻的状态则可以通过一个概率转移矩阵来计算。

2. 马尔可夫过程的分类2.1 离散时间马尔可夫过程离散时间马尔可夫过程是指在一定的时刻,系统可以从某个状态转移到另一个状态。

在离散时间马尔可夫过程中,状态的转移只有在离散时间点时才能发生。

2.2 连续时间马尔可夫过程连续时间马尔可夫过程指的是一个系统在任意时刻都能从一个状态转移到另一个状态。

在连续时间马尔可夫过程中,状态的转移是在连续时间内发生的。

3. 马尔可夫过程的应用3.1 金融领域马尔可夫过程被广泛应用于金融领域中的资产定价和风险管理。

在金融领域中,马尔可夫过程可以帮助人们确定一种资产的未来价格走势,进而帮助利用这些信息进行投资和风险管理。

3.2 自然语言处理马尔可夫过程还可以应用在自然语言处理方面。

自然语言处理是人工智能领域的一个重要研究方向,其目的是在计算机上自然地理解和生成人类语言。

3.3 生态学马尔可夫过程还可以在生态学领域中被应用。

在生态学中,马尔可夫过程可以帮助科学家了解某一物种在特定环境下的数量随时间变化的规律,以便进行更好的保护和管理。

随机过程Ch5连续时间的马尔可夫链ppt课件

随机过程Ch5连续时间的马尔可夫链ppt课件
注:虽然前进方程和后退方程在形式上有所不同, 但两者的解都是同一的,费勒在1940年已证明。
由柯尔莫哥洛夫向前方程旳矩阵形式可得
例:设有一参数连续,状态离散的马尔可夫
过程X t,t 0,状态空间为I 1,2,, N,
当i j,时qij 1,i, j 1,2,, N,
当i 1,2,, N时,qii (N 1),求pij t 。
则器件在0, t 正常工作,即寿命超过t的概率为: PX t exdx et
t
已知器件用了t小时,器件寿命超过t h,
即在t,t h器件不坏的概率为:
p00h PX t h / X t
PX
t h, X
PX t
t
PX t h PX t
e t h et
eh
1 h
5.2柯尔莫哥洛夫微分方程
一.连续性条件(正则性条件)
规定lim t 0
pij t ij
1 0
i j i j
或lim Pt I t 0
称此为连续性条件(正则性条件)
阐明:过程刚进入某状态不可能立即又 跳跃到另一状态,这恰好阐明一种物理系统要 在有限时间内发生无限屡次跳跃,从而消耗无 穷多旳能量这是不可能旳,亦即经过很短时间 系统旳状态几乎是不变旳。
定理:设pij (t)是齐次马尔可夫过程的转移概率, 则下列极限存在:
dpij t
dt
t 0
lim
h0
pij h
h
pij 0
lim
h0
pij h ij
h
Hale Waihona Puke qij即: 1dpii t
dt
t 0
lim
h0
pii h 1
h

5.连续时间的马尔可夫链3

5.连续时间的马尔可夫链3
顾客以及每个顾客所需的服务时间服从怎样的分布,常用的分 布有指数分布,定长分布等;
(三)各种排队模型的记号 排队模型将如下六个特征按顺序由各自的符号给出,
并用斜线隔开:
输入过程/服务分布/服务台个数/系统容量/顾客源数/排队规则
例4 M/M/S/n/∞/FIFO
表示顾客按泊松过程来到,时间间距为指数分布, 服务时间为指数分布,有s个服务员,系统容量为n 个,顾客来源无限,排队规则是先到先服务。
j1 12 j
即当状态空间 I 1,2, , 时,平稳分布为
0=
1+
j 1
01 12
1
j1 j
1=
0 1
0,
2=
01 12

0

j
=
01 12
j1 j

0

应用举例
例1 泊松过程 N t ,t 0 是生率为
的纯生过程。
状态空间 I 0,1,2, , 状态转移速率图如下
顾客
到达 等待服务 排队规则
提供服务 的服务台 服务时间
随机服务系统示意图
顾客离去
这里“顾客”和“服务台”是广义的,如病人到医院看 病, “顾客”是病人,“服务台”是医院;某人去商店 去购物, “顾客”是购买货物者,“服务台”是柜台; 打电话到寻呼台, “顾客”是打电话的人,“服务台” 是寻呼台;……
解:此系统为M/M/1损失制 = 4,= 2
53
(1)平稳分布
0
=5, 11
1
=
6. 11
(2)系统处于无顾客状态的概率为 即可以接通的
概率为 0 = 151,因每分钟呼唤 =0.8 次,故每分钟
每分钟可以接通的概率

概率论中的随机过程分类

概率论中的随机过程分类

概率论中的随机过程分类概率论是研究随机现象的一门学科,而随机过程则是概率论中的重要概念之一。

随机过程是指一组随机变量的集合,描述了随机现象在时间上的演变规律。

随机过程的分类是概率论研究的重要内容之一,本文将介绍随机过程的分类及其相关概念,包括马尔可夫过程、泊松过程和布朗运动。

一、马尔可夫过程马尔可夫过程是指在给定了当前状态的情况下,未来状态的演变仅依赖于当前状态,与过去状态无关。

其特点是具有“无后效性”。

马尔可夫过程可以分为离散时间和连续时间两种类型。

1.1 离散时间马尔可夫链离散时间马尔可夫链是指在离散的时间点上进行状态转移的马尔可夫过程。

其状态空间是一个有限个或可数无限个离散状态的集合。

转移概率矩阵描述了任意两个状态之间的转移概率。

离散时间马尔可夫链可以用状态转移图表示,每个节点代表一个状态,边表示状态之间的转移概率。

1.2 连续时间马尔可夫链连续时间马尔可夫链是指在连续时间上进行状态转移的马尔可夫过程。

其状态空间可以是有限个或可数无限个离散状态的集合,也可以是连续状态空间。

转移概率由无穷小生成函数表示,可以通过微分方程求解得到系统的稳态分布。

二、泊松过程泊松过程是一类特殊的随机过程,描述了在一段固定时间内随机事件发生的次数。

其特点是事件之间的间隔时间服从指数分布,并且事件的发生与否相互独立。

泊松过程可以用来描述诸如电话呼叫、交通流量、电子设备失效等现象。

泊松过程可以分为纯生灭过程和队列过程两种类型。

2.1 纯生灭过程纯生灭过程是指在单位时间内,每个事件发生的概率为λ,而事件消失的概率为μ。

纯生灭过程可以用来描述人口模型、粒子衰变等现象。

2.2 队列过程队列过程是一类特殊的泊松过程,描述了在排队系统中顾客到达和离开的情况。

队列过程可以用来分析服务设施的利用率、延迟时间、排队长度等指标。

常见的队列模型包括M/M/1队列、M/M/c队列等。

三、布朗运动布朗运动是一类连续时间的随机过程,具有连续状态空间和连续时间参数。

随机过程的连续时间马尔可夫过程与转移概率

随机过程的连续时间马尔可夫过程与转移概率

随机过程的连续时间马尔可夫过程与转移概率随机过程是概率论中研究的重要课题,它描述了随机事件在时间上的演化规律。

马尔可夫过程是一类常见的随机过程,它具有马尔可夫性质,即在给定当前状态下,未来状态的概率分布只与当前状态有关,与过去的状态无关。

本文将重点讨论随机过程中的连续时间马尔可夫过程以及与之相关的转移概率。

一、连续时间马尔可夫过程的定义连续时间马尔可夫过程是指在时间上呈连续变化的随机过程,它的状态空间和状态转移概率在时间的任意一段内都保持不变。

具体而言,对于一个连续时间马尔可夫过程,其状态空间可以用S表示,状态转移概率可以用P(t)表示,其中t表示时间。

二、连续时间马尔可夫过程的特点1. 马尔可夫性质:连续时间马尔可夫过程具有马尔可夫性质,即在给定当前状态下,未来状态的概率分布只与当前状态有关,与过去的状态无关. 这一性质使得马尔可夫过程具有很好的简化性和计算性.2. 独立增量性质:连续时间马尔可夫过程具有独立增量性质,即在不重叠的时间间隔上的状态变量是相互独立的.3. 示性函数的连续性:连续时间马尔可夫过程中,随机变量状态的转移概率是连续函数,这也是它与离散时间马尔可夫过程的一个重要区别。

三、连续时间马尔可夫链与转移概率对于连续时间马尔可夫过程,其状态转移概率可以由转移概率矩阵来表示。

转移概率矩阵是一个关于时间t的函数,记作P(t)。

它的元素Pij(t)表示在时间t内从状态i转移到状态j的概率。

转移概率矩阵满足以下性质:1. Pij(t) ≥ 0,对于所有的i、j和t都成立。

2. 对于任意固定的i和t,有ΣjPij(t) = 1,即在固定时间t内,从状态i出发转移到所有可能状态j的概率之和为1。

3. 转移概率矩阵P(t)的乘积P(s+t)等于P(s)乘以P(t),即P(s+t) =P(s)P(t),其中s和t为任意的正实数。

根据转移概率矩阵P(t)的性质,我们可以得出连续时间马尔可夫过程的转移概率随时间的推移而改变,但在任意一段时间内始终保持一致。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间连续状态连续的马尔科夫过程
1、条件分布函数
设随机矢量 ( X1, X 2 ,...X n ) ,则条件分布函数定义为:
FXn (Xn X1 x1, X2 x2,...Xn1 xn1)
lim
hi 0
p( X n xn
x1 h1 X1 x1,..., xn1 hn1 X n1 xn1)
2、条件分布密度函数
若条件分布函数对X
可导,则条件分布密度函数为:
n
d dxn FXn ( X n X1 x1, X 2 x2 ,...X n12 x2,...Xn1 xn1)
时间连续状态连续的马尔科夫过程
定义:
设随机过程 { X(t), t [0,] }的状态 空间E={-,+}, 若对任意自然数m,任意m个t1 , t2 , ...tm ,以及任意s>0
若对x可导,则有
f (x,tm s x1,t1, x2,t2, xm,tm) f (x,tm s xm,tm)
转移概率分布函数
F(x,t x',t') FX (t) (x X (t') x')
通常规定
F ( x, t
x'
,
t
'
)=
1
0
x' x x' x
转移概率分布函数的性质
(1) 0 F(x,t x',t') 1
则对 0 t1 t2 t3,有
+
f (x3, t3 x1, t1)= - f (x3, t3 x2 , t2 ) f (x2 , t2 x1, t1)dx2

+
f (x3,t3 s )= - f (x3 x2 , ) f (x2 x1, s)dx2
(2) F(x,t x',t')对x非降
(3) F(x,t x',t') 对 x 右连续
(4) lim F(x,t x',t') 0, lim F(x, t
x
x
x',t') 1
时齐马尔科夫过程
当转移概率分布函数仅与时间间隔t t'有关,
与转移的起始 t' 时刻无关时,记作
F(x,t x',t')=F(x x',t t') F(x x', ) , (t t' )
称为时齐马尔科夫过程 ( 0)
若对 x 可导,则有
f (x,t x',t')=f (x x',t t') f (x x', ) , (t t' )
通常规定 f (x,t x',t) (x x')
(x x' )表示单位脉冲函数
切普曼-柯尔莫哥洛夫方程(C-K方程)
定理1 设{ X(t), t [0,] }是马尔科夫过程,
i 1, 2,...n 1
lim p( X n xn , x1 h1 X1 x1,..., xn1 hn1 X n1 xn1)
hi 0 i1,2,...n1
p(x1 h1 X1 x1,..., xn1 hn1 X n1 xn1)
称为在 X1 x1, X 2 x2 ,...X n1 xn1 条件下,X n 的条件分布函数
满足
F(x,tm s x1,t1, x2,t2, xm,tm) F(x,tm s xm,tm)
其中
F(x,tm s x1,t1, x2,t2, xm,tm)
FX (tms) (x X (t1) x1, X (t2 ) x2,...X (tm) xm)
F(x,tm s xm,tm) FX (tms) (x X (tm) xm)
相关文档
最新文档