雷击浪涌测试方法讲义资料
雷击浪涌测试方法PPT课件
![雷击浪涌测试方法PPT课件](https://img.taocdn.com/s3/m/3615fa2ba8956bec0875e353.png)
骚扰功率
骚扰功率是EMI测试的一个项目,一般认为,家用 电器产品、声频功率放大器、音/视盘机、录音机 等设备,它们30MHz以上的辐射发射主要是通过 与其相连的电源线和其他连接线向外辐射的,考 虑到连接线的天线辐射效应——一般在半波长处 辐射最大,30MHz对应的半波长5m,所以测试前 要将被测设备的电源线以及长度可选的其他连接 线用同质线缆延长至5m以上,再考虑到功率吸收 钳(及起滤波作用的辅助吸收钳)的长度大约1m, 则总长度大约为6m。
信息技术类,所用的标准是EN55022,第二 类是家用电器类,所用标准是EN55014, 第三类是灯具类,所用标准是EN55015, 第四类是音视频类,所用标准是EN55013。 按照标准规定进行测试,EUT离天线的距 离是3米,台式设备是放在0.8米的绝缘桌上, 落地式设备室放置在0.15的绝缘木板上,在 测试时,天线在对应 的1米、2米、3米、4 米高的地点,转台360度旋转,寻找辐射的
测试时,将被测设备置于0.8m高的非金属台 子上,被测线缆在台上平直展开,功率吸 收钳的测量端(即电流互感器一端对着被 测设备,然后沿着远离它的方向移动,最 多移动至5m处。由吸收钳的工作原理可知 EUT的骚扰动率一部分被铁氧体环吸收, 这部分称吸收钳的插入损耗L,由厂家给出, 所以EUT的实际骚扰功率P,应为骚扰测量 仪测得的功率Pr和插入损耗L之和,即
雷击浪涌测试方法
静电放电试验主要针对用户可以实施的维护。 正常使用中用户可以接触的区域,正常使 用的位置,分为直接放电和接触放电直接 放电模拟了操作人员对受试设备直接接触 时发生的静电放电情况。间接放电则是对 水平耦合板和垂直耦合板进行放电,模拟 了操作人员对放置于或安装在受试设备附 近的物体放电时的情况。其中接触放电是 优先选择的试验方法,间接放电只有在不 能使用接触放电的场合中。
雷击浪涌测试方法
![雷击浪涌测试方法](https://img.taocdn.com/s3/m/93e34c8059f5f61fb7360b4c2e3f5727a5e92400.png)
雷击浪涌测试方法雷击浪涌测试是对电气设备进行电磁兼容性测试的重要环节之一,其目的是评估设备在雷击和浪涌事件发生时的抗扰度和耐受度。
在实际生产中,雷击和浪涌等电气事件可能对设备的正常运行造成干扰和破坏,因此进行雷击浪涌测试对于提高设备的稳定性和可靠性具有重要意义。
一、测试设备和环境的准备1.测试设备:雷击浪涌测试主要通过测试发生器、测试夹具、电源和监测仪器等设备完成。
其中,测试发生器是产生雷击和浪涌的主要工具,测试夹具用于将设备连接到测试发生器和电源,电源提供测试所需的电能,监测仪器用于记录设备在测试过程中的各项参数。
2.测试环境:雷击浪涌测试需要在符合国家标准和行业规范的电磁环境中进行。
测试室应有良好的接地系统和外部屏蔽,以减少外界电磁干扰。
同时,室内应具备合适的温湿度条件,以保证测试的可靠性和准确性。
二、测试步骤1.准备工作:对测试设备和环境进行检查和确认,确保测试设备和测试夹具的正常工作和连接正常。
检查测试发生器和电源的设置是否符合要求。
2.雷击测试:a.根据设备的工作环境和敏感程度,选择合适的雷击等级进行测试。
b.分别将测试发生器和电源的控制线连接到测试夹具上的相应端口。
确保连接的可靠性。
c.调整测试发生器的参数,如雷击峰值电流、雷击波形等,使其符合测试要求。
d.开始进行雷击测试,记录测试发生器和设备参数的变化并监测设备是否出现故障和破坏。
根据需要可进行单次或多次雷击测试。
3.浪涌测试:a.根据设备的工作环境和敏感程度,选择合适的浪涌等级进行测试。
b.将测试发生器和电源的控制线连接到测试夹具上的相应端口。
确保连接的可靠性。
c.调整测试发生器的参数,如浪涌峰值电流、浪涌波形等,使其符合测试要求。
d.开始进行浪涌测试,记录测试发生器和设备参数的变化并监测设备是否出现故障和破坏。
根据需要可进行单次或多次浪涌测试。
4.结果分析:根据测试过程中的数据和观察结果,评估设备的抗扰度和耐受度,并结合相关标准和规范进行判定。
重点解析雷击浪涌测试方法以及相关知识普及
![重点解析雷击浪涌测试方法以及相关知识普及](https://img.taocdn.com/s3/m/5183596b90c69ec3d5bb75a8.png)
雷击浪涌测试方法以及相关知识普及什么是电涌?电涌又称浪涌,定义是超过相应稳定的电压峰值的任何电压峰值,即瞬变电压。
瞬间的高电压导流导通,当电压及电流高于正常值的双倍时,称之为电涌(来自于国际电工委员会IEC664-1)。
从电学原理上讲,电涌是发生在仅仅几百万分之一秒瞬间内的一种电压或电流脉冲。
电涌是微秒量级异常大电流脉冲,波头时间一般在0.25~20μs,单位能量一般在2.5~10MJ/Ω。
电涌按照其产生原因可以分为两大类:外部电涌和内部电涌。
外部电涌主要来源于雷电及交流电网异常、周边大功率设备的启动引起的过电压;内部电涌主要是电气、电子网络系统内设备开关引起的过电压。
简单来说,就是雷击放电或电气设备开关操作都会产生电涌。
电涌的危害电涌是用电设备无法避免的问题,只要有电的地方,就会有电涌。
无论是外部电涌还是内部电涌都是电气杀手,会干扰电子设备,降低性能及过早老化,甚至直接破坏设备。
简单例子说明,打雷时电脑死机或电视的音质和画质突然下降等现象都是受到外部电涌的干扰影响;而有时候复印机开启后突然瘫痪无法再运作,是因为半导体器件承受不了机器内部负载间的高达千伏的瞬态电涌高压被击穿,导致设备损坏。
电涌危害中以雷击浪涌过电压危害最大,雷电是导致电涌最明显的因素,雷击引起的电涌可分为(1)感应雷击电涌过电压;(2)直接雷击电涌过电压;(3)雷击传导电涌过电压;(4)震荡电涌过电压四大类。
以上电涌现象都会产生极高的瞬间过电压,对电气设备特别是低压电气设备、微电子设备造成巨大的冲击和损坏。
雷击电涌也是引发火灾的直接原因之一,因为瞬间的超高压可能会烧爆设备;同时,内部电涌对电器设备日积月累的损害,加速了电器设备的老化,是造成电器火灾的间接原因。
电涌危害是一个不容忽视的问题,由于人类生活与现代经济对于电子设备已经形成密不可分的依赖性,电涌对电气设备硬件造成损坏会直接影响到整个紧密相连的电子网络,造成的间接损失要远远超过直接损失,可能严重影响人们的生活质量或甚至带来灾难性的后果。
雷击浪涌试验详细介绍
![雷击浪涌试验详细介绍](https://img.taocdn.com/s3/m/5d5368caa1116c175f0e7cd184254b35eefd1a80.png)
雷击浪涌试验详细介绍雷击浪涌试验是一种重要的电工试验,用于评估电气设备在雷电冲击和电力系统突发电压波动(浪涌)下的耐受能力。
该试验主要用于验证电气设备的可靠性和稳定性,以确保设备在实际使用过程中能够正常工作,并保护设备本身和周围环境的安全。
雷击浪涌试验一般采用高压发生器、电源发生器、波形发生器、高压电容器等设备和器件进行。
首先,利用高压发生器产生高电压,然后使用电源发生器提供电源,并通过波形发生器调节电压波形。
接下来,将高压电容器插入试验电路中,并通过开关控制电容器的充放电过程。
这样就可以模拟雷电冲击和电力系统突发电压波动的情况,对设备进行试验。
在雷击浪涌试验中,设备会连续受到重复的雷冲击或突发电压波动,以模拟真实环境中的情况。
设备需要在这种不断冲击的状态下保持正常工作,并且不能受到损坏。
试验过程中,会对设备的电流、电压、功率进行监测和记录,以评估设备的性能和耐受能力。
雷击浪涌试验可以评估设备在雷击和电力系统突发电压波动下的多种性能,包括耐电压能力、电流的泄漏情况、绝缘性能和耐压能力等。
通过这些指标的评估,可以判断设备在实际运行中的可靠性和稳定性,以及设备在遭受雷击或突发电压波动时的保护能力。
在实际应用中,雷击浪涌试验被广泛应用于各个领域的电气设备,包括电力系统设备、通信设备、计算机设备、家用电器等。
通过对电气设备进行雷击浪涌试验,可以提高设备的可靠性和稳定性,为设备的正常运行提供保障。
总结起来,雷击浪涌试验是一种用于评估电气设备在雷电冲击和电力系统突发电压波动下的耐受能力的重要试验。
通过模拟真实环境中的情况,对设备进行重复冲击,并监测和记录设备的性能指标,可以评估设备的可靠性和稳定性,以及设备在遭受雷击或突发电压波动时的保护能力。
雷击浪涌试验对于确保电气设备的正常工作和安全具有重要意义。
雷击浪涌试验详细介绍
![雷击浪涌试验详细介绍](https://img.taocdn.com/s3/m/e020f9a40912a216147929db.png)
,.雷击浪涌试验细则1 试验环境布置考虑试验安全性问题,建议将试验设备LSG506A以及CDN-532A接地。
LSG背面板接地线参考接地板图1 浪涌试验环境布置1.1 EUT电源端的试验配置EUT电源端的试验包括AC主回路三相的试验和控制模块供电端子单相的试验。
各项试验中包括线-线与线-地两种方式。
示意图分别见图2-图5。
,.图2 交流线(三相)上电容耦合的试验配置,线-线图3交流线(三相)上电容耦合的试验配置,线-地耦合网络,.图4 交/直流上电容耦合的配置,线-线图5 交/直流上电容耦合的配置,线-地注:图2-图5为干扰叠加在电源线上的原理图,并不是进行试验时我们的接线图。
1.2 EUT非屏蔽互联线的试验配置,.图6 非屏蔽互连线的试验配置,电容耦合方式注:此方法用于对EUT 的I/O ,控制线端子进行浪涌试验。
需使用40欧姆的电阻,以保护EUT 受试设备。
1.3 EUT 屏蔽通信线的试验配置图7 屏蔽线的试验配置,直接施加根据GB17626.5中7.6节的要求,非金属外壳产品的屏蔽线试验,可以直,.接施加在屏蔽线上。
如上图所示,以共模的方式将浪涌干扰加到屏蔽线层上。
2 CPS 试验方法2.1 KB0-T 、KB0-R 、KB0-B 的 AC 主回路电源端口试验(1)试验判据标准中无明确要求,参照试验判据表1,给出试验结果。
(2)施加干扰电压水平主回路电源线的试验水平为线-地4kV ,线-线2kV 。
脉冲在正负两个极性进行,相角为0°、90°。
在每一极性和相角施加5次脉冲(共20个脉冲),每个脉冲之间的时间间隔为1min 。
(3)受试设备接线方式KB0-T 、KB0-R 和KB0-B 主回路串联,进行线-线、线-地试验的接线方式分别如图8、9所示。
图8中左图所示为标准中规定的受试设备的AC 主回路接线图,即将主回路三相串联,并用升流器分别给受试设备提供0.9倍和2倍的额定电流(0.9倍时,EUT 中的脱扣器应不动作,2倍额定电流时应在规定的时间内动作)。
浪涌保护器雷击试验方法
![浪涌保护器雷击试验方法](https://img.taocdn.com/s3/m/751f0f29e418964bcf84b9d528ea81c759f52e30.png)
浪涌保护器雷击试验方法嘿,咱今儿个就来讲讲浪涌保护器雷击试验方法这档子事儿。
你想想啊,这浪涌保护器就像是个守护天使,要时刻准备着应对那来势汹汹的雷电攻击呢!那怎么知道它是不是真的能保护好我们的设备呀?这就得靠雷击试验啦!这雷击试验啊,就好比一场激烈的战斗。
咱得模拟出那最恶劣的雷电环境,看看浪涌保护器能不能扛得住。
这可不是闹着玩儿的呀!首先呢,咱得准备好各种仪器设备,这就像是给战士配上精良的武器。
然后,设置好合适的参数,这可不能马虎,就跟给战士制定作战计划一样重要。
当一切准备就绪,“战斗”就打响啦!雷电“轰轰”地劈下来,浪涌保护器就得立刻行动起来,发挥它的作用。
这时候啊,咱就得瞪大眼睛瞧仔细了,看看它有没有失职。
要是它轻轻松松就把雷电给挡下了,那咱就可以放心啦,嘿,这保护器还真不赖!可要是它表现不佳,那咱就得好好琢磨琢磨了,这是哪儿出问题啦?是它本身质量不行,还是咱设置的条件太苛刻啦?你说这浪涌保护器要是关键时刻掉链子,那得多让人头疼啊!咱家里的那些电器设备可就危险咯!所以这雷击试验可太重要啦,就跟给房子打地基一样,得扎实!咱再想想,要是没有这严谨的雷击试验方法,那市场上不就乱套啦?各种质量参差不齐的浪涌保护器都冒出来了,那我们还怎么能安心使用电器呀!而且啊,这试验还得不断改进和完善呢。
随着科技的发展,雷电的情况也可能会有变化呀,那咱的试验方法也得跟着变一变,不能一成不变吧。
总之呢,这浪涌保护器雷击试验方法可真是个大学问。
咱得重视起来,让它为我们的生活保驾护航。
咱可不能让那些不靠谱的保护器来忽悠我们呀!大家说是不是这个理儿?咱可都得长点心,选对了浪涌保护器,才能让我们的生活更加安心、更加美好呀!。
雷击(浪涌)抗扰度试验原理.
![雷击(浪涌)抗扰度试验原理.](https://img.taocdn.com/s3/m/585c9e635acfa1c7aa00cc2a.png)
共模模式(三相电源)差模模ຫໍສະໝຸດ (单相电源)THANK YOU
《电子产品环境检测》课程 雷击浪涌试验原理
佛山职业技术学院电子信息系
试验原理
按照IEC61000-4-5(GB/T17626.5) 标准的要求,测量系统分别模拟在电源 线上和通信线路上的雷击浪涌试验。
(1)模拟电源线路试验的1.2/50μs(电压波)和 8/20μs(电流波)的综合波发生器,基本性能: 开路电压波:1.2/50μs; 短路电流波:8/20μs。 开路输出电压(峰值):0.5kV~4kV 短路输出电流(峰值):0.25kA~2kA 发生器内阻:2Ω 浪涌输出极性:正/负 浪涌移相范围:0°~360° 最大重复率:至少每分钟1次
(2)用于通信线路试验的10/700μs浪涌电压发生器 基本性能要求是: 开路峰值输出电压(峰值):0.5kV~4kV 动态内阻:40Ω 输出极性:正/负
组合波电压波形:
对于电源线上的试验,都是通过“耦合去 耦网络”来完成。 耦合有两种模式: 共模模式(Common mode) 火线或零线与地之间进行耦合干扰 火线~地 零线~地 差模模式(Difference mode) 火线和零线两者之间进行耦合干扰 火线~零线
浪涌抗扰度试验原理和试验方法
![浪涌抗扰度试验原理和试验方法](https://img.taocdn.com/s3/m/655be95fb307e87101f69691.png)
1雷电知识介绍
直击雷:“打雷”是带电云层与建筑物、大地或防雷装置之间发生的迅猛放电现象。
感应雷:由于雷电而引起的静电感应和电磁场感应所产生的雷击统称为感应雷,又称二次雷。入侵途径:1)通过避雷针引入地感应到传输线;
2)通过电源线、信号线或天馈线引入感应雷击(通过电感性耦合(磁感应));
图1电源线路试验的综合波发生器结构图
U—高压源;Rc—充电电阻;Cc—储能电容;Rs—脉冲持续时间形成电阻;Rm—阻抗匹配电阻;Lr—上升时间形成电感
综合波发生器的基本要求:
开路输出电压(10%)0.5kVP~4kVP;短路输出电流(10%)0.25kAP~4kAP
发生器内阻:2Ω,可附加10Ω或40Ω,以形成12Ω或42Ω的内阻
图3 综合波电流波形
差模:通常把线与线之间形成的电流叫差模电流。组合波差模耦合工作模式原理示意图见图4。
图4组合波差模耦合工作模式原理图
耦合装置:电容或气体放电管。耦合电容C:9μF(共模)或18μF(差模)。去耦装源自/保护装置:去耦电感L:1.5mH
共模:通常把线与地之间形成的电流叫共模电流。组合波共模耦合工作模式原理示意图。
电流上升时间(第一峰值):≤1μs(短路)
频率:100kHz±10%
衰减:前一峰值的60%
T1为上升时间开路电压为0.5μs,短路电流为1μs,T振荡周期10μs
3试验方法和试验等级
3.1试验方法和步骤
a) 试验前、后必须读取EEPROM数据,检查确认试验后数据是否发生变化。试验前、后检查并记录被测样机的抗电强度、绝缘电阻的安全性能数据。
(企业要求及Philips)试验等级
4判定要求
EN55020给出A、B、C、D四个等级,TTE失效类别有Ⅰ、Ⅱ、Ⅲ,Philips判据只给出C类。
雷击浪涌试验方法手册(IEC-61000-4-5)
![雷击浪涌试验方法手册(IEC-61000-4-5)](https://img.taocdn.com/s3/m/311c9461a417866fb84a8e43.png)
雷击浪涌试验方法手册2009年度版基于GB-T17626.5/IEC 61000-4-5 Ed2.0: 20051.1IEC 61000-4-5的定位和意义 (4)1.2操作手册的阅读方法及注意点 (5)1.3各篇的内容和流程图 (5)1.3.1关于各篇的内容 (5)1.3.2操作手册的阅读流程 (6)2.1试验室准备篇的流程图 (8)2.2试验室的准备 (9)2.2.1试验室的必要条件 (9)2.2.2气象条件等环境 (10)(1)温度的调节 (10)(2)湿度的调节 (10)(3)气压的调节 (10)2.3试验前的准备 (11)2.3.1试验前准备之物 (11)(1)雷击浪涌抗扰度试验器 (11)(2)耦合/去耦电路(CDN) (13)(3)绝缘变压器 (13)(4)基准接地面 (13)(5)绝缘支持台、或非金属台 (14)2.3.2试验设备的安装和配线 (16)(1)接地电缆的连接 (16)(2)关于商用电源的连接方法 (16)(3)试验器的安装 (16)3.1试验方法篇的流程图 (18)3.2共同准备事项(安装及配线等) (19)3.2.1供试装置的安装和配线 (19)(1)对电源进行试验时 (19)(2)对非屏蔽不平衡相互连接线进行试验时 (21)(3)对非屏蔽平衡相互连接线进行试验时 (23)(4)对带屏蔽相互连接线(两端接地)进行试验时 (24)(5)对带屏蔽相互连接线(单侧接地)进行试验时 (25)(6)对带多个屏蔽的相互连接线进行试验时 (26)3.2.2供试装置的状态 (27)3.3试验方法 (28)3.3.1对电源进行试验时 (28)3.3.2对相互连接线进行试验时 (29)(1)对非屏蔽连接线进行试验时 (29)(2)对屏蔽连接线进行试验时 (30)4.1.试验报告书上需要的信息 (34)4.1.1.试验报告书的管理 (34)(1)报告书的管理和种类 (34)(2)顾客的名称及地址 (34)(3)对试验的责任的明确化 (34)4.1.2.试验环境 (35)(1)试验的实施日 (35)(2)试验场所的记载 (35)(3)温度和湿度等的环境 (35)4.1.3.供试装置、试验装置 (35)(1)供试装置的名称及特定 (35)(2)试验设备的识别符号 (35)4.1.4.试验方法及试验结果 (36)(1)试验方法 (36)(2)试验结果的记载 (36)4.1.5.其他 (37)(1)补充事项 (37)(2)关于判定的不明确性的记录 (37)5.1.判定基准 (43)(1)EN61000-6 (43)(2)CISPR24 (44)(3)CISPR24存储装置 (45)5.2.记述举例 (46)5.3.规格制定的经过 (53)5.4.IEC以外的试验法 (53)5.4.1.JEC规格 (53)5.4.2.ITU-T规格 (53)5.5.有关雷现象的各种信息 (54)5.5.1.雷击发生的原理 (54)5.5.2.雷击浪涌带来的灾害 (54)5.6.参考文献 (55)5.7.NOISE研究所对应产品型号明细 (56)IEC 61000-4-5 1. 目的篇 1. 目的篇1.1IEC 61000-4-5的定位和意义本项目详细讲述了以IEC 61000-4-5 Ed2.0:2005为基准,进行浪涌通过诱导侵入电源线及通信线等,致使电子设备发生误动作的模拟试验的具体方法。
61000-4-5讲义
![61000-4-5讲义](https://img.taocdn.com/s3/m/fd823e220b4c2e3f572763b4.png)
END
ports directly Connected to the a.c. mains or distributed d.c. power systems.
► For double-insulated products without PE or external earth connections, the test
Surge 浪涌 (俗称雷击)
IEC61000-4-5
定义:1)The task of the described laboratory test is to
find the reaction of the EUT under specified operational conditions, to surge voltages caused by switching and lightning effects at certain threat levels. 2)It is not intended to test the capability of the EUT's insulation to withstand high-voltage stress. Direct injections of lightning currents, i.e, direct lightning strikes, are not considered in this 3)surge transient wave of electrical current, voltage, or power propagating along a line or a circuit and characterized by a rapid increase followed by a slower decrease 中文:1)实验室试验任务就是要找出EUT在规定的工作状态下 工作时,对由开关或者雷电作用所产生的有一定危害电平的浪涌 (冲击)电压的反应。 2)本部分不考虑耐高压的绝缘能力方面的测试,也不考虑直
开关电源之雷击浪涌分析之典型的雷击测试和对策以及小技巧
![开关电源之雷击浪涌分析之典型的雷击测试和对策以及小技巧](https://img.taocdn.com/s3/m/7695e91581c758f5f71f6745.png)
下面是一个典型的规格: (1.2uS / 50uS)–没有误动作: 4 kV / 12 Ω共模, 2kV/ 2 Ω差模–可以交流重启(关机,短时间不工作): 6kV / 12 Ω共模, 4kV / 2Ω差模–更高雷击电压时,不能出现安规问题●雷击有两种模式:差模雷击和共模雷击●雷击的峰值电压是规定的,在kV级别●输入阻抗也是规定的,或者有时规定输入短路电流–例如:6 kV / 12 Ω= 500A●连续的雷击脉冲和重置时间又非常短造成损害比较大:–一个非常短的重置时间如:15s 或1分钟, 使其很难通过测试,原因为压敏电和其他的部分没时间把温度降下来!差模雷击差模雷击是高电压加在L和N线之间.电流从L线流入从N线流出共模雷击(1)当开关在接右位置,电压加在L线和大地线上(雷击发生器上显示“L1/PE”).当开关在接左位置,电压加在N线和大地线上(雷击发生器上显示“L2/PE”).上面两个实际上是在电源产品上产生共模和差模电流电流。
共模雷击(2)当雷击发生器设定为“L1, L2 / PE”, 开关同时接到两线上。
这是唯一真的共模雷击测试设定。
如果客户简单说共模雷击指的就这个设定.系统只有两线输入,输出有悬空(不接大地), 共模雷击是没有意义的! (很容易通过测试, 只要输出真的悬空)雷击会产生什么损坏?差模雷击产生高的差模电流能导致输入大电容的电压升高,而损坏输入大电解电容和开关管的漏极。
共模雷击会产生非常高的共模电压,共模电压能造成电弧放电。
电弧放电发生会产生一个非常高的高频的电流。
如果没有电弧放电发生,电流比较小,只有寄生电容Cparasitic * dv/dt.当发生一个电弧放电,会得到一个非常高的峰值高频电流,高频电流产生噪声能耦合进入低压电路导致误动作。
雷击的损坏:–非常高的共模电压能导致跨接在初级和次级间的Y电容损坏。
–非常高的差模电压导致输入回路产生过高的电压和过大的电流,损坏输入端的元器件(保险丝,输入整流桥,X电容,压敏电阻,开关管)。
雷电浪涌防护器培训资料
![雷电浪涌防护器培训资料](https://img.taocdn.com/s3/m/2e2e0d9a185f312b3169a45177232f60ddcce72e.png)
雷电浪涌防护器培训资料第一部分:雷电浪涌的危害雷电是一种自然现象,它产生的能量极大,能够造成严重的危害。
雷电对设备和设施的影响主要表现在以下几个方面:1. 烧毁设备:雷电的高能量会导致设备的烧毁,使得设备无法正常工作。
2. 数据丢失:雷电对数据存储设备也会造成损坏,导致重要数据丢失。
3. 安全隐患:雷电的冲击可能会引发火灾等安全隐患。
为了有效减少雷电对设备和设施的危害,需要使用雷电浪涌防护器进行防护。
接下来我们将详细介绍雷电浪涌防护器的功能和使用方法。
第二部分:雷电浪涌防护器的功能雷电浪涌防护器是一种电子设备,主要用于抵御雷电产生的浪涌电压,保护设备和设施不受雷电的影响。
雷电浪涌防护器的功能主要包括以下几个方面:1. 吸收浪涌电压:雷电浪涌防护器能够迅速吸收雷电产生的浪涌电压,避免其传导到设备和设施上。
2. 分流浪涌电流:当雷电产生浪涌电流时,雷电浪涌防护器能够将其分流到地线或其他安全通道上,避免浪涌电流对设备造成损害。
3. 快速响应:雷电浪涌防护器能够在很短的时间内响应雷电产生的浪涌电压和浪涌电流,有效保护设备和设施。
综上所述,雷电浪涌防护器的功能主要是在雷电产生浪涌电压和浪涌电流时,迅速吸收和分流,保护设备和设施不受损害。
第三部分:雷电浪涌防护器的使用方法雷电浪涌防护器的使用方法主要包括以下几个步骤:1. 安装位置选择:雷电浪涌防护器应该安装在设备和设施的电源输入端,以最大限度地降低雷电浪涌对设备和设施的影响。
2. 接地保护:雷电浪涌防护器必须接地使用,确保浪涌电压和浪涌电流能够迅速传导到地线上,避免对设备造成危害。
3. 定期检查:雷电浪涌防护器应该定期进行检查和维护,确保其正常工作。
4. 经常测试:在雷电季节或频繁雷电的环境中,应该经常对雷电浪涌防护器进行测试,确保其能够有效工作。
通过正确的安装和使用方法,雷电浪涌防护器能够有效防护设备和设施不受雷电的影响。
结语雷电浪涌防护器是一种非常重要的设备,它能够有效防护设备和设施不受雷电的危害。
《雷击浪涌测试方法》课件
![《雷击浪涌测试方法》课件](https://img.taocdn.com/s3/m/e29be26be3bd960590c69ec3d5bbfd0a7956d5ef.png)
提高测试水平的建议与措施
提出提高测试水平的建议,如加强测试人员的培训、引进 先进的测试设备等。
制定具体的措施,如建立完善的测试流程、加强测试数据 的分析等,以提高测试的准确性和可靠性。
为企业提供定制化测试解决方案
了解企业的实际需求,如测试 设备的配置、测试标准的选择 等。
根据企业的需求,提供定制化 的测试解决方案,以满足企业 的特定要求。
测试数据记录与分析
01
02
03
测试数据记录
在雷击浪涌测试过程中, 应详细记录每个测试阶段 的数据,包括电压、电流 、波形等参数。
数据整理与校验
对记录的数据进行整理和 校验,确保数据的准确性 和完整性,以便后续分析 。
数据分析方法
采用适当的分析方法,如 统计分析、趋势分析等, 对测试数据进行深入挖掘 ,找出潜在问题。
案例一:家用电器雷击浪涌测试
测试步骤 1. 将家用电器连接到雷击浪涌发生器。
2. 按照标准规定的参数进行雷击浪涌测试。
案例一:家用电器雷击浪涌测试
01
3. 观察并记录家用电器的性能表 现和任何异常现象。
02
测试结果:评估家用电器是否符 合相关标准和规定,确保其在雷 击浪涌环境下能够正常工作且不 产生安全隐患。
测试结果判定与评价
判定标准制定
根据相关标准和规范,制 定明确的测试结果判定标 准,以便对测试结果进行 准确评价。
结果判定
依据判定标准,对测试结 果进行逐项判定,确定产 品是否满足要求。
评价报告撰写
撰写详细的测试结果评价 报告,汇总测试过程、数 据记录、判定结果等信息 ,为后续改进提供依据。
不合格项改进建议
问题定位
对测试过程中出现的不合格项进行深 入分析,准确定位问题所在,找出根 本原因。
雷击浪涌测试的要求和方法
![雷击浪涌测试的要求和方法](https://img.taocdn.com/s3/m/1bf0da26915f804d2b16c144.png)
雷击浪涌测试的要求和方法1 信号(通信)接口浪涌测试1.1 测试目的和指标要求测试目的考察设备在实际使用过程中用户线接口受到浪涌电压冲击后,被测接口的损坏和设备性能下降的程度。
指标要求:对电话端口的浪涌测试分为类型A,和类型B两种测试。
(1) 类型A(Class A)a) 波形。
差模干扰:电压波:10/560,电流波:10/560。
共模干扰:电压波:10/160,电流波:10/160。
b) 测试等级:差模:电压最小800V,电流最小100A。
共模:电压最小1500V,电流最小200Ac) 测试端口:差模:tip——ring ; tip‐1 ——ring‐1;对于单项通信的4线制电缆,tip ——ring‐1,ring——tip‐1。
共模:tip‐ring和tip‐1——ring‐1对地,或者对其他连接到未经认证的设备的线缆(拧到一起)。
d) 测试状态:设备的所有可能影响本标准要求的状态都要测试。
如果设备状态不能通过正常上电获得,需要通过人工干预获得;没有施加浪涌的端口(包括电话端口,辅助端口以及和未认证设备连接的端口),要用适当的方式端接并处于正常使用状态;如果设备的一次电源允许插拔,则设备带有电源线和断开电源线两种状态都要测试。
e)判据允许起安全作用的电路出现开路,或者到地的短路,但在这种失效模式下,保证让用户不能使用设备,或设备具有明显失效指示(如告警),需要立即从网络上断开或需要维修。
对安全电路进行修复后,设备性能和功能恢复正常。
(2) 类型B (class B)a) 波形。
差模:电压波:9/720,电流波:5/320。
共模:电压波:9/720,电流波:5/320。
b) 测试等级:差模:电压最小1000V,电流最小25A。
共模:电压最小1500V,电流最小37.5Ac) 测试端口:差模:tip——ring ; tip‐1 ——ring‐1;对于单项通信的4线制电缆,tip ——ring‐1,ring——tip‐1。
雷击浪涌测试方法
![雷击浪涌测试方法](https://img.taocdn.com/s3/m/fbb9c47b02768e9951e738b9.png)
对数据处理设备,大多有断电检测装置,以便断电时 设备作紧急处理后停机;而在电源恢复后,按正确方式重 新启动。
本试验考核设备的断电检测与处理能力。避免设备在 断电检测装置触发前,直流稳压电源的输入直流己降至最 低电压之下,由此造成数据丢失与改变。
⑵ 用于通信线路试验的 10/700μs 浪涌波发生器 发生器线路和波形见下图:
4.4 试验中的注意点
试验前务必按照制造商的要求加接保护措施。 试验速率每分钟 1 次,不宜太快,以便给保护器件有 一个性能恢复的过程。事实上自然界的雷击现象和变电站 大型开关的切换也不可能有非常高的重复率。 试验一般正/负极性各做 5 次。 试验电压要由低到高逐渐递升,避免由于试品的 I—V 非线性特性出现的假象。另外,注意试验电压不要超出产 品标准的要求,以免带来不必要的损坏。
对衰减振荡波发生器的基本要求是: 第一峰值电压上升时间:75ns±20%; 衰减振荡波的振荡频率:100kHz 和 1MHz 两种,±10%; 衰减振荡波的重复频率:对 100kHz 至少 40c/s; 对 1MHz 至少 400c/s; 衰减振荡波的波形衰减率:在 3~6 周内衰减到峰值 的 50%; 一串衰减振荡波的持续时间:不低于 2s; 发生器输出阻抗:200Ω±20%; 峰值开路电压:250V(-10%)~2.5kV(+10%); 与电源频率的关系:异步; 衰减振荡波的第一峰值极性:正/负。
为提高试验难度,试验中要用到 1kHz 的正弦波进行 幅度调制,调制深度为 80%。
试验的严酷度等级分 1、2、3 和 X 级的共模试验,试 验电压分别为 1V、3V、10V 和待定。
浪涌测试方法
![浪涌测试方法](https://img.taocdn.com/s3/m/8615404e43323968001c9266.png)
浪涌测试方法1、目的:为使雷击突波干扰耐受性测试时,能有统一之规范及流程可供依循,特订定本程序书,本试验的目的是仿真雷击突波对电子产品所造成的干扰,并判别其耐受性。
2、适用范围:执行雷击突波干扰耐受性测试时,适用之。
此测试是为保证产品符合EMC / 89 / 336要求的EMC指标。
3、测试仪器浪涌发生器- Haefely P Surge 6.1耦合 / 去耦合网络混合网络 1.2 / 50µS.U网络10 / 560µS - 10 / 160µS.U网络10 / 700µS.4、测试装置将浪涌发生器和网络放置在一个地参考水平面上,将电源耦合过滤器16.1放在浪涌发生器上部。
去耦合机DECIA和数据线耦合网络IP 6.2堆放在参考面上,靠近浪涌发生器。
电源 + 浪涌输出图1 : 火牛浪涌测试绝缘体电源线图2:电话线浪涌测试5浪涌测试火牛,仪器断开电源,将PHV30.2卡(1.2 / 50 µS)安装于浪涌发生器中。
高压探头与耦合过滤器连接(如图1)。
6 测试电话线,仪器断开电源,应将PHV29卡(10 / 560µS)安装于浪涌发生器中,按照图2连接高压探头与耦合网络。
7 在测试过程中,辅助仪器(电源和电馈桥)必须始终通过去耦合网络与EUT 连接。
8测试程序8.1 EUT必须在指定的操作和气温条件下进行测试。
8.2测试前必须正确安装测试仪器,挑选正确的时间卡。
8.3开启浪涌发生器和有关的耦合网络。
浪涌发生器自动显示预编程序菜单。
8.4 从菜单中选择程序6和程序7测试火牛。
程序6应用于1KV水平测试,程序7存有0.5KV垂直测试的所有重要数据。
8.5按下浪涌发生器上的启动键开始测试。
每10秒钟EUT电源产生脉冲信号。
8.6 从菜单中选程序4和程序5测试电话线。
程序4是有关800V金属性测试,程序5是有关1.5KV纵向测试。
按下开始键,EUT将在40秒内自动产生4个脉冲。
雷击浪涌测试
![雷击浪涌测试](https://img.taocdn.com/s3/m/798ad6f504a1b0717fd5dd77.png)
雷击浪涌测试一实验仪器和测试工具雷击浪涌发生器一台(如苏州泰思特电子科技有限公司SG5010H 或SG-5006G);泰克示波器一台(如TDS3012C);高压探头一个(如泰克P6015A或哈佛来PDP8000最高电压可测8kv);电流传感器一个,隔离变压器一个用在雷击浪涌EUT供电电源部分。
二实验注意事项1 使用示波器时,最好加上隔离便器供电,防止雷击浪涌反冲电压对示波器电源实验,苏州泰思特雷击浪涌反冲一般在设置电压的8%。
2 确保雷击浪涌发生器接地可靠。
3 差分探头的供电电源最好是采用隔离变压器供电,排除外界对测试工具的干扰。
4 EUT电源最好采用隔离变压器供电,或者采用漏保交大的空气开关。
5 实验操作安全是首要位置,(雷击浪涌具有高电压大电流实验,具有一定的危险性)在测试时尽力不要触摸到接线位置,当雷击浪涌发生器触发放电时就不要触碰任何连接线路,出现紧急情况直接把急停按钮按下,仪器自动卸掉高压电压。
三实验步骤(以下发生器设置为2kv)雷击浪涌电压波是1.2us/50us、电流波是8us/20us.1 示波器设置,直流耦合方式、探头衰减倍数为1000X、采样模式、匹配内阻为1M欧、上升沿触发、时间基准为20us每格、电压基准为500v每格、参考电平放置于设定电压的60%最易。
测量参数设置(如正压){上升时间(30%~90%测试参数需要乘以虚拟参数1.67)、正脉冲宽度(50%)、最大值}.2 雷击浪涌发生器设置,电压设置2kv、网络清除、正负交替运行、每个极性放电五次、充电时间设置25s、放电间隔为60s,异步触发。
四连接示意图衰减器(差分探头)接口处理雷击雷涌参数设置界面正电压2kv输出波形负电压2kv输出波形网络输出端波形(L1-N)网络端口正压2KV输出波形网络端口负压2KV输出波形正压电流输出波形(上升时间10%~90%,乘以虚拟参数1.25等于8 us;脉冲宽度为50%)负压输出电流波形雷击浪涌在叠加到50Hz的电网输出波形在相位0°角触发在相位90°角触发在相位180°角触发在相位270°角触发本仪器可以自动采集出报告系统苏州泰思特电子科技有限公司成都办事处可以免费EMC测试整改:1 静电放电抗扰度测试(满足IEC6100-4-2和GB17626.2)2 电快速瞬变脉冲群抗扰度测试(满足IEC61000-4-4和GB17626.4)3 雷击浪涌抗扰度测试(满足IEC6100-4-5和GB17626.5)4 通信波雷击浪涌抗扰度测试(满足IEC61000-4-5和GB17626.5)5 脉冲耐压测试仪(满足IEC61181和GB7251.1)6 传导抗扰度测试(满足IEC61000-4-6和GB17626.6)联系人:王金彪QQ:1606636867地址:四川省成都市天益街38号理想中心3栋516室(深圳、北京、苏州都有免费测试地方)。
浪涌测试基础知识
![浪涌测试基础知识](https://img.taocdn.com/s3/m/18b2b557c950ad02de80d4d8d15abe23482f0361.png)
浪涌测试基础知识01引文雷击发生时,强电流及其产生的电磁脉冲能通过传导,感应,耦合等方式在电子设备产生过电压,过电压沿电源线或信号线传输时,就形成雷电浪涌。
通常,雷电会对暴露在外的电源线上感应出较高的电压,这种电压不仅会直接传到设备,其产生的浪涌电流在电源线路传导时,电磁感应的浪涌会耦合到周围的信号线。
类似此类浪涌对电子产品会造成极大损害,因此要求产品具备一定浪涌抗扰能力。
02雷电瞬态浪涌的三种类型1.直接雷击,雷击于外部(户外)电网,注入的大电流流过接地电阻或者外部电路阻抗而产生电压,破还力极强,目前还没有设备能够对直接雷进行防护2.传导雷击:由远处的架空线传导而来,由于接于电力网的设备对过电压有不同的抑制能力,因此传导过电压能量随线路的延长而减弱。
3.感应雷击,云层之间或者云层中的雷击或击于附件物体的雷击等产生的电磁场,作用于导体,感应很高的过电压,这类过电压具有很陡的前沿并快速衰减。
其中,感应雷有两种浪涌感应方式:➤静电感应产生浪涌:雷电带有大量负电荷的雷云所产生的电场,会在导线上感应出被电场束缚的正电荷。
当雷云放电时,云层中的电荷瞬间大量减小或消失,在线路上被束缚的正电荷瞬间失去束缚,在电势能作用下,在线路上产生浪涌冲击➤电磁感应产生浪涌:闪电电流在周围形成磁场,这种磁场随时间变化,在周围的导线上激发感应电动势,雷击发生在供电线路附近或避雷针上,会产生此类情况。
另外,还有一种比较少见的雷击浪涌机理,地线电位反弹,业内常称为“反弹雷”,当设备安装了浪涌保护器件时,设备的某根电缆出现浪涌电压,浪涌保护器触发,将浪涌能量旁路到大地,这时,由于大电流流过设备接地线,该设备的地线电位突然升高。
此时与这台设备相连的其他设备,地电位还是零,两台设备之间产生了很高的共模电压,这种共模电压可能损坏设备接口。
03雷电感应的影响因素雷电感应是指导线上接收到的能量,其影响因素如下:1.雷云电荷量大小,直接影响电流大小,从而影响产生电磁场强度。
雷击浪涌试验详细介绍
![雷击浪涌试验详细介绍](https://img.taocdn.com/s3/m/e020f9a40912a216147929db.png)
,.雷击浪涌试验细则1 试验环境布置考虑试验安全性问题,建议将试验设备LSG506A以及CDN-532A接地。
LSG背面板接地线参考接地板图1 浪涌试验环境布置1.1 EUT电源端的试验配置EUT电源端的试验包括AC主回路三相的试验和控制模块供电端子单相的试验。
各项试验中包括线-线与线-地两种方式。
示意图分别见图2-图5。
,.图2 交流线(三相)上电容耦合的试验配置,线-线图3交流线(三相)上电容耦合的试验配置,线-地耦合网络,.图4 交/直流上电容耦合的配置,线-线图5 交/直流上电容耦合的配置,线-地注:图2-图5为干扰叠加在电源线上的原理图,并不是进行试验时我们的接线图。
1.2 EUT非屏蔽互联线的试验配置,.图6 非屏蔽互连线的试验配置,电容耦合方式注:此方法用于对EUT 的I/O ,控制线端子进行浪涌试验。
需使用40欧姆的电阻,以保护EUT 受试设备。
1.3 EUT 屏蔽通信线的试验配置图7 屏蔽线的试验配置,直接施加根据GB17626.5中7.6节的要求,非金属外壳产品的屏蔽线试验,可以直,.接施加在屏蔽线上。
如上图所示,以共模的方式将浪涌干扰加到屏蔽线层上。
2 CPS 试验方法2.1 KB0-T 、KB0-R 、KB0-B 的 AC 主回路电源端口试验(1)试验判据标准中无明确要求,参照试验判据表1,给出试验结果。
(2)施加干扰电压水平主回路电源线的试验水平为线-地4kV ,线-线2kV 。
脉冲在正负两个极性进行,相角为0°、90°。
在每一极性和相角施加5次脉冲(共20个脉冲),每个脉冲之间的时间间隔为1min 。
(3)受试设备接线方式KB0-T 、KB0-R 和KB0-B 主回路串联,进行线-线、线-地试验的接线方式分别如图8、9所示。
图8中左图所示为标准中规定的受试设备的AC 主回路接线图,即将主回路三相串联,并用升流器分别给受试设备提供0.9倍和2倍的额定电流(0.9倍时,EUT 中的脱扣器应不动作,2倍额定电流时应在规定的时间内动作)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荐的电源线、电源线暴露在线圈中的长度至 少为1米,测试中。感应线圈对于EUT的位 置应该分别在X、Y、Z方向上各进行一次测 试。
电压跌落
电压跌落是EMS的一个测试项目,主要为了 考核电子设备对电压暂降、短时中断和电 压变化的抗扰度,因为在电网、电力设施 故障或负荷突然出现大的变化时,会出现 电压的暂降和短时中断,有时会出现2次或 者多从的这种情况,在连接到电网的负荷 连续发上变化时会出现电压波动,这些变 化时随机的,可能导致EUT的性能下降或 者损坏。
B类:便携式工具、不属于专用设备的电弧焊 设备
C类:照明设备
• D类:功率不大于600W的个人计算机和个 人计算机显示器、电视接收机
电压闪烁
电压闪烁是EMI测试的一个项目,主要是考核 EUT产生的电压的闪烁会不会对其他的物 品产生影响,电网中接有大量的由自动接 通和切断控制的负荷,如含有温控器、定 时器的厨房器具、电加热器、空调器、复 印机和其他设备,当自动能够控制循环进 行接通和断开时,将引起电源负荷的频繁 变化,其结果使电网电压产生波动;进而
静电放电抗扰度
EMC测试分为电磁干扰EMI和电磁 敏感性,即 抗干扰EMS,静电放电抗扰度是EMS中的一个 测试项目,因为带静电的物体进行放电时会产 生放电电流,这个放电电流会产生短暂的强度 很大的电磁场。放电时产生短暂的放电电流和 相应的电磁场可能引起电气、电子设备的电路 发生故障,甚至损坏。静电放电试验的目的就 是检验电气、电子设备在遭受这类静电放电骚 扰时的性能。
电快速脉冲群
EFT同样也是EMS的一个测试项目,主要为 了考核电子设备对来自继电器,接触器等 在切换电感性负载时在电源线,控制线和 信号线上干扰的抗扰性,在继电器,接触 器等器件切换时,会在电路中产生一个有 上升时间短,重复频率高,能量较低的特 点的干扰信号,也可能导致EUT的性能下 降,甚至是损坏,这个测试就是通过EFT信 号发生器来模拟这样的信号,测试EUT在 这样的环境下能否正常工作。
因为大量家用电器的运行,产生大量谐波电 流注入电网。大量谐波电流入网后,通过 电网阻抗产生谐波压降,叠加在电网基波 上,引起电网的电压畸变,会对人体和其 他用电器的工作产生影响,现在测试的
EUT主要分为4类产品进行测试,A类:家
用电器,不包括列入D类的设备工具,不包括 便携式工具白炽灯调光器、音频设备、未规定 为B、C、D类的设备
静电放电试验主要针对用户可以实施的维护。 正常使用中用户可以接触的区域,正常使 用的位置,分为直接放电和接触放电直接 放电模拟了操作人员对受试设备直接接触 时发生的静电放电情况。间接放电则是对 水平耦合板和垂直耦合板进行放电,模拟 了操作人员对放置于或安装在受试设备附 近的物体放电时的情况。其中接触放电是 优先选择的试验方法,间接放电只有在不 能使用接触放电的场合中。
通过电压跌落信号发生器来模拟实验的环境, 让EUT在电压突然跌落到运行电压的0%、 30%、40%、70%观察EUT的工作情况, 来判定EUT对电压跌落的抗扰度性能如何。 EUT的布置如果电源线没有特殊的规定, 则要使电源线尽可能的短。
工频磁场
电压跌落是EMS的一个测试项目,主要为了 考核电子设备对工频磁场的抗扰度,工频 磁场是由导体中的工频电流产生的,或由 附近的其他装置(如变压器漏磁通)所产 生的,它可能会对EUt的工作产生影响,试 验中的磁场波形为正弦波,采用的是浸入 法,即将EUT放在感应线圈的中部,EUT 应放在0.1米的绝缘木板上,外壳的接地端 完好接地,应使用设备制造商所提供或推
对接在同一网络的照明设备的亮度产生变化, 这种灯光的闪烁容易使人产生烦恼且对某 些人(如癫痫病人)的健康特别有害。这 个测试考核的标准有两个:电压波动和闪 烁,闪烁的测量能精确评定连续的电压波 动产生的影响,而电压波动的测量能更好 地反映突然的较大电压变化产生的影响, 这种突然的大的电压变化对闪烁的测量影 响很小,但也十分有害。
一般实验室的布置时这样的,台式设备放在 离参考水平面0.8m高的桌子上,并用 0.5mm的绝缘衬垫将受试设备和电缆与耦 合板隔开,受试设备与耦合板各边的距离 不小于0.1m,在试验过程中,在EUT上选取 放电点,然后在确定在这一点是选择接触 放电还是空气放电,一般金属外壳进行接 触放电,绝缘外壳进行空气放电,有绝缘 层的金属外壳要刮破绝缘层进行直接放电, 每个放电点的放电次数不少于10次,每次 间隔不小于1秒。
浪涌信号发生器下面这个就是内容分发网络 CDN,它是用来测量三相供电的EUT或者 直流电源的EUT准备的,浪涌信号发生器 通过CDN将信号耦合到被测试的线路中, 信号线的测量也是通过CDN,但同时也要 加上耦合夹,通过耦合夹将干扰信号耦合 到线路中,信号线的干扰信号波形和电源 线的干扰信号的波形不同,实验室里没有 信号线的波形发生器,所以暂时这边没办 法做信号线的浪涌。
谐波电流
谐波电流是EMI测试的一个项目,主要是考核 EUT产生的谐波电流会不会对其他的物品 产生影响,首先解释下什么是谐波,谐波, 指的是那些频率为供电系统额定频率整数 倍的正弦电压或正弦电流。例,三次谐波为150Hz,四次谐波为 200Hz,上述各次谐波中,三次谐波所占成 分较大且对电气线路的危害最为明显。
浪涌信号发生器下面这个就是内容分发网络CDN, 它是用来测量三相供电的EUT或者直流电源的 EUT准备的,浪涌信号发生器通过CDN将信号耦 合到被测试的线路中,信号线的测量也是通过 CDN,但同时也要加上耦合夹,通过耦合夹将干 扰信号耦合到线路中。耦合夹信号的输入端应该 为最接近EUT的那一端,EUT在布置中受试设备 应该放置在接地参考平面上,并用厚0.1m的绝缘 支座与之隔开。若受试设备为台式设备,则受试 设备应放置在接地参考平面上方 0.8m±0.08m处。 接地参考平面应为一块厚度不小于0.25mm的金属 板(铜或铝);也可以使用其他的金属材料,但 其厚度至少应为0.65mm。