抛物线的定义及标准方程教案
抛物线教案完整篇
抛物线教案完整篇引言本教案旨在帮助学生理解和掌握抛物线的基本概念和性质。
通过本教案的研究,学生将能够解决与抛物线相关的问题,并应用抛物线的知识进行实际推理和分析。
教学目标- 理解抛物线的定义和特点- 掌握抛物线的标准方程和顶点形式- 能够绘制给定抛物线的图像- 了解抛物线在实际生活中的应用,并能够应用抛物线解决相关问题教学内容1. 抛物线的定义和特点- 抛物线的定义- 抛物线的焦点和准线- 抛物线的对称性和轴线2. 抛物线的表示形式- 抛物线的标准方程- 抛物线的顶点形式3. 绘制抛物线的图像- 根据给定的方程绘制抛物线的图像- 理解抛物线图像的特点和形状4. 抛物线的应用- 抛物线在物体运动中的应用- 抛物线在桥梁和建筑设计中的应用- 解决与抛物线相关的实际问题教学方法- 讲解:通过课堂讲解介绍抛物线的定义、特点和相关概念。
- 案例分析:通过分析实际案例,引导学生理解抛物线的应用场景。
- 问题解答:提供一系列与抛物线相关的问题,让学生进行思考和解答。
- 实践操作:通过绘制抛物线的图像和解决实际问题,加深学生对抛物线的理解和掌握。
教学评估- 完成课堂练:检查学生对抛物线定义、特点和方程的掌握情况。
- 解决实际问题:要求学生应用抛物线知识解决一些实际问题。
- 课堂讨论:鼓励学生在课堂上主动参与讨论,分享自己的思考和理解。
教学资源- 抛物线的相关课件和教学PPT- 抛物线的绘图工具和实际应用案例教学扩展- 进一步探索抛物线的性质和变形,如离心率和焦点运动轨迹等。
- 探究其他曲线的性质和应用,如椭圆、双曲线等。
总结通过本节课的学习,学生将能够全面理解抛物线的定义、特点和表示形式,掌握绘制和解决抛物线相关问题的方法,并了解抛物线在实际生活中的应用。
这将为他们进一步学习数学和应用数学打下坚实的基础。
抛物线教案初中
教案:初中数学抛物线教学教学内容:1. 抛物线的定义和标准方程2. 抛物线的几何性质:范围、对称性、顶点、离心率3. 描点画抛物线的方法教学目标:1. 掌握抛物线的定义、标准方程和几何性质;2. 能够根据抛物线的几何性质对抛物线方程进行讨论,并进行描点、画抛物线图形;3. 理解抛物线在实际生活中的应用,感受数学与生活的联系。
教学重点:1. 抛物线的定义和标准方程;2. 抛物线的几何性质:范围、对称性、顶点、离心率。
教学难点:1. 抛物线定义的形成过程;2. 抛物线标准方程的推导。
教学过程:一、课题引入(5分钟)1. 复习抛物线的定义、四类标准方程以及相应的焦点坐标、准线方程;2. 提出问题:为了准确而简便地画出抛物线的图形,我们应先对抛物线的范围、对称性、截距进行讨论。
二、知识讲解(15分钟)1. 抛物线的几何性质:范围、对称性、顶点、离心率;2. 抛物线的标准方程:y^2 = 2px(p>0)和y^2 = -2px(p>0)。
三、实例分析(10分钟)1. 通过实例分析,让学生理解抛物线的定义和标准方程;2. 让学生运用抛物线的几何性质对抛物线方程进行讨论,并进行描点、画抛物线图形。
四、课堂练习(10分钟)1. 让学生独立完成课后练习,巩固所学知识;2. 教师对学生的练习进行讲解和指导。
五、总结与拓展(5分钟)1. 对本节课的内容进行总结,让学生掌握抛物线的定义、标准方程和几何性质;2. 提出拓展问题,激发学生对抛物线的学习兴趣。
教学反思:本节课通过实例分析、课堂练习和总结与拓展,让学生掌握了抛物线的定义、标准方程和几何性质。
在教学过程中,要注意引导学生运用抛物线的几何性质对抛物线方程进行讨论,培养学生的逻辑思维能力和坐标法。
同时,通过生活中的实际应用,让学生感受数学与生活的联系,提高学生学习数学的兴趣。
在今后的教学中,可以进一步拓展抛物线的相关知识,如抛物线的应用、与其他几何图形的联系等,让学生更深入地理解和学习抛物线。
抛物线及其标准方程教案
抛物线及其标准方程教案教案:抛物线及其标准方程目标:1.了解抛物线的定义和性质。
2.学习抛物线的标准方程,并能够根据给定的条件写出抛物线的标准方程。
3.能够利用抛物线的标准方程求解与抛物线相关的问题。
教学步骤:Step 1:导入通过展示一张抛物线的图片,引起学生对抛物线的兴趣,并提出问题:“你认为抛物线有什么特点?”Step 2:定义抛物线讲解抛物线的定义:抛物线是一个平面曲线,它的每个点到焦点的距离与该点到直线的距离相等。
Step 3:抛物线的性质- 抛物线是对称的,它关于焦点所在的直线称为对称轴。
- 抛物线的顶点是对称轴上的点,也是抛物线的最低点(凹部)或最高点(凸部)。
- 抛物线的焦点到顶点的距离称为焦距。
- 抛物线是单调增加或单调减少的。
Step 4:抛物线的标准方程介绍抛物线的标准方程:y = ax^2 + bx + c,其中a,b,c是常数,a不等于零。
说明标准方程的各个参数的含义:- a决定抛物线的开口方向和大小。
- b决定抛物线在对称轴上的位置。
- c是抛物线的顶点的纵坐标。
Step 5:根据条件写出抛物线的标准方程示范如何根据给定的条件写出抛物线的标准方程,例如:- 已知抛物线的顶点坐标为(2,5),求抛物线的标准方程。
- 已知抛物线与x轴相交于点(1,0)和(-3,0),求抛物线的标准方程。
- 已知抛物线经过点(1,3)和(4,6),求抛物线的标准方程。
Step 6:练习与讨论让学生自主完成一些练习题,并与全班讨论答案。
示范题目:1. 已知抛物线的焦点在原点,对称轴与x轴平行,焦距为4,求抛物线的标准方程。
2. 已知抛物线过点(3,-1),且与y轴平行,求抛物线的标准方程。
3. 已知抛物线的标准方程为y = -2x^2 + 4x - 3,求抛物线的顶点坐标和焦距。
Step 7:拓展如果时间允许,可以讲解一些与抛物线相关的应用问题,例如:一个摄像机抛出的炮弹在空中的轨迹是一个抛物线,如何求解炮弹的最大高度和飞行距离等。
《抛物线及其标准方程》教案(公开课
《抛物线及其标准方程》教案(公开课《抛物线及其标准方程》教案(公开课)一、教学内容本节课选自高中数学教材选修22第二章第四节《抛物线及其标准方程》。
具体内容包括:1. 抛物线的定义及其简单性质;2. 抛物线的标准方程:y²=2px(p>0)和x²=2py(p>0);3. 抛物线的图形及其在实际问题中的应用。
二、教学目标1. 让学生掌握抛物线的定义、标准方程及其简单性质;2. 培养学生运用抛物线知识解决实际问题的能力;3. 培养学生的观察能力、空间想象能力和逻辑思维能力。
三、教学难点与重点1. 教学难点:抛物线标准方程的推导,抛物线图形的识别;2. 教学重点:抛物线的定义,标准方程及其性质。
四、教具与学具准备1. 教具:多媒体课件,黑板,粉笔;2. 学具:直尺,圆规,量角器,练习本。
五、教学过程1. 实践情景引入(1)展示图片:篮球投篮、投掷铅球、卫星轨道等;(2)提问:这些情景中,物体的运动轨迹有什么共同特点?2. 知识讲解(1)抛物线的定义:物体在只受重力作用下,从一点出发,经过一段时间后,落回到这一点,且在运动过程中始终受到同一平面的约束,这样的运动轨迹称为抛物线;(2)抛物线的标准方程:y²=2px(p>0)和x²=2py(p>0);(3)抛物线的性质:对称性、开口方向、顶点、焦点、准线等。
3. 例题讲解(1)求抛物线y²=4x的焦点、顶点和准线;(2)已知抛物线的焦点为F(1,0),求该抛物线的标准方程。
4. 随堂练习(2)已知抛物线的焦点和顶点,求其标准方程。
5. 小结六、板书设计1. 定义:抛物线是物体在只受重力作用下,从一点出发,经过一段时间后,落回到这一点,且在运动过程中始终受到同一平面的约束的运动轨迹;2. 标准方程:y²=2px(p>0)和x²=2py(p>0);3. 性质:对称性、开口方向、顶点、焦点、准线;4. 例题:抛物线y²=4x的焦点、顶点和准线;已知焦点求抛物线标准方程。
《抛物线及其标准方程》教案(公开课
《抛物线及其标准方程》教案(公开课《抛物线及其标准方程》教案(公开课)一、教学内容本节课选自《解析几何》教材第四章第一节,主要内容包括抛物线的定义、性质及其标准方程的推导和应用。
二、教学目标1. 理解抛物线的定义,掌握抛物线的性质。
2. 学会推导抛物线的标准方程,并能解决实际问题。
3. 能够运用抛物线标准方程解决几何问题和实际应用。
三、教学难点与重点重点:抛物线的定义、性质及其标准方程。
难点:抛物线标准方程的推导和应用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:直尺、圆规、练习本。
五、教学过程1. 实践情景引入2. 知识讲解(1) 抛物线的定义:平面内到一个定点F的距离等于到一条定直线l的距离的点的轨迹。
(2) 抛物线的性质:① 对称性;② 焦点、准线;③ 直线与抛物线的交点;④ 平面几何关系。
(3) 抛物线的标准方程:y^2 = 2px (p > 0) 或 x^2 = 2py (p > 0)。
3. 例题讲解(1) 求抛物线y^2 = 4x的焦点和准线。
(2) 已知抛物线x^2 = 8y,求过点P(2,3)且与抛物线相切的直线方程。
4. 随堂练习(1) 求抛物线y^2 = 12x的焦点、准线及对称轴。
(2) 已知抛物线x^2 = 16y,求过点A(4,2)且与抛物线相交的直线方程。
5. 课堂小结六、板书设计1. 定义2. 性质3. 标准方程4. 例题解析5. 随堂练习七、作业设计1. 作业题目(1) 求抛物线y^2 = 20x的焦点、准线及对称轴。
(2) 已知抛物线x^2 = 18y,求过点B(3,2)且与抛物线相切的直线方程。
2. 答案(1) 焦点:F(5,0),准线:x = 5,对称轴:y轴。
(2) 直线方程:y = 4/3x 2/3。
八、课后反思及拓展延伸本节课通过实践情景引入、知识讲解、例题讲解、随堂练习等环节,使学生掌握了抛物线的定义、性质和标准方程。
抛物线定义及标准方程教案
§2.3.1 抛物线及其标准方程
一.学习目标
1、类比椭圆、双曲线知识,经历从具体情境中抽象出抛物线模型。
2、掌握抛物线的定义、四种标准方程、几何图形及简单性质。
教学重点:物线的定义、四种标准方程、几何图形及简单性质。
教学难点:四种标准方程、几何图形及简单性质的运用。
二. 旧知温习
1. 二次函数的图像为_______________;
2. 求椭圆、双曲线的标准方程建立坐标系的过程.
三.自主学习
1.阅读教材P 56-59.
2.知识梳理并填空:
(1)平面内与一个定点F 和一条定直线l 的 距离 的点的轨迹叫做抛物线. 点F 叫做抛物线的 ;直线l 叫做抛物线的 .
(2)抛物线的标准方程:定点F 到定直线l 的距离为p (0p >). 建立适当的坐标系,得到开口向右的抛物线的标准形式: 图形
四.合作探究
例.已知抛物线标准方程是x y 62=,求它的焦点坐标、准线方程
练习:已知抛物线标准方程是26y x =,求它的焦点坐标、准线方程
五、课堂小结(可引导学生归纳总结本堂课学习的知识、方法和易错处)。
抛物线教学设计抛物线优质教案
抛物线教学设计抛物线优质教案一、教学内容本节课选自高中数学教材第二册第四章第四节《抛物线》,详细内容包括:1. 抛物线的定义及标准方程;2. 抛物线的性质,如顶点、对称轴、焦点、准线等;3. 抛物线在实际问题中的应用。
二、教学目标1. 理解抛物线的定义,掌握抛物线的标准方程;2. 能够分析抛物线的性质,如顶点、对称轴、焦点、准线等;3. 学会运用抛物线知识解决实际问题。
三、教学难点与重点1. 教学难点:抛物线的性质及其在实际问题中的应用;2. 教学重点:抛物线的定义、标准方程及性质。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:直尺、圆规、量角器。
五、教学过程1. 实践情景引入:利用多媒体展示抛物线在实际生活中的应用,如篮球投篮、抛物线运动等,引导学生观察并思考抛物线的特点。
2. 例题讲解:(1)抛物线的定义及标准方程;(2)抛物线的性质,如顶点、对称轴、焦点、准线等;(3)抛物线在实际问题中的应用。
3. 随堂练习:(1)判断下列图形是否为抛物线,并给出理由;(2)求抛物线 y = 2x^2 + 4x + 3 的顶点、对称轴、焦点和准线;(3)已知抛物线的顶点为(1, 3),过顶点的直线与抛物线相交于点A、B,求线段AB的中点C的坐标。
4. 小组讨论:学生分组讨论,共同解决随堂练习中的问题,教师巡回指导。
六、板书设计1. 抛物线的定义及标准方程;2. 抛物线的性质;3. 例题解答步骤;4. 随堂练习解答。
七、作业设计1. 作业题目:(1)求抛物线 y = x^2 + 4x + 5 的顶点、对称轴、焦点和准线;(2)已知抛物线的焦点为(2, 0),求抛物线的标准方程;(3)抛物线 y = 2x^2 + 4x 3 与直线 y = x + 1 相交于点A、B,求线段AB的中点C的坐标。
2. 答案:(1)顶点:(2, 9),对称轴:x = 2,焦点:(2, 3),准线:y = 3;(2)抛物线的标准方程:y = 4(x 2)^2;(3)中点C的坐标:(1/2, 7/4)。
抛物线的定义及标准方程优秀教案
<<抛物线的定义及标准方程>>教案西乡二中陶小健一.教学媒体的选择和设计本课件需在多媒体教室完成,借助powerpoint、几何画板课件,从动态演示和实物模型入手,使学生对抛物线有一个初步的认识。
二.教学目标分析1.知识目标掌握抛物线定义,明确焦点和准线的意义;掌握抛物线标准方程;会推导抛物线标准方程,掌握P的几何意义,掌握开口向右的抛物线的标准方程的数形特点,并会简单的应用。
2.能力目标通过抛物线概念和标准方程的学习,培养学生分析、抽象和概括等逻辑思维能力,提高适当建立坐标系的能力,提高数形结合和转换能力。
3.情感目标通过学生们寻找生活中与抛物线有关的物体和形象,加强知识与实际的联系,增强学生的学习兴趣。
三.教材的重点和难点掌握抛物线的定义及标准方程,进一步熟悉解析法的应用,会根据抛物线的标准方程、准线方程、焦点坐标、图象四个条件中一个求其余条件是本节课的教学重点。
教学难点是用解析法求抛物线的标准方程,及坐标系的选取。
四.教学过程1、设置情境,引出课题(借助多媒体)先给出一段悉尼海港大桥的视频和中国一古一今两张抛物线形大桥图片,让学生体会世界的古代文明和现代化建设成就。
再给出一幅抛球画面。
抛球运动中球飞出的路径是什么曲线呢?问题一学生在学习了圆锥曲线中的椭圆后自然想到抛物线。
借此教师点明并板书课题:今天我们就来学习抛物线,研究一下《抛物线的定义和标准方程》。
2.实验探索,归纳定义为了加深对抛物线直观形象的认识,教师操纵微机,展示多媒体课件,顺序显示下列图形:1)一条直尺和沿直尺一侧的一定直线L;2)一个直角三角板并把其一直角边紧靠在直尺的一侧(即定直线L上);3)取一段细线一段固定在直角三角板另一条直角边上,把细线紧靠在直尺直角三角板一条直角边上,截取一段使其恰好等于到直尺一侧(即定直线L)的距离;4)再取定直线L 外一个定点F ,把细线的另一端固定在这个定点F 上,取一支铅笔P 靠在三角板的直角边上并使细线扯紧;5)让直角三角板一条直角边紧靠在直尺的一侧(即定直线L上),上下移动时铅笔P 就画出一段曲线-------抛物线。
《抛物线及其标准方程》教案(公开课
《抛物线及其标准方程》教案(公开课《抛物线及其标准方程》教案(公开课)一、教学内容本节课的内容选自高中数学教材选修22第三章第一节,主要讲述抛物线的定义及其标准方程。
具体内容包括:1. 抛物线的定义及其简单性质;2. 抛物线的标准方程推导;3. 抛物线标准方程的应用。
二、教学目标1. 理解抛物线的定义,掌握抛物线的简单性质;2. 学会推导抛物线的标准方程,并能应用于实际问题;3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点重点:抛物线的定义、标准方程及其应用。
难点:抛物线标准方程的推导过程,以及在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体教学设备、投影仪、黑板、粉笔;2. 学具:直尺、圆规、练习本。
五、教学过程1. 实践情景引入利用多媒体展示实际生活中的抛物线实例,如抛物线运动轨迹、拱桥等,引导学生观察并思考抛物线的特点。
2. 抛物线的定义及性质(2)讲解抛物线的性质,如对称性、顶点等。
3. 抛物线标准方程的推导(1)教师引导学生通过实际例题,推导出抛物线的标准方程;(2)讲解抛物线标准方程的推导过程,强调理解推导方法。
4. 例题讲解选取典型例题,讲解抛物线标准方程的应用,引导学生学会解决实际问题。
5. 随堂练习设计具有代表性的练习题,让学生巩固所学知识,及时发现问题并解答。
6. 小结六、板书设计1. 抛物线的定义;2. 抛物线的性质;3. 抛物线标准方程的推导过程;4. 典型例题及解题步骤。
七、作业设计1. 作业题目:(1)已知抛物线y^2=8x的焦点为F(2,0),求该抛物线的准线方程;(2)已知抛物线y=2x^2的焦点为F(0,1/8),求该抛物线的标准方程。
2. 答案:(1)准线方程:x=2;(2)标准方程:x^2=1/8y。
八、课后反思及拓展延伸1. 反思:本节课学生对抛物线的定义和性质掌握较好,但在推导抛物线标准方程时,部分学生存在困难。
在今后的教学中,应加强此类问题的讲解和练习。
抛物线及其标准方程教案
抛物线及其标准方程教案抛物线及其标准方程教案一、教学目标:1.了解抛物线的定义和基本特性。
2.掌握抛物线的标准方程。
3.能够利用标准方程画出抛物线的图像。
二、教学内容:1.抛物线的定义和基本特性。
2.抛物线的标准方程。
3.抛物线的图像绘制。
三、教学过程:1.导入(5分钟)引入抛物线的概念,提问学生是否知道什么是抛物线以及它的性质。
2.讲解抛物线的定义和基本特性(10分钟)讲解抛物线的定义:抛物线是指平面上到一个定点距离等于到一条定直线距离的点的轨迹。
讲解抛物线的基本特性:对称轴、焦点、准线等。
3.引入抛物线的标准方程(10分钟)讲解抛物线的标准方程:y = ax^2 + bx + c,其中a、b、c为常数。
解释每个常数在方程中的含义,并说明如何利用标准方程求出抛物线的性质。
4.计算抛物线的焦点和准线(10分钟)根据标准方程,计算抛物线的焦点和准线的坐标,教学示范并让学生做练习题。
5.绘制抛物线的图像(15分钟)以抛物线的焦点为中心,根据焦点和准线的位置,教学演示如何绘制抛物线的图像。
让学生自行绘制抛物线,并指导学生如何标出焦点和准线。
6.总结和小结(5分钟)总结抛物线的定义、基本特性、标准方程和图像绘制方法,并核对学生是否掌握。
四、教学资源:1.黑板、粉笔。
2.绘图仪器(尺子、直尺、铅笔等)。
3.教学课件。
五、教学评价:1.观察学生的课堂表现,看是否能够正确理解抛物线的定义和基本特性。
2.检查学生是否掌握抛物线的标准方程,并能够利用标准方程绘制抛物线的图像。
3.布置练习题进行个人评价。
《抛物线及其标准方程》教案
《抛物线及其标准方程》教案《抛物线及其标准方程》教案教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编整理的《抛物线及其标准方程》教案,欢迎大家分享。
《抛物线及其标准方程》教案篇1一、目标1.掌握抛物线的定义、几何图形,会推导抛物线的标准方程2.能够利用给定条件求抛物线的标准方程3.通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。
并进一步感受坐标法及数形结合的思想二、重点抛物线的定义及标准方程三、教学难点抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择)四、教学过程(一)复习旧知在初中,我们学习过了二次函数,知道二次函数的图象是一条抛物线。
例如:(1),(2)的图象(展示两个函数图象):(二)讲授新课1.课题引入在实际生活中,我们也有许多的抛物线模型,例如1965年竣工的密西西比河河畔的萨尔南拱门,它就是用不锈钢铸成的抛物线形的建筑物。
到底什么样的曲线才可以称做是抛物线?它具有怎样的几何特征?它的方程是什么呢?这就是我们今天要研究的内容.(板书:课题2.4.1抛物线及其标准方程)2.抛物线的定义信息技术应用(课堂中展示画图过程)先看一个实验:如图:点F是定点,是不经过点F的定直线,H是上任意一点,过点H作,线段FH的垂直平分线交MH于点M。
拖动点H,观察点M的轨迹,你能发现点M满足的几何条件吗?(学生观察画图过程,并讨论)可以发现,点M随着H运动的过程中,始终有MH=MF,即点M 与定点F和定直线的距离相等。
(也可以用几何画板度量MH,MF的值)(定义引入):我们把平面内与一个定点F和一条定直线(不经过点F)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线叫做抛物线的准线。
抛物线教案(绝对经典)
第7节 抛物线【最新考纲】 1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质.【高考会这样考】 1.考查抛物线的定义、标准方程;2.考查抛物线的几何性质、焦点弦问题;3.考查直线与抛物线的位置关系.要 点 梳 理1.抛物线的定义(1)平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)其数学表达式:{M ||MF |=d }(d 为点M 到准线l 的距离). 2.抛物线的标准方程与几何性质[友情提示]1.通径:过焦点垂直于对称轴的弦长等于2p ,通径是过焦点最短的弦.2.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝⎛⎭⎫p 2,0的距离|PF |=x 0+p2,也称为抛物线的焦半径.基 础 自 测1.思考辨析(在括号内打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝⎛⎭⎫a4,0,准线方程是x =-a4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝⎛⎭⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .解析 (1)当定点在定直线上时,轨迹为过定点F 与定直线l 垂直的一条直线,而非抛物线.(2)方程y =ax 2(a ≠0)可化为x 2=1a y ,是焦点在y 轴上的抛物线,且其焦点坐标是⎝⎛⎭⎫0,14a ,准线方程是y =-14a .(3)抛物线是只有一条对称轴的轴对称图形. 答案 (1)× (2)× (3)× (4)√2.以x =1为准线的抛物线的标准方程为( ) A .y 2=2xB .y 2=-2xC .y 2=4xD .y 2=-4x解析 由准线x =1知,抛物线方程为: y 2=-2px (p >0)且p2=1,p =2,∴抛物线的方程为y 2=-4x . 答案 D3.已知方程y 2=4x 表示抛物线,且该抛物线的焦点到直线x =m 的距离为4,则m 的值为( ) A .5 B .-3或5 C .-2或6D .6解析 抛物线y 2=4x 的焦点为F (1,0),它与直线x =m 的距离为d =|m -1|=4,∴m =-3或5,故选B. 答案 B4.已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),则该抛物线的标准方程为________.解析 很明显点P 在第三象限,所以抛物线的焦点可能在x 轴负半轴上或y 轴负半轴上. 当焦点在x 轴负半轴上时,设方程为y 2=-2px (p >0),把点P (-2,-4)的坐标代入得(-4)2=-2p ×(-2),解得p =4,此时抛物线的标准方程为y 2=-8x ;当焦点在y 轴负半轴上时,设方程为x 2=-2py (p >0),把点P (-2,-4)的坐标代入得(-2)2=-2p ×(-4),解得p =12,此时抛物线的标准方程为x 2=-y . 综上可知,抛物线的标准方程为y 2=-8x 或x 2=-y . 答案 y 2=-8x 或x 2=-y5.已知抛物线方程为y 2=8x ,若过点Q (-2,0)的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________.解析 设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0,当k =0时,显然满足题意;当k ≠0时,Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0,解得-1≤k <0或0<k ≤1,因此k 的取值范围是[-1,1]. 答案 [-1,1]错误!题型分类 深度解析考点一 抛物线的定义及应用【例1】 (1)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点D 到y 轴的距离为( ) A.34B .1C.54D.74(2)若抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),则|P A |+|PF |取最小值时点P 的坐标为________.解析 (1)因为抛物线y 2=x 的准线方程为x =-14.如图所示,过点A ,B ,D 分别作直线x =-14的垂线,垂足分别为G ,E ,M ,因为|AF |+|BF |=3,根据抛物线的定义,|AG |=|AF |,|BE |=|BF |,所以|AG |+|BE |=3,所以|MD |=|BE |+|AG |2=32,即线段AB 的中点D 到y 轴的距离为32-14=54.(2)将x =3代入抛物线方程y 2=2x ,得y =±6.∵6>2,∴A 在抛物线内部,如图.设抛物线上点P 到准线l :x =-12的距离为d ,由定义知|P A |+|PF |=|P A |+d ,当P A ⊥l 时,|P A |+d 最小,最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2,∴点P 的坐标为(2,2).答案 (1)C (2)(2,2)规律方法 应用抛物线定义的两个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P (x 0,y 0)到焦点F 的距离|PF |=|x 0|+p 2或|PF |=|y 0|+p2. 【变式练习1】 (1)动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为__________.(2)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.解析 (1)设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .(2)如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P , ∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2. ∵点M 为FN 的中点,PM ∥OF , ∴|MP |=12|FO |=1.又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6. 答案 (1)y 2=4x (2)6考点二 抛物线的标准方程及其性质【例2】 (1)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833yB .x 2=1633yC .x 2=8yD .x 2=16y(2)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A .2B .4C .6D .8解析 (1)∵x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,∴c a =2,即c 2a 2=a 2+b 2a 2=4,∴b a = 3.x 2=2py (p >0)的焦点坐标为⎝⎛⎭⎫0,p 2,x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ,即y =±3x .由题意得p 21+(3)2=2,解得p =8.故C 2的方程为x 2=16y .(2)不妨设抛物线C :y 2=2px (p >0),圆的方程为x 2+y 2=r 2(r >0), ∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2, ∴不妨设A ⎝⎛⎭⎫4p ,22,D ⎝⎛⎭⎫-p2,5,∵点A ⎝⎛⎭⎫4p ,22,D ⎝⎛⎭⎫-p2,5在圆x 2+y 2=r 2上,∴16p 2+8=p 24+5,解得p =4(负值舍去), 故C 的焦点到准线的距离为4. 答案 (1)D (2)B规律方法 1.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.2.在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.【变式练习2】 (1)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为________.(2)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为________.解析 (1)设A ,B 在准线上的射影分别为A 1,B 1, 由于|BC |=2|BF |=2|BB 1|,则直线的斜率为3, 故|AC |=2|AA 1|=6,从而|BF |=1,|AB |=4,故p |AA 1|=|CF ||AC |=12,即p =32,从而抛物线的方程为y 2=3x .(2)如图,由题意知,抛物线的焦点F 的坐标为(1,0),又|AF |=3,由抛物线定义知,点A 到准线x =-1的距离为3,所以点A 的横坐标为2,将x =2代入y 2=4x 得y 2=8,由图知点A 的纵坐标为y =22,所以A (2,22),所以直线AF 的方程为y =22(x -1),联立直线与抛物线的方程⎩⎨⎧y =22(x -1),y 2=4x ,解得⎩⎪⎨⎪⎧x =12,y =-2或⎩⎨⎧x =2,y =22,由图知B ⎝⎛⎭⎫12,-2,所以S △AOB =12×1×|y A -y B |=322. 答案 (1)y 2=3x (2)322考点三 直线与抛物线的位置关系(多维探究) 命题角度1 直线与抛物线的公共点(交点)问题【例3-1】 在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其它公共点?说明理由.解 (1)如图,由已知得M (0,t ),P ⎝⎛⎭⎫t22p ,t ,又N 为M 关于点P 的对称点,故N ⎝⎛⎭⎫t2p ,t ,故直线ON 的方程为y =ptx ,将其代入y 2=2px 整理得px 2-2t 2x =0, 解得x 1=0,x 2=2t 2p ,因此H ⎝⎛⎭⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其它公共点,理由如下: 直线MH 的方程为y -t =p 2t x ,即x =2tp (y -t ). 代入y 2=2px 得y 2-4ty +4t 2=0, 解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其它公共点. 命题角度2 与抛物线弦长(中点)有关的问题【例3-2】 已知抛物线C :y 2=2px 过点P (1,1),过点⎝⎛⎭⎫0,12作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.(1)解 把P (1,1)代入y 2=2px ,得p =12, 所以抛物线C 的方程为y 2=x , 焦点坐标为⎝⎛⎭⎫14,0,准线方程为x =-14.(2)证明 当直线MN 斜率不存在或斜率为零时,显然与抛物线只有一个交点不满足题意,所以直线MN (也就是直线l )斜率存在且不为零.由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +12,y 2=x ,消去y 得4k 2x 2+(4k -4)x +1=0. 考虑Δ=(4k -4)2-4×4k 2=16(1-2k ),由题可知有两交点,所以判别式大于零,所以k <12.则x 1+x 2=1-k k 2,x 1x 2=14k 2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎫x 1,y 2x 1x 2.因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2 =⎝⎛⎭⎫kx 1+12x 2+⎝⎛⎭⎫kx 2+12x 1-2x 1x2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k2k2x 2=0. 所以y 1+y 2x 1x 2=2x 1.故A 为线段BM 的中点.规律方法 1.直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.2.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.3.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.【变式练习3】 已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .10解析 抛物线C :y 2=4x 的焦点为F (1,0),由题意可知l 1,l 2的斜率存在且不为0.不妨设直线l 1的斜率为k ,则l 2直线的斜率为-1k ,故l 1:y =k (x -1),l 2:y =-1k(x -1).由⎩⎨⎧y 2=4x ,y =k (x -1),消去y 得k 2x 2-(2k 2+4)x +k 2=0. 设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2k 2+4k 2=2+4k 2,由抛物线定义可知,|AB |=x 1+x 2+2=4+4k 2.同理得|DE |=4+4k 2,∴|AB |+|DE |=8+4k 2+4k 2≥8+216=16. 当且仅当1k 2=k 2,即k =±1时取等号. 故|AB |+|DE |的最小值为16. 答案 A课后练习A 组(时间:40分钟)一、选择题1.若抛物线y =ax 2的焦点坐标是(0,1),则a 等于( ) A .1B.12C .2D.14解析 因为抛物线的标准方程为x 2=1a y , 所以其焦点坐标为⎝⎛⎭⎫0,14a ,则有14a =1,解得a =14. 答案 D2.设F 为抛物线C :y 2=4x 的焦点,曲线y =kx (k >0)与C 交于点P ,PF ⊥x 轴,则k =( )A.12B .1C.32D .2解析 由题可知抛物线的焦点坐标为(1,0),由PF ⊥x 轴知,|PF |=2,所以P 点的坐标为(1,2),代入曲线y =kx (k >0)得k =2. 答案 D3.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |=( ) A .9B .8C .7D .6解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.答案 B4.设抛物线C :y 2=3x 的焦点为F ,点A 为C 上一点,若|F A |=3,则直线F A 的倾斜角为( ) A.π3B.π4C.π3或2π3D.π4或3π4解析 如图,作AH ⊥l 于H ,则|AH |=|F A |=3,作FE ⊥AH 于E ,则|AE |=3-32=32,在Rt △AEF 中,cos ∠EAF =|AE ||AF |=12, ∴∠EAF =π3,即直线F A 的倾斜角为π3,同理点A 在x 轴下方时,直线F A 的倾斜角为2π3. 答案 C5.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值为( )A .12B .24C .16D .32解析 当直线的斜率不存在时,其方程为x =4,由⎩⎨⎧x =4,y 2=4x ,得y 1=-4,y 2=4,∴y 21+y 22=32.当直线的斜率存在时,设其方程为y =k (x -4),由⎩⎨⎧y 2=4x ,y =k (x -4),得ky 2-4y -16k=0,∴y 1+y 2=4k ,y 1y 2=-16,∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k2+32>32,综上可知,y 21+y 22≥32.∴y 21+y 22的最小值为32.答案 D 二、填空题6.圆(x +1)2+y 2=1的圆心是抛物线y 2=px (p <0)的焦点,则p =________. 解析 由题意知圆心为(-1,0),则p4=-1,解得p =-4.答案 -47.已知抛物线C :y 2=8x ,焦点为F ,点P (0,4),点A 在抛物线上,当点A 到抛物线准线l 的距离与点A 到点P 的距离之和最小时,延长AF 交抛物线于点B ,则△AOB 的面积为________.解析 F (2,0),设A 在抛物线准线上的投影为A ′, 由抛物线的定义知,|AA ′|=|AF |,则点A 到点P (0,4)的距离与A 到该抛物线准线的距离之和d =|AP |+|AF |≥|PF |=25,当F ,A ,P 三点共线时d 取得最小值,此时直线AB 的斜率为-2,方程为y =-2(x -2),即x =-y 2+2,代入抛物线C :y 2=8x ,可得y 2+4y -16=0,解得y =-2-25或-2+2 5.∴△AOB 的面积为12×2×|(-2-25)-(-2+25)|=4 5.答案 4 58.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.解析 建立如图平面直角坐标系,设抛物方程为x 2=-2py (p >0).由题意将点A (2,-2)代入x 2=-2py ,得p =1,故x 2=-2y .设B (x ,-3),代入x 2=-2y 中,得x =6,故水面宽为26米.答案 2 6三、解答题9.已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△F AB 的面积.解 (1)易知直线与抛物线的交点坐标为(8,-8),∴(-8)2=2p ×8,∴2p =8,∴抛物线方程为y 2=8x .(2)直线l 2与l 1垂直,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .由⎩⎨⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0, Δ=64+32m >0,∴m >-2.y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 21y 2264=m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0,∴m =8或m =0(舍),∴直线l 2:x =y +8,M (8,0).故S △F AB =S △FMB +S △FMA =12·|FM |·|y 1-y 2|=3(y 1+y 2)2-4y 1y 2=24 5.10.设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.解 (1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,y 1=x 214,y 2=x 224,x 1+x 2=4.于是直线AB 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1. (2)由y =x 24,得y ′=x 2. 设M (x 3,y 3),由题设知x 32=1,解得x 3=2,于是M (2,1).设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y =x +m 代入y =x 24得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x 1,2=2±2m +1.从而|AB |=2|x 1-x 2|=42(m +1).由题设知|AB |=2|MN |,即42(m +1)=2(m +1),解得m =7.所以直线AB 的方程为x -y +7=0.B 组(时间:20分钟)11.已知抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于点M (M 在第一象限),若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.316B.38C.233D.433解析 由抛物线C 1:y =12p x 2(p >0)得x 2=2py (p >0),所以抛物线的焦点坐标为⎝⎛⎭⎫0,p 2. 由x 23-y 2=1得a =3,b =1,c =2.所以双曲线的右焦点为(2,0). 则抛物线的焦点与双曲线的右焦点的连线所在直线方程为y -0p 2-0=x -20-2.即px +4y -2p =0.①设M ⎝⎛⎭⎫x 0,x 202p (x 0>0),则C 1在点M 处的切线的斜率为x 0p . 由题意可知x 0p =33,解得x 0=33p ,所以M ⎝ ⎛⎭⎪⎫33p ,p 6, 把M 点的坐标代入①得3p 23+23p -2p =0.解得p =433.答案 D12.已知抛物线方程为y 2=-4x ,直线l 的方程为2x +y -4=0,在抛物线上有一动点A ,点A 到y 轴的距离为m ,到直线l 的距离为n ,则m +n 的最小值为________.解析 如图,过A 作AH ⊥l ,AN 垂直于抛物线的准线,则|AH |+|AN |=m +n +1,连接AF ,则|AF |+|AH |=m +n +1,由平面几何知识,知当A ,F ,H 三点共线时,|AF |+|AH |=m +n +1取得最小值,最小值为F 到直线l 的距离,即65=655,即m +n 的最小值为655-1.答案 655-1 13.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:(1)y 1y 2=-p 2,x 1x 2=p 24; (2)1|AF |+1|BF |为定值;(3)以AB 为直径的圆与抛物线的准线相切.证明 (1)由已知得抛物线焦点坐标为⎝⎛⎭⎫p 2,0.由题意可设直线方程为x =my +p 2,代入y 2=2px ,得y 2=2p ⎝⎛⎭⎫my +p 2,即y 2-2pmy -p 2=0.(*)则y 1,y 2是方程(*)的两个实数根, 所以y 1y 2=-p 2.因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2, 所以x 1x 2=y 21y 224p 2=p 44p 2=p 24.(2)1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+px 1x 2+p 2(x 1+x 2)+p 24.因为x 1x 2=p 24,x 1+x 2=|AB |-p ,代入上式, 得1|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p (定值).(3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N , 则|MN |=12(|AC |+|BD |)=12(|AF |+|BF |)=12|AB |. 所以以AB 为直径的圆与抛物线的准线相切.。
抛物线教案
抛物线的定义与标准方程一.教学目标知识目标: 1.掌握抛物线定义及其标准方程,2.熟练掌握抛物线的四种标准方程、焦点坐标、准线方程间的相互关系.能力目标:1.训练学生的运算能力,2.培养学生的数形结合思想、分类讨论思想.情感目标: 1.学习用联系、对比的观点看问题,2.通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.二.教学重点抛物线定义及抛物线的四种标准方程三.教学难点1.抛物线的标准方程的推导2.把握抛物线的四种标准方程、图象、焦点坐标、准线方程间的联系四.教学方法讲授法,练习法五.教学用具多媒体课件,希沃白板,网络视频六.授课课型:新授课七.教学过程(一)创设情景导入新课1.感受生活中的抛物线2. 简单实验如图,把一根直尺固定在图板内直线l的位置,一块三角板的一条直角边紧靠直尺的边缘.再把一条绳子的一端固定于三角板的另一条直角边上的点A,截取绳子的长等于A到直线l的距离AC,并且把绳子的另一端固定在图板上的一点F ;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺上下滑动,这样铅笔描出一条曲线.问题1:笔尖(设为动点M )在运动过程中满足的条件是什么? 提示:|MC |=|MF |.问题2:|MC |是点M 到直线l 的距离吗? 提示:因为AC ⊥l ,所以|MC |是M 到l 的距离.问题3:此曲线是否为椭圆或一支双曲线?如果不是,猜想它是什么? 提示:不是椭圆,也不是一支双曲线,而是抛物线(二)动脑思考 探索新知1.抛物线的定义在平面内,与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹(或集合)叫抛物线.定点F 叫抛物线的焦点,定直线l 叫抛物线的准线.2.抛物线标准方程的推导2)2(),(.202),0(,,22px d y p x MF d MF d l M y x M p x l p F p p KF KF K l F x xoy +=+-==-=〉= ,则的距离为到点是抛物线上任意一点,设点的方程为),准线,的坐标为(那么焦点设的中点重合并使原点与线段,垂足为且垂直与直线轴经过点使如图,建立直角坐标系 20,2)0(2)0(22)2(2222px p p px y p px y p x y p x -=〉=〉=+=+-),它的准线方程是坐标是(在轴的正半轴上,。
《2.3.1 抛物线的定义与标准方程》教案
《抛物线的定义与标准方程》教案一、教学目标1.知识教育点:使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质.2.能力训练点:要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力.3.学科渗透点:通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线方程概念的理解,这样才能解决抛物线中的弦、最值等问题.二、教材分析1.重点:抛物线的定义和标准方程.抛物线的几何性质及初步运用.解决办法:引导学生类比椭圆、双曲线的几何性质得出.2.难点:抛物线的几何性质的应用.解决办法:通过几个典型例题的讲解,使学生掌握几何性质的应用.3.疑点:抛物线的定义中需要加上“定点F 不在定直线l 上”的限制.抛物线的焦半径和焦点弦长公式.解决办法:引导学生证明并加以记忆.三、四种标准方程及几何性质的应用1.根据下列所给条件,写出抛物线的标准方程:(1)已知抛物线的标准方程是y2=6x ,求它的焦点坐标和准线方程;(2)已知抛物线的焦点坐标是F(0,-2),求它的标准方程;(3)焦点是F(3,0),求它的标准方程;(4)焦点到准线的距离是2,求它的标准方程;2.抛物线y2=2px(p >0)上一点M 到焦点的距离是a(a >2p ),点M 到准线的距离是多少?点M 的横坐标是多少?3.求下列抛物线的焦点坐标和准线方程:(1)x2=2y ;(2)4x2+3y=0;(3)2y2+5x=0;(4)y2-6x=0.4.根据下列条件,求抛物线的方程,并描点画出图形:(1)顶点在原点,对称轴是x 轴,并且顶点与焦点的距离等于6;(2)顶点在原点,对称轴是y 轴,并经过点P(-6,-3).5.(1)求焦点在直线3x-4y-12=0上的抛物线的标准方程.(2)已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m 的值.6.焦半径:抛物线上任一点到焦点的距离(即此点的焦半径)等于此点到准线的距离. 设P(x0,y0)为抛物线y2=2px 上任一点,F (2p ,0)是抛物线的焦点,则|PF|=x0+2p .7.由焦半径公式不难得出焦点弦长公式:设AB 是过抛物线焦点的一条弦(焦点弦),若A(x1,y1)、B(x2,y2),则有|AB|=x1+x2+p .特别地:当AB ⊥x 轴时,抛物线的通径|AB|=2p(详见课本习题).例:过抛物线y2=2px(p>0)的焦点F 的一条直线与这条抛物线相交于A 、B 两点,且A(x1,y1)、B(x2,y2),求证:y1y2= -p2,x1x2=p2/4.说明:涉及直线与圆锥曲线相交时,常把直线与圆锥曲线的方程联立,消去一个变量,得到关于另一变量的一元二次方程,然后用韦达定理求解,这是解决这类问题的一种常用方法.要求学生记忆.四、练习1.过抛物线y2=4x 的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若x1+x2=6,求|AB|的值.2.证明:与抛物线的轴平行的直线和抛物线只有一个交点.3.在抛物线y2=12x 上,求和焦点的距离等于9的点的坐标.4.有一个正三角形的两个顶点在抛物线y2=2px 上,另一个顶点在原点,求这个三角形的边长.5.下图是某抛物线拱桥的示意图,当水面在l 时,拱顶离水面2m ,水面宽4m ,水下降11m 后,水面宽多少?6.求证:以抛物线的焦点弦为直径的圆,必与抛物线的准线相切.7. 正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线()022>=p px y 上,求这个正三角形的边长(用p 表示)8. 在平面直角坐标系xoy 中,抛物线y=x2上异于坐标原点O 的两个不同动点A 、B 满足AO ⊥BO.(1)(文、理共做)求△AOB的重心G的轨迹方程;(2)(理)△AOB的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.9. 正三角形AOB的顶点O位于坐标原点,另外两个顶点在抛物线C:y2=2px(p>0)上,已知△AOB的周长为123,(1)求抛物线C的方程;(2)设M、N是抛物线C上除原点以外的两个动点,且OM⊥ON,OP⊥MN,P 为垂足,求点P的轨迹方程.。
抛物线的定义及其标准方程教案
圆锥曲线教案抛物线的定义及其标准方程教案教学目标1.使学生理解抛物线的定义、标准方程及其推导过程,并能初步利用它们解决有关问题.2.通过教学,培养学生观察、联想、类比、猜测、归纳等合情推理的方法,提高学生抽象、概括、分析、综合的能力,既教猜想,又教证明.3.培养学生运用数形结合的数学思想理解有关问题.教学重点与难点抛物线标准方程的推导及有关应用既是教学重点,又是难点.教学过程师:请同学们回忆椭圆和双曲线的第二定义.生:与一个定点的距离和一条定直线的距离的比是常数e的点的轨道,当e <1时,是椭圆,当e>1时,是双曲线.(计算机演示动画——图2-45)(1)不妨设定点F到定直线l的距离为p.(2)通过提问,让学生思考随着e的变化曲线的形状的变化规律.同时演示动画,让学生充分体会这种变化规律,为学生猜测e=1时曲线形状奠定基础.师:那么,当e=1时,轨迹的位置和形状是怎样的?大胆地猜一猜!(可请学生直接画出自己想象中曲线的形状,并利用投影展示.)师:同学的猜测对不对呢?请同学看屏幕.(图2-46)距离MF=£.44cm图2-46我们利用电脑精确地计算展示到定点F的距离和它到定直线距离的比为1 的点的轨迹.师:你见过这种曲线吗?(抛物线)这就是我们这节课主要的研究对象.(师板书课题——抛物线的定义及其标准方程)师:能否给抛物线下个定义?生:与一个定点的距离和一条定直线的距离的比是1的点的轨迹叫抛物线.师:换句话说,就是与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(投影)平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.师:它的方程是什么样子呢?我们可以预先做一个估计.如图2-47(1),椭圆的图形是关于x轴、y轴和原点对称的,其方程为:如图2-47(2),双曲线的图形是关于x轴、y轴和原点对称的,其方程为:在方程中都仅有x、y的二次项.当e=1时,图形变成了开口的一支,从而丧失了关于y轴和原点的对称性,那么方程将会发生怎样的变化?生:在方程中,一定会失去X2项,而且会出现x的一次项,(否则方程变成y2=b2,它表示直线.)所以方程应为Ay2+Bx+C=0的形式.师:同学的猜测对不对呢?可否从理论上给予说明?生:建立直角坐标系.师:如何建立?学生甲:取经过定点F且垂直于定直线l的直线为x轴,设x轴与l相交于点K,以线段KF的垂直平分线为y轴,设所求轨迹上一点坐标为M(x, y).师:点M满足什么条件?生:到定点F的距离和到定直线l的距离的比是1.师:这些条件能否转化成点M的坐标所满足的条件?生:由于|KF|=p,故点F的坐标为:吟⑼,直线1的方程为:x由条件可得:请同学化简上式,并通过投影展示演算过程,得:y年2px. (1)师:显然符合预想的形式.这个方程就叫作抛物线的标准方程.在你以往的学习过程中,是否见到过类似这种形式的方程?生:二次函数的表达式.师:若将x与y换个位置,它就是缺少一次项和常数项的二次函数,而曲线的形状也与抛物线完全一致.师:由于抛物线开口方向的不同,共有4种不同情况.(计算机演示——图2-48)师:请同学们写出其它3种情况下的标准方程、焦点坐标及准线方程,并说明理由.观察图形,分辨这些图有何相同点和不同点.生:共同点有:①原点在抛物线上.②对称轴为坐标轴.③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的四分之一.不同点:①抛物线的焦点在x轴上时,方程左端是y2,右端是2px;当抛物线的焦点在y轴上时,方程左端是X2,右端是2py.②开口方向与x轴(y轴)正半轴同向时,焦点在x轴(y轴)的正半轴上,方程右端取正号.开口方向与x轴(y轴)负半轴同向时,焦点在x轴(y轴)的负半轴上,方程右端取负号.师:作为应用,请同学们看下面的例题.(展示投影)例1 (1)已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;(2)已知抛物线的焦点坐标是F(0, -2),求它的标准方程.⑴解根据题意可得:2p = 6,故p = 3,所以焦点坐标为;,0), 准线方程为笈=-1(2)分析要求抛物线的标准方程,需①确定焦点在y轴的负半轴上,②求出p值.解因为焦点在y轴的负半轴上,并且£ = 2, p = 所以它的标准方程是:x2 = -8y.例2 经过抛物线的焦点F,作一条直线垂直于x轴,和抛物线相交,两个交点的纵坐标为y1, y2.求y1・y2的值.(计算机演示图形——图2-49)师:首先弄清题意——条件有哪些?求什么?如何求?生:已知力,巴是交点的纵坐标,要求yj%,可将笈=葭代入方程(师板书)解将乂 = ^代入抛物线方程得交点的纵坐标分别为“和p故 y 1 • y 2=-P 2.师:还有其他办法吗?可否根据抛物线的定义?生:如图2-50,根据抛物线的定义,|AF| = |BF| = |AM|=p,故y 1 • y 2师:由于缺少垂直的条件,上例中的方法均不适用了.怎样求交点坐标?生:只需求直线方程与抛物线方程的公共解.师:如何建立直线方程?生:利用点斜式.(请同学自行写出解题过程,并利用投影仪展示解题过程.)解设直线方程为:7 = 1<笈-乡.与抛物线方程联立,消去x 可得:y 2 -忆-R* =o ,故:Vi # 72 = -P 2- -p 2.引申1:上例中若缺少“垂直于x 轴”的条件,结果怎样?(计算机演示动画——图2-51)Ab图 2-50引申2:以AB为直径的圆和准线具有怎样的位置关系?(计算机演示动画——图2-52)图2-52学生乙:以AB为直径的圆和准线相切.师:能否给予证明?这作为思考题,请同学们课下完成.师:请同学小结这节课的内容.(抛物线的定义;p的几何意义;标准方程的4种形式.)作业:课本第98页习题八:1,2.设计说明1.关于教学过程(1)由于抛物线的定义是本章的主要内容之一,因而将它作为教学目标之一.(2)MM教学方式在课堂教学中十分重视的一个方面就是合情推理方法的运用,逻辑思维能力的提高以及良好个性品质的培养.这对于提高学生的一般科学素养,形成和发展他们的数学品质,必将起着十分重要的作用,因而制定了目标2.(3)按照大纲的要求,在教学中培养学生运用数学思想方法解决有关问题,据此制定了目标3.2.关于教学重点为实现教学目标,把充分展现抛物线的定义及标准方程的探索、发现、推理的思维过程和知识形成的过程作为本节课的重点.3.关于教学方法按照MM教学方式“学习、教学、研究同步协调原则”和“二主方针”,运用问题性,给学生创造一种思维情境,一种动脑、动手、动口的机会,提高能力、增长才干,采用启发式.4.关于教学手段利用计算机辅助教学,演示图形的动态变化过程,弥补传统教学手段(如投影片、模型等)的不足之处.(1)在新课引入部分,通过动画演示,使学生充分理解并且掌握3种圆锥曲线的统一定义,以及曲线形状变化与常数e的大小之间的关系.(2)在抛物线定义的引入部分,利用电脑精确测算“两个距离”,以及动点 M 的任意选取,充分展示了满足条件的点的轨迹,避免了传统教学中此处的生硬与牵强.(3)在例2及引申中也采用动画演示,弥补了投影片无法实现的动态效果.5.关于教学过程(1)复习内容的确定,旨在通过联想,为运用类比方法探索抛物线的定义奠定基础.(2)通过引导学生观察椭圆、双曲线图形的变化规律,类比、联想、进而猜想出e=1时轨迹形状是抛物线,然后进行推理证明.即通过既教猜想、又教证明这一MM可控变量的操作,旨在揭示科学实验的规律,从而暴露知识的形成过程,体现科学发现的本质,培养学生合理推理能力、逻辑推理能力、科学的思维方式、实事求是的科学态度及勇于探索的精神等个性品质.(3)学以致用是教学的主要目标之一,在例题求解过程中,运用波利亚一般解题方法,培养学生合理的思考问题,清楚地表达思想和有条不紊的工作习惯.(4)让学生小结,充分发挥学生的主观能动性,提高学生分析、概括、综合、抽象能力.。
抛物线的标准方程教案
抛物线的标准方程教案教案:抛物线的标准方程一、教学目标:1. 理解抛物线的标准方程的含义;2. 掌握抛物线的标准方程的推导方法;3. 能够根据已知的条件,列出抛物线的标准方程。
二、教学内容:1. 抛物线的定义和性质;2. 抛物线的标准方程的推导;3. 抛物线的标准方程的应用。
三、教学步骤:1. 引入:通过问答的方式引出抛物线的概念和性质。
示例问题:什么是抛物线?抛物线有哪些性质?2. 推导抛物线的标准方程:(1)将抛物线的焦点设为F,准线设为L;(2)设抛物线上一点P(x, y),到焦点F的距离为PF,到准线L的距离为PM;(3)根据焦准定理可知,PF = PM;(4)根据距离公式可知,PF = √((x-a)² + (y-b)²) ,PM = x + c;(5)对比PF和PM的表达式,得到抛物线的标准方程为:(x-a)² = 4p(y-b) ,其中 p = -c/2。
3. 求解抛物线的标准方程:(1)已知顶点坐标和焦点坐标,求解抛物线的标准方程;(2)已知顶点坐标和准线方程,求解抛物线的标准方程。
4. 练习和应用:(1)通过练习题巩固学生对抛物线标准方程的理解和掌握程度;(2)应用抛物线标准方程解决实际问题,如抛物线轨迹的确定等。
四、课堂互动:1. 利用白板或幻灯片,展示抛物线的图形,并引导学生观察抛物线的形状和特点。
2. 设计互动问题,让学生进行探讨和回答。
如:已知抛物线顶点为(2, 3),焦点为(-1, 0),求解抛物线的标准方程。
五、教学总结:1. 回顾抛物线的定义和性质;2. 概括抛物线的标准方程的推导过程;3. 总结抛物线的标准方程的应用场景。
六、作业布置:1. 完成课堂上的习题;2. 提供一个实际问题,要求学生列出抛物线的标准方程,并解答问题。
七、板书设计:抛物线的标准方程:(x-a)² = 4p(y-b)注:a, b为抛物线的顶点坐标,p为焦点到准线的距离。
抛物线的标准方程教案
抛物线的标准方程教案教案标题:抛物线的标准方程教案教学目标:1. 理解抛物线的基本概念和性质。
2. 掌握抛物线的标准方程的推导和应用。
3. 能够利用标准方程解决与抛物线相关的问题。
教学内容:1. 抛物线的定义和性质介绍。
2. 推导抛物线的标准方程。
3. 标准方程的应用:确定焦点、顶点和对称轴,绘制抛物线图像。
4. 利用标准方程解决与抛物线相关的问题。
教学步骤:引入活动:1. 引导学生回顾直线方程的概念和表示方法。
2. 提问:是否可以用直线方程来表示抛物线?为什么?知识讲解:3. 介绍抛物线的定义和性质,包括焦点、顶点、对称轴等概念。
4. 推导抛物线的标准方程:y = ax^2 + bx + c。
示范演示:5. 通过示例演示如何确定抛物线的焦点、顶点和对称轴。
6. 演示如何绘制抛物线的图像。
练习与应用:7. 学生进行练习,计算给定抛物线的焦点、顶点和对称轴,并绘制图像。
8. 学生解决与抛物线相关的问题,如求解方程组、求最值等。
总结与拓展:9. 总结抛物线的标准方程和相关概念。
10. 拓展:介绍其他形式的抛物线方程(顶点式、焦点式等)。
评估与反馈:11. 给学生提供一些练习题目,检验他们对抛物线标准方程的理解和应用能力。
12. 对学生的答题进行评估和反馈,帮助他们弥补知识漏洞。
教学资源:1. 抛物线的图像和示例题目。
2. 白板、黑板或投影仪等展示工具。
3. 练习题目和答案。
4. 学生课本或参考书籍。
教学延伸:1. 引导学生探索其他形式的抛物线方程,并比较它们之间的异同。
2. 鼓励学生应用抛物线的标准方程解决实际问题,如物理、工程等领域的应用。
备注:教学时长可以根据实际情况进行调整,确保学生能够充分理解和掌握抛物线的标准方程及其应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
<<抛物线的定义及标准方程>>教案
西乡二中陶小健
一.教学媒体的选择和设计
本课件需在多媒体教室完成,借助powerpoint、几何画板课件,从动态演示和实物模型入手,使学生对抛物线有一个初步的认识。
二.教学目标分析
1.知识目标
掌握抛物线定义,明确焦点和准线的意义;掌握抛物线标准方程;会推导抛物线标准方程,掌握P的几何意义,掌握开口向右的抛物线的标准方程的数形特点,并会简单的应用。
2.能力目标
通过抛物线概念和标准方程的学习,培养学生分析、抽象和概括等逻辑思维能力,提高适当建立坐标系的能力,提高数形结合和转换能力。
3.情感目标
通过学生们寻找生活中与抛物线有关的物体和形象,加强知识与实际的联系,增强学生的学习兴趣。
三.教材的重点和难点
掌握抛物线的定义及标准方程,进一步熟悉解析法的应用,会根据抛物线的标准方程、准线方程、焦点坐标、图象四个条件中一个求其余条件是本节课的教学重点。
教学难点是用解析法求抛物线的标准方程,及坐标系的选取。
四.教学过程
1、设置情境,引出课题
(借助多媒体)先给出一段悉尼海港大桥的视频和中国一古一今两张抛物线形大桥图片,让学生体会世界的古代文明和现代化建设成就。
再给出一幅抛球画面。
学生在学习了圆锥曲线中的椭圆后自然想到抛物线。
借此教师点明并板书课题:今天我们就来学习抛物线,研究一下《抛物线的定义和标准方程》。
2.实验探索,归纳定义 为了加深对抛物线直观形象的认识,教师操纵微机,展示多媒体课件,顺序显示下列图形:
1)一条直尺和沿直尺一侧的一定直线L;
2)一个直角三角板并把其一直角边紧靠在直尺的一侧(即定直线L上);
3)取一段细线一段固定在直角三角板另一条直角边上,把细线紧靠在直尺直角三角板一条直角边上,截取一段使其恰好等于到直尺一侧(即定直线L)的距离;
4)再取定直线L 外一个定点F ,把细线的另一端固定在这个定点F 上,取一支铅笔P 靠在三角板的直角边上并使细线扯紧;
5)让直角三角板一条直角边紧靠在直尺的一侧(即定直线L上)
,上下移动时铅笔P 就画出一段曲线-------抛物线。
教师展示完成多媒体课件后,找一至两个同学再一次来操作课件展示抛物线的形成过程,并提出问题让同学思考。
课堂上要充分发挥学生的主体作用,引导学生合作探究得出定义,这是本节课的第一个探究点。
学生在此问题中,认为简单,其实很容易出错,并且在探究错因时,难于理解。
我给提供平台、激发学生兴趣,首先要求学生独立思考、自主探究,然后引导学生小组交流讨论,最后让小组代表总结。
这里学生容易忽视定义的两个前提—(1)在平面内,(2)点F 不能取在定直线L 上.教师要根据学生探究的情况恰当引导学生去发现这些问题,得出抛物线的定义后,要及时给于探究全面、分析问题到位的小组同学表扬,对定义描述尚有不足的同学也要及时鼓励,期待他们在下一个探究点能做的更好。
得出抛物线的正确定义后,教师板书抛物线的定义。
3.合作探究标准方程
新的教学理念下,要勇于,更要善于把具有探究价值的问题留给学生,激发学生探求知识的强烈欲望和创新意识,探究抛物线的标准方程是本节课的重、难点。
是本节课的第二个探究点。
我设计把学生分成三个学习小组,
利用多媒体展示抛物线的三种不同坐标系的建立过程,每个小组分别就一种情况探求抛物线的方程:完成后三个小组再通过比较、合作探究找出运算量最小且方程最简洁方法——这也就是抛物线标准方程的求解方法。
我在给予学生积极的表扬和鼓励后利用多媒体展示抛物线标准方程的求解过程。
我在求出抛物线标准方程,了解了其图像、焦点坐标和准线方程,以及参数P 的几何意义后,再在此基础上让学生完成四种抛物线的对比列表就显得容易多了,这是本节课要完成的第三个探究点,也是本节课最容易一个探究点。
4.再接再厉,学以致用:利用课件展示例一:
(1)已知抛物线的标准方程是x y 62 ,求它的焦点坐标及准线方程.
(2)已知抛物线的焦点坐标是 F (2,0),求抛物线的标准方程.
(3)已知抛物线的准线方程为 x = -1 ,求抛物线的标准方程.
(4)求焦点在X 轴的正半轴,过点A (3,2)的抛物线的标准方程.
展示此问题后,我仍然首先要求学生独立思考、自主探究,遇到问题时再引导学生小组交流讨论,最后让小组代表总结,并汇报探求过程中得到的经验或出现的问题以及采取的具体措施和效果,再由本组员或其他同学补充、质疑、评价或解答,培养学生的合作意识和合作能力。
完成例一后,我给学生设计了一组巩固练习:
及时巩固所学知识,同时测评出教学效果和学习效果。
为了培养学生的迁移、拓展能力,我设计了这个思考题。
学生对这种综合题十分重视,觉得难但经过努力后又可以攻克,因此将满足学生追求真理,乐于创新的情感需求和渴求知识的强烈愿望。
5.小结:
引导学生从知识、方法、思想三个方面进行小结,回顾本节课探究中的心路历程和知识体验。
全面反思、评价学习的效果。
6.布置作业
最后通过作业巩固本节课所学内容,并为下节课学习抛物线性质作出铺垫。
五.教学反思
本节课首先通过练习1、练习2、思考探究题评价学生对基础知识、基本技能掌握情况以及灵活运用所学知识的综合能力,同时测评出教学效果;其次,在学生探究的过程中,通过师生、生生交流及时了解学生的学习状况,吸取教与学的经验和不足,及时反馈信息,激励学生努力学习;第三,通过小结中学生的自评、互评,使学生内部动机和外界刺激协调作用,更好得促进了其数学素养不断提高。
六.板书设计。