随机过程_汪荣鑫_第四章课后答案

合集下载

随机过程第四章

随机过程第四章
n
pii
(n)
1
i
0
证:(1)如i为零常返则i
,由lim n
pii nd
d
i
0
而当n不能被周期d整除时n 0modd ,
必然有pii
(n)
0,故
lim
n
pii
n
0
反之,若lim n
pii
(n)
0,
而i是正常返,
则由lim n
pii (nd )
d
i
0矛盾.
(2) 如i为遍历,即d 1,由上面定理得
即 Tij minn:X m i, X mn j,n 1
而称:
fij (n) P Tij n
P{X mv j,1 v n 1,X mn j / X m i},n 1 为自状态i出发,经n步首次到达状态j的概率, 简称首达概率。
注:由齐次马氏链性质知,首达概率与出发时刻
p3
① q1 q2
p1
③ q3 ②
p2
求从状态1出发经n步转移首次到达各个状态的概率。
f12
(n)qq11p3 p3源自q m1 1m p1,
q3
,
n 2m, n 2m 1,
m 1 m0
同理:
f13 (n)
p1q2 p1q2
p m1 1
m q1,
p2
,
n 2m, n 2m 1,
m 1 m0
互通关系的状态是同一类型.
定理:如果i j, 则
(1) i与j同为常返或非常返,如为常返,则它们
同为正常返或零常返;
(2) i与j有相同的周期。
1证:因为i j,故存在正整数k与m,使
pij (m) 0, p ji (k ) 0

《随机过程及其在金融领域中的应用》习题四答案

《随机过程及其在金融领域中的应用》习题四答案

3
e 2
解法二:
平均每小时有30人到达
= 30 =0.5人/分钟
60
根据齐次 Poisson 过程的到达时间间隔Xn, n 1, 2, 是独立同分布于均值
为 1 的指数分布的,故可有:
相继到达的顾客的时间间隔大于 2 分钟的概率为: P Xn 2 et e1
PNt n
n

k

PNs

k PNts PNt n
nk
sk es
k!
t snk n k!

t n et
ets
s k nk t s nk
tk tnk
n!
k !n k !

不妨设 t s 则
E
M 2 T
1 T2
T 0
T 0
E

Nt
Ns
dsdt

1 T2
T 0
T 0
t 2ts dsdt
1
T2
T 0

Tt

1 2

2T
2t

dt

T 2

2T 2 4
Var M T E M 2 T E M T 2 T 2
0!
1!
2!
e2 2e2 2e2 5e2
P N1 1, N2 3 P N1 1, N21 3 1 P N1 1 P N1 2 2e2 2e2 4e4
P
N1

2
N1
1

P
N1 2, N1
P N0,s1 0, Ns1,s1h 1, Ns1h,s2 0, Ns2 ,s2 h 1, Ns2 h,s3 0, Ns3 ,s3 h 1

随机过程课后习题答案

随机过程课后习题答案

随机过程课后习题答案随机过程课后习题答案随机过程是概率论和数理统计中的一个重要分支,研究的是随机事件在时间上的演变规律。

在学习随机过程的过程中,习题是不可或缺的一部分。

通过解习题,我们可以更好地理解和掌握随机过程的基本概念和性质。

下面是一些随机过程课后习题的答案,希望对大家的学习有所帮助。

1. 假设随机过程X(t)是一个平稳过程,其自协方差函数为Cov[X(t), X(t+h)] =e^(-2|h|),求该过程的自相关函数。

解:首先,自协方差函数Cov[X(t), X(t+h)]可以通过自相关函数R(t, h)来表示,即Cov[X(t), X(t+h)] = R(t, h) - E[X(t)]E[X(t+h)]。

由于该过程是平稳过程,所以E[X(t)]和E[X(t+h)]是常数,可以将其记为μ。

因此,Cov[X(t), X(t+h)] = R(t, h) - μ^2。

根据题目中给出的自协方差函数,我们有e^(-2|h|) = R(t, h) - μ^2。

将μ^2移到等式左边,得到R(t, h) = e^(-2|h|) + μ^2。

所以,该过程的自相关函数为R(t, h) = e^(-2|h|) + μ^2。

2. 假设随机过程X(t)是一个平稳过程,其自相关函数为R(t, h) = e^(-3|h|),求该过程的均值和方差。

解:由于该过程是平稳过程,所以均值和方差是常数,可以将均值记为μ,方差记为σ^2。

根据平稳过程的性质,自相关函数R(t, h)可以表示为R(h) = E[X(t)X(t+h)] =E[X(0)X(h)]。

根据题目中给出的自相关函数,我们有R(h) = e^(-3|h|)。

将t取为0,得到R(h) = E[X(0)X(h)] = μ^2。

所以,该过程的均值为μ。

根据平稳过程的性质,方差可以表示为Var[X(t)] = R(0) - μ^2。

将t取为0,得到Var[X(t)] = R(0) - μ^2 = e^(-3*0) - μ^2 = 1 - μ^2。

《随机过程》第四章作业解答

《随机过程》第四章作业解答

,



f21
=
1 3
f21
+
2 3
,
得到
f61
=
1 。类似可得
2
f62
=
f63
=
f64
=
1。
2

对于状态
1
而言,τ1
=
E(T1|X0
=
1)
=

1 3
+

2 3
·
(
1 3
)k−2
·
2 3
=
2。类似可得:
k=2



τ2
=
1 3
+
k
·
2 3
·
(
1 3
)k−2
·
2 3
=
2,
τ3
=
1 4
+
k
·
3 4
pk0j > pkj。从而有
n
n
pk0j = pk0j
pik >
pikpkj = pij,
k=1
k=1
∀i ∈ E
由 i 的任意性得到矛盾,从而假设不成立。对 ∀i, j ∈ E, p1j = pjj。
1+(−1)k
2k+1
17. 解:(1) P k = 1+(−1)k+1
2k+1
其中, P (Sn > 0|Xn = i) =
n+i
Cn 2
p
n+i 2
(1

p)
n−i 2
C p (1 n+i 2 n

随机过程第四章作业及参考答案

随机过程第四章作业及参考答案

第四章 马尔科夫过程P2271. 将一颗骰子扔很多次。

记n X 为第n 次扔正面出现的点数,问(){}12X n n = ,,,是马尔科夫链吗?如果是,试写出一步转移概率矩阵。

又记n Y 为前n 次扔正面出现点数的总和,问(){}12Y n n = ,,,是马尔科夫链吗?如果是,试写出一步转移概率。

解: (1)由于(){}12X n n = ,,,的取值只能是{}123456,,,,,,故状态空间为{}123456E =,,,,,。

由于()X n 的取值的概率与()1X n -以前的()X i 的取值完全无关,所以是()X n 是马尔科夫链。

故()(){}116ij p P X n j X n i ==-==. 它的一步转移概率矩阵为:111111666666111111666666111111666666111111666666111111666666111111666666P ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(2)由于前n 次扔正面出现点数的总和()Y n =前1n -次扔正面出现点数的总和+第n 次扔正面出现的点数,而前1n -次扔正面出现点数的总和与第n 次扔正面出现的点数相互独立,因此()Y n 具有无后效性,是马尔科夫链。

它的一步转移概率为:()112616078ij j i i i p n n j i i i j i ⎧=+++⎪+=⎨⎪=++<⎩ ,,,,,,,,,,或 其中16i n n n =+ ,,,;()1261j n n n =+++ ,,,。

2. 一个质点在直线上作随机游动,一步向右的概率为p (01p <<),一步向左的概率为q ,1q p =-。

在0x =和x a =处放置吸收壁。

记()X n 为第n 步质点的位置,它的可能值是(){}012X n n = ,,,,。

试写出一步转移概率矩阵。

解:状态空间为{}012E a = ,,,,。

随机过程第4章习题

随机过程第4章习题
⎧2 x (0 ≤ x < 1) 对于 当给定 ξ ( n-1) = x 时 ξ ( n ) 的条件概率密度均与分布 n = 1,2,3, L, f 0 ( x) = ⎨ ⎩0 (其他)
于 (1 - x, 1) 之间。问 ξ ( n ), n = 0,1,2,L , 是否满足严平稳的条件? 解(待补充)
= E e j (ωt +θ ( t ) ) = e jωt
{
} ⋅ E {e ( ) }
jθ t
= e jωt ∫ e jx dF ( x, t )
由于 θ (t ) 是一个二阶严平稳过程,故
mξ ( t ) = e jωt ∫ e jx dF ( x, t ) = e jωt ∫ e jx dF ( x ) = e jωt ⋅ E e jθ ( 0)
条件数学期望
E (Y | xi ) = ∑ y j p j / i = ∑ y j p{ Y = y j | X = xi }
j j
全期望公式
E ( X ) = E{E [X / Y ]} = ∑ p Y = y j E (X / y j )
j
[
]
注意到
η ( t1 ) = m, η ( t2 ) = n η ( t1 ) − η ( t2 ) = k , η ( t1 ) + η ( t2 ) = η ( t1 ) − η ( t2 ) + 2η ( t2 ) = k + 2n
且 P{ξ (0) = 1} =
p1 p1 + p 2

p2 试证明该过程为严平稳过程。 p1 + p 2
解(提示) : 给出初始时刻的概率分布,给出任意时刻的概率分布,证明它们示相同的; 给出任意 N 个时刻的概率分布,证明它们具有平移不变性。

随机过程答案

随机过程答案

随机过程第三章与第四章习题解答3.1 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

4030(30)((1)40)!k k P N e k -=≤=∑。

3.2 解:法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。

1N T 表示1()N t =1N 的发生时刻,2N T 表示2()N t =2N 的发生时刻。

1111111111()exp()(1)!N NN T f t t t N λλ-=-- 2221222222()exp()(1)!N NN T f t t t N λλ-=--1212121221112,12|12211122212(,)(|)()exp()exp()(1)!(1)!N N N N N NNN N T T T T T f t t f t t f t t t t t N N λλλλ--==---- 12212121112211122210012()exp()exp()(1)!(1)!NNt N N N N P T T dt t t t t dt N N λλλλ∞--<=----⎰⎰(2)当1N =2N 、1λ=2λ时,12121()()2N N N N P T T P T T <=>=法二:(1)乘车到来的人数可以看作参数为1λ+2λ的泊松过程。

令1Z 、2Z 分别表示乘坐公共汽车1、2的相邻两乘客间到来的时间间隔。

则1Z 、2Z 分别服从参数为1λ、2λ的指数分布,现在来求当一个乘客乘坐1路汽车后,下一位乘客还是乘坐1路汽车的概率。

212211122210()exp()exp()z p P Z Z dz z z dz λλλλ∞=<=--⎰⎰112λλλ=+。

故当一个乘客乘坐1路汽车后,下一位乘客乘坐2路汽车的概率为1-p 212λλλ=+上面的概率可以理解为:在乘客到来的人数为强度1λ+2λ的泊松过程时,乘客分别以112λλλ+概率乘坐公共汽车1,以212λλλ+的概率乘坐公共汽车2。

汪荣鑫版数理统计 随机过程课后题标准答案打包下载

汪荣鑫版数理统计 随机过程课后题标准答案打包下载

第一部分:数理统计习题解答第一章1.解:2. 解:子样平均数子样方差子样标准差3. 解:因为所以所以成立因为所以成立4. 解:变换利用3题的结果可知5. 解:变换利用3题的结果可知6.7解:8解:将子样值重新排列(由小到大)-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.219解:10.某射手进行20次独立、重复的射手,击中靶子的环数如下表所示:解:12. 解:()ix P λi Ex λ=i Dx λ=1,2,,i n =⋅⋅⋅1122111111n n i i i i n ni i i i n E X E x Ex n n nn DX D x Dx n nn n λλλλ============∑∑∑∑13.解:(),ix U a b2i a bEx += ()212i b a Dx -=1,2,,i n =⋅⋅⋅在此题中()1,1ix U - 0i Ex =13i Dx =1,2,,i n =⋅⋅⋅112111101113n ni i i i n ni i i i E X E x Ex n n DX D x Dx n nn ==========∑∑∑∑14.解:因为()2,iX N μσi X Eμσ-=1i X Dμσ-=所以()0,1i X N μσ-1,2,,i n =⋅⋅⋅由2χ分布定义可知()222111nniii i X Y Xμμσσ==-⎛⎫=-= ⎪⎝⎭∑∑服从2χ分布所以()2Yn χ15. 解:因为()0,1iX N1,2,,i n =⋅⋅⋅ ()1230,3X X X N ++0E=1=所以()0,1N()221χ同理()221χ由于2χ分布的可加性,故()222123Y χ=+可知13C =16. 解:(1)因为()20,iX N σ1,2,,i n =⋅⋅⋅()0,1iX N σ所以()22121ni i X Y n χσσ=⎛⎫= ⎪⎝⎭∑(){}11122Y Yy F y P Y y P σσ⎧⎫=≤=≤⎨⎬⎩⎭()220yf x dxσχ=⎰()()211'221Y Y y f y F y f χσσ⎛⎫==⨯ ⎪⎝⎭因为()2122202200n x n x e x n f x x χ--⎧⎪>⎪⎛⎫=⎨Γ ⎪⎪⎝⎭⎪≥⎩所以()21122202200n y n nY y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ ⎪⎪⎝⎭⎪≤⎩(2) 因为()20,i X N σ1,2,,i n =⋅⋅⋅()0,1iX N σ所以()22221ni i X nY n χσσ=⎛⎫= ⎪⎝⎭∑(){}()22222220nyY nY ny F y P Y y P f x dxσχσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()222'22Y Y ny nf y F y f χσσ⎛⎫== ⎪⎝⎭故 ()221222202200n nny n n Y n y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ ⎪⎪⎝⎭⎪≤⎩(3)因为()20,iX N σ1,2,,i n =⋅⋅⋅()10,1ni N =所以()22311ni Y n χσ=⎛= ⎝(){}()()22333210yn Y Y F y P Y y P y f x dxn σχσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()()233'2211Y Y y f y F y f n n χσσ⎛⎫== ⎪⎝⎭()()221000x x f x x χ-⎧>=≤⎩故 ()232000yn Y y f y y σ-⎧>=≤⎩(4)因为()20,iX N σ1,2,,i n =⋅⋅⋅所以()()1224210,11ni n i N Y χσ==⎛= ⎝(){}()()()()()224224442210'2211yY Y Y y F y P Y y P f x dxy f y F y f σχχχσσσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎛⎫== ⎪⎝⎭⎰故()242000y Y y f y y σ-⎧>=≤⎩17.解:因为 ()Xt n存在相互独立的U ,V()0,1UN()2Vn χ使X =()221U χ则221U X V n=由定义可知()21,F n χ18解:因为()20,iX N σ1,2,,i n =⋅⋅⋅()10,1ni N =()221n mi i n X m χσ+=+⎛⎫ ⎪⎝⎭∑所以()1nniX Y t m ==(2)因为()0,1iX N σ1,2,,i n m =⋅⋅⋅+()()221221ni i n mi i n X n X m χσχσ=+=+⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎝⎭∑∑所以()221122211,ni n i ii n m n mi ii n i n X m X n Y F n m X n X m σσ==++=+=+⎛⎫⎪⎝⎭==⎛⎫ ⎪⎝⎭∑∑∑∑19.解:用公式计算()20.010.019090χ=查表得0.01 2.33U =代入上式计算可得 ()20.01909031.26121.26χ=+=20.解:因为()2Xn χ2E n χ= 22D n χ=由2χ分布的性质3可知()0,1N{}P X c P ≤=≤22lim t n P dt -→∞-∞≤==Φ故 {}P X c ≤≈Φ第 二 章 1.,0()0,0()()1()111x x x x xe xf x x E x f x xdx xe dxxe e d x e xλλλλλλλλλλλλ-+∞+∞--∞+∞+∞--+∞-⎧≥=⎨<⎩=⋅==-+=-==⎰⎰⎰令从而有 1x λ∧=2.()111121).()(1)(1)1111k k x x E x k p p p k p ppp ∞∞--===-=-==⎡⎤--⎣⎦∑∑令1p =X2).其似然函数为1`11()(1)(1)ni x i i nX nni L P P p p p -=-=∑=-=-∏解之得11nii np XX∧===∑3. 解:因为总体X服从U(a ,b )所以()2122!2!!()12ni i a b n E X r n r X X X X a b S X b X =∧∧+=--⎧=⎪⎪⎨-⎪=⎪⎩⎧=-⎪⎨⎪=+⎩∑222(a-b )() D (X )=12令E (X )= D (X )=S ,1S =n a+b2()a4. 解:(1)设12,,nx x x 为样本观察值则似然函数为:111()(),01,1,2,,ln ()ln ln ln ln 0n ni i i nii i nii L x x i nL n x d L nxd θθθθθθθθ-====<<==+=+=∏∑∑(-1)解之得:11ln ln nii nii nxnxθθ=∧==-==∑∑(2)母体X 的期望1()()1E x xf x dx x dx θθθθ+∞-∞===+⎰⎰而样本均值为:5.。

《随机过程》第4章离散部分习题及参考答案

《随机过程》第4章离散部分习题及参考答案

湖南大学本科课程《随机过程》第4章习题及参考答案主讲教师:何松华 教授30.设X(n)为均值为0、方差为σ2的离散白噪声,通过一个单位脉冲响应为h(n)的线性时不变离散时间线性系统,Y(n)为其输出,试证:2[()()](0)E X n Y n h σ=,2220()Y n h n σσ∞==∑证:根据离散白噪声性质,220()[()()]()0X m R m E X n m X n m m σσδ⎧==+==⎨≠⎩()()()()()m Y n X n h n X n m h m ∞==⊗=-∑220[()()]{()()()][()()]()()()()()(0)m m X m m E X n Y n E X n X n m h m E X n X n m h m R m h m m h m h σδσ∞∞==∞∞===-=-===∑∑∑∑12121222112202121221210000[()]{()()()()][()()]()()[()()]()Y m m m m m m E Y n E X n m h m X n m h m E X n m X n m h m h m m m h m h m σσδ∞∞==∞∞∞∞======--=--=-∑∑∑∑∑∑(对于求和区间内的每个m 1,在m 2的区间内存在唯一的m 2=m 1,使得21()0m m δ-≠)1222110()()()m n h m h m h n σσ∞∞====∑∑(求和变量置换) 31.均值为0、方差为σ2的离散白噪声X(n)通过单位脉冲响应分别为h 1(n)=a n u(n)以及h 2(n)=b n u(n)的级联系统(|a|<1,|b|<1),输出为W(n),求σW 2。

解:该级联系统的单位脉冲响应为121211100()()()()()()()1(/)()1/n m m m m mn n n nnn m m n nm m h n h n h n h n m h m a u n m b u m b b a aba b a a u n a b a a b∞∞-=-∞=-∞+++-===⊗=-=---⎛⎫====⎪--⎝⎭∑∑∑∑参照题30的结果可以得到21122222211212000222222222()[()2()()]()2(1)[]()111(1)(1)(1)n n n n n W n n n a b h n a ab b a b a b a ab b ab a b a ab b a b ab σσσσσσ++∞∞∞+++===⎡⎤-===-+⎢⎥--⎣⎦+=-+=-------∑∑∑32.设离散系统的单位脉冲响应为()() (1)n h n na u n a -=>,输入为自相关函数为2()()X X R m m σδ=的白噪声,求系统输出Y(n)的自相关函数和功率谱密度。

(解答)《随机过程》第四章习题

(解答)《随机过程》第四章习题

(2)如果 X ~ N (0,1) ,问过程 (t) 是否均方可微?说明理由。
解:计算随机过程 (t) 的相关函数:
R (s,t) E{ (s) (t)} E{( X cos 2s Y sin 2s)(X cos 2t Y sin 2t)} cos 2s cos 2tE{X 2} sin 2s sin 2tE{Y 2} [cos 2s sin 2t sin 2s cos 2t]E{XY}
4、 设有随机过程 X (t) 2Z sin(t ) , t ,其中 Z 、 是相互独立的随机 变量,Z ~ N (0,1) ,P( / 4) P( / 4) 1/ 2 。问过程 X (t) 是否均方可积
过程?说明理由。
解:由 Z 、 的相互独立性,计算随机过程 X (t) 的均值函数和相关函数: E{X (t)} E{2Z sin(t )} 2E{Z}E{sin(t )} 0
Y (t) 2X (t) 1, t 0 。试求过程{Y (t), t 0} 的相关函数 RY (s,t) 。
解:由相关函数的定义,有:
RY (s,t) E{Y (s)Y (t)} E{(2X (s) 1)(2X (t) 1)} 4E{X (s) X (t)} 2E{X (s)} 2E{X (t)} 1 4E{X (s) X (t)} 4 1
0
T 2 T T E{X (s) X (u)}dsdu m2 00
T 2
T 0
T 0
R
X
(
s

u
)dsdu

m
2
T 2
T 0
T 0
[C

《随机过程答案》第四章习题

《随机过程答案》第四章习题

第四章 二阶矩过程、平稳过程和随机分析 习题完整答案,请搜淘宝1、 设∑=-=N k k k k n U n X 1)cos(2ασ,其中k σ和k α为正常数,)2,0(~πU U k ,且相互独立,N k ,,2,1 =,试计算},1,0,{ ±=n X n 的均值函数和相关函数,并说明其是否是平稳过程。

2、 设有随机过程))(cos()(t t A t X πηω+=,其中0>ω为常数,}0),({≥t t η是泊松过程,A 是与)(t η独立的随机变量,且2/1}1{}1{===-=A P A P 。

(1) 试画出此过程的样本函数,并问样本函数是否连续?(2) 试求此过程的相关函数,并问该过程是否均方连续?3、 设}0),({≥t t X 是一实的零初值正交增量过程,且),(~)(2t N t X σμ。

令1)(2)(-=t X t Y ,0≥t 。

试求过程}0),({≥t t Y 的相关函数),(t s R Y 。

4、 设有随机过程)sin(2)(Θ+=t Z t X ,+∞<<∞-t ,其中Z 、Θ是相互独立的随机变量,)1,0(~N Z ,2/1)4/()4/(=-=Θ==ΘππP P 。

问过程)(t X 是否均方可积过程?说明理由。

5、 设随机过程t Y t X t 2sin 2cos )(+=ξ,+∞<<∞-t ,其中随机变量X 和Y 独立同分布。

(1) 如果)1,0(~U X ,问过程)(t ξ是否平稳过程?说明理由;(2) 如果)1,0(~N X ,问过程)(t ξ是否均方可微?说明理由。

6、 设随机过程});({+∞<<∞-t t X 是一实正交增量过程,并且0)}({=t X E ,及满足:{}+∞<<∞--=-t s s t s X t X E ,,)]()([2;令:+∞<<∞---=t t X t X t Y ),1()()(,试证明)(t Y 是平稳过程。

随机过程习题答案

随机过程习题答案

随机过程习题解答(一)第一讲作业:1、设随机向量的两个分量相互独立,且均服从标准正态分布。

(a)分别写出随机变量和的分布密度(b)试问:与是否独立?说明理由。

解:(a)(b)由于:因此是服从正态分布的二维随机向量,其协方差矩阵为:因此与独立。

2、设和为独立的随机变量,期望和方差分别为和。

(a)试求和的相关系数;(b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。

解:(a)利用的独立性,由计算有:(b)当的时候,和线性相关,即3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为,且是一个周期为T的函数,即,试求方差函数。

解:由定义,有:4、考察两个谐波随机信号和,其中:式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。

(a)求的均值、方差和相关函数;(b)若与独立,求与Y的互相关函数。

解:(a)(b)第二讲作业:P33/2.解:其中为整数,为脉宽从而有一维分布密度:P33/3.解:由周期性及三角关系,有:反函数,因此有一维分布:P35/4. 解:(1) 其中由题意可知,的联合概率密度为:利用变换:,及雅克比行列式:我们有的联合分布密度为:因此有:且V和相互独立独立。

(2)典型样本函数是一条正弦曲线。

(3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且所以。

(4)由于:所以因此当时,当时,由(1)中的结论,有:P36/7.证明:(1)(2) 由协方差函数的定义,有:P37/10. 解:(1)当i =j 时;否则令,则有第三讲作业:P111/7.解:(1)是齐次马氏链。

经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。

(2)由题意,我们有一步转移矩阵:P111/8.解:(1)由马氏链的马氏性,我们有:(2)由齐次马氏链的性质,有:,(2)因此:P112/9.解:(2)由(1)的结论,当为偶数时,递推可得:;计算有:,递推得到,因此有:P112/11.解:矩阵 的特征多项式为:由此可得特征值为:,及特征向量:,则有:因此有:(1)令矩阵P112/12.解:设一次观察今天及前两天的天气状况,将连续三天的天气状况定义为马氏链的状态,则此问题就是一个马氏链,它有8个状态。

随机过程_汪荣鑫_答案2,3,4

随机过程_汪荣鑫_答案2,3,4
第二章 平稳过程
1.指出下面所给的习题中,哪些是平稳过程,哪些不是平稳过程? (1)设随机过程 X (t ) e
Xt
,t>0,其中 X 具有在区间 (0, T ) 中的均匀分布
解:∵ 该随机过程的数学期望为
mx (t ) EX (t ) e xt
0
T
1 1 1 Tt dx e xt T [e 1] const 0 T Tt Tt
E[cos( 0 t ) cos( 0 t 0 )]
1 E[cos 0 cos(2 0 t 0 2)] 2
1 1 E (cos 0 ) E cos(2 0 t 0 2) 2 2 1 1 2 1 1 cos 0 cos(2 0 t 0 2 )d cos 0 2 2 0 2 2

2
2 0

1 [1 cos 2t ] 2t
不是常数
3
3.设随机过程
X (t ) A cos( 0 t ), t
其中 0 是常数,A 与Φ 是独立随机变量。Φ 服从在区间(0,2π )中的均匀分布。A 服从 瑞利分布,其密度为
x x2 2 2 f ( x ) 2 e 0

EA
2


x2

0
x
2
x

2
e

x2 2
2
dx


0
x de
2

x2 2 2
x e
2
2
2
0


0
e

x2 2
2
d ( x ) 2

随机过程课后习题答案

随机过程课后习题答案

标准教材:随机过程基础及其应用/赵希人,彭秀艳编著索书号:O211.6/Z35-2备用教材:(这个非常多,内容一样一样的)工程随机过程/彭秀艳编著索书号:TB114/P50历年试题(页码对应备用教材)2007一、习题0.7(1)二、习题1.4三、例2.5.1—P80四、例2.1.2—P47五、习题2.2六、例3.2.2—P992008一、习题0.5二、习题1.4三、定理2.5.1—P76四、定理2.5.6—P80五、1、例2.5.1—P802、例2.2.2—P53六、例3.2.3—P992009(回忆版)一、习题1.12二、例2.2.3—P53三、例1.4.2与例1.5.5的融合四、定理2.5.3—P76五、习题0.8六、例3.2.22010一、习题0.4(附加条件给出两个新随机变量表达二、例1.2.1三、例2.1.4四、例2.2.2五、习题2.6六、习题3.3引理1.3.1 解法纠正 许瓦兹不等式()222E XY E X E Y ⎡⎤⎡⎤≤⎡⎤⎣⎦⎣⎦⎣⎦证明:()()()()222222222220440E X Y E X E XY E Y E XY E X E Y E XY E X E Y λλλ +⎡⎤⎡⎤=++≥⎣⎦⎣⎦∴∆≤⎡⎤⎡⎤∴-≤⎡⎤⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤∴≤⎡⎤⎣⎦⎣⎦⎣⎦例1.4.2 解法详解已知随机过程(){},X t t T ∈的均值为零,相关函数为()121212,,,,0a t t t t et t T a --Γ=∈>为常数。

求其积分过程()(){},t Y t X d t T ττ=∈⎰的均值函数()Y m t 和相关函数()12,Y t t Γ。

解:()0Y m t =不妨设12t t >()()()()()()1212222112121122122100,,Y t t t t t t t t t EY t Y t E X d X d d d τττττττττΓ===Γ⎰⎰⎰⎰()()()()()222121122221222112222212221212121212000220022002200222211||111111||211ττττττττττττττττττττττττ--------------=+-=+=---=+-+⎡=++--⎣⎰⎰⎰⎰⎰⎰⎰⎰t t t a a t t a a a a t t t a a at a t a at t a t t at at ed d ed de d e d a ae d e d a a t t e e a a a a t e e e a a⎤⎦同理当21t t >时()()2112112221,1a t t at at Y t t t e e e a a----⎡⎤Γ=++--⎣⎦ (此处书上印刷有误)例1.5.5解法同上例1.5.6 解法详解 普松过程公式推导:(){}()()()()()()()()()()()1lim !lim 1!!!1lim 1!!lim 1lim !lim lim !第一项可看做幂级数展开:第二项将分子的阶乘进行变换:→∞-→∞-→∞---∆-→∞→∞-→∞→∞===-∆∆-⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦⎡⎤⎡⎤-∆==⎢⎥⎣⎦⎣⎦⎡⎤⋅∆=∆⎢⎥--⎣⎦N k N N kkN N k kN N kN kq t qtN N k N kk k N N P X t k C P N q t q t k N k N q t q t N k k q t e e N N N q t q t N k N ()()()()()!lim 1!-→∞⎡⎤⎢⎥⎣⎦⎡⎤⎡⎤=∆⋅=⋅=⎢⎥⎣⎦-⎣⎦N k k k k kN k N q t N qt qt N k (){}()()()()!1lim 1!!!N kkN kqt P X t k N q t q t N k k qt ek -→∞-∴=⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦=例2.1.2 解法详解设(){},X t t -∞<<+∞为零均值正交增量过程且()()2212121,E X t X t t t t t -=->⎡⎤⎣⎦,令()()()1Y t X t X t =--,试证明(){},Y t t -∞<<+∞为平稳过程。

最新西安交通大学汪荣鑫随机过程第二版课后答案

最新西安交通大学汪荣鑫随机过程第二版课后答案

西安交通大学汪荣鑫随机过程第二版课后答案------------------------------------------作者xxxx------------------------------------------日期xxxx随机过程习题解答第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。

求X 的特征函数,EX 及DX 。

其中01,1p q p <<=-是已知参数。

解()()jtxjtk k X k f t E ee pq ∞===∑ 0()k jtkk p q e∞==∑ =0()1jtkjt k pp qe qe ∞==-∑ 又20()kk k k q qE X kpq p kq pp p∞∞======∑∑ 222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 100()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰22201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。

随机过程第四章习题解答

随机过程第四章习题解答

第四章习题解答4.1Y1,Y2,···是来自总体Y的随机变量,与X0独立,h(x,y)是实函数.对于n 1,取X n=h(X n−1,Y n).设{X n}的状态空间为I,验证{X n}是马氏链,给出转移概率p ij.解:由题知,Y k与X1,···,X k−1独立,k 1,∀n,i,j,i1,...,i n−1∈I有,P(X n+1=j|X n=i,X n−1=i n−1, (X0)i0)=P(h(i,Y n+1)=j|X n=i,X n−1=i n−1,···,X0=i0)=P(h(i,Y n+1)=j|X n=i)=P(h(i,Y)=j)=P(h(i,Y1)=j|X0=i)=P(X1=j|X0=i).∴X n是马氏链,P ij=P(h(i,Y)=j).4.2设{X i,i 0}是取非负整数值的独立同分布的随机变量序列,V ar(X0)>0.验证以下随机序列是马氏链:(a){X n,n 0};(b){S n,n 0},其中S n=∑ni=0X i;(c){ξn,n 0},其中ξn=∑ni=0(1+X i).解:∀n,i,j,i0,···,i n−1∈N+,(a).P(X n+1=j|X n=i,X n−1=i n−1,···,X0=i0)=P(X n+1=j)= P(X n+1=j|X n=i)=P(X1=j)=P(X1=j|X0=i).1第四章离散时间马尔可夫链第四章离散时间马尔可夫链(b).P(S n+1=j|S n=i,S n−1=i n−1,···,X0=i0)=P(X n+1=j−i|X n=i−i n−1,···,X0=i0)=P(X n+1=j−i)=P(X n+1=j−i,S n=i|S n=i)=P(S n+1=j|S n=i)=P(X1=j−i)=P(X1=j−i|X0=i)=P(S1=j|S0=i).(c).P(ξn+1=j|ξn=i,ξn−1=i n−1,···,ξ0=i0)=P(X n+1=ji −1)=P(X n+1=ji−1|ξn=i)=P(ξn+1=j|ξn=i)=P(X1=ji −1)=P(X1=ji−1|X0=i)=P(ξ1=j|ξ0=i).4.3马氏链的状态空间是I=(1,2,3,4,5),转移概率矩阵P=0.20.80000.50.5000000.50.500.20.3000.500001界定马氏链的状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档