七年级下册数学知识点汇总人教版,七年级下册数学常考题型附答案

合集下载

人教版数学七年级下册第六章实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)

人教版数学七年级下册第六章实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)

人教版数学七年级下册第六章实数常考题提高难题压轴题练习(含答案解析).doc:一.选择题(共13小题)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.的算术平方根是()A.2 B.±2 C.D.±3.下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与24.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>05.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间6.估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间7.估计+3的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间9.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N10.数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.﹣1 B.1﹣C.2﹣D.﹣211.下列说法不正确的是()A.1的平方根是±1 B.﹣1的立方根是﹣1C.是2的平方根D.﹣3是的平方根12.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个 B.2个 C.3个 D.4个13.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c二.填空题(共13小题)14.的平方根是.15.﹣8的立方根是.16.的算术平方根是.17.﹣()2=.18.已知a、b为两个连续的整数,且,则a+b=.19.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.20.若实数a、b满足|a+2|,则=.21.比较大小:﹣3﹣2.22.=.23.5﹣的小数部分是.24.比较大小:(填“>”“<”“=”).25.若x,y为实数,且,则(x+y)2010的值为.26.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.三.解答题(共14小题)27.计算:(﹣2)2+(﹣3)×2﹣.28.计算:(﹣2)2+|﹣1|﹣.29.求值:+()2+(﹣1)2015.30.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.31.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.32.已知,a、b互为倒数,c、d互为相反数,求的值.33.设2+的整数部分和小数部分分别是x、y,试求x、y的值与x﹣1的算术平方根.34.计算:(﹣2)2﹣(3﹣5)﹣+2×(﹣3)35.(1)有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).36.求值:已知y=x2﹣5,且y的算术平方根是2,求x的值.37.画一条数轴,把﹣1,,2各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.38.求x的值:(1)4x2=25;(2)(x﹣0.7)3=0.027.39.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求12a+2b的立方根.40.已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.(含答案解析)参考答案与试题解析一.选择题(共13小题)1.9的平方根为()A.3 B.﹣3 C.±3 D.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选C.【点评】此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2.的算术平方根是()A.2 B.±2 C.D.±【分析】先求得的值,再继续求所求数的算术平方根即可.【解答】解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.3.下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与2【分析】根据相反数的概念、性质及根式的性质化简即可判定选择项.【解答】解:A、=2,﹣2与2互为相反数,故选项正确;B、=﹣2,﹣2与﹣2不互为相反数,故选项错误;C、﹣2与不互为相反数,故选项错误;D、|﹣2|=2,2与2不互为相反数,故选项错误.故选A.【点评】本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.4.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.【点评】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.5估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【分析】先估计的整数部分,然后即可判断﹣2的近似值.【解答】解:∵5<<6,∴3<﹣2<4.故选C.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.6.估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵5<<6,∴在5到6之间.故选:C.【点评】此题主要考查了估算无理数的那就,“夹逼法”是估算的一般方法,也是常用方法.7.估计+3的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间【分析】先估计的整数部分,然后即可判断+3的近似值.【解答】解:∵42=16,52=25,所以,所以+3在7到8之间.故选:C.【点评】此题主要考查了估算无理数的大小的能力,理解无理数性质,估算其数值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】先根据正方形的面积是15计算出其边长,在估算出该数的大小即可.【解答】解:∵一个正方形的面积是15,∴该正方形的边长为,∵9<15<16,∴3<<4.故选B.【点评】本题考查的是估算无理数的大小及正方形的性质,根据题意估算出的取值范围是解答此题的关键.9.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【解答】解:∵≈3.87,∴3<<4,∴对应的点是M.故选C【点评】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.10数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.﹣1 B.1﹣C.2﹣D.﹣2【分析】首先根据数轴上表示1,的对应点分别为A,B可以求出线段AB的长度,然后由AB=AC利用两点间的距离公式便可解答.【解答】解:∵数轴上表示1,的对应点分别为A,B,∴AB=﹣1,∵点B关于点A的对称点为C,∴AC=AB.∴点C的坐标为:1﹣(﹣1)=2﹣.故选:C.【点评】本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.11.下列说法不正确的是()A.1的平方根是±1 B.﹣1的立方根是﹣1C.是2的平方根D.﹣3是的平方根【分析】A、根据平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据平方根的定义即可判定;D、根据平方根的定义即可判定.【解答】解:A、1的平方根是±1,故A选项正确;B、﹣1的立方根是﹣1,故B选项正确;C、是2的平方根,故C选项正确;D、=3,3的平方根是±,故D选项错误.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个 B.2个 C.3个 D.4个【分析】无限不循环小数为无理数,由此可得出无理数的个数.【解答】解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.13.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c【分析】先根据各点在数轴上的位置比较出其大小,再对各选项进行分析即可.【解答】解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.【点评】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.二.填空题(共13小题)14.的平方根是±2.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15.﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.16.的算术平方根是3.【分析】首先根据算术平方根的定义求出的值,然后即可求出其算术平方根.【解答】解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.【点评】此题主要考查了算术平方根的定义,解题的关键是知道,实际上这个题是求9的算术平方根是3.注意这里的双重概念.17.﹣()2=﹣3.【分析】直接根据平方的定义求解即可.【解答】解:∵()2=3,∴﹣()2=﹣3.【点评】本题考查了数的平方运算,是基本的计算能力.18已知a、b为两个连续的整数,且,则a+b=11.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.19.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.20.若实数a、b满足|a+2|,则=1.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式==1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.21.比较大小:﹣3<﹣2.【分析】先把两数平方,再根据实数比较大小的方法即可比较大小.【解答】解:∵(3)2=18,(2)2=12,∴﹣3<﹣2.故答案为:<.【点评】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.22.=3.【分析】33=27,根据立方根的定义即可求出结果.【解答】解:∵33=27,∴;故答案为:3.【点评】本题考查了立方根的定义;掌握开立方和立方互为逆运算是解题的关键.23.5﹣的小数部分是2﹣.【分析】根据1<<2,不等式的性质3,可得﹣的取值范围,再根据不等式的性质1,可得答案.【解答】解:由1<<2,得﹣2<﹣<﹣1.不等式的两边都加5,得5﹣2<5﹣<5﹣1,即3<5﹣<4,5﹣的小数部分是(5﹣)﹣3=2﹣,故答案为:2﹣.【点评】本题考查了估算无理数的大小,利用了不等式的性质:不等式的两边都乘以或除以同一个负数,不等号的方向改变,不等式的两边都加同一个数,不等号的方向不变.24.比较大小:>(填“>”“<”“=”).【分析】因为分母相同所以比较分子的大小即可,可以估算的整数部分,然后根据整数部分即可解决问题.【解答】解:∵﹣1>1,∴>.故填空结果为:>.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.当分母相同时比较分子的大小即可.25.若x,y为实数,且,则(x+y)2010的值为1.【分析】先根据非负数的性质列出方程组,求出x、y的值,然后代入(x+y)2010中求解即可.【解答】解:由题意,得:x+2=0,y﹣3=0,解得x=﹣2,y=3;因此(x+y)2010=1.故答案为:1.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.26.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.三.解答题(共14小题)27.计算:(﹣2)2+(﹣3)×2﹣.【分析】原式第一项利用乘方的意义化简,第二项利用异号两数相乘的法则计算,最后一项利用平方根定义化简,计算即可得到结果.【解答】解:原式=4﹣6﹣3=﹣5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.计算:(﹣2)2+|﹣1|﹣.【分析】原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用立方根定义计算即可得到结果.【解答】解:原式=4+﹣1﹣3=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.29.求值:+()2+(﹣1)2015.【分析】原式第一项利用算术平方根定义计算,第二项利用乘方的意义化简,第三项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=+﹣1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.30.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.【分析】(1)先估计、的近似值,然后判断的小数部分a,的整数部分b,最后将a、b的值代入并求值;(2)先估计的近似值,然后判断的整数部分并求得x、y的值,最后求x ﹣y的相反数.【解答】解:∵4<5<9,∴2<<3,∴的小数部分a=﹣2 ①∵9<13<16,∴3<<4,∴的整数部分为b=3 ②把①②代入,得﹣2+3=1,即.(2)∵1<3<9,∴1<<3,∴的整数部分是1、小数部分是,∴10+=10+1+(=11+(),又∵,∴11+()=x+y,又∵x是整数,且0<y<1,∴x=11,y=;∴x﹣y=11﹣()=12﹣,∴x﹣y的相反数y﹣x=﹣(x﹣y)=.【点评】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.31.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.【分析】根据平方根、立方根的定义和已知条件可知x﹣2=4,2x+y+7=27,列方程解出x、y,最后代入代数式求解即可.【解答】解:∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27把x的值代入解得:y=8,∴x2+y2的算术平方根为10.【点评】本题主要考查了平方根、立方根的概念,难易程度适中.32.已知,a、b互为倒数,c、d互为相反数,求的值.【分析】由a、b互为倒数可得ab=1,由c、d互为相反数可得c+d=0,然后将以上两个代数式整体代入所求代数式求值即可.【解答】解:依题意得,ab=1,c+d=0;∴==﹣1+0+1=0.【点评】本题主要考查实数的运算,解题关键是运用整体代入法求代数式的值,涉及到倒数、相反数的定义,要求学生灵活掌握各知识点.33.设2+的整数部分和小数部分分别是x、y,试求x、y的值与x﹣1的算术平方根.【分析】先找到介于哪两个整数之间,从而找到整数部分,小数部分让原数减去整数部分,然后代入求值即可.【解答】解:因为4<6<9,所以2<<3,即的整数部分是2,所以2+的整数部分是4,小数部分是2+﹣4=﹣2,即x=4,y=﹣2,所以==.【点评】此题主要考查了无理数的估算能力,解题关键是估算出整数部分后,然后即可得到小数部分.34.计算:(﹣2)2﹣(3﹣5)﹣+2×(﹣3)【分析】根据实数的运算顺序计算即可求解.注意实数混合运算的顺序:先算乘方、开方,再算乘除,最后算加减,遇有括号,先算括号内的.【解答】解:原式=4﹣(﹣2)﹣2﹣6=﹣2.【点评】此题主要考查了实数的运算,解题要注意实数的混合运算顺序.35.(1)有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):A、D、E;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).【分析】(1)根据实数的乘法法则和有理数、无理数的定义即可求解;(2)根据(1)的结果可以得到规律.【解答】解:(1)A、D、E;(2)设这个数为x,则x•=a(a为有理数),所以x=(a为有理数).【点评】此题主要考查了实数的运算,也考查了有理数、无理数的定义,文字阅读比较多,解题时要注意审题,正确理解题意.36.求值:已知y=x2﹣5,且y的算术平方根是2,求x的值.【分析】由于被开方数应等于它算术平方根的平方.那么由此可求得y,然后即可求出x.【解答】解:∵y的算术平方根是2,∴∴y=4;又∵y=x2﹣5∴4=x2﹣5∴x2=9∴x=±3.【点评】此题主要考查了平方根的性质:被开方数应等于它算术平方根的平方.正数的平方根有2个.37.画一条数轴,把﹣1,,2各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.【分析】根据相反数的定义写出各数的相反数,再画出数轴即可解决问题.【解答】解:﹣1的相反数是1;的相反数是﹣;2的相反数是﹣2;∴﹣2<﹣<﹣<<<2.【点评】此题主要考查了实数的大小的比较,比较简单,解答此题的关键是熟知相反数的概念,只有符号不同的两个数叫互为相反数.38.求x的值:(1)4x2=25;(2)(x﹣0.7)3=0.027.【分析】(1)可用直接开平方法进行解答;(2)可用直接开立方法进行解答.【解答】解:(1)x2==,∴x=±.(2)(x﹣0.7)3=0.027=(0.3)3,∴x﹣0.7=0.3,故x=1.【点评】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.39.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求12a+2b的立方根.【分析】分别根据2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求出a、b的值,再求出12a+2b的值,求出其立方根即可.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=(±3)2,解得a=5;∵3a+b﹣1的算术平方根是4,∴3a+b﹣1=16,把a=5代入得,3×5+b﹣1=16,解得b=2,∴12a+2b=12×5+4=64,∴=4,即12a+2b的立方根是4.【点评】本题考查的是立方根、平方根及算术平方根的定义,根据题意列出关于a、b的方程,求出a、b的值是解答此题的关键.40.已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.【分析】根据算术平方根及立方根的定义,求出M、N的值,代入可得出M﹣N 的平方根.【解答】解:因为M=是m+3的算术平方根,N=是n﹣2的立方根,所以可得:m﹣4=2,2m﹣4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n﹣2=1,所以可得M=3,N=1,把M=3,N=1代入M﹣N=3﹣1=2.【点评】本题考查了立方根、平方根及算术平方根的定义,属于基础题,求出M、N的值是解答本题的关键.。

七年级下册数学知识点总结人教版

七年级下册数学知识点总结人教版

七年级下册数学知识点总结人教版七年级下册数学知识点总结(人教版)一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正整数、负整数、正分数、负分数和零。

- 无理数:不能表示为分数形式的实数,如√2、π等。

2. 实数的运算- 加法:同号相加,异号相减,取绝对值大的数的符号。

- 减法:减去一个数等于加上它的相反数。

- 乘法:正数与正数得正,负数与负数得正,正数与负数得负。

- 除法:除以一个数等于乘以它的倒数。

- 乘方:求一个数的幂。

3. 算术平方根和平方根- 算术平方根:一个数的平方根中最大的正数。

- 平方根:一个数的平方根有两个,一个正数和一个负数。

4. 实数的性质和比较大小- 性质:实数的加法、减法、乘法、除法和乘方的性质。

- 比较大小:正实数大于零,负实数小于零,正实数大于所有负实数。

二、代数1. 代数式- 单项式:只含有乘法运算的代数式。

- 多项式:由若干个单项式相加或相减组成的代数式。

2. 代数式的运算- 加法和减法:合并同类项。

- 乘法:单项式与单项式相乘,多项式与单项式相乘。

- 除法:多项式除以单项式。

3. 因式分解- 提公因式法:找出多项式中所有项共有的因子。

- 公式法:使用平方差公式、完全平方公式等进行分解。

4. 代数方程- 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。

- 二元一次方程组:含有两个未知数,每个未知数的次数都为1的方程组。

5. 不等式- 不等式的性质:包括加法、减法、乘法和除法的性质。

- 解一元一次不等式:通过移项、合并同类项、系数化为1等步骤求解。

三、几何1. 平面图形- 点、线、面的基本性质。

- 直线、射线、线段的定义和性质。

- 角的定义、分类和性质,包括邻角、对顶角、同位角等。

2. 三角形- 三角形的基本性质和分类,如等边三角形、等腰三角形和直角三角形。

- 三角形的内角和定理:三角形内角和为180度。

- 三角形的外角性质:一个三角形的外角等于其不相邻的两个内角的和。

人教版初一七年级数学下册知识点汇总(打印版)

人教版初一七年级数学下册知识点汇总(打印版)

相交线与平行线一、相交线1、相交线中的角两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角。

我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做临补角。

临补角互补,对顶角相等。

直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。

其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF 的同侧,像这样位置的两个角叫做同旁内角。

2、垂线两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。

简称:垂线段最短。

二、平行线1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。

平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。

同一平面内,两条直线的位置关系只有两种:相交或平行。

注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。

(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

简称:同位角相等,两直线平行。

平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

人教版初一数学下册知识点(优选5篇)

人教版初一数学下册知识点(优选5篇)

人教版初一数学下册知识点(优选5篇)人教版初一数学下册知识点(1)篇一:直线、射线、线段(1)直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。

(2)点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外。

二:两点间的距离(1)两点间的距离:连接两点间的线段的长度叫两点间的距离。

(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。

三:正方体(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.四:一元一次方程的解定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右两边相等。

13、解一元一次方程:解一元一次方程的一般步骤去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。

解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。

(完整版)七年级下册数学知识点总结(人教版)(最新整理)

(完整版)七年级下册数学知识点总结(人教版)(最新整理)
第七章 平面直角坐标系
一、有序数对 有序数对:把有顺序的两个数 a 与 b 组成的数对叫做有序数对,记做(a,b)。
利用有序数对,能准确表示一个位置,这里两个数的顺序不能改变。 二、平面直角坐标系 平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系。 水平方向的数轴称为 x 轴或横轴,习惯取向右的方向为正方向;竖直方向上的数 轴称为 y 轴或纵轴,习惯取向上的方向为正方向;两坐标轴的交点是平面直角坐 标系的原点 .
七、命题、定理、证明 命题:判断一件事情的语句,叫做命题。命题由题设和结论两部分组成。题设是 已知事项,结论是由已知事项推出的事项。数学中的命题常可以写成“如果…… 那么……”的形式,“如果”后的部分是题设,“那么”后的部分是结论。
如果题设成立,那么结论一定成立,这样的命题称真命题。命题成立,而结 论不一定成立,这样的命题称假命题。
的垂线.
B
工具:直尺、三角板
1 放:放直尺,直尺的一边要与已知直线重合; 2 靠:靠三角板,把三角板的一直角边靠在直尺上; 3 移:移动三角板到已知点; 4 画线:沿着三角板的另一直角边画出垂线.
A
l
垂线的性质: 1、同一平面内,过一点有且只有一条直线与已知直线垂直. 2、连接直线外一点与直线上各点的所有线段中,垂线段最短,或说成垂线段最短。 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
1.有两个未知数.(二元) 2.含未知数的指数都为 1.(一次) 3.两个一次方程组成.(方程组) 二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程 组的解。二元一次方程组的解只有一个,可以理解为两条直线相交点的坐标。
定理:有些真命题是基本事实,它们的正确性是经过推理证实的,无需再次进行 证明的,这样的真命题叫定理。

七年级数学复习总结题型(含答案)

七年级数学复习总结题型(含答案)

七年级下册数学题型大全第五章相交线与平行线例一.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,则两次拐弯的角度可以是( B )A.第一次向右拐40°,第二次向左拐140°B.第一次向左拐40°,第二次向右拐40°C.第一次向左拐40°,第二次向右拐140°D.第一次向右拐40°,第二次向右拐40°例二.一个五边形五个内角的比为4∶2∶5∶4∶5,那么这个五边形各个内角的度数分别为108° 54° 135° 108° 135°。

分析:五边形内角和=(5-2)*180=540例三.如图(7),已知∠AEC=∠A+∠C,试说明:AB∥CD。

证明:过点E作EF∥AB.∵EF∥AB,∴∠A=∠AEF;又∵∠AEC=∠A+∠C,∴∠AEC=∠AEF+∠C;而∠AEC=∠AEF+∠CEF,∴∠CEF=∠C,∴EF∥CD,∴AB∥CD.例四.如图(11),BE∥AO,∠1=∠2,OE⊥OA于点O,EH⊥CO于点H,那么∠5=∠6,为什么?解:∵OE⊥OA∴∠2+∠3=90度;∵∠1+∠2+∠3+∠4=180度∴∠1=90度- ∠4∵直角三角形OEH中∠6=90度-∠4∴∠6=∠1又∵BE∥AO∴∠2=∠5∵∠1=∠2∴∠1=∠5∴∠5=∠6。

第六章平面直角坐标系例一.已知:点P的坐标是(,),且点P关于轴对称的点的坐标是(,),则m=-3n=1/2;分析:因为是关于x轴对称,所以横坐标不变,纵坐标相反10.等腰三角形周长为20cm,腰长为(cm),底边长为(cm),则与的函数关系式为20-2x,自变量的取值范围是5<x<10;分析:x + x > y;x + y > x;x>0;y>0x + y = x + 20 - 2x > x x<10x + x > y = 20 - 2 x x>5第七章三角形例一:如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从C岛看A,B两岛的视角∠ACB是多少度?方法一:因为:C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向所以:∠CAB=80°-50°=30°又因为:∠DAB+∠EBA=180°所以:∠EBA=180°-∠DAB=100°因为:C岛在B岛的北偏西40°所以:∠EBC=40°∠CBA=100°-40°=60°即∠ACB=180°-∠CBA-∠CAB=90°方法二:延长AB于点P因为:C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方所以:∠CAB=80°-50°=30°因为:C岛在B岛的北偏西40°方向所以:∠EBC=40°又因为∠EBP=80°所以:∠CBP=40°+80°=120°即∠ACB=120°-30°=90°例二:如图,DP平分∠CDA,BP平分∠ABC,则∠P与∠A、∠C之间的关系怎样?请说明理由。

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)

第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。

(反之,若两条直线只有一个交点,则这两条直线相交。

)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。

邻补角互补。

要注意区分互为邻补角与互为补角的异同。

对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。

对顶角相等。

注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。

反过来亦成立。

②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。

例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。

()相等的两个角互为对顶角。

()2、垂直是两直线相交的特殊情况。

注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。

垂足:两条互相垂直的直线的交点叫垂足。

垂直时,一定要用直角符号表示出来。

过一点有且只有一条直线与已知直线垂直。

(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。

垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。

垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。

垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。

(或说直角三角形中,斜边大于直角边。

)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。

注:距离指的是垂线段的长度,而不是这条垂线段的本身。

所以,如果在判断时,若没有“长度”两字,则是错误的。

4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。

注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。

【人教版】数学七年级下册:知识点精要归纳整理附全册同步练习及单元测试卷(含答案)

【人教版】数学七年级下册:知识点精要归纳整理附全册同步练习及单元测试卷(含答案)

【人教版】数学七年级下册:知识点精要归纳整理附全册同步练习及单元测试卷(含答案)第五章相交线与平行线5.1相交线5.1.1相交线:邻补角、对顶角(对顶角相等)、5.1.2垂线:垂直、垂线、垂足在同一平面内,过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

<=>垂线段最短。

点到直线的距离:直线外一点到这条直线的垂线段的长度。

5.1.3同位角、内错角、同旁内角。

(要会区分:顾名思义去理解)5.2平行线及其判定5.2.1平行线(平行)基本事实:经过直线外一点,有且只有一条直线与这条直线平行。

(平行公理)如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

5.2.2平行线的判定1、同位角相等,两直线平行2、内错角相等,两直线平行3、同旁内角互补,两直线平行5.3平行线的性质5.3.1性质(因为平行,所以同位角相等、内错角相等、同旁内角互补)5.3.2命题:判断一件事情的语句。

定理:经过推理证实的真命题。

证明:推理的过程。

5.4平移:整体沿某一直线方向移动,形状和大小完全相同,连接各组对应点的线段平行且相等。

第六章实数6.1平方根(算术平方根、被开方数、平方根或二次方根、开平方)正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。

6.2立方根(立方根或三次方根、开立方、根指数)正数的立方根是正数,负数的立方根是负数,0的立方根是0。

6.3实数:有理数和无理数的统称。

无理数:无限不循环小数。

数a的相反数是-a o一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。

第七章平面直角坐标系7.1平面直角坐标系7.1.1有序数对(a,b)。

7.1.2平面直角坐标系:在平面上,由两条互相垂直、原点重合的数轴组成。

X轴即横轴,y轴即纵轴,交点为原点,正方向分别为向右和向上。

有序数对即坐标。

象限:分为第一、二、三、四象限。

坐标轴上的点不属于任何象限。

(完整版)最新版人教版七年级数学下册知识点及典型试题汇总——期末总复习,推荐文档

(完整版)最新版人教版七年级数学下册知识点及典型试题汇总——期末总复习,推荐文档

⎪ ⎪ ⎪ ⎪一、知识网络结构 ⎧ ⎪⎧相交线 ⎪ 人教版七年级数学下册知识点汇总第五章 相交线与平行线⎪相交线⎨垂线 ⎪ ⎪同位角、内错角、同旁内角⎪⎩ ⎪ ⎧平行线:在同一平面内,不相交的两条直线叫平行线 ⎪ ⎪ ⎪ ⎪⎧定义: ⎪⎪ ⎪ 平行线及其判定 ⎪ 判定1 :同位角相等,两直线平行 ⎪ ⎪平行线的判定⎨判定2 :内错角相等,两直线平行 相交线与平行线⎨ ⎪ ⎪判定3 :同旁内角互补,两直线平行⎪⎪ ⎪ ⎪ ⎪ ⎩判定4 :平行于同一条直线的两直线平行 ⎪⎧性质1:两直线平行,同位角相等⎪⎪性质2:两直线平行,内错角相等⎪ ⎪⎪平行线的性质⎨性质3:两直线平行,同旁内角互补 ⎪ ⎪ ⎪⎪⎩平移⎪性质4:平行于同一条直线的两直线平行 ⎩命题、定理二、知识要点1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 ,垂直是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。

如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是 2邻补角。

邻补角的性质: 邻补角互补 。

如图 1 所示, 与 互为邻补角,3 4 1 与 互为邻补角。

+ = 180°; + = 180°; + = 180°; 图 1+= 180°。

⎨CF ca3 4 12b7 8 564、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。

对顶角的性质:对顶角相等。

如图1 所示,与互为对顶角。

=;= 。

5、两条直线相交所成的角中,如果有一个是直角或 90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。

如图2 所示,当= 90°时,⊥。

垂线的性质:性质 1:过一点有且只有一条直线与已知直线垂直。

人教版初一七年级数学下册知识点归纳汇总(打印版)

人教版初一七年级数学下册知识点归纳汇总(打印版)

人教版初一七年级数学下册知识点归纳汇总(打印版)本文介绍了相交线和平行线的相关概念和性质。

相交线部分:当两条直线相交时,会形成四个角。

其中,有公共顶点但没有公共边的两个角叫做对顶角,有公共顶点且有一条公共边的两个角叫做临补角,临补角互补,对顶角相等。

同时,相交线还会形成同位角、内错角和同旁内角等不同位置的角。

当两条直线相交成直角时,它们互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

垂线有两个性质,即过一点有且只有一条直线与已知直线垂直,直线外一点与直线上各点连接的所有线段中,垂线段最短。

平行线部分:在同一个平面内,不相交的两条直线叫做平行线,用符号“∥”表示。

平行线有两个重要的公理和两个定理来判定平行线的关系。

平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。

而同位角相等、内错角相等和同旁内角互补则是判定平行线的三个定理。

需要注意的是,平行线是无限延伸的,无论怎样延伸也不相交。

是由两条垂直于彼此的数轴组成的,分别称为x轴和y轴,它们的交点称为原点O。

在平面直角坐标系中,每个点都可以用一个有序数对(x,y)来表示,其中x表示该点在x轴上的坐标,y表示该点在y轴上的坐标。

2、坐标轴和象限x轴和y轴分别被分成正半轴和负半轴,它们的交点O称为原点。

根据坐标轴的正方向和原点的位置,平面被分成四个部分,称为第一象限、第二象限、第三象限和第四象限。

在第一象限中,x轴和y轴的坐标值均为正数;在第二象限中,x轴的坐标值为负数,y轴的坐标值为正数;在第三象限中,x轴和y轴的坐标值均为负数;在第四象限中,x轴的坐标值为正数,y轴的坐标值为负数。

3、距离公式在平面直角坐标系中,两点之间的距离可以用勾股定理来计算,即d=sqrt((x2-x1)^2+(y2-y1)^2),其中d表示两点之间的距离,(x1,y1)和(x2,y2)分别表示两点的坐标。

4、中点公式在平面直角坐标系中,两点的中点坐标可以用中点公式来计算,即((x1+x2)/2,(y1+y2)/2),其中(x1,y1)和(x2,y2)分别表示两点的坐标。

人教版初一数学下册常考试题(详细解析)

人教版初一数学下册常考试题(详细解析)

新人教版初一数学(下)数学常考试题一、选择题(共30小题)1.(常考指数:106)如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠AED′=40°,则∠EFB等于()2.(常考指数:69)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()3.(常考指数:79)如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()8.(常考指数:90)如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值围,在数轴上可表示为()10.(常考指数:108)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()11.(常考指数:72)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()12.(常考指数:89)如图,下列条件中,不能判断直线l1∥l2的是()14.(常考指数:70)解集在数轴上表示为如图所示的不等式组是()二、填空题(共30小题)16.(常考指数:53)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有40个.17.(常考指数:81)点P(﹣2,3)关于x轴的对称点的坐标是(﹣2,﹣3).解答:解:点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).点评:本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.18.(常考指数:70)把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么它们相等.考点:命题与定理.分析:命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.解答:解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.点评:本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.19.(常考指数:87)如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由(3n+1)个基础图形组成.考点:规律型:图形的变化类.专题:规律型.分析:观察图形很容易看出每加一个图案就增加三个基础图形,以此类推,便可求出结果.解答:解:第一个图案基础图形的个数:3+1=4;第二个图案基础图形的个数:3×2+1=7;第三个图案基础图形的个数:3×3+1=10;…∴第n个图案基础图形的个数就应该为:(3n+1).故答案为:(3n+1).点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.20.(常考指数:62)线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标是(1,2).考点:坐标与图形变化-平移.分析:由于线段CD是由线段AB平移得到的,而点A(﹣1,4)的对应点为C(4,7),比较它们的坐标发现横坐标增加5,纵坐标增加3,利用此规律即可求出点B(﹣4,﹣1)的对应点D的坐标.解答:解:∵线段CD是由线段AB平移得到的,而点A(﹣1,4)的对应点为C(4,7),∴由A平移到C点的横坐标增加5,纵坐标增加3,则点B(﹣4,﹣1)的对应点D的坐标为(1,2).故答案为:(1,2).点评:本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移一样.21.(常考指数:86)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.22.(常考指数:70)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=120°.23.(常考指数:101)把命题“对顶角相等”写成“如果…,那么…”的形式为:如果两个角是对顶角,那么这两个角相等.24.(常考指数:107)的算术平方根是2.25.(常考指数:65)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.27.(常考指数:54)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是﹣.28.(常考指数:180)16的平方根是±4.的平方根是±2.问题.解答:解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.30.(常考指数:68)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第15个图形需要黑色棋子的个数是255.考点:规律型:图形的变化类.专题:压轴题;规律型.分析:观察发现,每一条边上的黑色棋子的个数是这个多边形的边数减去1,又顶点处的黑色棋子被两条边公用,根据此规律列式计算即可.解答:解:第1个图形棋子个数是:(3﹣1)×3﹣3=(3﹣2)×3=3,第2个图形棋子个数是:(4﹣1)×4﹣4=(4﹣2)×4=8,第3个图形棋子个数是:(5﹣1)×5﹣5=(5﹣2)×5=15,第4个图形棋子个数是:(6﹣1)×6﹣6=(6﹣2)×6=24,…按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2﹣2n.第15个图形棋子个数是:(17﹣1)×17﹣17=(17﹣2)×17=255.故答案为:255.点评:本题主要是对图形的变化规律的考查,观察出图形的边数与每一条边上的黑色棋子的个数是解题的关键.三、解答题(共40小题)31.(常考指数:56)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用一样.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.考点:二元一次方程组的应用;一元一次不等式组的应用.专题:应用题.分析:(1)找出等量关系列出方程组再求解即可.本题的等量关系为“1辆甲型汽车和2辆乙型汽车共需费用2500元”和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元”.(2)得等量关系是“将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨同一种型号汽车每辆且同一种型号汽车每辆租车费用一样”.解答:解:(1)设租用一辆甲型汽车的费用是x元,租用一辆乙型汽车的费用是y元.由题意得,;解得:,32.(常考指数:49)某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元?(2)有几种购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足?33.(常考指数:45)某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?34.(常考指数:42)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?考点:一元一次不等式的应用;一次函数的应用.专题:压轴题.分析:(1)0.5×甲种鱼的尾数+0.8×乙种鱼的尾数=3600;(2)0.5×甲种鱼的尾数+0.8×乙种鱼的尾数≤4200;(3)关系式为:甲种鱼的尾数×0.9+乙种鱼的尾数×95%≥6000×93%.解答:解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗(6000﹣x)尾.由题意得:0.5x+0.8(6000﹣x)=3600,解方程,可得:x=4000,∴乙种鱼苗:6000﹣x=2000,答:甲种鱼苗买4000尾,乙种鱼苗买2000尾;(2)由题意得:0.5x+0.8(6000﹣x)≤4200,解不等式,得:x≥2000,即购买甲种鱼苗应不少于2000尾,∵甲、乙两种鱼苗共6000尾,∴乙不超过4000尾;答:购买甲种鱼苗应不少于2000尾,购买乙种鱼苗不超过4000尾;(3)设购买鱼苗的总费用为w,甲种鱼苗买了a尾,则购买乙种鱼苗(6000﹣a)尾.则w=0.5a+0.8(6000﹣a)=﹣0.3a+4800,由题意,有a+(6000﹣a)≥×6000,解得:a≤2400,在w=﹣0.3a+4800中,∵﹣0.3<0,∴w随a的增大而减少,∴当a取得最大值时,w便是最小,即当a=2400时,w最小=4080.答:购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.点评:根据费用和成活率找到相应的关系式是解决本题的关键,注意不低于是大于或等于;不超过是小于或等于.35.(常考指数:51)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了500名居民的年龄,扇形统计图中a=20%,b=12%;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.考点:扇形统计图;用样本估计总体;条形统计图.专题:图表型.分析:(1)根据“15~40”的百分比和频数可求总数,进而求出b的值,最后求出a;(2)利用总数和百分比求出频数再补全条形图;(3)用样本估计总体即可.解答:解:(1)根据“15到40”的百分比为46%,频数为230人,可求总数为230÷46%=500,a=×100%=20%,b=×100%=12%;故答案为:20%;12%;(2);(3)在扇形图中,0~14岁的居民占20%,有3500人,则年龄在15~59岁的居民占(1﹣20%﹣12%)=68%,人数为3500×=11900.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.36.(常考指数:46)一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解答过程.考点:二元一次方程组的应用.分析:在阅读考题中,要能获取题中相应的等量关系:从A地驶往B地,前路段为普通公路,其余路段为高速公路.得到:高速公路的长度=普通公路长度的两倍;汽车从A地到B地一共行驶了2.2h.最简单的是根据在普通公路的时间和在高速公路的时间提出问题,再设未知数,列方程组,解答问题.解答:方式1:问题:普通公路和高速公路各为多少千米?解:设普通公路长为x(km),高速公路长为y(km).根据题意,得,解得,答:普通公路长为60km,高速公路长为120km.方式2:问题:汽车在普通公路和高速公路上各行驶了多少小时?解:设汽车在普通公路上行驶了x(h),高速公路上行驶了y(h).根据题意,得,解得,答:汽车在普通公路上行驶了1h,高速公路上行驶了1.2h.方式3:问题:普通公路和两地公路总长各为多少千米?解:设普通公路长xkm,两地公路总长ykm.根据题意,得,解得,答:普通公路长60km,两地公路总长180km.37.(常考指数:54)某校师生积极为汶川地震灾区捐款,在得知灾区急需账篷后,立即到当地的一家账篷厂采购,帐篷有两种规格:可供3人居住的小账篷,价格每顶160元;可供10人居住的大账篷,价格每顶400元.学校花去捐款96000元采购这两种帐篷,正好可供2300人临时居住.(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷;(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大账篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷.如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区有哪几种方案?38.(常考指数:52)自从获得2008年夏季奥运会申办权以来,奥运知识在我国不断传播,小刚就本班学生的对奥运知识的了解程度进行了一次调查统计.A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生?(2)在条形图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数.考点:扇形统计图;用样本估计总体;条形统计图.专题:图表型.分析:(1)利用A所占的百分比和相应的频数即可求出;(2)利用C所占的百分比和总人数求出C的频数即可;(3)求出“了解较多”部分所占的比例,即可求出“了解较多”部分所对应的圆心角的度数;(4)利用样本估计总体,即可求出全年级对奥运知识“了解较多”的学生大约有1000×(1﹣50%﹣20%)=300人.解答:解:(1)∵20÷50%=40(人),答:该班共有40名学生;(2)C:一般了解的人数为:40×20%=8(人),补充图如图所示:(3)360°×(1﹣50%﹣20%)=108°,所以在扇形统计图中,“了解较多”部分所对应的圆心角的度数为108°;(4)1000×(1﹣50%﹣20%)=300,所以全年级对奥运知识“了解较多”的学生大约有300人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图则能直接反映部分占总体的百分比大小.39.(常考指数:43)为满足市民对优质教育的需求某中学决定改变办学条件计划拆除一部分旧校舍、建造新校舍.拆除旧校舍每平米需80元,建造新校舍每平米需700元.计划在年拆除旧校舍与建造新校舍共7200m2,在实施中为扩大绿化面积,新建校舍只完成了计划的80%,而拆除校舍则超过了10%,结果恰好完成了原计划的拆、除的总面积.(1)求原计划拆建面积各多少m2?(2)若绿化1m2需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少m2?考点:二元一次方程组的应用.专题:压轴题.分析:本题中的等量关系有:原计划拆除旧校舍的面积+原计划建造新校舍的面积=7200m2;原计划拆除旧校舍的面积×(1+10%)+原计划建造新校舍的面积×80%=7200m2,根据两个等量关系可列方程组求解.解答:解:(1)设原计划拆除旧校舍x(m2),新建校舍y(m2),根据题意得:,73.(常考指数:59)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型已知可供建造沼气池的占地面积不超过365m,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程;(2)通过计算判断,哪种建造方案最省钱?40.(常考指数:42)某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价﹣进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案.考点:一元一次不等式的应用;一元一次方程的应用.专题:应用题;压轴题;方案型.分析:依据等量关系“购进甲、乙两种商品共80件,恰好用去1600元”列方程求得甲、乙两种商品的件数,然后依据不等关系“总利润不少于600元,但又不超过610元”列出不等式组,通过解不等式组来确定“进货方案”.解答:解:(1)设甲商品进了a件,则乙种商品进了(80﹣a)件,依题意得:10a+(80﹣a)×30=1600,解得:a=40,即甲种商品进了40件,乙种商品进了80﹣40=40件.(2)设购买甲种商品为x件,则购买乙种商品为(80﹣x)件,依题意可得:,解得:38≤x≤40.即有三种方案,方案一:甲38件,乙42件方案二:甲39件,乙41件方案三:甲40件,乙40件.点评:利用方程和不等式组解答的“方案设计题”是中考的热点考题,其关键点就是通过解不等式组求得某一个未知量的整数解,从而确定“设计方案”.75.(常考指数:59)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.考点:一元一次不等式组的应用;二元一次方程组的应用.专题:方案型.分析:(1)用二元一次方程组解决问题的关键是找到两个合适的等量关系.本问中两个等量关系是:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,根据这两个等量关系可以列出方程组.(2)本问可以列出一元一次不等式组解决.用笔记本本数=48﹣钢笔支数代入下列不等关系,购买钢笔钱数+购买笔记本钱数≤200,笔记本数≥钢笔数,可以列出一元一次不等式组,求出其解集,再根据笔记本数,钢笔数必须是整数,确定购买方案.解答:解:(1)设每支钢笔x元,每本笔记本y元.依题意得:,解得:,答:每支钢笔3元,每本笔记本5元.(2)设买a支钢笔,则买笔记本(48﹣a)本依题意得:,解得:20≤a≤24,∴一共有5种方案.方案一:购买钢笔20支,则购买笔记本28本;方案二:购买钢笔21支,则购买笔记本27本;方案三:购买钢笔22支,则购买笔记本26本;方案四:购买钢笔23支,则购买笔记本25本;方案五:购买钢笔24支,则购买笔记本24本;点评:本题考查了一元一次不等式组的应用和二元一次方程组的应用,解题关键是找出题目中的等量关系或者不等关系:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,购买钢笔钱数+购买笔记本钱数≤200,笔记本数≥钢笔数.41.(常考指数:46)某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图所示的统计图.根据图息解答下列问题:(1)哪一种品牌粽子的销售量最大?(2)补全条形统计图;(3)写出A品牌粽子在图中所对应的圆心角的度数;(4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货?请你提一条合理化的建议.考点:条形统计图;扇形统计图.专题:图表型.分析:(1)从扇形统计图中得出C品牌的销售量最大,为50%;(2)总销售量=1200÷50%=2400个,B品牌的销售量=2400﹣1200﹣400=800个,补全图形即可;(3)A品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;(4)由于C品牌的销售量最大,所以建议多进C种.解答:解:(1)从扇形统计图中得出C品牌的销售量最大,为50%;(2)总销售量=1200÷50%=2400个,B品牌的销售量=2400﹣1200﹣400=800个,(3)A品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;(4)建议:C品牌的粽子应该多进货.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.42.(常考指数:40)为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A,B 两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理洋澜湖的污水量不低于1860吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.43.(常考指数:48)为了保护环境,某企业决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台105万元.(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)44.(常考指数:44)为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品4件,B种纪念品3件,需要550元,(1)求购进A,B两种纪念品每件需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?45.(常考指数:53)为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?46.(常考指数:85)如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.∵EF∥AD,(已知)∴∠2=∠3.(两直线平行,同位角相等;)又∵∠1=∠2,(已知)∴∠1=∠3.(等量代换)∴AB∥DG.(错角相等,两直线平行;)∴∠BAC+∠AGD=180°(两直线平行,同旁角互补;)又∵∠BAC=70°,(已知)∴∠AGD=110°.47.(常考指数:58)解不等式组,并把它的解集在数轴上表示出来.48.(常考指数:97)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以与乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?49.(常考指数:48)市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?50.(常考指数:45)已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.。

人教版初中七年级数学下册第六单元《实数》知识点复习(含答案解析)

人教版初中七年级数学下册第六单元《实数》知识点复习(含答案解析)

一、选择题1.下列各式计算正确的是( )A B = ±2 C = ±2 D . A 解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A 计算正确;故选:A .【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.2.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、=不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.3.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .6C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….4.下列实数220.010*******;; (相邻两个1之依次多一个0);2,其中无理数有( )A .2个B .3个C .4个D .5个B解析:B【分析】根据无理数、有理数的定义即可判定选择项.【详解】4=-,是有理数;3.14是有限小数,是有理数;227是分数,是有理数;,0.010010001(相邻两个1之依次多一个0)2,是无理数,共3个,故选:B .【点睛】本题考查了无理数的定义,注意无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.在0.010010001,3.14,π,1.51,27中无理数的个数是( ). A .5个B .4个C .3D .2个D解析:D【分析】 根据无理数的概念解题,找出无理数的个数即可,无限不循环小数称为无理数;【详解】在0.010010001,3.14,π,1.51,27中无理数有π共2个, 故选D .【点睛】本题考查了无理数的概念,正确掌握无理数的概念是解题的关键;6 )A .8B .8-C .D .± D 解析:D【分析】8=,再根据平方根的定义,即可解答.【详解】8=,8的平方根是±故选:D .【点睛】8=.7.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >->B .1a a a >->C .1a a a >>-D .1a a a ->> C 解析:C【分析】可以用取特殊值的方法,因为a >1,所以可设a=2,然后分别计算|a|,-a ,1a ,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a =, ∵2>12>-2, ∴|a|>1a>-a ; 故选:C .【点睛】 此类问题运用取特殊值的方法做比较简单.8.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- D 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.下列等式成立的是( )A .±1B =±2C 6D 3A 解析:A【分析】分别根据算术平方根、立方根的定义逐一判断即可.【详解】A .书写规范,故本选项符合题意;B.算术平方根只能是正数不能是负数,故本选项不合题意;C.立方根与被开方数符号一致,故本选项符合题意;D.33=27,27的立方根才等于3,故本选项不合题意.故选:A .【点睛】本题主要考查了算术平方根与立方根的定义,熟练掌握算术平方根的性质是解答本题的关键.10.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个B解析:B【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①没有最小的整数,所以原说法错误;②有理数包括正数、0和负数,所以原说法错误;③﹣2π是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确; ⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误; 故其中错误的说法的个数为6个.故选:B .【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.二、填空题11.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-画图见解析【分析】先把各数化简在数轴上表示出各数再根据在数轴上右边的数总比左边的数大把这些数按从大到小的顺序用>连接起来【详解】解:在数轴上表示为:按从大到小的顺序用>连接为:【点睛】本题主要考查了解析:画图见解析,()239201272>-->>-->->- 【分析】先把各数化简,在数轴上表示出各数,再根据“在数轴上,右边的数总比左边的数大”把这些数按从大到小的顺序用“>”连接起来.【详解】解:3273-=-,()22--=,11--=-,93=,224-=-,在数轴上表示为:按从大到小的顺序用>()239201272>-->>-->->-. 【点睛】本题主要考查了实数的大小比较,解题的关键是准确在数轴上表示实数,并利用数轴对实数的大小进行比较.12.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …}, 无理数集合{ …}.见解析【分析】先求出立方根再根据整数负分数正有理数无理数的定义即可得【详解】解析:见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3=-,13.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.14.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.10202550【分析】①由魔术数的定义分别对345三个数进行判断即可得到5为魔术数;②由题意根据魔术数的定义通过分析即可得到答案【详解】解:根据题意①把3写在1的右边得13由于13不能被3整除故3 解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”; ②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题.15.已知5的整数部分为a ,5-b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-16.一个正数的两个平方根分别为27a -与34a -+,则这个正数为_______.169【分析】根据一个正数的两个平方根互为相反数求出a 的值就可以算出这个正数【详解】解:解得∴这个正数是故答案是:169【点睛】本题考查平方根解题的关键是掌握平方根的性质解析:169【分析】根据一个正数的两个平方根互为相反数,求出a 的值,就可以算出这个正数.【详解】解:()27340a a -+-+=,解得3a =-,()23713⨯--=-,∴这个正数是()213169-=. 故答案是:169.【点睛】本题考查平方根,解题的关键是掌握平方根的性质.17.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:ab = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.(1)4a+b ;(2);(3)6a-3b-12【分析】(1)观察得到新运算等于第一个数乘以4加上第二个数据此列式即可;(2)根据新运算分别计算出与即可得到答案;(3)根据新运算分别化简再将ab 的值代解析:(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】(1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可;(2)根据新运算分别计算出a b 与b a 即可得到答案; (3)根据新运算分别化简再将a 、b 的值代入计算. 【详解】(1)ab =4a+b , 故答案为:4a+b ; (2)a b =4a+b ,b a =4b+a , ∵a b , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+ =4(a-b )+(2a+b )=4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键.18.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。

(word完整版)人教版七年级下册数学各章知识点及练习题,.docx

(word完整版)人教版七年级下册数学各章知识点及练习题,.docx

第一讲相交线与平行线1.两直相交所成的四个角中,有一条公共,它的另一互反向延,具有种关系的两个角,互_____________.2.两直相交所成的四个角中,有一个公共点,并且一个角的两分是另一个角两的反向延,具有种关系的两个角,互------________ 角的性:______ ______3.两直相交所成的四个角中,如果有一个角是直角,那么就称两条直相互_______.垂的性:⑴ 一点 ______________一条直与已知直垂直 .⑵ 接直外一点与直上各点的所在段中,_______________.4.直外一点到条直的垂段的度,叫做________________________.5.两条直被第三条直所截,构成八个角,在那些没有公共点的角中,⑴如果两个角分在两条直的同一方,并且都在第三条直的同,具有种关系的一角叫做___________ ;⑵如果两个角都在两直之,并且分在第三条直的两,具有种关系的一角叫做 ____________ ;⑶如果两个角都在两直之,但它在第三条直的同一旁,具有种关系的一角叫做_______________.6.在同一平面内,不相交的两条直互相 ___________.同一平面内的两条直的位置关系只有________与_________两种 .7. 平行公理:直外一点,有且只有一条直与条直______.推:如果两条直都与第三条直平行,那么_____________________.8.平行的判定:⑴ _____________________________________.⑵___________________________⑶ __________________________________.9. 平行的性:⑴_________________.(2) _______________________________. ⑶__________________________________ . 10.把一个形整体沿某一方向移,会得到一个新形,形的种移,叫做_______.平移的性:⑴把一个形整体平移得到的新形与原形的形状与大小完全______.⑵新形中的每一点,都是由原形中的某一点移后得到的,两个点是点.接各点的段_________________.11.判断一件事情的句,叫做_______.命由 ________和 _________两部分成。

人教版七年级下册数学各章知识点及练习题

人教版七年级下册数学各章知识点及练习题

人教版七年级下册数学各章知识点及练习题1.两条相交的直线所形成的四个角中,有一条公共边,而它们的另一条边则互为反向延长线。

如果两个角具有这种关系,那么它们互为相邻角。

2.两条相交的直线所形成的四个角中,有一个公共顶点,而一个角的两条边则分别是另一个角两条边的反向延长线。

如果两个角具有这种关系,那么它们互为对顶角,且具有相等的角度。

3.如果两条相交的直线中有一条直线与另一条直角,则这两条直线互为垂直线。

垂线的性质:⑴经过一点且垂直于已知直线的直线是唯一的。

⑵连接直线外一点与直线上各点的线段中,与已知直线垂直的线段长度最短。

4.直线外一点到这条直线的垂线段的长度称为该点到直线的距离。

5.如果两条直线被第三条直线所截,构成八个角,在没有公共顶点的角中,⑴如果两个角分别在两条直线的同侧,并且都在第三条直线的同侧,那么它们互为内错角;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,那么它们互为同旁内角;⑶如果两个角都在两直线之间,但它们在第三条直线的同一侧,那么它们互为对顶角。

6.不相交的两条直线在同一平面内互为平行线。

同一平面内的两条直线的位置关系只有平行和相交两种。

7.平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么它们互相平行。

8.平行线的判定:⑴如果两条直线与第三条直线的对应角互为相等角,则这两条直线平行。

⑵如果一条直线与第三条直线平行,另一条直线与这条直线对应的内角为直角,则这两条直线平行。

⑶如果两条直线与第三条直线平行,则这两条直线互相平行。

9.平行线的性质:⑴平行线之间的距离相等。

⑵平行线与第三条直线所构成的内错角互为相等角。

⑶平行线与第三条直线所构成的同旁内角互为补角。

10.把一个图形整体沿某一方向移动,会得到一个新图形,这种移动称为平移。

平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状和大小完全相同。

新图形中的每个点都是原图形中某个点移动后得到的,这两个点是对应点。

人教版七年级数学下册知识点大全

人教版七年级数学下册知识点大全

人教版七年级数学下册知识点大全第五章相交线与平行线5.1.1相交线1、如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。

2、如果两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个角互为邻补角。

性质:邻补角互补。

(两条直线相交有4对邻补角。

)3、如果两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶角。

性质:对顶角相等。

(两条直线相交,有2对对顶角。

)5.1.2垂线4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。

(要找垂线段,先把点来看。

过点画垂线,点足垂线段。

)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。

7、垂线画法:①放:放直尺,直尺的一边要与已知直线重合;②靠:靠三角板,把三角板的一直角边靠在直尺上;③移:移动三角板到已知点;④画线:沿着三角板的另一直角边画出垂线.8、垂线性质1:过一点有且只有一条直线与已知直线垂直。

9、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.10、连接直线外一点与直线上各点的所有线段中,垂线段最短。

(垂线段最短.)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

5.1.3同位角、同旁内角、内错角12、同位角:如果两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角。

形如字母“F”。

13、内错角:如果两个角分别在被截的两条直线之间(内),并且分别在截线的两侧(错),这样的一对角叫做内错角。

形如字母“Z”。

14、同旁内角:如果两个角都在被截直线之间(内),并且都在截线的同侧(同旁),这样的一对角叫做同旁内角。

形如字母“U”。

5.2.1平行线15、在同一平面内,不相交的两条直线叫做平行线,记作:a∥b。

(完整版)人教版七年级下册数学各章知识点及练习题

(完整版)人教版七年级下册数学各章知识点及练习题

第一讲相交线与平行线1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为____________ .2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为--- _______ 对顶角的性质: ____3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_____ .垂线的性质:⑴过一点一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,______________ .4. 直线外一点到这条直线的垂线段的长度,叫做______________________ .5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做______________ .6. 在同一平面内,不相交的两条直线互相.同一平面内的两条直线的位置关系只有______与 ________ 两种 .7. 平行公理:经过直线外一点,有且只有一条直线与这条直线_____ .推论:如果两条直线都与第三条直线平行,那么____________________ .8. 平行线的判定:⑴.⑵ _________________________ ⑶____________________________________ .9. 平行线的性质:⑴.( 2)____________________________ . ⑶_________________________________ . 10. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做_____ .平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全 .⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段________________ .11. 判断一件事情的语句,叫做____ _____________ . 命题由___ 和两部分组成。

人教版七年级数学下册知识点(全面精华详细)(最新整理)

人教版七年级数学下册知识点(全面精华详细)(最新整理)

2.垂线: 垂直是相交的一种特殊情形,两条直线垂直,其中一
条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离: 直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连
接直线外一点与直线上各点的所有线段中,垂线段最短。
6、垂直的表示方法:垂直用符号“⊥”来表示,若“直线 AB 垂直于直线 CD, 垂足
五、实数的运算
1、加法交换律
ab ba
2、加法结合律
(a b) c a (b c)
3、乘法交换律
ab ba
4、乘法结合律
(ab)c a(bc)
5、乘法对加法的分配律 a(b c) ab ac
6、实数混合运算时,对于运算顺序有什么规定?
实数,乘方
方根的相反数。
3
6.2 立方根
(1)立方根的定义:如果一个数 x 的立方等于 a ,这个数叫做 a 的立方根(也叫做
三次方根),即如果 x3 a ,那么 x 叫做 a 的立方根。求一个数的立方
根的运算,叫做开立方。
(2)一个数 a 的立方根,记作 3 a ,读作:“三次根号 a ”,
其中 a 叫被开方数,3 叫根指数,不能省略,若省略表示平方。
为 O”,则记为 AB⊥ CD。
7、垂线的性质:
性质 1:过一点有且只有一条直线与已知直线垂直。
性质 2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质 3:如图 2 所示,当 a ⊥ b 时, =
=
=
= 90°。反
之,。。。。。
三、同位角、内错角、同旁内角 两条直线被第三条直线所截形成 8 个角。(3 线 8 角) 1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线 的上方,又在直线 EF 的同侧,具有这种位置关系的两个角叫同位角。 如:∠1 和∠5。 2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之 间,又在直线 EF 的两侧,具有这种位置关系的两个角叫内错角。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档