人教版高中数学《函数的单调性与最值》教学设计全国一等奖

合集下载

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)章节一:函数单调性的引入1. 引入概念:单调增加和单调减少2. 讲解实例:设f(x) = x,则f(x)在实数集上单调增加设g(x) = -x,则g(x)在实数集上单调减少3. 总结:函数单调性是描述函数值变化趋势的重要性质,分为单调增加和单调减少两种情况。

章节二:函数单调性的定义1. 定义单调增加:若对于任意的x1 < x2,都有f(x1) ≤f(x2),则称f(x)在区间I上单调增加。

2. 定义单调减少:若对于任意的x1 < x2,都有f(x1) ≥f(x2),则称f(x)在区间I上单调减少。

3. 举例说明:设h(x) = 2x + 3,则h(x)在实数集上单调增加设k(x) = -x^2 + 1,则k(x)在区间[-1, 1]上单调增加,在区间(-∞, -1]和[1, +∞)上单调减少章节三:函数单调性的判断方法1. 导数法:若函数f(x)在区间I上可导,且导数f'(x) ≥0(单调增加)或f'(x) ≤0(单调减少),则f(x)在区间I上单调增加或单调减少。

2. 图像法:绘制函数图像,观察函数值的变化趋势,判断单调性。

3. 表格法:列出函数在不同x值下的函数值,观察函数值的变化规律,判断单调性。

章节四:函数单调性的应用1. 最大值和最小值:对于单调增加的函数,最大值出现在定义域的右端点;对于单调减少的函数,最小值出现在定义域的左端点。

2. 函数的切线:单调增加的函数在切点处的切线斜率为正;单调减少的函数在切点处的切线斜率为负。

3. 函数的图像:单调增加的函数图像上升,单调减少的函数图像下降。

章节五:单调性在实际问题中的应用1. 线性规划:利用函数的单调性确定最优解的位置。

2. 优化问题:求函数的最值,利用函数的单调性判断最值的位置。

3. 经济学:分析市场需求和供给的单调性,预测市场变化趋势。

4. 物理学:研究物体运动的速度和加速度,利用单调性分析物体的运动状态。

高中数学教案函数的单调性与最值

高中数学教案函数的单调性与最值

高中数学教案函数的单调性与最值高中数学教案:函数的单调性与最值一、引言函数是数学中的一个重要概念,它描述了数值之间的关系。

而函数的单调性以及最值则是我们研究函数性质时的关键内容。

本教案将重点介绍函数的单调性以及最值的概念、性质和计算方法,帮助学生更好地理解和掌握这一知识点。

二、函数的单调性1. 定义函数的单调性指的是在定义域上的变化趋势。

具体而言,若函数在其定义域上递增,则称为函数的单调递增;若函数在其定义域上递减,则称为函数的单调递减。

2. 判断方法(1)对于函数y=f(x),当x1 < x2时,比较f(x1)与f(x2)的大小关系: - 若f(x1) < f(x2),则函数递增;- 若f(x1) > f(x2),则函数递减;- 若f(x1) = f(x2),则函数不单调。

(2)对于一阶导数存在的函数,可以通过导函数的正负性判断函数的单调性:- 若导函数f'(x) > 0,则函数递增;- 若导函数f'(x) < 0,则函数递减;- 若导函数f'(x) = 0,可以进一步分析。

3. 经典例题(1)求函数f(x)=x^2的单调性。

解:由f'(x) = 2x,当x > 0时,f'(x) > 0;当x < 0时,f'(x) < 0。

因此,函数f(x)=x^2在x > 0时单调递增,在x < 0时单调递减。

(2)求函数f(x)=3x^4-4x^3的单调性。

解:由f'(x) = 12x^3-12x^2 = 12x^2(x-1),可知当x < 0时,f'(x) < 0;当0 < x < 1时,f'(x) > 0;当x > 1时,f'(x) > 0。

因此,函数f(x)=3x^4-4x^3在x < 0时单调递减,在0 < x < 1时单调递增,在x > 1时单调递增。

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

1.3.1函数的单调性与最大(小)值(第一课时)教学设计一、教学内容解析:(1)教学内容的内涵、数学思想方法、核心与教学重点;本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。

函数的单调性是研究当自变量X不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究*成为相反数时,y是否也成为相反数,即函数的对称性质.函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质.函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画.函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位.教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)” 这一特征进行抽象的符号描述:在区间D上任意取x,x,当x<x时,有f(x)<f(x)(或f(x) Mx)),则称函数f(x)在区间D上是增函数(或减函数):2 1(2)教学内容的知识类型;在本课教学内容中,包含了四种知识类型。

函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题提出问题解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识.(3)教学内容的上位知识与下位知识;在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识.(4)思维教学资源与价值观教育资源;生活常见数据曲线图例子,能引发观察发现思维;函数f(x)=+1和函数y= x+ j ,能引发提出问题---分析问题解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观.二、教学目标设置:本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。

全国高中数学青年教师展评课一等奖作品:函数的单调性教学设计(长春市实验中学刘冰)

全国高中数学青年教师展评课一等奖作品:函数的单调性教学设计(长春市实验中学刘冰)

《函数的单调性》教学设计长春市实验中学刘冰一、教学内容解析本节内容是人教A版必修一教材第一章第三节内容,是一节概念性知识,属于函数的基本性质.本节内容是学生在了解函数概念后学习的函数的第一个性质,起着承前启后的作用.一方面,初中数学的许多内容在解决函数的某些问题中得到了充分的运用,另一方面,函数的单调性与前一节函数的概念和图像的知识的延续有着密切的联系,函数的单调性与后面的奇偶性是今后研究指数函数、对数函数、幂函数及三角函数等其他函数的基础.学生在观察函数图像时,首先注意到的是图像的上升或下降,但是由图像直观获得的结论还需要从数量关系的角度通过逻辑推理加以论证.教学中充分利用函数图像,让学生观察图像获得函数基本性质的直观认识,这样处理充分体现了数形结合思想,也为下一步学习函数其他性质提供了方法依据.由此确定本节课的教学重点为:重点:函数单调性的概念、判断和证明.研究函数性质时的“三步曲”是:第一步,观察图像,描述函数图像特征;第二步,结合图、表,用自然语言描述函数图像特征;第三步,用数学符号语言定义函数性质.本节课特别重视从几个实例的共同特征到一般性质的概括过程,并引导学生用数学语言表达出来,正是形成数学概念,培养学生探究能力的契机.由于函数图像是发现函数性质的直观载体,因此,教学中充分使用信息技术创设教学情境,以利于学生作函数图像,有更多的时间用于思考、探究函数的单调性.二、教学目标设置根据本节课的教学内容以及学生的认知水平,确定了本节课的教学目标:知识与技能:从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.过程与方法:通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.情感、态度、价值观:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.三、学生学情分析本节课的教学对象是长春市实验中学高一年级的学生.1.学生已有认知基础一是学生通过初中的数学学习,已有研究一次函数、二次函数等初等函数的直接经验,对函数的简单性质有初步的认识;二是前一节已经学习过函数的概念,对函数的图像也有一定的感性认知;三是能力上具备了一定的观察、类比、分析、归纳能力.2.达成目标所需要的认知基础学生需要对研究目标、方法和途径有初步认识,具备知识整合和主动迁移的能力,从形的直观认识、感性认知到形成抽象的数学概念,具有数形结合的意识和归纳推理的能力.3.难点及突破策略对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.由此确定的难点及突破策略为:难点:(1)函数单调性概念的形成;(2)理解自变量在区间[a,b]上的“任意”取值的意义.突破策略:(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.(3)教师启发引导,组织学生交流研讨,展现思维过程.四、教学策略设计根据本节课的教学内容、学生情况和教学目标,教学中采用“教师设疑引导,学生自主探究”的教学方法.通过启发引导,激发学生的思维,鼓励学生发现、探究、合作、展示,使其在探究中对问题本质的思考逐步深入,思维水平不断提高.针对本节课的重点——函数单调性的判断和证明,教学中采用直观到抽象,特殊到一般,感性到理性的教学过程,先通过讨论具体函数图像的上升或下降直观描述发现问题,再把具体的、直观形象的单调性特征抽象出来,用数学符号语言描述.本节课的难点之一是单调性概念的得出.教学中采用教师启发引导,学生自主、合作、探究的教学方法,以及多媒体直观教学的恰当应用,使学生从感性认识上升到理性认识,从“形”的直观到“数”的推理,从“无限”验证转化为“有限”证明,使学生对单调性概念的理解水到渠成,逐层深入,步步升华.本节课的另一个难点是为什么要在区间上“任意”取两个大小不等的实数21x x ,.针对这个难点,教学中采取两个措施.一是引导学生通过对图像的观察、分析,自主形成认识;二是通过小组研讨的方式让学生进行合作探究,加深对概念中“任意”含义的理解.五、教学过程设计【教学过程】一、创设情境,明确目标生活中的实例:情境一:我市某日24小时内的气温变化图.情境二:艾宾浩斯记忆遗忘曲线这是一条衰减曲线,随着时间的推移,记忆的保持两逐渐减小,第一天遗忘的速度最快,一天之后遗忘的速度趋于缓慢,这一规律提醒我们:在学习新知识的时候,一定要及时进行复习和巩固,以便加深理解和记忆.生活中很多与数据相关的问题:比如燃油价格, 股票行情,水位高低等等,了解这些数据的变化规律,对我们的生活很有帮助.而这些数据的变化,用函数的观点看,其实就是随着自变量变化时,函数值的变化规律.【学生活动】感受生活中的数学,体会了解函数的变化规律有助于把握事物的变化规律.【教师活动】通过实例,引导学生体会生活中的数学无处不在,数学对生活的影响无处不在.【设计意图】由生活情境引入新课,激发兴趣.二、自主学习,启发引导概念生成——“形”的直观感知问题:函数是描述事物运动变化规律的数学模型.如果了解了函数的变化规律,那么也就基本把握了相应事物的变化规律.在事物变化过程中,保持不变的特征就是这个事物的性质.观察下图中各个函数的图像,你能说说它们分别反映了相应函数的哪些变化规律吗?【学生活动】从个人观察的角度,描述图像反映的函数的变化规律.【教师活动】肯定学生多角度发现函数变化规律,并纠正学生语言表述的准确性.提出函数的性质有很多,引出本节课要研究的是随着自变量不断增大,函数值是增大还是减小这个特征.【学生活动】观察函数2+=x y ,2+-=x y ,2x y =,x y 1=的图象,并且观察自变量变化时,函数值有什么变化规律?【教师活动】引导学生读图分析,直观感知单调性这一性质.【设计意图】函数的变化规律反映了函数的性质,研究函数的变化规律使我们更能够把握相应事物的变化规律,引出研究函数性质的实际意义.培养学生读图和分析总结规律的能力. 得出描述性定义:函数单调性的描述性...定义:设函数的定义域为I ,区间I D ⊆,在区间D 上,若函数的图像(从左至右看)总是上升的,则称函数在区间D 上是增函数,区间D 称为函数的单调增区间;在区间D 上,若函数的图像(从左至右看)总是下降的,则称函数在区间D 上是减函数,区间D 称为函数的单调减区间.【学生活动】学生完成对函数单调性的直观认识.....根据单调性的定义,完成教材29页例1: 定义在区间[]5,5-上的函数)(x f y =的图象,根据图象说出)(x f y =的单调区间,以及在每一单调区间上,它是增函数还是减函数.【教师活动】引导学生理解函数的单调性是对定义域内某个区间而言的,是函数的局部性质.并提出图像解决问题不够精确严谨,还要有数量上的准确刻画.【设计意图】从“形”的角度直观理解函数单调性的意义,并铺垫单调性是一个区间概念.三、合作探究,互助研讨概念生成——“数”的抽象刻画探究一:根据函数的定义,对于自变量x 的每一个确定的值,变量y 有唯一确定的值与它对应.那么,当一个函数在某一区间上是单调递增(或单调递减)时,相应的,自变量的值.....与对应的函数值......的变化规律....是怎样的?(几何画板演示) 【设计意图】从“形”到“数”的转化,从图像的直观认识,到变量的数值增减理解,形象的“上升”和“下降”的规律对应到函数在变量值上的变化规律.概念生成——单调性的严格定义探究二:函数)(x f 在区间),(b a 上有无数个自变量x ,满足当b x x a <<<< 21时,有)()()()(21b f x f x f a f <<<< ,那么)(x f 在区间),(b a 上一定单调递增吗?说明理由(可举例或画图)【设计意图】自变量不能被穷举的情况下,引导学生在给定区间内任意取两个自变量1x ,2x ,体会无限向有限的转化思想.探究三:如何从解析式的角度说明2)(x x f =在[)+∞,0为增函数? 【设计意图】通过讨论,学生发现结合解析式进行严密化、精确化的研究的方法.在区间[)0,+∞上,任取两个12,x x ,得到221122(),()f x x f x x ==,当12x x <时,有12()()f x f x <则说明函数2()f x x =在[)0,+∞为增函数. 【学生活动】通过先自主再合作,小组互助研讨解决探究问题,并展示自己的观点.【教师活动】提出问题,放手学生解决,巡视、适当点拨.【设计意图】从“数”的角度深入严谨理解函数单调性的意义,培养学生思考的习惯和探究问题的能力,通过合作学习互促提升,突破难点.通过上述探究,得出增函数严格的定义,然后学生类比得出减函数的定义.板书定义: 一般地,设函数)(x f 的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值21x x ,,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数;对于定义域I 内某个区间D 上的任意两个自变量的值21x x ,,当21x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 上是减函数.判断与证明单调性判断以下说法是否正确?(1)已知x x f 1)(=,由于)1()2(f f <-,所以函数)(x f 是增函数 (2)若函数)(x f 满足)2()1(f f <,则函数)(x f 在区间]2,1[上是增函数.(3)若函数)(x f 在区间(]2,1和)3,2(上均为增函数,则函数)(x f 在区间(1,3)上为增函数.(4)因为函数x x f 1)(=在区间)0,(-∞和),0(+∞上都是减函数,所以x x f 1)(=在),0()0,(+∞⋃-∞上是减函数.【学生活动】先自主思考,再小组交流,得出结论.【教师活动】纠正学生语言的准确性,给出合理评价.【设计意图】1.从特殊到一般,从“形”到“数”,从直观到抽象,提升理解的高度和严谨性,加深理解单调性的严格定义,并培养学生类比、归纳的能力.2.通过概念辨析,强调(1)单调性是对定义域内某个区间而言的,因此谈单调性离不开区间;(2)定义中的“任意”是关键;(3)函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在B A ⋃上是增(或减)函数.四、精心点拨,启发引导1.例题:物理学中的玻意耳定律V k p =(为正常数)告诉我们,对于一定量的气体,当其体积减小时,压强将增大.试用函数的单调性证明之.2.巩固练习:画出反比例函数xx f 1)(=的图象. (1)这个函数的定义域I 是什么?(2)它在定义域I 上的单调性是怎样的?证明你的结论.【学生活动】自主完成,展示过程.【教师活动】引导学生归纳证明函数单调性的步骤:取值、比较、变形、定号、结论. 投影学生证明过程,进行点拨和要点强调.【设计意图】初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.五、归纳小结,整理提高学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.1.小结(1) 概念探究过程:直观到抽象、感性到理性、无限到有限.(2) 证明方法和步骤:取值、比较、变形、定号、结论.(3) 数学思想方法和思维方法:数形结合,等价转化,类比等.2.作业书面作业:课本第39页 习题1.3 A 组第1、2、3题. 课后探究:研究函数xx y 1+=的单调性,并证明你的结论. 板书设计:。

2024版《函数的单调性》全市一等奖完整版PPT课件

2024版《函数的单调性》全市一等奖完整版PPT课件

利用单调性证明不等式
1 2
构造函数 根据不等式的特点,构造一个与不等式相关的函 数。
判断函数单调性 通过求导或差分等方法判断所构造函数的单调性。
3
利用单调性证明不等式 根据函数的单调性,结合不等式的性质,证明不 等式成立。
2024/1/29
18
利用单调性解决实际应用问题
要点一
建立数学模型
要点二
判断函数单调性
2024/1/29
21
导数与微分在函数单调性研究中的应用
导数大于零的区间内函数单调 增加,导数小于零的区间内函 数单调减少。
2024/1/29
导数等于零的点为函数的驻点, 需要进一步判断其左右两侧导 数的符号来确定该点的单调性。
微分的概念可以应用于函数单 调性的研究,通过微分可以分 析函数的局部变化率,进而判 断函数的单调性。
14
指数函数与对数函数
对数函数 $y = log_a x$($a > 0, a neq 1$)的单调 性
当 $0 < a < 1$ 时,函数在 $(0, +infty)$ 上单调递减。
当 $a > 1$ 时,函数在 $(0, +infty)$ 上单调递增。
指数函数与对数函数的图像关于直线 $y = x$ 对称,即 互为反函数。
2024/1/29
19
05
函数单调性与其他知识点关联
2024/1/29
20
函数奇偶性与周期性对单调性影响
奇函数在对称区间上的单调性相 同,偶函数在对称区间上的单调
性相反。
周期函数在一个周期内的单调性 与整体单调性一致,可以通过研 究一个周期内的单调性推断整体
的单调性。

函数的单调性与最值教案

函数的单调性与最值教案

函数的单调性与最值教案一、教学目标:1. 理解函数单调性的概念,能够判断简单函数的单调性。

2. 掌握利用单调性求函数的最值的方法。

3. 能够运用函数的单调性和最值解决实际问题。

二、教学内容:1. 函数单调性的定义与判断方法。

2. 利用单调性求函数的最值。

3. 函数单调性和最值在实际问题中的应用。

三、教学重点与难点:1. 函数单调性的判断方法。

2. 利用单调性求函数的最值。

四、教学方法与手段:1. 采用讲授法,讲解函数单调性的定义与判断方法。

2. 利用数形结合法,结合图形讲解函数的单调性和最值。

3. 运用实例法,分析实际问题中的函数单调性和最值。

五、教学过程:1. 引入:通过举例,让学生感受函数的单调性和最值在实际问题中的重要性。

2. 讲解:讲解函数单调性的定义与判断方法,结合图形进行分析。

3. 练习:让学生练习判断一些简单函数的单调性。

4. 讲解:讲解如何利用单调性求函数的最值,结合实例进行分析。

5. 练习:让学生练习求解一些函数的最值。

6. 总结:总结本节课的主要内容,强调函数单调性和最值在实际问题中的应用。

7. 作业布置:布置一些有关函数单调性和最值的练习题,巩固所学知识。

六、教学拓展:1. 引导学生思考函数单调性与其他数学概念的联系,如导数、极限等。

2. 探讨函数单调性在高等数学中的应用,如微分方程、最优化问题等。

七、案例分析:1. 分析实际问题,引导学生运用函数的单调性和最值解决实际问题。

2. 举例说明函数单调性和最值在经济学、物理学、工程学等领域的应用。

八、课堂互动:1. 组织学生进行小组讨论,分享各自在练习中的心得体会。

2. 邀请学生上台展示自己的解题过程,互相学习和交流。

九、教学评价:1. 课堂讲解:评价学生对函数单调性和最值的理解程度。

2. 练习作业:评价学生运用函数单调性和最值解决实际问题的能力。

十、教学反思:1. 反思本节课的教学内容、教学方法是否适合学生的学习需求。

2. 针对学生的学习情况,调整教学策略,提高教学效果。

《函数的基本性质──单调性与最值》教学设计

《函数的基本性质──单调性与最值》教学设计

《函数的基本性质──单调性与最值》教学设计《函数的基本性质──单调性与最值》教学设计一、内容和内容解析函数思想是贯穿高中数学的一根主线,函数的基本性质又是函数一章的重点内容。

一方面,它是对以前所学具体函数的一次总结,又是函数知识的一次拓展,对后续学习指、对数函数、三角函数有重要的指导作用。

另一方面,函数的单调性与最大(小)值是初等数学与高等数学衔接的枢纽,特别在应用意识日益加深的今天,函数的单调性与最大(小)值在解决实际问题中有着相当重要的作用。

因此,函数单调性与最大(小)值的教学,在教材体系中有着不可替代的位置,又有着重要的现实意义。

函数的单调性最大(小)值是函数的重要性质之一,它是研究函数值与自变量变化的一种关系,既要求学生结合函数的图象(直观性)来研究函数单调性和最大(小)值,也要求学生利用函数单调性和最大(小)值的定义(严谨性)来研究函数单调性和最大(小)值。

因此本节课的教学重点是函数的单调性与最大(小)值的概念及其几何4、学会运用函数图象理解和研究函数的性质,利用函数的性质来画函数的图象(草图),培养学生数形结合的思想和应用数学意识。

5、函数单调性和最大(小)值的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程。

培养学生的探究能力和创新精神,体验到思考与探索的乐趣,培养学生勇于探索,善于研究的精神,挖掘其非智力因素的资源,培养学生良好的思维品质。

三、教学问题诊断分析函数的单调性这一性质学生在初中曾经接触过,但只是从图象上直观分析图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。

这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。

在函数的单调性的概念教学中,学生往往在理解“任意两个”、“都”这两个词的含义出现障碍,误认为“有两个”、“某两个”,而教学中利用函数的图象,举一些反例加以理解巩固。

高中数学函数的单调性教学设计比赛一等奖 体现核心素养

高中数学函数的单调性教学设计比赛一等奖 体现核心素养

高中数学函数的单调性教学设计比赛一等奖体现核心素养函数的单调性是指函数在定义域上的取值随自变量单调递增或单调递减的性质。

本节课的教学目标是让学生理解并掌握函数单调性的概念,并会判断并证明简单函数单调性。

通过本节课的研究,旨在提高学生观察归纳能力、发现问题、探索问题的能力,培养学生数学抽象、逻辑推理和数学运算等核心素养,同时也希望激发学生研究数学的兴趣。

本节课的重点是函数单调性的概念,掌握用定义判断和证明一些简单函数单调性的方法。

难点则在于关于函数单调性概念的符号语言的认知,应用定义证明单调性的代数推理论证。

在教学过程中,我们可以通过观察具体函数图象引入,直观认识增减函数,利用这定义证明函数单调性。

通过练、交流反馈,巩固从而完成本节课的教学目标。

教学用具可以使用计算机等工具。

我们可以通过实例来引入本节课的主题。

例如,为了预测北京奥运会开幕式当天的天气情况,数学兴趣小组研究了2002年到2006年每年这一天的天气情况,通过观察这些数据的变化规律,我们可以发现这些例子反映的就是随着自变量的变化,函数值是变大或变小。

通过观察函数图象,我们可以直观感知函数单调性。

例如,观察图2所示的各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律。

通过这些例子,我们可以引出本节课的主题,即函数的单调性。

在探究新知时,我们可以提出一系列问题,如分别作出函数y=x+2,y=-x+2,y=x2,y=1/x的图象,并且观察自变量变化时,函数值的变化规律;能否根据自己的理解说说什么是增函数、减函数;如图4是函数y=x+2(x>0)的图象,能说出这个函数分别在哪个区间为增函数和减函数;如何从解析式的角度说明f(x)=x2在[0,+∞)上为增函数等。

通过这些问题的探究,学生可以更好地理解函数单调性的概念,并掌握用定义判断和证明一些简单函数单调性的方法。

总之,本节课的教学目标是让学生理解并掌握函数单调性的概念,并会判断并证明简单函数单调性。

函数单调性与最值公开课一等奖课件省赛课获奖课件

函数单调性与最值公开课一等奖课件省赛课获奖课件

x b
0a
x b
从几何上看, y = f (x) 在 [a, b] 上单增(或单减),
其图形是一条沿 x 轴正向上升(或下降)的曲线。
上升的曲线每点处的切线斜率均为正,
即 f ( x) 0 ;
下降的曲线每点处的切线斜率均为负, 即 f ( x) 0 .
定 理:
设函数 y f x在 a,b连续, 在 a,b 可导,
y
x 0
二. 极值的求法. 由上图可知,函数取到极值处,曲
线的切线都是水平的,但有水平切线的 点不一定都是函数的极值点。
定理 1:(必要条件)
设 f (x)在 x0 处可导,且在 x0 处获得极
值,则必有 f ( x0 ) 0 .
阐明:
1.使导数 f ( x)为 0 的点,称为 f (x) 的驻点。 可导函数的极值点必是驻点, 但 驻点不一定是极值点。
定义:设 f x在a,b内有定义,x0 a,b.
对 x U ( xˆ0 , ),
若 f (x0) > f (x), 则称 f (x0)为 f (x)的一种 极大值, x0 称为极大值点;
若 f (x0) < f (x), 则称 f (x0)为 f (x)的一种
极小值, x0 称为极小值点。 极大值(点)与极小值(点)统称极值(点)。
2. 证明方程根的唯一性
例3:证明方程 x5 5x 1 0 在 1,0内
有唯一的实根。 证:先证明根的存在性:
设 f x x5 5x 1 且在 1,0 连续,
f 1 5 0, f 0 1 0,
由零点定理, f (x) = 0 在 (-1,0) 内最少有一根; 再证明根的唯一性:
sec3 x sin x(2 cos3 x) 0

全国高中青年数学教师优质课大赛一等奖《函数的单调性》教学课件

全国高中青年数学教师优质课大赛一等奖《函数的单调性》教学课件

函数的单调性和合承德观察图像,结合己学过的函数观点,你能说出这一天的气温变化规律吗?IIIe探究一'向题1:根据上面的描述,对比函数/(X)=X与六乂)十2在区间(一8,+8)上的变化规律,说出它们的不]虱点?。

探究一问题2:请归纳函数f(x)=x,/(x)=2x+1和函数/(x)=x2(x>0)的共同特征.函数尹7任)在区间D上是增函数.f3)=/ -3-2-101239i讨论:在函数,⑴衣的定义域(-8,+00)上,取两个自变量值设X[——1,才2=2,由尤I V工2.计算得相应的函数值mxrg),则称函数f(X)=X2在(-00,+00)上是增函数,这种说法对吗?一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值Xi,x2,当Xi«2时,都有f(Xi)<f(X2),函数f(x)在区向D上是增函数(increasing function)..Ay"/\1K X2);f(X〔)I27i IXXi x2'二^数的定义,谈谈你对“升尤)"2在区间”(0,+oo)上是增函数”是怎样理解的?y=x20X一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值Xi,x2,当Xi«2时,都有f(Xi)>f(X2),函数f(x)在区向D上是减函数(decreasing function).一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值X1, x2,当X1S时,都有f(X])〈f(X2),函数f(x)在区间D上是增函数(increasing function).2.减函数:一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值xi, X2,当X]〈X2时,都有f(x r)>f(x2),函数f(x)在区间D上是减函数(decreasing function).3.如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.______________________________20・15 .10 -5 -0 2 4 6 8 10 12 14 16 18 20 22 24 t(h)业,问题3:观察图象,说出函数的单调区间,以及在但一rsi l 旦福寻耕状旦明断T列结论的正误二(正确的打“Vr错误的打“x〃)⑴定义域为[0,+8)的函数Q),满足伽)v/(〃+1),n=o, 1,2,3,...,贝!J称函数/⑴在[0,+呵上是增函数.()(2)对于定义域内的区间D,若任意叫,x2e D,当勺>*都有犬">犬电,则函数Q)在D上是增函数.(变式:函数/⑴在D上是增函数,若任意x1?x2eD,/(X1)>/(X2)>则有明X2⑶若任意x n x2eD,都有(乂1-工2)>。

高中数学函数的单调性的教学设计一等奖

高中数学函数的单调性的教学设计一等奖

1、高中数学函数的单调性的教学设计一等奖【教学目标】1.知识与技能:从形与数两方面理解函数单调性的概念,掌握利用函数图象和定义判断、证明函数单调性的方法步骤。

2.过程与方法:通过观察函数图象的变化趋势——上升或下降,初步体会函数单调性,然后数形结合,让学生尝试归纳函数单调性的定义,并能利用图像及定义解决单调性的证明。

3.情感、态度与价值观:在对函数单调性的学习过程中,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,增强学生由现象猜想结论的能力。

【教学重点】函数单调性的概念、判断。

【教学难点】根据定义证明函数的单调性。

【教学方法】教师启发讲授,学生探究学习。

【教学工具】教学多媒体。

【教学过程】一、创设情境,引入课题师:同学们刚刚从楼下走到了教室,如果把每一个楼梯的台阶都标上数字,我们一起来描述一下从楼下走到教室这一过程中,同学们的位置变化。

生:随着楼梯台阶标号的增大,我们所处的位置在不断地上升。

师:(积极反馈,全班鼓掌表扬)反之,我们下楼时,我们的位置显然是在下降的。

师:(阅读教材,人教版节首内容,引导学生看图)结合上下楼的问题,引导学生识图,捕捉信息,启发学生思考。

观察图中的函数图象,随着函数自变量的增大(减小),你能得到什么信息?二、归纳探索,形成概念我们在学习函数概念时,了解了函数的定义域及值域,本节内容其实就是针对自变量与函数值之间的变化关系进行的`专题研究之一──函数单调性的研究。

同学们在初中已经对函数随着自变量取值的变化函数值相应的变化情况有了一定的认识,但是没有严格的定义,今天我们的任务就是通过形象的函数图象变化情况,为函数单调性建立严格定义。

1.借助图象,直观感知首先,我们来研究一次函数和二次函数的单调性。

师:在没有学习函数单调性的严格定义之前,函数的单调性可以理解为,师:根据图象,请同学们写出你对这两个函数单调性的描述。

生:(独立完成,小组内互相检查,然后阅读教材,对比参照)。

函数的单调性和最值市公开课获奖课件省名师示范课获奖课件

函数的单调性和最值市公开课获奖课件省名师示范课获奖课件

课 时 作 业
高三数学(人教版)
课 前
自 探究1 (1)判断函数旳单调性有三种措施:
助 餐 ①图象法;②利用已知函数旳单调性;③定义法.
授 (2)证明函数旳单调性有两种措施: 人 以 ①定义法;②导数法. 渔
第二章 ·第2课时
课 时 作 业
高三数学(人教版)
第二章 ·第2课时
课 思考题 1 设函数 f(x)= 2x+a· 2-x-1(a 为实数 ).若

a(x x +1)(x -x )

f(x )- 1
f(x2
)=
12
2
1
(x21-1)(x22-1)
.
(x x +1)(x -x )

12
2
1
(x21-1)(x22-1)
>
0,
∴ a> 0时,函数 f(x)在 (- 1,1 )上 为减函 数;
a< 0时 ,函数 f(x)在 (- 1,1)上 为增函数 .
第二章 ·第2课时


自 (2)证明单调性旳环节:证明函数旳单调性一般从定义入手,也能够从导数入


手.①利用定义证明单调性旳一般环节是a.∀x1,x2∈D,且x1<x2,b.计算

f(x1)-f(x2)并判断符号,c.结论.
人 ②设y=f(x)在某区间内可导,假如f′(x)≥0,则f(x)为增函数,若f′(x)≤0,

f[g(x)]是增函数.若f(x)与g(x)旳单调性相反,则y=f[g(x)]是减函数④
奇函数在对称区间上旳单调性相同,偶函数在对称区间上旳单调性相
反.
⑤若函数f(x)在闭区间[a,b]上是减函数,则f(x)旳最大值为f(a),最小

函数的单调性与最大(小)值 高中数学获奖教案

函数的单调性与最大(小)值 高中数学获奖教案

、3.2.1单调性与最大(小)值(第一课时)(人教A 版普通高中教科书数学必修第一册第三章)一、教学目标1.借助函数图像,会用符号语言表达函数的单调性、最大(小)值,理解它们的作用与实际意义;2.会用定义简单证明函数的单调性;3.通过函数的单调性可以画出函数图像;4.在探究抽象函数单调性的过程中感受数学概念的抽象过程及符号表示的作用.二、教学重难点1.函数的单调性精确定义;2.利用函数定义判断函数单调性.三、教学过程1.研究函数单调性的过程1.1创设情境,引发思考【实际情境】 前面我们学习了函数的定义、表示方法,知道函数是描述客观世界中变量之间的一种对应关系,这样可以通过研究函数性质来把握世界的一般规律.什么是函数性质呢?比如随着自变量的增大函数值是增大还是减小的,或者有没有最大值?总的来说函数的性质就是”变化中的规律,变化中的不变性”.今天我们来研究一下函数的一个很重要的性质—函数的单调性.2019新型冠状病毒爆发(2019-nCoV ,世卫组织2020年1月命名;SARS-CoV-2,国际病毒分类委员会2020年2月11日命名 ).面对疫情政府采取了积极、高效、公开、透明的举措,不仅全力维护人民群众生命安全和身体健康,也为维护全球和地区公共卫生安全做出重大贡献,给世界带来信心.我们要为我们生在中国而自豪.要为我们是中国人而自豪!下面函数图像是截取4月16日-6月10日的数据,图1是全国现有确诊趋势;图2本土新增确诊趋势,从这两幅函数图像中我们可以直观的感受疫情的变化.全国现有确诊趋势本土新增确诊趋势问题1:(1)请看这两幅函数图像,从中你发现了图像的哪些特征?你觉得他们反映了函数哪方面的性质?【预设的答案】第一幅函数图像是上升的趋势,也就是函数值随自变量的增大而增大,但是第二幅图有上升有下降.总的来说这两幅图体现函数变化趋势比如上升下降,我们把这种性质叫做函数的单调性.【设计意图】让学生从直观的图像上感知函数的单调性.问题2:下面我们进一步用符号语言刻画函数的单调性.我们先来看一个简单的例子:f(x) =x2,在初中的时候我们就学习了这函数图像,你能现在画出这个图像吗?请在草稿纸上画出来.我们一般都用的是五点作图,在(0,+∞]上我们取的两个点满足随自变量的增大而增大,你能能否证明在(0,+∞]上所有点变化趋势也是这样的吗?也就是说明我们还有必要用代数的方法证明一下.请大家思考一下如何证明.【活动预设】我们不可能把所有的点取一遍,因为区间上的点是有无穷多个,那我们怎么把”无限”的问题转化为一种”有限”的问题?(让学是感受数学符号语言的作用)那我们可以用x1, x2来表示,请大家看一下几何画板我们发现只要x1<x2时,都有f(x1)<f(x2).(这里可以让学生用之前学习的不等式的性质证明一下f(x1)<f(x2))【设计意图】主要是引导学生如何定量的刻画函数的单调性,这个过程要让学知道定量刻画函数单调性的必要性.体会形少数时难入微.同时感受符号语言巨大的作用.1.2探究典例,形成概念活动1:通过以上活动,请同学们用符号语言总结一下上面函数的性质.【活动预设】∀x1,x2∈(0,+∞),当x1<x2时,都有f(x1)<f(x2),这时我们就说函数在区间(0,∞)上是单调递增的.【设计意图】让学生更加熟悉符号语言的表示方法.问题3:通过上述例子给出函数f(x)在区间D上单调性的符号表述.【活动预设】一般的,设函数f(x)的定义域为I,区间D⊆I:如果∀x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上单调递增.如果∀x1,x2∈D,当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上单调递减. 活动2:请同学们判断下列命题知否正确(1) 设A是区间D上某些自变量的值组成的集合,而且∀x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),我们能说函数f(x)在区间D上单调递增吗?你能说明理由吗?(2) 如果∀x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),那么就称函数f(x)在区间D上单调递增.这种说法正确吗?(3) 如果∀x,x+1∈D, 都有f(x)<f(x+1),那么就称函数f(x)在区间D上单调递增.这种说法正确吗?(4) 函数的单调性是对定义域的某个区间而言,您能举出在整个定义域内单调递增的函数例子吗?你能举出在定义域内的某些区间上单调递增但在另一些区间上单调递减的例子吗?【活动预设】(1)第一问构造了函数f(x)=xsinx+2x,取整函数就可以说明(2)和(3)不正确.(4)让学进一步感知“增函数”、“单调递增”的概念,以及在不同区间上单调递增时,它们的并集不一定保证单调递增,递减同理.【设计意图】(1)引导学生辨析概念中“任意”两个字;(2)在不同区间上单调递增时,它们的并集不一定保证单调递增,递减同理.2.初步应用,理解概念例1 根据定义证明函数y=1在区间(0,+∞)上是单调递减的.x【预设的答案】略【设计意图】(1)进一步的熟悉定义,通过定义画出图像(2)单调区间不能并.练1 根据定义证明函数y=x+1在区间(1,+∞)上单调递增.x【预设的答案】略【设计意图】(1)让学生自己动手练习;(2)进一步熟悉定义.例2 根据定义,研究f(x)=kx+b(k≠0)的单调性.【预设的答案】略【设计意图】体会如何求解含参函数的单调性.3.归纳小结,文化渗透1. 什么叫函数的单调性?你能举出一些具体例子吗?2. 你认为在理解函数单调性的时候应把握好哪些关键问题?3. 结合本节课学习过程你对函数性质的研究内容和方法有什么体会?【设计意图】(1)进一步让学生强化对单调性定义的准确把握;(2)进行数学文化渗透,鼓励学生积极攀登知识高峰,进一步体会函数性质的研究方法,体会数学语言的强大,体会数形结合的重要.四、课外作业。

人教版高中数学必修一 1.3.1 函数的单调性 教学设计(一等奖)

人教版高中数学必修一 1.3.1 函数的单调性 教学设计(一等奖)

教学设计中学数学教学设计:§1.3.《函数的单调性》教学设计一【教材分析】《函数单调性》是高中数学新教材必修一第二章第三节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。

掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力.二【学生分析】从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,接下来的任务是对函数应该继续研究什么,从各种函数关系中研究它们的共同属性,应该是顺理成章的。

从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。

三【教学目标】1、知识与技能:(1)建立增(减)函数的概念通过观察一些函数图象的特征,形成增(减)函数的直观认识. 再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义 . 掌握用定义证明函数单调性的步骤。

(2)函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。

2、过程与方法(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断与证明函数在某区间上的单调性.3、情态与价值,使学生感到学习函数单调性的必要性与重要性,增强学习函数的紧迫感.四【教学重点与难点】重点:函数的单调性及其几何意义.难点:利用函数的单调性定义判断、证明函数的单调性.五【学法与教学用具】1、从观察具体函数图象引入,直观认识增减函数,利用这定义证明函数单调性。

函数的单调性与最值教案

函数的单调性与最值教案

函数的单调性与最值教案一、教学目标知识与技能:1. 理解函数的单调性的概念,能够判断函数的单调性;2. 掌握函数的最值的概念,能够求出函数的最值;3. 学会运用函数的单调性和最值解决实际问题。

过程与方法:1. 通过观察函数图象,探究函数的单调性和最值;2. 利用数学软件或图形计算器,验证函数的单调性和最值的计算结果。

情感态度价值观:1. 培养学生的数学思维能力,提高学生对函数学科的兴趣;2. 培养学生运用数学知识解决实际问题的能力。

二、教学内容第一课时:函数的单调性1. 引入单调性的概念,讲解单调性的定义和判断方法;2. 通过举例,让学生理解单调性的性质和应用。

第二课时:函数的最值1. 引入最值的概念,讲解最值的定义和求法;2. 通过举例,让学生理解最值的性质和应用。

第三课时:函数的单调性和最值的综合应用1. 通过实例,让学生学会运用单调性和最值解决实际问题;三、教学重点与难点重点:1. 函数的单调性的判断和应用;2. 函数的最值的求法和应用。

难点:1. 函数的单调性的证明;2. 函数的最值的计算方法。

四、教学方法与手段1. 采用问题驱动法,引导学生主动探究函数的单调性和最值;2. 利用数学软件或图形计算器,进行函数图象的演示和验证;3. 通过实例,让学生运用函数的单调性和最值解决实际问题。

五、教学评价1. 课堂问答:通过提问,了解学生对函数单调性和最值的理解程度;2. 课后作业:布置有关函数单调性和最值的练习题,检验学生的掌握情况;3. 实践应用:让学生运用函数的单调性和最值解决实际问题,评价学生的应用能力。

六、教学准备1. 教学PPT:制作包含函数单调性和最值概念、判断方法和求法的内容;2. 教学素材:收集一些有关函数单调性和最值的实例;3. 数学软件或图形计算器:用于演示和验证函数图象及单调性和最值的计算。

七、教学过程1. 导入新课:回顾上一节课的内容,引入本节课的学习主题——函数的单调性与最值;2. 讲解与演示:通过PPT和教学素材,讲解函数的单调性和最值的概念、判断方法和求法;3. 实践操作:让学生利用数学软件或图形计算器,进行函数图象的演示和验证;4. 例题解析:分析实例,引导学生学会运用函数的单调性和最值解决实际问题;5. 课堂互动:组织学生进行小组讨论,分享各自的学习心得和解题方法;八、教学反思在课后,教师应反思本节课的教学效果,包括:1. 学生对函数单调性和最值概念的理解程度;2. 学生运用函数单调性和最值解决实际问题的能力;3. 教学方法的适用性和改进措施;4. 学生课堂参与度和反馈意见。

高中数学优质课一等奖作品:函数的单调性与导数教学设计

高中数学优质课一等奖作品:函数的单调性与导数教学设计

教学设计普通高中课程标准实验教科书《数学》选修1-1(人教A版)函数的单调性与导数(第一课时)《函数的单调性与导数》教学设计【课题】函数的单调性与导数【教材】人教A版《数学》选修1-1【课时】1课时【教材分析】函数的单调性与导数是人教A版选修1-1第三章第三课第一节的内容.在学习本节课之前学生已经学习了函数及函数单调性等概念,对单调性有了一定的感性和理性的认识,同时在第二章中已经学习了导数的概念,对导数有了一定的知识储备.函数的单调性是高中数学中极为重要的一个知识点.以前学习了利用函数单调性的定义、函数的图象来研究函数的单调性,学习了导数以后,利用导数来研究函数的单调性,是导数在研究处理函数性质问题中的一个重要应用.同时,在本课第二节要学习利用导数研究函数的极值,学习了导数研究函数的单调性,对于研究利用导数求函数的极值有重要的帮助.因此,学习本节内容具有承上启下的作用.【学生学情分析】课堂学生为高二年级的的学生,学生基础普遍比较好,但是学习单调性的概念是在高一第一学期学过,因此对于单调性概念的理解不够准确,同时导数是高中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点.在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表面上.本节课应着重让学生通过探究来研究利用导数判定函数的单调性.【教学目标】知识点:1.探索函数的单调性与导数的关系;2.会利用导数判断函数的单调性并求函数的单调区间.能力点:1.通过本节的学习,掌握用导数研究单调性的方法.2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想.教育点:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯.自主探究点:通过问题的探究,体会知识的类比迁移.以已知探求未知,从特殊到一般的数学思想方法.【教学重点】利用导数研究函数的单调性,会求函数的单调区间.【教学难点】⒈探究函数的单调性与导数的关系;⒉如何用导数判断函数的单调性.【教学方法】启发式教学【课时安排】 1 课时【教学准备】多媒体课件,作图软件GGB,课堂活动页.【教学设计说明】根据新课程标准的要求,本节课的知识目标定位在以下三个方面:一是能探索并应用函数的单调性与导数的关系求单调区间;二是掌握判断函数单调性的方法;三是能由导数信息绘制函数大致图象.本节课的教学设计也是围绕这些目标,利用多媒体和信息技术让学生自主探究,充分参与课堂,并从中体会学习的成功和快乐.结论总结例题讲解课堂练习讨论函数单调性的一般步骤是什么?1求定义域;2求函数()f x的导数,3 讨论单调区间,解不等式()0f x'>,解集为增区间;4解不等式()0f x'<,解集为减区间.例2函数图像如下图,导函数图像可能为哪一个?练习2导函数图像如下图,则函数图像可能为()解.由学生共同回答.学生思考并共同解决.学生思考并举手回答.熟练掌握,特别是单调区间满足在定义域内.学生总结并回答问题加深记忆.从函数的单调性和导数的正负关系的讨论环节中,不断的比较了函数和导函数的图像,因此设置该题,从熟悉的函数到该题,题目更容易解决.让学生对所学知识进一步巩固和熟练掌握.回归生活布置作业观看过山车的视频,而后分析视线和切线的斜率正负的关系.分层作业:选做题:结合所学知识,举几个函数实例,比较定义法、图像法、导数法求单调区间的特点.必做题:教材P11 习题1.1A组 2、3 题.回归生活人生犹如过山车,站在人生的每个瞬间的点上,我们都能向上看,人生轨迹就会是持续上升趋势;相反,如果我们被负面情绪萦绕,我们就会走下坡路.只要饱含正能量,脚踏实地走好每一步,相信同学们的前途会一片光明!下课!学生放松的观看.。

【一等奖教案】 函数的单调性

【一等奖教案】 函数的单调性

课 题:函数的单调性【教学目标】1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念、判断及证明.【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】一、创设情境,引入课题课前布置任务:(1) 由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2) 通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?预案:(1)当天的最高温度、最低温度以及何时达到; (2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等.归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小. 〖设计意图〗由生活情境引入新课,激发兴趣. 二、归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数xy x y x y x y 1,,2,22==+-=+=的图象,并且观察自变量变化时,函数值有什么变化规律? 预案:(1)函数2+=x y 在整个定义域内 y 随x 的增大而增大;函数2+-=x y 在整个定义域内 y 随x 的增大而减小.(2)函数2x y =在),0[+∞上 y 随x 的增大而增大,在)0,(-∞上y 随x 的增大而减小. (3)函数xy 1=在),0(+∞上 y 随x 的增大而减小,在)0,(-∞上y 随x 的增大而减小.引导学生进行分类描述 (增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.问题2:能不能根据自己的理解说说什么是增函数、减函数?预案:如果函数()f x 在某个区间上随自变量x 的增大,y 也越来越大,我们说函数()f x 在该区间上为增函数;如果函数()f x 在某个区间上随自变量x 的增大,y 越来越小,我们说函数()f x 在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识.〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.探究规律,理性认识 问题1:下图是函数)0(2>+=x xx y 的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性. 问题2:如何从解析式的角度说明2)(x x f =在),0[+∞为增函数? 预案: (1) 在给定区间内取两个数,例如1和2,因为12<22,所以2)(x x f =在),0[+∞为增函数.(2) 仿(1),取很多组验证均满足,所以2)(x x f =在),0[+∞为增函数. (3) 任取2121),,0[,x x x x <+∞∈且,因为0))((21212221<-+=-x x x x x x ,即2221x x <,所以2)(x x f =在),0[+∞为增函数.对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量21,x x .〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念问题:你能用准确的数学符号语言表述出增函数的定义吗?师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义. (1)板书定义(2)巩固概念 判断题: ①是增函数所以函数因为已知)(),2()1(,1)(x f f f xx f <-=. ②若函数上为增函数,在区间则函数满足]32[)(),3()2()(x f f f x f <. ③若函数)(x f 在区间]2,1(和(2,3)上均为增函数,则函数)(x f 在区间(1,3)上为增函数.④因为函数x x f 1)(=在区间),0()0,(+∞-∞和上都是减函数,所以xx f 1)(=在),0()0,(+∞-∞ 上是减函数.通过判断题,强调三点:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).③函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在B A 上是增(或减)函数.思考:如何说明一个函数在某个区间上不是单调函数?〖设计意图〗让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展例 证明函数xx x f 2)(+=在),2(+∞上是增函数.1.分析解决问题 针对学生可能出现的问题,组织学生讨论、交流. 证明:任取2121),,2(,x x x x <+∞∈且, 设元2(2()()(221121x x x x x f x f +-+=- 求差 22()(2121x x x x -+-= 变形 211221)(2)(x x x x x x -+-=)21)((2121x x x x --= 2121212)(x x x x x x --=,,221x x << 断号∴,2,02121><-x x x x∴,0)()(21<-x f x f 即),()(21x f x f <∴函数xx x f 2)(+=在),2(+∞上是增函数. 定论 2.归纳解题步骤引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论. 练习:证明函数x x f =)(在),0[+∞上是增函数.问题:要证明函数)(x f 在区间),(b a 上是增函数,除了用定义来证,如果可以证得对任意的),(,21b a x x ∈,且21x x ≠有0)()(1212>--x x x f x f 可以吗?引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数x x f =)(在),0[+∞上是增函数.〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.四、归纳小结,提高认识学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.1.小结(1) 概念探究过程:直观到抽象、特殊到一般、感性到理性. (2) 证明方法和步骤:设元、作差、变形、断号、定论. (3) 数学思想方法和思维方法:数形结合,等价转化,类比等. 2.作业书面作业:课本第60页 习题2.3 第4,5,6题. 课后探究:(1) 证明:函数)(x f 在区间),(b a 上是增函数的充要条件是对任意的),(,b a h x x ∈+,且,0≠h 有0)()(>-+hx f h x f .(2) 研究函数)0(1>+=x xx y 的单调性,并结合描点法画出函数的草图. 《函数的单调性》教学设计说明一、教学内容的分析函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其它性质提供了方法依据.对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点.二、教学目标的确定根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成.三、教学方法和教学手段的选择本节课是函数单调性的起始课,采用教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.四、教学过程的设计为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施: (1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.(2)在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.(3)考虑到我校学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.二元一次不等式表示平面区域一、教材分析⒈教材的地位和作用本节课主要内容是新教材高二上第七章第4节第一课时:二元一次不等式表示平面区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.1函数的单调性与最大(小)值(第一课时)教学设计一、教学内容解析:(1)教学内容的内涵、数学思想方法、核心与教学重点;本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。

函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质.函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质.函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画.函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位.教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数).(2)教学内容的知识类型;在本课教学内容中,包含了四种知识类型。

函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识.(3)教学内容的上位知识与下位知识;在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识.(4)思维教学资源与价值观教育资源;生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= +1和函数1y xx=+,能引发提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观.二、教学目标设置:本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。

“课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。

“课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时)为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下:(1)知识与技能:理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念;能利用图象法直观判断函数的单调性;初步掌握利用函数单调性定义从正反两个角度分析、判断、证明函数单调性.理解函数单调性定义蕴含的不等关系,初步掌握利用作差比较推理证明函数单调性的方法.(2)过程与方法:经历观察发现、归纳类比、抽象概括、符号表示、推理论证等思维过程,提高相应的数学思维能力;探索函数单调性的符号语言表述,体会数形结合、分类讨论、特殊与一般、无限与有限、等价转化等数学思想.(3)情感、态度与价值观:通过观察生活常见数据例子,感受数学的科学价值与应用价值,提高学习数学的兴趣。

通过自主学习、小组合作探究,形成独立思考、讨论争辩、合作整理的良好学习模式与氛围.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明的认知过程,形成对后续函数性质的一般研究方法,形成批判性的思维习惯,崇尚数学的理性精神,树立辩证唯物主义世界观.三、学生学情分析:(1)学生已有基础:认知基础:从学生知识最近发展区来看。

他们在初中已经接触过函数的单调性,不过那时没有提函数的单调性,而是用体现变量之间依赖关系的文字语言“y随x的增大而增大,y随x的增大而减小”来描述,符合学生的认知规律,同时一次函数、二次函数的图象直观地体现了函数的这一性质.能理解不等关系,理解a>b可以等价转化为a-b>0, a<b可以等价转化为a-b <0.非认知基础:通过小学、初中和高中阶段集合与函数概念的学习,学生具有一定的抽象概括、类比归纳、符号表示的能力.具备相当的日常生活经验,能看懂曲线图.(2)教学难点及难点突破:难点1:能用不等关系对“随着”、“增大”、“减小”这种文字语言进行符号化.这个差距是从自然描述抽象概括为符号表述. 抽象能力稍强的学生可以通过同时对比函数的列表和图象,用数形结合思想,自主消除差距.如果学生抽象能力稍弱,教师可以提示“增大、减小都是体现大小比较的词汇”,启发学生用比较大小的方法抽象概括.并用“当…时,有…”来体现“随着”这种变量间的伴随关系.难点2:能理解“任意…都…”这个句式的具体含义:第一,不能取特定值来判别函数的单调性;这里的差异是学生要理解可以用特殊推广到一般,但不能用特殊代替一般,学生也许理解不透彻,需要教师提起注意,本课设置了辨析题1解决这个问题;第二,正是由于取值的任意性,造就了函数的单调性的局部性。

这里的差异是学生要理解如果不在同一个单调区间内取值验证,会出现不能界定单调性的矛盾.学生第一次接触这样高度概括的符号语言,这个差距多数需要教师设置有效教学环节帮助消除,本课设置了辨析题2,并采用小组合作探究的学习模式,让学生独立思考、充分讨论、正误对比来获得正确认识.第三、用“任意”的必要性,体现化无限为有限的思想.这里的差距是学生要理解“任意”这个说法的必要性,由于是高度概括的文字语言,理解起来需要演绎推理的过程,这个差距是需要教师帮助消除的,本课通过下列问题串来解决:“师问:x1和x2是一对具有代表性的符号,它们究竟代表了多少对数值生答:无数对师问:无数对还是所有对生答:所有对师问:无数能代替所有吗生答:不能师问:什么可以代替生答:可以用“任意”来代替”.四、教学策略分析:(1)教学材料分析;学生在初中已经接触过函数的单调性,不过那时没有提函数的单调性,而是用体现变量之间依赖关系的文字语言描述,符合学生的认知规律,同时一次函数、二次函数的图象直观地体现了函数的这一性质.可以选择他们熟悉的一次函数、二次函数函数通过有效组织成为教学材料,在不经意中展示函数f(x)= +1引发不能靠图象直观判断,要靠解析式代值验证;再展示函数1y x=+说明靠解析式代值验证操作性很差,需要发展新知识----利用解析式快速判断单调性,x这两个教学材料贴近学生实际出发,能有效引发思考,十分自然地推动了知识发展;再以二次函数f(x)= x2承担主要探究材料,组织列表和图象对比材料,驱动学生由“形”转“数”,提炼符号语言描述;组织两道辨析题,问题驱动深挖定义的内涵;组织直观判断单调性的例1以及需要用定义判断证明的例2及练习,肯定了利用函数解析式探求函数单调性的方法.(2)教学方法分析;本课教学内容重点是函数单调性符号语言描述的抽象概括过程,是学生遇到的抽象程度极高的符号语言,所以结合幻灯片、实物投影等多媒体技术的教学手段,选择观察发现式、问题启发式、合作讨论式的教学方法.(3)设计“问题串”的分析:依据的学生认知规律,从问题1至问题5以及两个思考,“问题串”的设计体现了从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明的脉络,有利于形成对后续函数性质的一般研究方法. “问题串”的设计也体现了发现问题----提出问题----解决问题的研究模式,不断激发学生学习数学的兴趣,树立学好数学的信心. 通过设计快问快答的预备“小问题串”,贴切学生思维,拉升思维速度,极大地满足学生的成功感,树立了学生的自信,激发了探索欲望.(4)缩小认知差距的分析:通过设计探究、发现与合作交流.全程参与新知识的形成过程,及时获得评价与反馈。

通过问题的合理设计激发兴趣,在师生互动、生生互动中,体验知识与方法的生成过程.形成学生主动参与,自主与合作探究的课堂气氛.为不同认知基础的学生提供相应的学习机会和适当帮助(5)学习反馈的分析:通过两道辨析题反馈对函数单调性定义中“任意”的理解;通过例1反馈对函数单调性相关概念的理解;通过例2的练习反馈利用函数单调性定义、作差法来判断、证明单调性的学习效果.通过课堂小结反馈学生的知识、方法、思想、学法上的收获.五、教学过程/步骤(一) 感知数学引入新课观察以上图象,它们都反映了事物的哪种变化规律【活动】让全班观察,请若干学生发言【设计意图】创设了生活中常见数据曲线图的例子情境,激发学生的学习兴趣.通过问题渗透函数是研究事物运动变化规律的好模型,通过两种语言的描述:“上升”“下降”和“f(x)随着x的增大而增大或减小”,完成对函数单调性概念的第一次认识.点出课题,同时获得判断单调性的直观方法----图象法.(二) 激发冲突由形入数问题1:观察下列函数的图象,描述函数有什么变化趋势【活动】引导学生用文字语言描述:函数在哪个区间上, f(x)随着x的增大而增大或减小【设计意图】从初中所学的两个熟悉的函数出发,要求用文字语言描述它们的单调性.加强定量分析的意识,完成对函数单调性概念的第二次认识.为第三个函数埋伏笔.在不经意中展示函数f(x)= +1,经过思考回答,得到不能靠图象直观判断,要靠解析式代值验证的结论;再展示函数1y xx=+,说明靠解析式代值验证操作性很差,需要发展新知识----利用解析式和不等关系快速判断单调性的结论.这两个教学材料贴近学生实际出发,能有效构造知识矛盾冲突,激发思维运转,十分自然地推动了知识发展.学生强烈感受到用函数图象判断函数单调性虽然比较直观,但有时不够实用和精确,需要结合解析式进行严密化、精确化的研究.必须由“形”转“数”,由“感性”转“理性”,从函数解析式和不等关系寻找出路判断单调性.(三) 表格过渡突破难点问题2:如何利用函数f(x)= x2的解析式描述该函数“在区间(0, +∞)上, f(x)随着x增大而增大”.思考在表中任取一些自变量的值,比较它们对应的函数值的大小,你能发现什么结论【活动】先让学生观看表格生成的动画,体会f(x)随着x增大而增大,再用自己的语言总结归纳出“当x1<x2时,有 f(x1)<f(x2)”这个符号表述.【设计意图】通过同时对比函数的列表和图象,借助“数”,“形”同时呈现形成的感受,让学生更容易概括.提示“增大是体现大小比较的词汇”,启发学生用比较大小的方法抽象概括.并用“当…时,有…”来体现“随着”这种变量间的伴随关系.【活动】教师自写结论“当x1<x2<x3时,有 f(x1)<f(x2) <f(x3)”,让全班对比前面“当x1<x2时,有 f(x1)<f(x2)”的结论并点评哪个好,并问理由,通过“问题串” 引出“任意…都…”句式:“师问:x1和x2是一对具有代表性的符号,它们究竟代表了多少对数值生答:无数对师问:无数对还是所有对生答:所有对师问:无数能代替所有吗生答:不能师问:什么可以代替生答:可以用“任意”来代替.”【设计意图】突破本课难点之一:用“任意”的必要性.让学生初步理解单调性定义里的不等关系,突破了立足于大小比较的符号语言的生成这个难点之后,接着从表内联想到表外,认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量x,x.突破了“任意…都…”这个句式的理解难点把对单调性的认识由感性上升到理性认识的12高度,对增函数作初步理解.通过设计快问快答的预备“小问题串”,贴切学生思维,拉升思维速度,极大地满足学生的成功感,树立了学生的自信,激发了探索欲望.问题3:能仿照这样的描述,说明函数f(x)= x2在区间(-∞ , 0)上是减函数吗【活动】全班思考后齐声回答【设计意图】激发类比思维,渗透分类整合的思想,让学生体会完善知识结构过程.(四)规范语言建构定义问题4 如何用符号语言刻画函数 y=f(x)在定义域I内某个区间D上是增函数(或减函数)【活动】师生共同整理完善增函数的概念、学生阅读教材对比、再盖上课本用自己的话复述,教师指出大声小声都可以.【设计意图】把二次函数推广到一般函数,并把讨论区间一般化,由特殊到一般,具体到抽象,生成规范准确的符号语言,完成对概念的第三次认识.引导学生阅读教材,书读百遍其义自见,用自己的语言对比,提高语言表达能力,加深印象,巩固学习效果.问题5:能类比增函数的定义得到减函数的定义吗【活动】全班类比得出减函数的定义,这次教师指出要求全部大声朗读减函数的定义.【设计意图】类比增函数的定义得到减函数的定义,渗透类比、分类整合等数学思想. 形成由特殊到一般,由局部到整体等研究问题的一般方法.思考利用函数解析式判断单调性时,f(x1)与 f(x2)的大小关系怎样比较【设计意图】通过思考,认识函数单调性定义与不等式的关系,为证明函数单调性作铺垫.(五)理性认识螺旋上升例1回顾此图,根据图象写出函数的单调区间,并说说在每一个单调区间上,它是增函数还是减函数【活动】学案上写出单调区间,教师选个别成果展示,师生一起点评.【设计意图】回顾引入的例子,体现数学的应用价值;用单调性的知识来作答,巩固新学的概念;加强函数单调性是个局部性质的意识和巩固图象观察法.(概念辨析)辩一辩你认为下列说法是否正确,请说明理由.辨析1:若定义在某区间上的函数f (x)满足 f(2) > f (1),则函数 f (x)在该区间上是增函数.【活动】请同学举手回答,用预设动画验证想法【设计意图】突破本课难点之一:不能取特定值来判别函数的单调性. 设计意图是要学生理解可以用特殊推广到一般,但不能用特殊代替一般,学生也许理解不透彻,因此设置了辨析题1提起注意.辨析2:若函数在区间(1,3)和区间[3,5]上都是增函数,则在区间(1,5] 上也是增函数.(小组探究活动)【活动】先独立思考一分钟,然后全班分成若干小组合作探究,判断对错,并作图说明理由,上台展示成果,全班讨论点评.【设计意图】突破本课难点之一:正是由于取值的任意性,造就了函数的单调性的局部性。

相关文档
最新文档