最新-2017年高考全国卷1理科数学客观题汇编

合集下载

(完整word版)2017年高考全国理科数学试题及答案(1卷WORD版),推荐文档

(完整word版)2017年高考全国理科数学试题及答案(1卷WORD版),推荐文档

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。

2017年高考全国1卷理科数学试题和答案解析

2017年高考全国1卷理科数学试题和答案解析

2017 年普通高等学校招生全国统一考试理科数学本试卷 5页,23 小题,满分 150分。

考试用时 120分钟。

注意事项: 1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型( B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应 位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按 以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共 12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目 要求的。

x1.已知集合 A={ x|x<1} ,B={x|3x 1},则A . AIB {x|x 0} B .AUB RC . AUB {x|x 1}D . AI B2.如图,正方形 ABCD 内的图形来自中国古代的太极图 .正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称 .在正方形内随机取一点,则此点取自黑色部分的概率是πB .8πD .43.设有下面四个命题1p 1 :若复数 z 满足 R ,则 z R ;z 2p 2 :若复数 z 满足 z 2 R ,则 z R ; p 3 :若复数 z 1, z 2满足 z 1z 2 R ,则 z 1 z 2 ;绝密★启用前A .C .p4 :若复数z R ,则z R. 其中的真命题为A.p1,p3 B.p1,p4 C.p2,p3 D.p2,p4 4.记S n为等差数列{a n}的前n项和.若a4 a5 24,S6 48,则{ a n}的公差为A .1B.2C.4D.85.函数f(x) 在(, ) 单调递减,且为奇函数.若 f (1) 1 ,则满足1 f (x 2) 1的x 的取值范围是A.[ 2,2]B.[ 1,1]C.[0,4]D.[1,3]6.(112 )(1 x)6x展开式中x2的系数为A.15B.20C.30D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.A>1 000 和n=n+1B.A>1 000和n=n+2C.A 1 000和n=n+1D.A 1 000和n=n+22πC 1:y=cos x, C 2:y=sin (2x+ ),则下面结论正确的是2,俯视图为等腰直角三角形A .10B .128.右面程序框图是为了求出满足3n- 2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入9.已知曲线C.163到曲线 C 2得到曲线 C 2学题获取软件激活码 ”的活动 .这款软件的激活码为下面数学问题的答案:已知数列 1, 1,2,1,2,4,1,2,4,8,1,2,4,8,16, ⋯,其中第一项是 20,接下来的两项是 20, 21,再接下来的三项是 20, 21,22,依此类推.求满足如下条件的最小整数 N :N>100且该数列的前 N 项和为 2的整数幂.那么该款软件的激活码是以 BC ,CA ,AB 为折痕折起△ DBC ,△ ECA ,△ FAB ,使得 D 、E 、F 重合,得到三棱锥。

2017全国1卷理科数学(含答案).docx

2017全国1卷理科数学(含答案).docx

2017 年普通高等学校招生全国统一考试理科数学一、选择题:本大题共12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={ x|x<1} ,B={ x| 3x 1 },则()A .AB { x | x 0} B .A B R C.A B { x | x 1}D.A B2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A .1B .πC.1D.π84 423.设有下面四个命题p1:若复数 z 满足1R ,则z R ;p2:若复数 z 满足z2R ,则z R ;zp3:若复数 z1, z2满足 z1z2R,则z z;p4:若复数z R,则z R.12其中的真命题为()A.p1, p3 B .p1, p4C.p2, p3D.p2, p44.记S n为等差数列{ a n} 的前 n 项和.若 a4a524 , S648 ,则 { a n } 的公差为()A . 1B . 2C.4D. 85.函数f ( x)在(,) 递减,且为奇函数.若 f (1) 1 ,则满足 1 f ( x2)1的 x 的取值范围是()A.[2,2] B .[ 1,1]C.[0,4]D.[1,3]6.(116展开式中2的系数为()x2 )(1x)xA . 15B . 20C.30D. 35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A . 10B.12C.14 D .168.右面程序框是了求出足3n- 2n>1000 的最小偶数 n,那么在和两个空白框中,可以分填入(A . A>1000 和 n=n+1B .A>1000 和 n=n+2C.A 1000 和 n=n+1 D .A 1000 和 n=n+2: y=cos x, C: y=sin (2 x+2π)9.已知曲 C2),下面正确的是(3A.把 C1上各点的横坐伸到原来的 2 倍,坐不,再把得到的曲向右平移π个位度,得到曲6C2B.把 C1上各点的横坐伸到原来的 2 倍,坐不,再把得到的曲向左平移π个位度,得到曲12C2C.把 C1上各点的横坐短到原来的1倍,坐不,再把得到的曲向右平移π个位度,得到曲26C2D.把 C1上各点的横坐短到原来的1倍,坐不,再把得到的曲向左平移π个位度,得到212曲 C210.已知 F 抛物2的焦点, F 作两条互相垂直的直l 1,l 2,直 l 1与 C 交于 A、B 两点,直C:y =4x与 C 交于 D、 E 两点, |AB |+|DE|的最小()A . 16B . 14C.12D. 10、、z 正数,且2x3y5z)11. x y,(A . 2x<3 y<5zB . 5z<2x<3y C.3y<5 z<2x D. 3y<2x<5z 12.几位大学生响国家的号召,开了一款用件.激大家学数学的趣,他推出了“解数学)l2取件激活”的活.款件的激活下面数学的答案:已知数列1, 1, 2, 1, 2, 4, 1,2, 4, 8, 1, 2,4, 8,16,⋯,其中第一是 20,接下来的两是 20, 21,再接下来的三是 20,21, 22,依此推.求足如下条件的最小整数 N:N>100 且数列的前 N 和 2 的整数.那么款件的激活是()A . 440B . 330C.220D. 110二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.已知向量 a , b 的夹角为 60°, |a |=2, |b |=1,则 | a +2 b |=.x 2 y 114.设 x ,y 满足约束条件2x y 1,则 z 3x 2 y 的最小值为.x y2215.已知双曲线 C :x2y 2 1( a>0,b>0)的右顶点为 A ,以 A 为圆心, b 为半径作圆 A ,圆 A 与双曲线 C 的 ab一条渐近线交于 M 、 N 两点.若∠ MAN =60°,则 C 的离心率为 ____ ____.16.如图,圆形纸片的圆心为O ,半径为 5 cm ,该纸片上的等边三角形ABC 的中心为 O .D 、E 、F 为圆 O 上的点,△ DBC ,△ ECA ,△ FAB 分别是以 BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△ DBC ,△ ECA ,△ FAB ,使得 D 、 E 、 F 重合,得到三棱锥.当△ ABC 的边长变化时,所得 三棱锥体积(单位:cm 3)的最大值为 _______.三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第17~21 题为必考题,每个试题考生都必须作答.第 22、 23 题为选考题,考生根据要求作答.(一)必考题:共60 分.a 2 17.(12 分)△ ABC 的内角 A , B , C 的对边分别为 a ,b ,c ,已知△ ABC 的面积为3sin A( 1)求 sinBsinC;( 2)若 6cosBcosC=1, a=3,求△ ABC 的周长.18.( 12 分)如图,在四棱锥 P-ABCD 中, AB//CD ,且BAP CDP 90 .( 1)证明:平面 PAB ⊥平面 PAD ;( 2)若 PA=PD=AB=DC ,APD 90 ,求二面角 A-PB-C 的余弦值.19.( 12 分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16 个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N ( , 2 ).( 1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在 ( 3 ,3 ) 之外的零件数,求P( X 1) 及X的数学期望;( 2)一天内抽检零件中,如果出现了尺寸在(3,3 ) 之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95116116( xi x )2116经计算得 x x i9.97 ,s(x i216x 2 ) 20.212,其中x i为抽取的第 i16 i 116 i 116i1个零件的尺寸,i1,2,,16 .用样本平均数x 作为的估计值 ?,用样本标准差s 作为的估计值? ,利用估计值判断是否需对当天的生产过程进行检查?剔除( ? 3 ?, ? 3 ?) 之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量Z 服从正态分布 N (,2 ) ,则 P(3Z3)0.9974 ,0.9974160.9592,0.0080.09.20.( 12 分)已知椭圆x2y23), P4( 1,3 C:22 =1 (a>b>0),四点P1(1,1),P2(0,1),P3(–1,)a b22中恰有三点在椭圆 C 上.( 1)求 C 的方程;( 2)设直线 l 不经过 P2点且与 C 相交于 A, B 两点.若直线P2A 与直线 P2B 的斜率的和为–1,证明: l 过定点.21.( 12 分)已知函数 f ( x) ae2x(a 2)e x x .( 1)讨论 f ( x) 的单调性;( 2)若f ( x)有两个零点,求 a 的取值范围.(二)选考题:共10 分.请考生在第22、 23 题中任选一题作答,如果多做,则按所做的第一题计分.22. [ 选修 4―4:坐标系与参数方程]( 10 分)x3cos x a4t 在直角坐标系 xOy 中,曲线 C 的参数方程为(θ为参数),直线 l 的参数方程为(为参数).y sin y1t( 1)若 a=-1 ,求 C 与 l 的交点坐标;( 2)若 C 上的点到 l 的距离的最大值为17 ,求 a.23. [ 选修 4—5:不等式选讲]( 10 分)已知函数f(x) = –x2+ax+4 , g(x)= │x+1│ +│x– 1│.(1)当 a=1 时,求不等式 f(x) ≥g(x)的解集;(2)若不等式 f(x) ≥g(x)的解集包含 [–1, 1],求 a 的取值范围.参考答案(理科数学)一、选择题123456789101112A B B C D C B D D A D A二、填空题13.2 314.52315.16.4 15 3三、解答题。

2017年普通高等学校招生全国统一考试(全国卷I)《理科数学》真题

2017年普通高等学校招生全国统一考试(全国卷I)《理科数学》真题

2017年普通高等学校招生全国统一考试理科数学(全国Ⅰ卷)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}{}131xA x xB x =<=<,,则()A .{}0=< AB x x B .A B =RC .{}1=> A B x xD .A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A .14B .π8C .12D .π43.设有下面四个命题()1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12z z ,满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .A .13p p ,B .14p p ,C .23p p ,D .24p p ,4.记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为()A .1B .2C .4D .85.函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x 的取值范围是()A .[]22-,B .[]11-,C .[]04,D .[]13,6.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为()A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为()A .10B .12C .14D .168.右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入()A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9.已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2C B .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C C .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2C D .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C 10.已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为()A .16B .14C .12D .1011.设x ,y ,z 为正数,且235x y z ==,则()A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<12.几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,在接下来的三项式62,12,22,依次类推,求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是()A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。

2017年普通高等学校招生全国统一考试(全国I)理科数学及答案

2017年普通高等学校招生全国统一考试(全国I)理科数学及答案

2017年普通高等学校招生全国统一考试(全国I)理科数学及答案绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|x<1},B={x|},则A.B.C.D.2.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.B.C.D.3.设有下面四个命题:若复数满足,则;:若复数满足,则;:若复数满足,则;:若复数,则.其中的真命题为A.B.C.D.4.记为等差数列的前项和.若,,则的公差为A.1B.2C.4D.85.函数在单调递减,且为奇函数.若,则满足的的取值范围是A.B.C.D.6.展开式中的系数为A.15B.20C.30D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10B.12C.14D.168.右面程序框图是为了求出满足3n?2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1000和n=n+1B.A>1000和n=n+2C.A1000和n=n+1D.A1000和n=n+29.已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16B.14C.12D.1011.设xyz为正数,且,则A.2x<3y <5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的学科网&最小整数N:N>100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是A.440B.330C.22 0D.110二、填空题:本题共4小题,每小题5分,共20分。

2017全国Ⅰ高考理科数学试题真题答案精编版

2017全国Ⅰ高考理科数学试题真题答案精编版

2017全国Ⅰ高考理科数学试题真题答案精编版绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|x<1},B={x|31x<},则A. {|0}A B x x=< B. A B=R C. {|1}A B x x=> D. A B=∅2.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A. 14B. π8C. 12D. π43.设有下面四个命题1:p 若复数z 满足1z∈R ,则z ∈R ; 2:p 若复数z 满足2z∈R ,则z ∈R ; 3:p 若复数12,z z 满足12z z ∈R ,则12z z =; 4:p 若复数z ∈R ,则z ∈R .其中的真命题为A.13,p pB.14,p pC.23,p pD.24,p p 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}na 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3] 6.621(1)(1)x x ++展开式中2x 的系数为 A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10B.12C.14D.168.右面程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2),则下面结正9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,个单位长度,得到曲线C2再把得到的曲线向右平移π6B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,个单位长度,得到曲线C2再把得到的曲线向左平移π12C.把C1上各点的横坐标缩短到原来的1倍,纵坐标不变,2个单位长度,得到曲线C2再把得到的曲线向右平移π6倍,纵坐标不变,D.把C1上各点的横坐标缩短到原来的12再把得到的曲线向右平移π个单位长度,得到曲线C21210.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16 B.14 C.12 D.1011.设xyz为正数,且235x y z==,则A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们退出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分。

2017全国一卷理科数学高考真题和答案

2017全国一卷理科数学高考真题和答案

2017年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.168.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1 B.A>1 000和n=n+2 C.A≤1 000和n=n+1 D.A≤1 000和n=n+29.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C210.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16 B.14 C.12 D.1011.设xyz为正数,且235x y z==,则A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.几位大学生响应国家的创业号召,开发了一款应用软件。

(word完整版)2017年高考全国1卷理科数学和答案详解(word版本)

(word完整版)2017年高考全国1卷理科数学和答案详解(word版本)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1 •答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2 •作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3•非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4 •考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

X1.已知集合A={x|x<1} , B={x|3 1},则A. AI B {x|x 0}B. AUB RC. AUB {x|x 1}D. AI B2 .如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是3.设有下面四个命题P1 :若复数z满足丄 R,则z R ;zP2:若复数z满足z2R,则z R ;P3:若复数N,Z2满足Z1Z2 R,则zi Z2 ;P 4:若复数z R ,则z R .其中的真命题为1 6 2—)(1 x)6展开式中X 2的系数为 X7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A . A>1 000 和 n=n+1A . P l , P 3B . P l , P 4C . P 2,P 3D . P 2, P 44 •记S 为等{a n }的前n 项和.若a 4a524,Ss 48,则{a n }的公差为C . 45.函数f (X )在()单调递减,且为奇函数.若 f(1)1,则满足 1 f(x 2) 1的X 的取值范围[2,2]B .[ 1,1]C •[0,4]D . [1,3]6 . (1A . 15B . 20C . 30D . 352,俯视图为等腰直角三角形A . 10B . 12 8 .右面程序框图是为了求出满足C . 14D . 163n -2n >1000的最小偶数n ,那么在號「詞和=两个空白框中,可以分别填入B . A>1 000 和n=n+2C . A 1 000 和n=n+1D . A 1 000 和n=n+29.已知曲线C1: y=cos x,C2:2 ny=s in (2x+ ),则下面结论正确的是到曲线C 2到曲线C 2到曲线C 2得到曲线C 2x y z11.设xyz 为正数,且23 5,则二、填空题:本题共 4小题,每小题5分,共20分。

2017年全国卷一 理科数学(精品解析版)

2017年全国卷一 理科数学(精品解析版)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合{}1<=x x A ,{}13<=xx B ,则()A 、{}0<=x x B A B 、R B A = C 、{}1>=x x B A D 、∅=B A 2、如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A 、14B 、π8C 、12D 、π43、设有下面四个命题:1:p 若复数z 满足1z ∈R ,则z ∈R ;2:p 若复数z 满足2z ∈R ,则z ∈R ;3:p 若复数12,z z 满足12z z ∈R ,则12z z =;4:p 若复数z ∈R ,则z ∈R .其中的真命题为()A 、13,p p B 、14,p p C 、23,p p D 、24,p p 4、记n S 为等差数列{}n a 的前n 项和,若4524a a +=,486=S ,则{}n a 的公差为()A 、1B 、2C 、4D 、85、函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是()A 、[2,2]-B 、[1,1]-C 、[0,4]D 、[1,3]6、621(1)(1)x x++展开式中2x 的系数为()A 、15B 、20C 、30D 、357、某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A 、10B 、12C 、14D 、168、右面程序框图是为了求出满足100023>-nn 的最小偶数n ,那么在和两个空白框中,可以分别填入()A 、1000>A 和1+=n nB 、1000>A 和2+=n nC 、1000≤A 和1+=n n D 、1000≤A 和2+=n n 9、已知曲线1C :x y cos =,2C :)322sin(π+=x y ,则下面结正确的是()A 、把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2C B 、把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC 、把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2C D 、把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C 10、已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB|+|DE|的最小值为()A 、16B 、14C 、12D 、1011、设xyz 为正数,且235xyz==,则()A 、zy x 532<<B 、yx z 325<<C 、xz y 253<<D 、zx y 523<<12、几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们退出了“解数学题获取软件激活码”的活动。

(完整版)2017年普通高等学校招生全国统一考试理科数学试题及答案-全国1卷

(完整版)2017年普通高等学校招生全国统一考试理科数学试题及答案-全国1卷

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}|1{|31}xA x xB x =<=<,,则A .{|0}AB x x =<I B .A B =R UC .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .8π C .12D .4π 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A .10 B .12 C .14 D .168.右面程序框图是为了求出满足321000nn->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9.已知曲线122:cos ,:sin(2)3C y x C y x π==+,则下面结论正确的是A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235xyz==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<12.几位大学生响应国家的创业号召,开发了一款应用软件。

(全国1卷)2017年理科数学真题(含答案解析)

(全国1卷)2017年理科数学真题(含答案解析)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =RC .{|1}AB x x =>D .AB =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)−∞+∞单调递减,且为奇函数.若(11)f =−,则满足21()1x f −−≤≤的x 的取值范围是 A .[2,2]−B .[1,1]−C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的学科网&最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。

2017年全国1卷高考理科数学试卷

2017年全国1卷高考理科数学试卷

2017年普通高等学校招生全国统一考试全国卷1(理科数学)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{|1}A x x =<,{|31}x B x =<,则()A {|0}A B x x =< ()B A B =R()C {|1}A B x x =>()D A B =?2.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A 14 ()B π8 ()C 12 ()D π43.设有下面四个命题 1p :若复数z 满足1zÎR ,则z ÎR ;2p :若复数z 满足2z ÎR ,则z ÎR ; 3p :若复数12,z z 满足12z z ÎR ,则12z z =; 4p :若复数z ÎR ,则z ÎR .其中的真命题为()A 13,p p ()B 14,p p ()C 23,p p ()D 24,p p 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 ()A 1 ()B 2 ()C 4 ()D 8 5.函数()f x 在(,)-??单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x -??的x 的取值范围是()A [2,2]- ()B [1,1]- ()C [0,4] ()D [1,3]6.621(1)(1)x x++展开式中2x 的系数为()A 15 ()B 20 ()C 30 ()D 357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A 10 ()B 12 ()C 14 ()D 168.右面如图所示的程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入()A 1000A >和1n n =+ ()B 1000A >和2n n =+ ()C 1000A £和1n n =+ ()D 1000A £和2n n =+9.已知曲线1C :cos y x =,2C :2sin(2)3y x p =+,则下面结论正确的是()A 把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移6p个单位长度,得到曲线2C()B 把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移12p个单位长度,得到曲线2C()C 把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移6p 个单位长度,得到曲线2C()D 把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12p个单位长度,得到曲线2C10.已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于,A B 两点,直线2l 与C 交于,D E 两点,则||||AB DE +的最小值为 ()A 16 ()B 14 ()C 12 ()D 10 11.设,,x y z 为正数,且235x y z ==,则 ()A 235x y z << ()B 523z x y <<()C 352y z x <<()D 325y x z <<12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,,鬃?其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,依此类推.求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 ()A 440 ()B 330()C 220()D 110二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量,a b 的夹角为60°,||2a =,||1b =,则|2|a b += .14.设,x y 满足约束条件21210x y x y x y ì+?ïïï+?íïï-?ïî,则32z x y =-的最小值为 . 15.已知双曲线C :22221(0,0)yx a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于,M N 两点.若60MAN ??,则C 的离心率为 .16.如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC的中心为O .,,D E F 为圆O 上的点,DBC D ,ECA D ,FAB D 分别是以,,BC CA AB 为底边的等腰三角形.沿虚线剪开后,分别以,,BC CA AB 为折痕折起DBC D ,ECA D ,FAB D ,使得,,D E F 重合,得到三棱锥.当ABC D 的边长变化时,所得三棱锥体积(单位:3cm )的最大值为 .三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题(共60分)17.(本题满分12分)ABC D 的内角,,A B C 的对边分别为,,a b c ,已知ABC D 的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1B C =,3a =,求ABC D 的周长.18.(本题满分12分)如图,在四棱锥P ABCD -中,//AB CD ,且90BAPCDP???.(1)证明:平面PAB ^平面PAD ; (2)若PA PD AB DC ===, 90APD ??,求二面角A PB C --的余弦值.19.(本题满分12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N m s .(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)m s m s -+之外的零件数,求(1)P X ³及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)m s m s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. ①试说明上述监控生产过程方法的合理性; ②下面是检验员在一天内抽取的16个零件的尺寸:9.9510.12 9.969.9610.01 9.929.9810.0410.26 9.9110.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===å,0.212s =,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =鬃?. 用样本平均数x 作为m 的估计值m ,用样本标准差s 作为s 的估计值s ,利用估计值判断是否需对当天的生产过程进行检查?剔除(3,3)m s m s -+之外的数据,用剩下的数据估计m 和s (精确到0.01).附:若随机变量Z 服从正态分布2(,)N m s ,则(33)0.9974P Z m s m s -<<+=,160.99740.9592»,0.09.20.(本题满分12分)已知椭圆C :22221(0)y x a b a b+=>>,四点1(1,1)P ,2(0,1)P ,3(1,P -,4(1,P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于,A B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.21.(本题满分12分)已知函数2()(2)x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.) 22. 【选修4-4:坐标系与参数方程】(本题满分10分) 在平面直角坐标系xOy 中,曲线C 的参数方程为{3cos sin x y qq==(q 为参数),直线l 的参数方程为{41x a ty t=+=-(t 为参数) (1)若1a =-,求C 与l 的交点坐标。

2017新课标全国卷1理科数学试题及答案

2017新课标全国卷1理科数学试题及答案

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x<},则A .{|0}AB x x =< B .AB =RC .{|1}A B x x =>D .A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入 A .A >1 000和n =n +1 B .A >1 000和n =n +2 C .A ≤1 000和n =n +1 D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。

2017年高考全国卷一理科数学试题及答案

2017年高考全国卷一理科数学试题及答案

绝密★启用前2017年普通高等学校招生全国统一考试全国卷一理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .AB =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9.已知曲线122:cos ,:sin(2)3C y x C y x π==+,则下面结论正确的是 A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<12.几位大学生响应国家的创业号召,开发了一款应用软件。

2017年高考真题——理科数学全国Ⅰ卷(理)(解析版)

2017年高考真题——理科数学全国Ⅰ卷(理)(解析版)

2017年普通高等学校招生全国统一考试理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x<},则( )A. {|0}A B x x =<B. A B =RC. {|1}A B x x =>D. A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14 B. π8 C. 12 D. π43.设有下面四个命题1:p 若复数z 满足1z∈R ,则z ∈R ;2:p 若复数z 满足2z ∈R ,则z ∈R ; 3:p 若复数12,z z 满足12z z ∈R ,则12z z =; 4:p 若复数z ∈R ,则z ∈R .其中的真命题为( )A.13,p pB.14,p pC.23,p pD.24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,48S =,则{}n a 的公差为( ) A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( ) A .[2,2]-B . [1,1]-C . [0,4]D . [1,3]6.621(1)(1)x x ++展开式中2x 的系数为( ) A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.168.下面程序框图是为了求出满足3n -2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入( )A.A >1000和n =n +1B.A >1000和n =n +2C.A ≤1000和n =n +1D.A ≤1000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( )A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10 11.设xyz 为正数,且235xyz==,则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们退出了―解数学题获取软件激活码‖的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是26,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ) A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2, | b |=1,则| a +2 b |= .14.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________. 16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D 、E 、F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ–3σ<Z <μ+3σ)=0.997 4,0.997 416≈0.959 2,0.09≈.20.(12分)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2 ),P 4(1,2)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.21.(12分)f x=a e2x+(a﹣2)e x﹣x.已知函数()f x的单调性;(1)讨论()f x有两个零点,求a的取值范围.(2)若()(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4,坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数). (1)若a =-1,求C 与l 的交点坐标;(2)若C 上的点到l a .23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【参考答案】1.A【解析】{}1A x x =<,{}{}310x B x x x =<=<∴{}0A B x x =< ,{}1A B x x =< , 2. B【解析】设正方形边长为2,则圆半径为1则正方形的面积为224⨯=,圆的面积为2π1π⨯=,图中黑色部分的概率为π2则此点取自黑色部分的概率为ππ248=.3. B【解析】1:p 设z a bi =+,则2211a biz a bi a b-==∈++R ,得到0b =,所以z ∈R .故1p 正确; 2:p 若z =-21,满足2z ∈R ,而z i =,不满足2z ∈R ,故2p 不正确;3:p 若1z 1=,2z 2=,则12z z 2=,满足12z z ∈R ,而它们实部不相等,不是共轭复数,故3p 不正确;4:p 实数没有虚部,所以它的共轭复数是它本身,也属于实数,故4p 正确; 4. C【解析】45113424a a a d a d +=+++=61656482S a d ⨯=+=联立求得11272461548a d a d +=⎧⎨+=⎩①②3⨯-①②得()211524d -=624d = 4d =∴5. D【解析】因为()f x 为奇函数,所以()()111f f -=-=,于是()121f x --≤≤等价于()()()121f f x f --≤≤| 又()f x 在()-∞+∞,单调递减 121x ∴--≤≤3x ∴1≤≤故选D 6. C【解析】()()()66622111+1111x x x x x ⎛⎫+=⋅++⋅+ ⎪⎝⎭对()61x +的2x 项系数为2665C 152⨯== 对()6211x x⋅+的2x 项系数为46C =15, ∴2x 的系数为151530+=故选C 7. B【解析】由三视图可画出立体图该立体图平面内只有两个相同的梯形的面()24226S =+⨯÷=梯8. D【解析】因为要求A 大于1000时输出,且框图中在―否‖时输出 ∴―‖中不能输入A 1000>排除A 、B又要求n 为偶数,且n 初始值为0, ―‖中n 依次加2可保证其为偶故选D 9. D【解析】1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222y x x x ⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭.横坐标变换需将1ω=变成2ω=,即112πππsin sin 2sin 2224y x y x x ⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原点横标缩来2ππsin 2sin 233y x x ⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭.注意ω的系数,在右平移需将2ω=提到括号外面,这时π4x +平移至π3x +, 根据―左加右减‖原则,―π4x +‖到―π3x +‖需加上π12,即再向左平移π12.10. A【解析】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴 易知11cos 22AF GF AK AK AF P P GP Pθ⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩(几何关系)(抛物线特性)cos AF P AFθ⋅+=∴同理1cos P AF θ=-,1cos PBF θ=+∴22221cos sin P PAB θθ==- 又DE 与AB 垂直,即DE 的倾斜角为π2θ+ 2222cos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭而24y x =,即2P =.∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24θ=21616sin 2θ=≥,当π4θ=取等号 即AB DE +最小值为16,故选A 11. D【解析】取对数:ln 2ln3ln5x y ==. ln 33ln 22x y => ∴23x y >ln 2ln 5x z =则ln55ln22x z =< ∴25x z <∴325y x z <<,故选D12.A【解析】设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推设第n 组的项数为n ,则n 组的项数和为()12n n +由题,100N >,令()11002n n +>→14n ≥且*n ∈N ,即N 出现在第13组之后第n 组的和为122112nn -=--n 组总共的和为()2122212nn n n --=--- 若要使前N 项和为2的整数幂,则()12n n N +-项的和21k -应与2n --互为相反数即()*21214k n k n -=+∈N ,≥()2log 3k n =+→295n k ==, 则()2912954402N ⨯+=+=故选A13. 【解析】()22222(2)22cos602a b a b a a b b+=+=+⋅⋅⋅︒+221222222=+⨯⨯⨯+444=++12=∴2a b +=14. 5-【解析】不等式组21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩表示的平面区域如图所示2x +y +1=0由32z x y =-,得322z y x =-, 求z 的最小值,即求直线322zy x =-的纵截距的最大值 当直线322zy x =-过图中点A 时,纵截距最大 由2121x y x y +=-⎧⎨+=⎩解得A 点坐标为(1,1)-,此时3(1)215z =⨯--⨯=-15.【解析】如图,OA a =,AN AM b ==∵60MAN ∠=︒,∴AP =,OP =∴tan AP OP θ==又∵tan b a θ=b a =,解得223a b =∴e =16.【解析】由题,连接OD ,交BC 与点G ,由题,OD BC ⊥ OG =, 即OG 的长度与BC 的长度或成正比设OG x =,则BC =,5DG x =-三棱锥的高h2132ABC S x =⋅=△则213ABC V S h =⋅△令()452510f x x x =-,5(0,)2x ∈,()3410050f x x x '=-令()0f x '>,即4320x x -<,2x <则()()280f x f =≤则45V∴体积最大值为317.解:(1)∵ABC △面积23sin a S A=.且1sin 2S bc A =∴21sin 3sin 2a bc A A = ∴223sin 2a bc A =∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =∵πA B C ++=∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=又∵()0πA ∈,∴60A =︒,sin A =,1cos 2A =由余弦定理得2229a b c bc =+-= ① 由正弦定理得sin sin a b B A =⋅,sin sin a c C A=⋅ ∴22sin sin 8sin a bc B C A=⋅= ②由①②得b c +=∴3a b c ++=+,即ABC △周长为318.(1)证明:∵90BAP CD P ∠=∠=︒ ∴PA AB ⊥,PD CD ⊥ 又∵AB CD ∥,∴PD AB ⊥又∵PD PA P = ,PD 、PA ⊂平面PAD ∴AB ⊥平面PAD ,又AB ⊂平面PAB ∴平面PAB ⊥平面PAD(2)解:取AD 中点O ,BC 中点E ,连接PO ,OE ∵ABCD∴四边形ABCD 为平行四边形 ∴OEAB由(1)知,AB ⊥平面PAD∴OE ⊥平面PAD ,又PO 、AD ⊂平面PAD ∴OE PO ⊥,OE AD ⊥ 又∵PA PD =,∴PO AD ⊥ ∴PO 、OE 、AD 两两垂直∴以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -设2PA =,∴()00D ,、)20B ,、(00P ,、()20C ,,∴(0PD =,、2PB =,、()00BC =-,设()n x y z =,,为平面PBC 的法向量由00n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩,得200y +=-=⎪⎩令1y =,则z =0x =,可得平面PBC的一个法向量(01n =,∵90APD ∠=︒,∴PD PA ⊥又知AB ⊥平面PAD ,PD ⊂平面PAD ∴PD AB ⊥,又PA AB A = ∴PD ⊥平面PAB即PD 是平面PAB的一个法向量(0PD =,,∴cos PD n PD n PD n⋅==⋅, 由图知二面角A PB C --为钝角,所以它的余弦值为19.解:(1)由题可知尺寸落在()33μσμσ-+,之内的概率为0.9974,落 ()33μσμσ-+,之外的概率为0.0026. ()()016160C 10.99740.99740.9592P X ==-≈ ()()11010.95920.0408P X P X ≥=-=≈-=由题可知()~160.0026X B ,()160.00260.0416E X ∴=⨯=(2)(i )尺寸落在()33μσμσ-+,之外的概率为0.0026, 由正态分布知尺寸落在()33μσμσ-+,之外为小概率事件, 因此上述监控生产过程的方法合理. (ii )39.9730.2129.334μσ-=-⨯=39.9730.21210.606μσ+=+⨯=()()339.33410.606μσμσ-+=,,()9.229.33410.606∉ ,,∴需对当天的生产过程检查.因此剔除9.22 剔除数据之后:9.97169.2210.0215μ⨯-==.()()()()()()()()()()()()()()()2222222222222222[9.9510.0210.1210.029.9610.029.9610.0210.0110.029.9210.029.9810.0210.0410.0210.2610.029.9110.02110.1310.0210.0210.0210.0410.0210.0510.029.9510.02]150.0σ=-+-+-+-+-+-+-+-+-+-+-+-+-+-+-⨯≈080.09σ∴20.解:(1)根据椭圆对称性,必过3P 、4P又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点 将()23011P P ⎛- ⎝⎭,,代入椭圆方程得222113141b a b⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b = ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,, 221121A A P A P B y y k k m m m ----+=+==-得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设()1l y kx b b =+≠∶()()1122A x y B x y ,,,联立22440y kx b x y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-= 122814kb x x k -+=+,21224414b x x k -⋅=+ 则22121211P A P B y y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-= 222228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.∴直线l 的方程为21y kx k =-- 当2x =时,1y =-所以l 过定点()21-,. 21.解:(1)由于()()2e 2e x x f x a a x =+-- 故()()()()22e 2e 1e 12e 1x x x x f x a a a '=+--=-+①当0a ≤时,e 10x a -<,2e 10x +>.从而()0f x '<恒成立.()f x 在R 上单调递减 ②当0a >时,令()0f x '=,从而e 10x a -=,得ln x a =-.综上,当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(,ln )a -∞-上单调递减,在(ln ,)a -+∞上单调递增 (2)由(1)知,当0a ≤时,()f x 在R 上单调减,故()f x 在R 上至多一个零点,不满足条件. 当0a >时,()min 1ln 1ln f f a a a=-=-+. 令()11ln g a a a=-+.令()()11ln 0g a a a a =-+>,则()211'0g a a a=+>.从而()g a 在()0+∞,上单调增, 而()10g =.故当01a <<时,()0g a <.当1a =时()0g a =.当1a >时()0g a > 若1a >,则()min 11ln 0f a g a a=-+=>,故()0f x >恒成立, 从而()f x 无零点,不满足条件. 若1a =,则min 11ln 0f a a=-+=,故()0f x =仅有一个实根ln 0x a =-=,不满足条件. 若01a <<,则min 11ln 0f a a =-+<,注意到ln 0a ->.()22110e e ea a f -=++->. 故()f x 在()1ln a --,上有一个实根,而又31ln 1ln ln a a a ⎛⎫->=- ⎪⎝⎭. 且33ln 1ln 133ln(1)e e 2ln 1aa f a a a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫-=⋅+--- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()3333132ln 11ln 10a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅-+---=---> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故()f x 在3ln ln 1a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,上有一个实根. 又()f x 在()ln a -∞-,上单调减,在()ln a -+∞,单调增,故()f x 在R 上至多两个实根.又()f x 在()1ln a --,及3ln ln 1a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,上均至少有一个实数根,故()f x 在R 上恰有两个实根. 综上,01a <<.22.解:(1)1a =-时,直线l 的方程为430x y +-=.曲线C 的标准方程是2219x y +=,联立方程2243019x y x y +-=⎧⎪⎨+=⎪⎩,解得:30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩, 则C 与l 交点坐标是()30,和21242525⎛⎫- ⎪⎝⎭, (2)直线l 一般式方程是440x y a +--=.设曲线C 上点()3cos sin p θθ,.则P 到l距离d ==3tan4ϕ=. 依题意得:max d 16a =-或8a =23.解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12x =的二次函数.()211121121x x g x x x x x >⎧⎪=++-=-⎨⎪-<-⎩,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x-++=,解得x =()g x 在()1+∞,上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()fx g x ≥解集为1⎛ ⎝⎦.当[]11x ∈-,时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-,时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()fx g x ≥解集1⎡-⎢⎣⎦.(2)依题意得:242x ax -++≥在[]11-,恒成立. 即220x ax --≤在[]11-,恒成立. 则只须()()2211201120a a ⎧-⋅-⎪⎨----⎪⎩≤≤,解出:11a -≤≤. 故a 取值范围是[]11-,.。

2017高考全国Ⅰ卷数学(理科)

2017高考全国Ⅰ卷数学(理科)

十二节课
23.[选修 4—5:不等式选讲](10 分) 已知函数 f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│. (1)当 a=1 时,求不等式 f(x)≥g(x)的解集; (2)若不等式 f(x)≥g(x)的解集包含[–1,1],求 a 的取值范围.
《十二节课 | 技巧课·题型秒杀》 第 7页
D、E、F 为圆 O 上的点,△DBC,△ECA,△FAB 分别是以 BC,CA,AB 为底边的等腰三角
形。沿虚线剪开后,分别以 BC,CA,AB 为折痕折起△DBC,△ECA,△FAB,使得 D、E、
F 重合,得到三棱锥。当△ABC 的边长变化时,所得三棱锥体积(单位:cm3)的最大值为
_______。
6
个单位长度,得到曲线 C2
π
B.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移
12
个单位长度,得到曲线 C2
1
π
C.把 C1 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移
2
6
个单位长度,得到曲线 C2
1
π
D.把 C1 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移
附:若随机变量 Z 服从正态分布 N (, 2) ,则 P( 3 Z 3 ) 0.997 4 ,
0.997 416 0.959 2 , 0.008 0.09 .
《十二节课 | 技巧课·题型秒杀》 第 5页
20.(12 分)(贝壳提示:超级模板 5.1&5.6)
x2 已知椭圆 C: a2
2
12
个单位长度,得到曲线 C2
《十二节课 | 技巧课·题型秒杀》 第 2页
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011—2017年新课标高考全国Ⅰ卷理科数学客观题分类汇编1.集合与常用逻辑用语一、选择题【2017,1】已知集合{}1A x x =<,{}31xB x =<,则( )A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅【2016,1】设集合}034{2<+-=x x x A ,}032{>-=x x B ,则A B =I ( )A .)23,3(--B .)23,3(-C .)23,1(D .)3,23(【2015,3】设命题p :n ∃∈N ,22n n >,则p ⌝为( )A .n ∀∈N ,22n n >B .n ∃∈N ,22n n ≤C .n ∀∈N ,22n n ≤D .n ∃∈N ,22n n = 【2014,1】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【2013,1】已知集合A ={x |x 2-2x >0},B ={x |x ,则( )A .A ∩B =B .A ∪B =RC .B ⊆AD .A ⊆B【2012,1】已知集合A={1,2,3,4,5},B={(x ,y )|x A ∈,y A ∈,x y A -∈},则B 中包含元素的个数为( )A .3B .6C .8D .102.函数及其性质一、选择题【2017,5】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( )A .[2,2]-B . [1,1]-C . [0,4]D . [1,3]【2017,11】设,,x y z 为正数,且235x y z ==,则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【2016,7】函数xexy-=22在]2,2[-的图像大致为()A.B.C.D.【2016,8】若1>>ba,10<<c,则()A.cc ba<B.cc baab<C.cbcaabloglog<D.ccbaloglog<【2014,3】设函数()f x,()g x的定义域都为R,且()f x是奇函数,()g x是偶函数,则下列结论正确的是()A.()f x()g x是偶函数B.|()f x|()g x是奇函数C.()f x|()g x|是奇函数D.|()f x()g x|是奇函数【2013,11】已知函数f(x)=220ln(1)0.x x xx x⎧-+≤⎨+>⎩,,,若|f(x)|≥ax,则a的取值范围是() A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]【2012,10】已知函数1()f x=,则()y f x=的图像大致为()【2011,12】函数11yx=-的图像与函数2sin(24)y x xπ=-≤≤的图像所有交点的横坐标之和等于()A.2 B.4 C.6 D.8【2011,2】下列函数中,既是偶函数又在+∞(0,)单调递增的函数是()A.3y x=B.1y x=+C.21y x=-+D.2xy-=二、填空题【2015,13】若函数f(x)=x ln(x a=A.B.D.3.导数及其应用一、选择题【2014,11】已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1) 【2012,12】设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为( )A .1ln2-B ln 2)-C .1ln2+D ln 2)+【2011,9】由曲线y =2y x =-及y 轴所围成的图形的面积为( )A .103 B .4 C .163D .6 二、填空题【2017,16】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC , CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC .的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.【2013,16】若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值为__________.4.三角函数、解三角形一、选择题【2017,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【2016,12】已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【2015,8】函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z B .13(2,2),44k k k ππ-+∈Z C .13(,),44k k k -+∈Z D .13(2,2),44k k k -+∈Z【2015,2】sin 20cos10cos160sin10-=( )A .2-B .2C .12-D .12【2014,6】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )【2014,8】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【2012,9】已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54] B .[12,34] C .(0,12] D .(0,2]【2011,5】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【2011,11】设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在0,2π⎛⎫⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 二、填空题【2015,16】在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .【2014,16】已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 . 【2013,15】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.【2011,16】在ABC V 中,60,B AC ==2AB BC +的最大值为 .5.平面向量一、选择题【2015,7】设D 为ABC ∆所在平面内一点3BC CD =,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =-【2011,10】已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是( )A .14,P PB .13,P PC .23,P PD .24,P P 二、填空题【2017,13】已知向量a ,b 的夹角为60°,|a |=2, | b |=1,则| a +2 b |= .【2016,13】设向量a )1,(m =,b )2,1(=,且|a +b ||2=a ||2+b 2|,则=m .【2014,15】已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 .【2013,13】已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =__________.【2012,13】已知向量a ,b 夹角为45°,且||1a =,|2|10a b -=,则||b =_________.6.数列一、选择题【2017,4】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( ) A .1B .2C .4D .8【2017,12】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110【2016,3】已知等差数列}{n a 前9项的和为27,810=a ,则=100a ( )A .100B .99C .98D .97【2013,7】设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .6【2013,12】设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则( ). A .{S n }为递减数列 B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列 【2013,14】若数列{a n }的前n 项和2133n n S a =+,则{a n }的通项公式是a n =__________.【2012,5】已知{n a }为等比数列,472a a +=,568a a =-,则110a a +=( )A .7B .5C .-5D .-7二、填空题【2016,15】设等比数列}{n a 满足1031=+a a ,542=+a a ,则12n a a a L 的最大值为 .【2012,16】数列{n a }满足1(1)21nn n a a n ++-=-,则{n a }的前60项和为__________.7.不等式、推理与证明一、选择题【2014,9)】不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-;2p :(,),22x y D x y ∃∈+≥;3P :(,),23x y D x y ∀∈+≤;4p :(,),21x y D x y ∃∈+≤-.其中真命题是( )A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P二、填空题【2017,14】设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .【2016,16】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【2015,15】若x ,y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .【2014,14】甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 .【2012,14】设x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的取值范围为___________.【2011,13】若变量,x y 满足约束条件329,69,x y x y ≤+≤⎧⎨≤-≤⎩则2z x y =+的最小值为 .8.立体几何一、选择题【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A .10 B .12 C .14 D .16【2016,11】平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为A .23B .22 C .33 D .31 【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是( ) A .π17 B .π18 C .π20 D .π28【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为1620π+,则( )r =A .1B .2C .4D .8【2015年,11题】 【2014年,12题】 【2013年,6题】【2014,12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )A .B .C .6D .4【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A .500π3cm 3 B .866π3cm 3 C .1372π3cm 3 D .2048π3cm 3【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2013年,8】 【2012年,7】 【2011年,6】【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .15 【2012,11】已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A .6B .6C .3D .2【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )二、填空题【2011,15】已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==则棱锥O ABCD -的体积为 .9.解析几何一、选择题【2017,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10【2016,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【2016,5】已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .)3,1(-B .)3,1(-C .)3,0(D .)3,0(【2015,5】已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A .(33-B .(66-C .(,33-D .(33- 【2014,4】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【2014,10】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF与C 的一个交点,若4FP FQ =,则||QF =( )A .72 B .52C .3D .2【2013,4】已知双曲线C :2222=1x y a b -(a >0,b >0),则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x 【2013,10】已知椭圆E :2222=1x y a b +(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .22=14536x y +B .22=13627x y +C .22=12718x y +D .22=1189x y + 【2012,4】设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点,P 为直线32a x =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( )A .12B .23C .34D .45【2012,8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =,则C 的实轴长为( )A B . C .4 D .8【2011,7】设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )A B C .2 D .3二、填空题【2017,15】已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.【2015,14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .【2011,14】在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离.过1F 的直线L 交C 于,A B 两点,且2ABF V 的周长为16,那么C 的方程为 .10.统计、概率分布列、计数原理一、选择题【2017,2】如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14 B .π8 C .12 D .π4【2017,6】621(1)(1)x x ++展开式中2x 的系数为( ) A .15 B .20 C .30 D .35【2016,4】某公司的班车在30:7,00:8,30:8发车,小明在50:7至30:8之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过10分钟的概率是( )A .31 B .21 C .32 D .43 【2015,10】25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .60【2015,4】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312【2014,5】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )A .18B .38C .58D .78【2013,3】为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样【2013,9】设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b .若13a =7b ,则m =( )A .5B .6C .7D .8 【2012,2】将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A .12种B .10种C .9种D .8种 【2011,8】512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( ) A .40- B .20- C .20 D .40【2011,4】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A .13B .12C .23D .34二、填空题 【2016,14】5)2(x x +的展开式中,3x 的系数是 .(用数字填写答案)【2014,13】8()()x y x y -+的展开式中22x y 的系数为 .(用数字填写答案)【2012,15】某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元 件3正常工作,则部件正常工作.设三个 电子元件的使用寿命(单位:小时)均服 从正态分布N (1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为_________.11.复数及其运算一、选择题【2017,3】设有下面四个命题1:p 若复数z 满足1z∈R ,则z ∈R ;2:p 若复数z 满足2z ∈R ,则z ∈R ; 3:p 若复数12,z z 满足12z z ∈R ,则12z z =;4:p 若复数z ∈R ,则z ∈R .其中的真命题为( )A .13,p pB .14,p pC .23,p pD .24,p p【2016,2】设yi x i +=+1)1(,其中y x ,是实数,则=+yi x ( )A .1B .2C .3D .2【2015,1】设复数z 满足1i 1z z+=-,则||z =( )A .1 B C D .2 【2014,2)】32(1)(1)i i +-=( )A .1i + B .1i - C .1i -+ D .1i --【2013,2】若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).元件2元件3元件1A .-4B .45-C .4D .45 【2012,3】下面是关于复数21z i =-+的四个命题: 1p :||2z =;2p :22z i =;3p :z 的共轭复数为1i +;4p :z 的虚部为1-. 其中的真命题为( )A .2p ,3pB .1p ,2pC .2p ,4pD .3p ,4p 【2011,1】复数212i i +-的共轭复数是( )A .35i - B .35i C .i - D .i 11.程序框图一、选择题【2017,8】右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A≤1000和n =n +2【2017,8】 【2016,9】 【2015,9】【2016,9】执行右面的程序框图,如果输入的0=x ,1=y ,1=n ,则输出y x ,的值满足( )A .x y 2= B .x y 3= C .x y 4= D .x y 5=【2015,9】执行右面的程序框图,如果输入的0.01t =,则输出的n =( )A .5B .6C .7D .8【2014,7】执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A .203 B .165 C .72 D .158【2013,5】执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]【2012,6】如果执行右边和程序框图,输入正整数N (2N ≥)和实数1a ,2a ,…,N a ,输出A ,B ,则( )A .AB +为1a ,2a ,…,N a 的和 B .2A B +为1a ,2a ,…,N a 的算术平均数 C .A 和B 分别是1a ,2a ,…,N a 中最大的数和最小的数D .A 和B 分别是1a ,2a ,…,N a 中最小的数和最大的数【2013,5】 【2012,6】 【2011,3】【2011,3】执行右面的程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.5040。

相关文档
最新文档